JP2000036644A - Double-sided flexible printed circuit board - Google Patents
Double-sided flexible printed circuit boardInfo
- Publication number
- JP2000036644A JP2000036644A JP10202940A JP20294098A JP2000036644A JP 2000036644 A JP2000036644 A JP 2000036644A JP 10202940 A JP10202940 A JP 10202940A JP 20294098 A JP20294098 A JP 20294098A JP 2000036644 A JP2000036644 A JP 2000036644A
- Authority
- JP
- Japan
- Prior art keywords
- double
- hole
- flexible printed
- mounting
- printed circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
- Structure Of Printed Boards (AREA)
Abstract
(57)【要約】
【課題】 両面FPCの小型化、機器の小型化に繋がる
ランド内スルーホールを実装不良を発生させずに実現す
る。
【解決手段】 実装される電気部品7の少なくとも一つ
がリフローにより半田付け実装される両面フレキシブル
プリント基板6であって、レーザー加工による非貫通穴
にて形成された非貫通スルーホール3aでフレキシブル
プリント基板6の表裏の導電パターンを電気的に接続
し、該非貫通スルーホール3aの少なくとも一つは前記
電気部品の実装ランド内へ接続するように設置し、かつ
該実装ランドを前記非貫通スルーホール3aを設けた面
の裏側の面に設置したことを特徴とする両面フレキシブ
ルプリント基板6。
(57) [Summary] [PROBLEMS] To realize a through hole in a land, which leads to downsizing of a double-sided FPC and downsizing of a device, without causing mounting defects. SOLUTION: A double-sided flexible printed board 6 on which at least one of the electrical components 7 to be mounted is soldered and mounted by reflow, and a flexible printed board with a non-through through hole 3a formed by a non-through hole by laser processing. 6, electrically connecting the front and back conductive patterns, at least one of the non-through through holes 3a is installed so as to be connected to a mounting land of the electric component, and the mounting land is connected to the non through through hole 3a. A double-sided flexible printed circuit board (6), which is provided on a surface on the back side of the provided surface.
Description
【0001】[0001]
【産業上の利用分野】本発明はフレキシブルプリント基
板、より詳しくは、いわゆるリフローにより電気部品を
半田付け実装する両面フレキシブルプリント基板に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible printed circuit board, and more particularly, to a double-sided flexible printed circuit board on which electric components are soldered and mounted by so-called reflow.
【0002】[0002]
【従来の技術】フレキシブルプリント基板(以下FPC
と略称)は、その薄さや屈曲性の良さなどの長所からカ
メラを始め様々な機器で使用されている。なかでも電気
部品を実装し比較的規模の大きい回路を形成する場合に
は、両面FPCが使用されることが多い。この両面FP
Cにおいて、表裏の導電パターンを電気的に接続するた
めに、スルーホール(以下T/Hと略称)が用いられ
る。従来T/Hは、導体を貼付したFPCのベースにド
リル加工で貫通穴を形成し、この貫通穴にメッキ処理を
施して表裏の導電パターンを接続するように構成されて
いる。2. Description of the Related Art Flexible printed circuit boards (hereinafter referred to as FPCs)
Is abbreviated as) and is used in various devices, including cameras, due to its thinness and good flexibility. Above all, when a relatively large-scale circuit is formed by mounting electric components, a double-sided FPC is often used. This double-sided FP
In C, through holes (hereinafter abbreviated as T / H) are used to electrically connect the front and back conductive patterns. Conventional T / Hs are configured such that a through hole is formed by drilling in a base of an FPC to which a conductor is attached, and the through hole is plated to connect conductive patterns on the front and back.
【0003】図4は第1の従来例として、一般的な両面
FPCの製造過程を断面図で示したものである。31は
ベースで、その表裏両面に導体32a、32bが貼付さ
れている(図4(A))。一般的にベースにはポリイミ
ド、導体には銅箔が用いられる。T/Hを設置する箇所
にドリルで貫通穴33を開ける(図4(B))。T/H
メッキ34を施すことにより、表裏の導体32aと32
bとが接続して貫通T/H33aが形成される(図4
(C))。表裏の導体32a、32bにエッチングを施
し、所望の導電パターンを得る(図4(D))。開口3
5aが必要に応じて設けられたカバーレイ35をラミネ
ートする(図4(E))。この後、開口35aにて露出
した導体32a、32bに対して所望の表面処理を施し
たうえで外形の打ち抜きを行って両面FPC36が完成
する。図3はこの両面FPC36にリフローにて電気部
品37を実装したものの断面を示している。38は半田
である。FIG. 4 is a cross-sectional view showing a manufacturing process of a general double-sided FPC as a first conventional example. Reference numeral 31 denotes a base on which conductors 32a and 32b are attached on both front and back surfaces (FIG. 4A). Generally, polyimide is used for the base and copper foil is used for the conductor. A through hole 33 is drilled at a location where the T / H is to be set (FIG. 4B). T / H
By applying the plating 34, the conductors 32a and 32
b to form a through T / H 33a.
(C)). The conductors 32a and 32b on the front and back are etched to obtain a desired conductive pattern (FIG. 4D). Opening 3
5a is laminated with a coverlay 35 provided as needed (FIG. 4E). Thereafter, the conductors 32a and 32b exposed at the opening 35a are subjected to a desired surface treatment and then the outer shape is punched to complete the double-sided FPC 36. FIG. 3 shows a cross section of an electric component 37 mounted on the double-sided FPC 36 by reflow. 38 is a solder.
【0004】一方近年、特開平6−77662号公報な
どに見られるように多層基板における非貫通T/H技術
が多数提案されている。これは、多層基板の最外層とそ
の直下の層とを電気的に接続するもので、図6に第2の
従来例としてこのような非貫通T/Hの製造過程を断面
で示す。ベース51に導体52aが貼付されたものが基
板の最外層として積層されている(図6(A))。導体
52aのT/H設置箇所をエッチングにて除去する(図
6(B))。このT/H設置箇所にレーザー照射を行う
と、エッチングにより露出したベース51が除去され、
直下の導電パターン52cが露出する(図6(C))。
この時点で最外層の導体52aとベース51には穴が開
いているが直下の導電パターン52cには穴が開いてい
ないので非貫通穴53が形成されたことになる。この状
態でT/Hメッキ54を施すことにより、最外層の導体
52aとその直下の導電パターン52cとを接続して非
貫通T/H53aが形成される(図6(D))。最外層
の導体52aにエッチングを施し、所望の導電パターン
を得る(図6(E))。レジスト55を塗布後、必要に
応じて開口55aを形成する(図6(F))。非貫通穴
53はエッチングとレーザー照射により形成されるの
で、第1の従来例におけるドリルによる貫通穴33より
も小径化が可能である。図5はこの多層基板56にリフ
ローにて電気部品57を実装したものの断面を示してい
る。58は半田である。On the other hand, in recent years, many non-penetrating T / H technologies for a multilayer substrate have been proposed as disclosed in Japanese Patent Application Laid-Open No. 6-77662. This electrically connects the outermost layer of the multilayer substrate and the layer immediately below the outermost layer. FIG. 6 is a cross-sectional view showing a manufacturing process of such a non-penetrating T / H as a second conventional example. The base 51 to which the conductor 52a is attached is laminated as the outermost layer of the substrate (FIG. 6A). The T / H setting portion of the conductor 52a is removed by etching (FIG. 6B). When laser irradiation is performed on the T / H setting location, the base 51 exposed by etching is removed,
The conductive pattern 52c immediately below is exposed (FIG. 6C).
At this point, a hole is formed in the outermost layer conductor 52a and the base 51, but no hole is formed in the conductive pattern 52c immediately below, so that the non-through hole 53 is formed. By applying the T / H plating 54 in this state, the non-penetrating T / H 53a is formed by connecting the outermost layer conductor 52a and the conductive pattern 52c immediately below the outermost conductor 52a (FIG. 6D). The outermost conductor 52a is etched to obtain a desired conductive pattern (FIG. 6E). After applying the resist 55, an opening 55a is formed as needed (FIG. 6F). Since the non-through holes 53 are formed by etching and laser irradiation, the diameter can be made smaller than that of the through holes 33 formed by the drill in the first conventional example. FIG. 5 shows a cross section of an electric component 57 mounted on the multilayer substrate 56 by reflow. 58 is a solder.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記従
来例には以下のような欠点があった。However, the above-mentioned prior art has the following drawbacks.
【0006】第1の従来例では、ドリル加工による貫通
T/H33aは比較的大きな径の貫通穴が残る。従っ
て、これを電気部品の実装ランド内に設置すると、図3
に示すようにリフロー時に溶解した半田が貫通T/H3
3aにより形成された貫通穴33へ流入することが避け
られず、半田不足による実装不良や裏面のカバーレイの
膨れ、さらには半田と導電パターンの熱膨張係数の差に
起因するクラックなどが発生してしまう。これを防ぐた
めに実装ランドと貫通T/H33aとを独立して設置し
ようとすると、両面FPCの大型化によるコストアップ
や機器自体の大型化にもつながってしまう。In the first conventional example, a penetration hole having a relatively large diameter remains in the penetration T / H 33a formed by drilling. Therefore, when this is installed in the mounting land of the electric component, FIG.
As shown in the figure, the solder melted during reflow has penetrated T / H3
Inevitably flows into the through-hole 33 formed by 3a, which causes mounting defects due to insufficient solder, swelling of the coverlay on the back surface, and cracks due to the difference in the thermal expansion coefficient between the solder and the conductive pattern. Would. If the mounting land and the penetrating T / H 33a are independently installed to prevent this, the cost of the double-sided FPC is increased and the size of the device itself is increased.
【0007】第2の従来例でも、エッチングとレーザー
照射による非貫通T/H53aは比較的小径とはいえ非
貫通穴53が残るために、非貫通T/H53aが設けら
れている面に電気部品の実装ランドを設置すると、リフ
ロー時に溶解した半田の非貫通T/H53aへの流入が
避けられず、半田不足による実装不良の懸念が残る。以
上のような従来技術の欠点に鑑み、本発明が解決しよう
とする課題は、両面FPCの小型化、機器の小型化に繋
がるランド内T/Hを実装不良を発生させずに実現する
ことである。In the second conventional example, the non-penetrating T / H 53a formed by etching and laser irradiation has a relatively small diameter but the non-penetrating hole 53 remains. When the mounting land is installed, it is inevitable that the solder melted during the reflow flows into the non-penetrating T / H 53a, and there is a concern that mounting failure due to insufficient solder may occur. In view of the above-described drawbacks of the prior art, the problem to be solved by the present invention is to realize a T / H in a land that leads to downsizing of a double-sided FPC and downsizing of a device without generating mounting defects. is there.
【0008】[0008]
【課題を解決するための手段及び作用】上記の課題を達
成するため、本出願に係る請求項1記載の発明は、実装
される電気部品の少なくとも一つがリフローにより半田
付け実装される両面フレキシブルプリント基板であっ
て、レーザー加工による非貫通穴にて形成された非貫通
スルーホールでフレキシブルプリント基板の表裏の導電
パターンを電気的に接続し、該非貫通スルーホールの少
なくとも一つは前記電気部品の実装ランド内へ接続する
ように設置し、かつ該実装ランドを前記非貫通スルーホ
ールを設けた面の裏側の面に設置したことを特徴とす
る。In order to achieve the above object, the invention according to claim 1 of the present application is directed to a double-sided flexible print in which at least one of the mounted electrical components is mounted by reflow soldering. A substrate, electrically connecting the conductive patterns on the front and back of the flexible printed circuit board with non-through through holes formed by non-through holes by laser processing, at least one of the non-through through holes is a mounting of the electric component; The mounting lands are provided so as to be connected to the lands, and the mounting lands are provided on a surface on the back side of the surface provided with the non-through through holes.
【0009】以上の構成によれば本発明の課題である、
両面FPCの小型化、機器の小型化に繋がるランド内T
/Hを実装不良を発生させずに実現することができる。According to the above configuration, the object of the present invention is to provide:
T in land that leads to miniaturization of double-sided FPC and miniaturization of equipment
/ H can be realized without causing a mounting defect.
【0010】[0010]
【発明の実施の形態】(第1実施形態)まず図2にて本
発明を適用した両面FPCの製造過程の一実施形態を説
明する。1はベースで、表裏両面に導体2a、2bが貼
付されている(図2(A))。一般的にベースにはポリ
イミド、導体には銅箔が用いられる。導体2bのT/H
設置箇所をエッチングにて除去する(図2(B))。こ
のT/H設置箇所に導体2b側からレーザー照射を行う
と、エッチングにより露出したベース1が除去され、反
対側の導電パターン2aが露出する(図2(C))。こ
の時点でベース1と一方の面の導体2bには穴が開いて
いるが、反対側の導電パターン2aには穴が開いていな
いので非貫通穴3が形成されたことになる。この状態で
T/Hメッキ4を施すことにより表裏の導体2a、2b
とを接続して非貫通T/H3aが形成される(図2
(D))。非貫通穴3はエッチングとレーザー照射によ
り形成されるので、第1の従来例におけるドリルによる
貫通穴33よりも小径化することが可能である。表裏の
導体2a、2bにエッチングを施し、所望の導電パター
ンを得る(図2(E))。開口5aが必要に応じて設け
られたカバーレイ5をラミネートする(図2(F))。
このとき接続ランド5bは、非貫通T/Hが形成されて
いない面に設ける。一般的にカバーレイにもポリイミド
が用いられる。この後、開口5aにて露出した導体2
a、2bに対して所望の表面処理を施したうえで外形の
打ち抜きを行って両面FPC6が完成する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) First, an embodiment of a manufacturing process of a double-sided FPC to which the present invention is applied will be described with reference to FIG. Reference numeral 1 denotes a base on which conductors 2a and 2b are attached on both front and back surfaces (FIG. 2A). Generally, polyimide is used for the base and copper foil is used for the conductor. T / H of conductor 2b
The installation location is removed by etching (FIG. 2B). When laser irradiation is performed from the conductor 2b side to the T / H installation location, the base 1 exposed by etching is removed, and the conductive pattern 2a on the opposite side is exposed (FIG. 2C). At this point, a hole is formed in the base 1 and the conductor 2b on one surface, but no hole is formed in the conductive pattern 2a on the opposite side, so that the non-through hole 3 is formed. By applying T / H plating 4 in this state, the conductors 2a, 2b
To form a non-penetrating T / H3a.
(D)). Since the non-through hole 3 is formed by etching and laser irradiation, it is possible to make the diameter smaller than the through hole 33 formed by the drill in the first conventional example. The conductors 2a and 2b on the front and back are etched to obtain a desired conductive pattern (FIG. 2E). The coverlay 5 provided with openings 5a as needed is laminated (FIG. 2F).
At this time, the connection land 5b is provided on a surface where no non-penetrating T / H is formed. Generally, polyimide is also used for the coverlay. Thereafter, the conductor 2 exposed at the opening 5a
After a desired surface treatment is applied to a and 2b, the outer shape is punched to complete the double-sided FPC 6.
【0011】図1はこの両面FPC6にリフロー半田に
て電気部品7を実装したものの断面を示しており、本発
明の特徴をもっともよく表わす図である。8は半田であ
る。本図からも明らかなように、本発明を適用した両面
FPC6では、実装ランド5bは前記レーザー加工によ
る非貫通T/H3aを施す面の裏側の面に設置されてい
るので、T/Hを電気部品7の実装ランド5b内へ接続
するように設置しても、実装ランド5bには半田8が流
入するような穴や凹みが一切生じない。従って、半田不
足による実装不良や裏面のカバーレイの膨れ、さらには
半田と導電パターンの熱膨張係数の差に起因するクラッ
クなどが発生することがなく、両面FPCの小型化、機
器の小型化に繋がるランド内T/Hを実装不良を発生さ
せずに実現することができる。FIG. 1 is a cross-sectional view of an electric component 7 mounted on the double-sided FPC 6 by reflow soldering, and is a view best representing the features of the present invention. 8 is solder. As is clear from this drawing, in the double-sided FPC 6 to which the present invention is applied, since the mounting land 5b is provided on the back side of the surface on which the non-penetrating T / H 3a is formed by the laser processing, the T / H is electrically controlled. Even if the component 7 is installed so as to be connected to the mounting land 5b, the mounting land 5b does not have any holes or dents into which the solder 8 flows. Therefore, mounting defects due to insufficient solder, swelling of the coverlay on the back surface, and cracks due to the difference in thermal expansion coefficient between the solder and the conductive pattern do not occur. The T / H in the connected land can be realized without causing a mounting defect.
【0012】[0012]
【発明の効果】以上説明したように本発明によれば、実
装される電気部品の少なくとも一つがリフローにより半
田付け実装される両面フレキシブルプリント基板であっ
て、レーザー加工による非貫通穴にて形成された非貫通
スルーホールでフレキシブルプリント基板の表裏の導電
パターンを電気的に接続し、該非貫通スルーホールの少
なくとも一つは前記電気部品の実装ランド内へ接続する
ように設置し、かつ該実装ランドを前記非貫通スルーホ
ールを設けた面の裏側の面に設置した構成としたので、
電気部品をリフローによって半田付け実装しても、接続
ランド内には溶融した半田が流れ込むような穴や凹みが
ないため、半田不足による実装不良や裏面のカバーレイ
の膨れ、さらには半田と導電パターンの熱膨張係数の差
に起因するクラックなどが発生することがなく、ひいて
は両面FPCの小型化、機器の小型化に繋がるランド内
T/Hを実装不良を発生させずに実現することができる
という効果がある。As described above, according to the present invention, at least one of the electric components to be mounted is a double-sided flexible printed circuit board to be mounted by reflow soldering, and is formed by a non-through hole by laser processing. Electrically connecting the conductive pattern on the front and back of the flexible printed circuit board with the non-through through hole, at least one of the non-through through holes is installed so as to be connected to the mounting land of the electric component, and the mounting land is Since it was configured on the back side of the surface provided with the non-through through hole,
Even when electrical components are soldered and mounted by reflow, there are no holes or dents in the connection lands that allow molten solder to flow in.Therefore, mounting defects due to insufficient soldering, swelling of the coverlay on the back surface, and solder and conductive patterns Cracks and the like due to the difference in thermal expansion coefficient between the two FPCs can be prevented, and the T / H in the land, which leads to downsizing of the double-sided FPC and downsizing of the device, can be realized without generating mounting defects. effective.
【図1】本発明の一実施形態を示す電気部品が実装され
た両面FPCの断面図。FIG. 1 is a cross-sectional view of a double-sided FPC on which an electric component according to an embodiment of the present invention is mounted.
【図2】(A),(B),(C),(D),(E),
(F)は、本発明の両面FPCの製造過程の一実施形態
を示す断面図。FIG. 2 (A), (B), (C), (D), (E),
(F) is sectional drawing which shows one Embodiment of the manufacturing process of the double-sided FPC of this invention.
【図3】(A),(B),(C),(D),(E)は、
第1の従来例としての両面FPCの製造過程を示す断面
図。FIG. 3 (A), (B), (C), (D), (E)
Sectional drawing which shows the manufacturing process of the double-sided FPC as a 1st conventional example.
【図4】電気部品を実装した第1の従来例の両面FPC
の断面図。FIG. 4 is a first conventional double-sided FPC on which electric components are mounted.
FIG.
【図5】(A),(B),(C),(D),(E),
(F)は、第2の従来例としての非貫通T/Hを設けた
多層基板の製造過程を示す断面図。FIG. 5 (A), (B), (C), (D), (E),
(F) is a sectional view showing a manufacturing process of a multilayer substrate provided with a non-penetrating T / H as a second conventional example.
【図6】電気部品を実装した第2の従来例の多層基板の
断面図。FIG. 6 is a sectional view of a second conventional multilayer board on which electric components are mounted.
1:ベース 2a、2b:導体 3:非貫通穴 3a:非貫通T/H 4:T/Hメッキ 5:カバーレイ 6:両面FPC 7:電気部品 8:半田 1: Base 2a, 2b: Conductor 3: Non-through hole 3a: Non-through T / H 4: T / H plating 5: Cover lay 6: Double-sided FPC 7: Electric component 8: Solder
Claims (1)
リフローにより半田付け実装される両面フレキシブルプ
リント基板であって、レーザー加工による非貫通穴にて
形成された非貫通スルーホールでフレキシブルプリント
基板の表裏の導電パターンを電気的に接続し、該非貫通
スルーホールの少なくとも一つは前記電気部品の実装ラ
ンド内へ接続するように設置し、かつ該実装ランドを前
記非貫通スルーホールを設けた面の裏側の面に設置した
ことを特徴とする両面フレキシブルプリント基板。1. A double-sided flexible printed board on which at least one of the electrical components to be mounted is soldered and mounted by reflow, and a non-through through hole formed by a non-through hole formed by laser processing. The conductive pattern is electrically connected, at least one of the non-penetrating through holes is installed so as to be connected to a mounting land of the electric component, and the mounting land is on the back side of the surface provided with the non-penetrating through hole. Double-sided flexible printed circuit board characterized by being installed on the surface of
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10202940A JP2000036644A (en) | 1998-07-17 | 1998-07-17 | Double-sided flexible printed circuit board |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10202940A JP2000036644A (en) | 1998-07-17 | 1998-07-17 | Double-sided flexible printed circuit board |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2000036644A true JP2000036644A (en) | 2000-02-02 |
Family
ID=16465691
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10202940A Pending JP2000036644A (en) | 1998-07-17 | 1998-07-17 | Double-sided flexible printed circuit board |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2000036644A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008010798A (en) * | 2006-06-30 | 2008-01-17 | Nippon Mektron Ltd | Flexible printed circuit board |
| CN102238809A (en) * | 2010-04-23 | 2011-11-09 | 比亚迪股份有限公司 | Flexible printed circuit (FPC) hollowed board and manufacturing method thereof |
| JP2011233848A (en) * | 2010-04-30 | 2011-11-17 | Sumitomo Electric Printed Circuit Inc | Flexible printed circuit board and its connecting structure, manufacturing method thereof, and electronic equipment |
| WO2013021834A1 (en) * | 2011-08-09 | 2013-02-14 | 住友電工プリントサーキット株式会社 | Printed circuit board wiring-integrated sheet, printed circuit board formed using printed circuit board wiring-integrated sheet, and manufacturing method for printed circuit board wiring-integrated sheet |
| CN103659001A (en) * | 2013-11-26 | 2014-03-26 | 苏州光韵达光电科技有限公司 | Laser drilling method of FPC |
| CN104270896A (en) * | 2014-09-30 | 2015-01-07 | 苏州安洁科技股份有限公司 | Process for overcoming deviation of cover films during electrode slice shape punching |
-
1998
- 1998-07-17 JP JP10202940A patent/JP2000036644A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008010798A (en) * | 2006-06-30 | 2008-01-17 | Nippon Mektron Ltd | Flexible printed circuit board |
| CN102238809A (en) * | 2010-04-23 | 2011-11-09 | 比亚迪股份有限公司 | Flexible printed circuit (FPC) hollowed board and manufacturing method thereof |
| JP2011233848A (en) * | 2010-04-30 | 2011-11-17 | Sumitomo Electric Printed Circuit Inc | Flexible printed circuit board and its connecting structure, manufacturing method thereof, and electronic equipment |
| WO2013021834A1 (en) * | 2011-08-09 | 2013-02-14 | 住友電工プリントサーキット株式会社 | Printed circuit board wiring-integrated sheet, printed circuit board formed using printed circuit board wiring-integrated sheet, and manufacturing method for printed circuit board wiring-integrated sheet |
| JP2013038265A (en) * | 2011-08-09 | 2013-02-21 | Sumitomo Electric Printed Circuit Inc | Printed wire aggregate sheet, printed wiring board formed using printed wire aggregate sheet, manufacturing method of printed wire aggregate sheet |
| CN103202106A (en) * | 2011-08-09 | 2013-07-10 | 住友电工印刷电路株式会社 | Printed wiring integrated sheet, printed wiring board formed using the printed wiring integrated sheet, and method of manufacturing the printed wiring integrated sheet |
| CN103659001A (en) * | 2013-11-26 | 2014-03-26 | 苏州光韵达光电科技有限公司 | Laser drilling method of FPC |
| CN104270896A (en) * | 2014-09-30 | 2015-01-07 | 苏州安洁科技股份有限公司 | Process for overcoming deviation of cover films during electrode slice shape punching |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH0423485A (en) | Printed wiring board and its manufacturing method | |
| US20100236823A1 (en) | Ring of power via | |
| JP2000036644A (en) | Double-sided flexible printed circuit board | |
| JP2007207897A (en) | Printed circuit board including end surface through-hole | |
| GB2247361A (en) | Conductive through-holes in printed wiring boards | |
| JP2015207729A (en) | Printed wiring board | |
| JP3905802B2 (en) | Printed wiring board and manufacturing method thereof | |
| JP2021125552A (en) | Printed circuit board and manufacturing method thereof, and printed wiring board | |
| JPH06164138A (en) | Single-sided through-hole board | |
| JP2004342776A (en) | Circuit board | |
| JP5000446B2 (en) | Method for manufacturing printed wiring board | |
| JP3527965B2 (en) | Printed wiring board | |
| JP2002009436A (en) | Manufacturing method of printed wiring board | |
| JP3374777B2 (en) | 2-metal TAB, double-sided CSP, BGA tape, and manufacturing method thereof | |
| KR100771352B1 (en) | Manufacturing method of printed circuit board | |
| JP4302045B2 (en) | Multilayer flexible circuit wiring board and manufacturing method thereof | |
| JP2776361B2 (en) | Printed wiring board | |
| JPH01295489A (en) | Manufacture of printed wiring board and wiring board obtained by this manufacturing method | |
| JPH08186357A (en) | Printed wiring board and manufacture thereof | |
| JP3323114B2 (en) | Surface mount pad with adhesion enhancing hole | |
| JP2950234B2 (en) | Multilayer printed wiring board | |
| JPH0548246A (en) | Manufacture of flexible printed circuit board | |
| KR19990049190A (en) | Printed Circuit Board Manufacturing Method | |
| JP2005136339A (en) | Substrate bonding method and bonding structure thereof | |
| JPS584999A (en) | Manufacturing method for printed wiring boards |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040430 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040518 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040921 |