[go: up one dir, main page]

JP2000150174A - Airport light control device - Google Patents

Airport light control device

Info

Publication number
JP2000150174A
JP2000150174A JP32514198A JP32514198A JP2000150174A JP 2000150174 A JP2000150174 A JP 2000150174A JP 32514198 A JP32514198 A JP 32514198A JP 32514198 A JP32514198 A JP 32514198A JP 2000150174 A JP2000150174 A JP 2000150174A
Authority
JP
Japan
Prior art keywords
signal
power supply
lamp
current
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32514198A
Other languages
Japanese (ja)
Inventor
Toru Endo
徹 遠藤
Naohiro Sakaki
直浩 榊
Hideo Otani
英雄 大谷
Yasuharu Kamata
安治 鎌田
Shoji Nakahara
正二 中原
Juichiro Atsumi
寿一郎 渥美
Satoshi Goto
聡 後藤
Shoji Ikeda
昭二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Process Computer Engineering Inc
Original Assignee
Hitachi Ltd
Hitachi Process Computer Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Process Computer Engineering Inc filed Critical Hitachi Ltd
Priority to JP32514198A priority Critical patent/JP2000150174A/en
Publication of JP2000150174A publication Critical patent/JP2000150174A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

(57)【要約】 【課題】本発明の目的は、灯火の余寿命を予測すること
で灯火の信頼性向上と運用保守コストを低減できる空港
灯火制御装置を提供することにある。 【解決手段】本発明は、灯火に流れる電流と灯火に発生
する電圧を測定し、電流と電圧から灯火の抵抗値を算出
し、抵抗値の経時的変化から前記灯火の余寿命を予測す
るようにしたものである。
(57) Abstract: An object of the present invention is to provide an airport light control device capable of improving the reliability of lights and reducing operation and maintenance costs by predicting the remaining life of the lights. The present invention measures a current flowing through a lamp and a voltage generated in the lamp, calculates a resistance value of the lamp from the current and the voltage, and predicts a remaining life of the lamp from a change over time in the resistance value. It was made.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は航空機の誘導を行う
灯火制御システムに係わり、特に給電線通信方式(電力
線搬送方式)を用いて灯火を制御する空港灯火制御装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light control system for guiding an aircraft, and more particularly to an airport light control device for controlling a light using a power line communication system (power line transfer system).

【0002】[0002]

【従来の技術】「電磁波雑音のタイムドメイン計測技
術」(電気学会電磁波雑音のタイムドメイン計測技術調
査専門委員会編、コロナ社)の175頁には、給電線を
用いた通信システムが示されている。この技術は、受電
用トランスを介して給電線に接続された灯火に電流を給
電する灯火制御システムであって、親局及び子局が給電
線を流れる商用周波数の供給電流に重畳した高周波(6
2kHz)の信号を送受信して灯火の断芯検出を行うも
のである。
2. Description of the Related Art A communication system using a power supply line is shown on page 175 of "Time Domain Measurement Technology of Electromagnetic Noise" (edited by the Technical Committee on Time Domain Measurement Technology of Electromagnetic Noise of the Institute of Electrical Engineers of Japan, Corona). I have. This technology is a lamp control system that supplies a current to a lamp connected to a power supply line via a power receiving transformer, wherein a master station and a slave station superimpose a high frequency (6) superimposed on a supply current of a commercial frequency flowing through the power supply line.
2 kHz) to detect the disconnection of the lamp.

【0003】更に、特開平10−92588号公報、特
開平4−501035号公報、特開平5−505055
号公報に灯火制御システムが開示されている。
Further, Japanese Patent Application Laid-Open Nos. 10-92588, 4-501035, and 5-505055
Discloses a light control system.

【0004】[0004]

【発明が解決しようとする課題】従来の技術では、灯火
の輝度劣化や断芯時期を予測できないため、断芯が突然
に発生するため、灯火の信頼性が低く、また、灯火の輝
度点検に手数を要し、交換用保管灯火台数が多目にな
り、運用保守費用が大きくなる欠点がある。
In the prior art, the deterioration of the brightness of the lamp and the timing of the disconnection cannot be predicted. Therefore, the disconnection occurs suddenly, so that the reliability of the lamp is low. It is troublesome, the number of replacement storage lamps becomes large, and the operation and maintenance cost becomes large.

【0005】また、従来の技術では信号を電力電流に重
畳する位相が固定されている。雲高により灯火の輝度調
整が必要で、灯火へ給電する給電装置のサイリスタ点弧
角を制御することに起因して、灯火の輝度調整により灯
火供給電流の波形が変化するため、親局と子局間の送受
信が不能になる欠点がある。
In the prior art, the phase at which a signal is superimposed on a power current is fixed. The brightness of the lamp needs to be adjusted according to the cloud height, and the control of the thyristor firing angle of the power supply device that supplies power to the lamp causes the waveform of the lamp supply current to change due to the brightness of the lamp. There is a drawback that transmission and reception between stations becomes impossible.

【0006】さらに、従来の技術では、灯火の断芯検出
を行う信号の周波数を一定値に固定している。しかし、
給電線を利用した信号送受信の場合、給電線の距離が長
く、かつ、1つの給電ループに接続される灯火数が多い
ことから、給電線の抵抗、インダクタンス、浮遊容量、
灯火に接続するゴムトランスのリーケージインダクタン
スなどの回路定数、特に地中に配置した給電線の天候変
化(地中の水分比率変化)に起因する対地静電容量の変
化より信号伝送特性が変動し、親局と子局間の送受信が
不能になり断芯検出不能になる欠点がある。公知例特開
平10−92588号に子局位置に対応して信号周波数
を割り当てる方法が開示されているが、複数の周波数を
管理し使い分けする煩雑性が生じる。
Further, in the prior art, the frequency of the signal for detecting the disconnection of the lamp is fixed at a constant value. But,
In the case of signal transmission / reception using a power supply line, since the distance of the power supply line is long and the number of lights connected to one power supply loop is large, the resistance, inductance, stray capacitance,
Signal transmission characteristics fluctuate due to changes in circuit constants such as the leakage inductance of the rubber transformer connected to the lamp, and in particular, changes in the capacitance to ground caused by the weather change (changes in the moisture ratio in the ground) of the feeder line placed underground. There is a drawback that transmission and reception between the master station and the slave stations become impossible, and that the disconnection cannot be detected. A method of allocating a signal frequency according to a position of a slave station is disclosed in Japanese Patent Application Laid-Open No. Hei 10-92588. However, the complexity of managing and selectively using a plurality of frequencies arises.

【0007】本発明の目的は、灯火の余寿命を予測する
ことで灯火の信頼性向上と運用保守コストを低減できる
空港灯火制御装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an airport light control device capable of improving the reliability of lights and reducing operation and maintenance costs by predicting the remaining life of the lights.

【0008】本発明の他の目的は信号の周波数を全子局
と親局が送受信可能な値にし、設置環境や天候に左右さ
れない送受信の信頼性確保できる空港灯火制御装置を提
供することにある。
It is another object of the present invention to provide an airport light control device capable of setting the signal frequency to a value at which all the slave stations and the master station can transmit and receive, and ensuring the reliability of transmission and reception independent of the installation environment and weather. .

【0009】[0009]

【課題を解決するための手段】本発明は、灯火に流れる
電流と灯火に発生する電圧を測定し、電流と電圧から灯
火の抵抗値を算出し、抵抗値の経時的変化から前記灯火
の余寿命を予測するようにしたものである。
SUMMARY OF THE INVENTION The present invention measures a current flowing through a lamp and a voltage generated in the lamp, calculates a resistance value of the lamp from the current and the voltage, and calculates a remaining time of the lamp based on a temporal change in the resistance value. The service life is predicted.

【0010】[0010]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0011】航空機の通路に配置した複数(10〜20
0程度)の灯火1とゴムトランス3と子局2と、前記複
数の灯火1に商用周波数(50/60Hz)の電力を供
給する給電装置6と、親局4を地中に配置した給電線5
によってループ状に接続(図1)し、給電線5に商用周
波数よりも高周波(キロヘルツのオーダー)の信号を重
畳し子局2と親局4との間で信号を送受信し灯火の断芯
検出やON/OFF制御を行う灯火制御装置である。灯
火は、空港内に進入する航空機、滑走路・誘導路を走行
する航空機を誘導するために、空港内の滑走路・誘導路
およびその周辺部(路側帯)に配置され、また、自動車
における信号機に対応するストップバーとしても使用さ
れる。給電装置6は、あらかじめ決められた5段階の電
流、すなわち2.8〜6.6アンペアの電流を供給す
る。なお、給電装置6の出力電圧は灯火1が直列に接続
されていることから灯火1の数と電流に依存する。
A plurality (10 to 20) arranged in the passage of the aircraft
0), a rubber transformer 3, a slave station 2, a power supply device 6 for supplying electric power of a commercial frequency (50/60 Hz) to the plurality of lights 1, and a power supply line in which a master station 4 is arranged underground. 5
(Fig. 1), superimposes a signal of a frequency higher than the commercial frequency (in the order of kilohertz) on the power supply line 5, transmits and receives signals between the slave station 2 and the master station 4, and detects the disconnection of the lamp. And a lamp control device that performs ON / OFF control. Lights are placed on the runway / guideway in the airport and its surrounding area (roadside belt) to guide aircraft entering the airport, and aircraft traveling on the runway / taxiway. It is also used as a stop bar corresponding to. The power supply device 6 supplies a predetermined five-stage current, that is, a current of 2.8 to 6.6 amps. Note that the output voltage of the power supply device 6 depends on the number of lamps 1 and the current since the lamps 1 are connected in series.

【0012】また、子局2と親局4は信号の送受信を行
う電子回路を有する。この電子回路は、マイクロ・プロ
セッサを含み、送受信機能すなわち電力電流波形を計測
し送受信位相を設定する機能、受信信号の周波数の計測
と意味を解読し、記憶する機能と信号を送信する機能を
有する。子局は前記送受信機能の他に灯火に印加される
電流、電圧を計測する機能、灯火の抵抗値を計算し余命
を推定する機能、灯火を点灯、消灯する機能を有する。
親局4は送受信機能のほかに、中央制御装置と通信する
機能を有する。
The slave station 2 and the master station 4 have electronic circuits for transmitting and receiving signals. This electronic circuit includes a microprocessor, and has a transmitting / receiving function, that is, a function of measuring a power current waveform and setting a transmitting / receiving phase, a function of measuring a frequency of a received signal, decoding a meaning, storing the function, and transmitting a signal. . In addition to the transmission / reception function, the slave station has a function of measuring the current and voltage applied to the lamp, a function of calculating the resistance value of the lamp to estimate the life expectancy, and a function of turning on and off the lamp.
The master station 4 has a function of communicating with the central control device in addition to a transmission / reception function.

【0013】また、この灯火制御装置を利用するシステ
ムは、複数の親局4の制御情報を集中処理する集中制御
装置8と、オペレータが灯火の監視および灯火への指示
を行うための操作卓9を有している。操作卓9はキーボ
ードやタッチパネルなどの表示入力手段を備えている。
集中制御装置8と親局4、集中処理装置8と操作卓9の
間は、たとえば光ファイバーを用いた信号用ケーブルに
より接続して通信する。
A system using the light control device includes a central control device 8 for centrally processing control information of a plurality of master stations 4, and a console 9 for an operator to monitor the light and issue an instruction to the light. have. The console 9 includes display input means such as a keyboard and a touch panel.
The centralized control device 8 and the master station 4, and the centralized processing device 8 and the console 9 are connected and communicated by, for example, a signal cable using an optical fiber.

【0014】以下に、図1の灯火制御装置の実施例を更
に具体的に説明する。
Hereinafter, an embodiment of the light control device of FIG. 1 will be described more specifically.

【0015】この装置は、複数の灯火1と子局2とゴム
トランス3と親局4と地中に埋設した給電線5と灯火2
に一定電流(2.8〜6.6アンペア)を供給する給電
装置6と信号終端器7と中央処理装置8と操作卓9で構
成成される。灯火1には子局2とゴムトランス3を介し
て給電線5により直列に接続する。
This apparatus comprises a plurality of lamps 1, a slave station 2, a rubber transformer 3, a master station 4, a power supply line 5 buried underground, and a lamp 2.
A power supply device 6 for supplying a constant current (2.8 to 6.6 amps) to the power supply, a signal terminator 7, a central processing unit 8, and a console 9 are provided. The lamp 1 is connected in series with a slave station 2 and a power supply line 5 via a rubber transformer 3.

【0016】また、複数の灯火1と信号を送受信する親
局4はゴムトランス3を介して給電線5に接続する。給
電装置6と、親局4と複数の子局1はゴムトランス3を
介してループ状に接続する。給電装置6の出力電圧はk
Vオーダーである。ゴムトランス3は巻線比1対1の絶
縁トランスである。また終端器7は給電装置1をバイパ
スするようにフィルタを形成する。この終端器7は、信
号を終端する抵抗器と灯火電圧をカットするコンデンサ
とを有する。
A master station 4 for transmitting and receiving signals to and from a plurality of lamps 1 is connected to a power supply line 5 via a rubber transformer 3. The power supply device 6, the master station 4, and the plurality of slave stations 1 are connected in a loop via the rubber transformer 3. The output voltage of the power supply device 6 is k
V order. The rubber transformer 3 is an insulating transformer having a turn ratio of 1: 1. The terminator 7 forms a filter so as to bypass the power supply device 1. The terminator 7 has a resistor for terminating a signal and a capacitor for cutting a lamp voltage.

【0017】次に図2、図3、図4、図5により子局2
および親局4について説明する。
Next, FIG. 2, FIG. 3, FIG. 4, and FIG.
And the master station 4 will be described.

【0018】子局2および親局4は、共通の回路要素で
構成する。信号送受信と灯火1の制御を行うマイクロプ
ロセッサ10、動作プログラムおよび各種パラメータを
格納するFROM11、動作中の各種情報を格納するS
RAM12、信号を電力電流に重畳しかつ灯火に流れる
電流を調整するスイッチ13、マイクロ・プロセッサ1
0とスイッチ13を絶縁するためのフォトカプラ14、
抵抗器により電力電流と信号電流を検出する検出器1
6、ローパスフィルタとコンパレータを組み合わせて電
力電流の位相を検出する位相検出部17、バンドパスフ
ィルタとコンパレータを組み合わせて電力電流から送受
信信号を検出する信号検出部18、電流値や電圧値をデ
ジタル値に変換してマイクロ・プロセッサに入力するア
ナログ・デジタル変換器19、電力電流から電流エネル
ギーを取り出し子局および親局が動作するために必要な
電圧を生成する電源20により構成する。スイッチ13
は、図5に示すごとくFETからなる電子スイッチで構
成する。
The slave station 2 and the master station 4 are composed of common circuit elements. Microprocessor 10 for transmitting and receiving signals and controlling lamp 1; FROM 11 for storing operation programs and various parameters; and S for storing various information during operation.
RAM 12, a switch 13 for superimposing a signal on a power current and adjusting a current flowing through a lamp, a microprocessor 1
A photocoupler 14 for isolating the switch 13 from 0
Detector 1 for detecting power current and signal current by resistor
6. A phase detector 17 for detecting the phase of the power current by combining a low-pass filter and a comparator; a signal detector 18 for detecting a transmission / reception signal from the power current by combining a band-pass filter and a comparator; And a digital-to-analog converter 19 for inputting the current energy to the microprocessor, and a power supply 20 for extracting current energy from the power current and generating a voltage necessary for operating the slave station and the master station. Switch 13
Is composed of an electronic switch composed of FETs as shown in FIG.

【0019】このほかに、子局2には、灯火に印加する
電圧を検出する電圧検出抵抗器21と電流を検出する電
流トランス15を設ける。検出した電圧値をデジタル値
に変換してマイクロ・プロセッサに入力するアナログ・
デジタル変換器19を設ける。
In addition, the slave station 2 is provided with a voltage detecting resistor 21 for detecting a voltage applied to the lamp and a current transformer 15 for detecting a current. An analog input that converts the detected voltage value to a digital value and inputs it to the microprocessor
A digital converter 19 is provided.

【0020】また、親局4には、負荷抵抗器1Aと、集
中制御装置8との通信を行う通信制御部22を設ける。
The master station 4 is provided with a communication control unit 22 for communicating with the load resistor 1A and the central control unit 8.

【0021】次に灯火の余寿命予測方法を説明する。Next, a method for estimating the remaining life of a lamp will be described.

【0022】余寿命予測処理は子局2にて実施する。The remaining life prediction process is performed by the slave station 2.

【0023】灯火は、図8に示す通り、使用時間がある
一定時間を超えるとフィラメントが蒸発し抵抗値が大き
くなる。そこで、予め測定した灯火1のフィラメント抵
抗値の経時的変化の情報をもとに、灯火2の断芯が予想
される抵抗値を、断芯予告レベルr1と予防保全実施レ
ベルr2として記憶部16に格納しておく。灯火1に印
加される電流と電圧を測定し、測定した電流値と電圧値
を基にマイクロ・プロッセッサ12で演算を行い、電流
および電圧の実行値を算出し、灯火2のフィラメント抵
抗値Rを下式から算出する。[rms]は実効値であ
る。
As shown in FIG. 8, when the lamp is used for a certain period of time, the filament evaporates and the resistance increases. Therefore, based on the information on the temporal change of the filament resistance value of the lamp 1 measured in advance, the resistance value at which the disconnection of the lamp 2 is expected is stored as the disconnection notice level r1 and the preventive maintenance execution level r2 in the storage unit 16. To be stored. A current and a voltage applied to the lamp 1 are measured, and a calculation is performed by the micro processor 12 based on the measured current value and the voltage value, an execution value of the current and the voltage is calculated, and a filament resistance value R of the lamp 2 is calculated. It is calculated from the following equation. [Rms] is an effective value.

【0024】R=V[rms]/I[rms] マイクロ・プロセッサ12は、抵抗値を算出後、抵抗値
がr0か,r0〜r1か、r1〜r2か、断芯かを判定
し、灯火情報としてSRAM12に格納する。SRAM
12に格納した前記灯火情報は、信号送受信により親局
4に伝えられる。またR≧r1と判定された後は、スイ
ッチ13を一定位相間ONして灯火に印加する電圧Vを
定格値よりも小さくし、灯火の予寿命を延命する方法は
本発明の範囲である。
R = V [rms] / I [rms] After calculating the resistance value, the microprocessor 12 determines whether the resistance value is r0, r0 to r1, r1 to r2, or broken, and The information is stored in the SRAM 12. SRAM
The lamp information stored in 12 is transmitted to the master station 4 by signal transmission and reception. Further, after it is determined that R ≧ r1, the method of turning on the switch 13 for a certain phase to make the voltage V applied to the lamp smaller than the rated value and extending the life of the lamp is within the scope of the present invention.

【0025】前記予寿命予測と灯火寿命を延命する方法
は、子局2と親局4の間の信号送受信の方式に関わらず
実現可能であり、信号線を別布線して送受信を行う場合
に適用することも本発明の範囲である。
The method of estimating the pre-life and extending the life of the lamp can be realized irrespective of the signal transmission / reception method between the slave station 2 and the master station 4. When transmission / reception is performed by separately arranging signal lines. Is also within the scope of the present invention.

【0026】次に図6により子局2と親局4との信号送
受信を説明する。
Next, signal transmission and reception between the slave station 2 and the master station 4 will be described with reference to FIG.

【0027】親局4のマイクロ・プロセッサ10が送出
する信号(図2−イ)の波形を図4−aに示す。この信
号をスイッチ13にて電力電流に重畳する。この時親局
4に接続するゴムトランス3の2次側(図2−ロ)に発
生する電圧を図4−bに示す。この信号を重畳した電流
が図4−cに示す波形となりゴムトランス3を介して給
電線5(図2−ハ、図3−ハ)に流れ、さらに別のゴムト
ランス3を介して子局2に伝送される。この電力電流の
波形は最大約10アンペア(=6.6×√2)の波高値
を持つ正弦波であり、重畳する信号の振幅は約10ミリ
アンペアとなる。子局2では、図4−dに示す通りゴム
トランス3の2次側に流れる電流を検出器16が検出し
電圧に変換する(図3−ニ)。この検出器端子間電圧は
電力電流成分は波高値が約0.1ボルトの正弦波であ
り、信号成分の振幅は約100マイクロボルトである。
この検出器端子間電圧から位相検出部22(図3−ホ)
では図4−eに示す同期信号を生成し、さらに信号検出
部23(図3−へ)では受け取った信号を図4−fに示
すパルス信号に復調する。このパルス信号はマイクロ・
プロセッサ10で計測し、あらかじめ定めた周期に合う
か否かを判定し、合のときのみ信号として使用する。
FIG. 4A shows the waveform of the signal (FIG. 2-A) transmitted by the microprocessor 10 of the master station 4. This signal is superimposed on the power current by the switch 13. FIG. 4B shows the voltage generated on the secondary side (FIG. 2-B) of the rubber transformer 3 connected to the master station 4 at this time. A current obtained by superimposing this signal has a waveform shown in FIG. 4C and flows through the rubber transformer 3 to the power supply line 5 (FIG. 2-C, FIG. 3-C). Is transmitted to The waveform of this power current is a sine wave having a peak value of about 10 amps (= 6.6 × √2) at the maximum, and the amplitude of the superimposed signal is about 10 milliamps. In the slave station 2, the detector 16 detects the current flowing on the secondary side of the rubber transformer 3 as shown in FIG. 4D and converts it into a voltage (FIG. 3-D). The voltage between the detector terminals is such that the power current component is a sine wave having a peak value of about 0.1 volt, and the amplitude of the signal component is about 100 microvolts.
From the voltage between the detector terminals, the phase detector 22 (FIG. 3E)
Generates a synchronization signal shown in FIG. 4-e, and further, the signal detection unit 23 (to FIG. 3-) demodulates the received signal into a pulse signal shown in FIG. 4-f. This pulse signal is
The measurement is performed by the processor 10, and it is determined whether or not the cycle matches a predetermined cycle.

【0028】次に、信号重畳位相設定方法を説明する。Next, a method of setting a signal superimposed phase will be described.

【0029】信号重畳位相の設定は子局2および親局4
において実施する。全灯火の輝度制御(5段階)を行う
ため、給電装置6がサイリスタ制御により灯火1に一定
の電流を供給する方式であるとすると、電力電流は図7
−cに示す通り点弧角θ(100°〜180°)をもつ
波形になる。送受信に最適な位相は、電流変動が最大で
ある位相から一定時間(約1ミリ秒)経過して電力電流
が安定して流れる位相である。したがって、電流変動が
最大である位相を求めることにより、信号重畳位相を決
定することができる。
The setting of the signal superposition phase is performed by the slave station 2 and the master station 4
It is implemented in. Assuming that the power supply device 6 supplies a constant current to the lamp 1 by thyristor control in order to perform brightness control of all the lamps (5 stages), the power current will be as shown in FIG.
As shown by −c, the waveform has a firing angle θ (100 ° to 180 °). The optimal phase for transmission and reception is a phase in which the power current flows stably after a certain time (approximately 1 millisecond) has elapsed from the phase with the largest current fluctuation. Therefore, the signal superimposition phase can be determined by obtaining the phase where the current fluctuation is the maximum.

【0030】子局2および親局4は、自局に流れる電力
電流を位相検出部17で抽出した波形を、A/Dコンバ
ータでデジタル信号に変換し、マイク・プロセッサ10
で電流変動量を演算し、変動量が最大である位相を判別
する。この様にして測定した電流値はマイクロ・プロセ
ッサ10を介してSRAM12に記憶する。マイクロ・
プロセッサ10は、電流変動量が最大となる位相から1
ミリ秒後に信号重畳位相を設定することで、供給電流
(2.8〜6.6アンペア)がどの値を取っても送受信
可能となるようにする。
The slave station 2 and the master station 4 convert the waveform obtained by extracting the power current flowing in the own station by the phase detector 17 into a digital signal by an A / D converter, and
To calculate the current variation, and determine the phase having the largest variation. The current value measured in this manner is stored in the SRAM 12 via the microprocessor 10. micro·
The processor 10 determines that the phase of the current
By setting the signal superposition phase after millisecond, transmission and reception can be performed regardless of the value of the supply current (2.8 to 6.6 amps).

【0031】このようにして、子局2と親局4の間で信
号送受信を行う様子を図7に示す。
FIG. 7 shows how signals are transmitted and received between the slave station 2 and the master station 4 in this manner.

【0032】次に、電力線搬送において灯火余命延命の
ために、スイッチ13を一定位相間ONして灯火に印加
する電圧Vを定格値よりも小さくし、灯火の予寿命を延
命する灯火輝度を個別制御可能にする方法を説明する。
Next, in order to extend the life expectancy of the lamp in power line transportation, the switch 13 is turned on for a predetermined phase to reduce the voltage V applied to the lamp to a value smaller than the rated value, and the lamp luminance for extending the life of the lamp is individually adjusted. A method for enabling control will be described.

【0033】図9に灯火電流波形に信号電流を重畳した
例をを示す。スイッチ13へON信号を送出し、電力電
流半周期(0°〜180°),(180°〜360°)
の間に一定期間電力電流を灯火1に流さないようにし
て、灯火1への印加電力を減じ灯火1の延命を図る。
FIG. 9 shows an example in which a signal current is superimposed on a lamp current waveform. An ON signal is sent to the switch 13, and the power current half cycle (0 ° to 180 °), (180 ° to 360 °)
During this period, the power current is not supplied to the lamp 1 for a certain period of time, and the power applied to the lamp 1 is reduced to extend the life of the lamp 1.

【0034】信号重畳位相と輝度調整の位相が互いに重
複しないように、信号重畳位相を一定期間(θ1〜θ
2),(θ1+180°〜θ2+180°)に限定す
る。例えばθ1=30°、θ2=60°とし、輝度調整
はこれ以外の期間でスイッチ13をONすることで実施
する。
In order to prevent the signal superimposition phase and the luminance adjustment phase from overlapping each other, the signal superimposition phase is set for a certain period (θ1 to θ
2), (θ1 + 180 ° to θ2 + 180 °). For example, θ1 = 30 ° and θ2 = 60 °, and the brightness adjustment is performed by turning on the switch 13 in other periods.

【0035】次に、通信に使用する高周波電流の周波数
設定方法を説明する。
Next, a method of setting the frequency of the high-frequency current used for communication will be described.

【0036】図10に送受信周波数設定フロー、図11
に送受信信号周波数設定処理を示す。
FIG. 10 is a flowchart for setting the transmission / reception frequency, and FIG.
Fig. 7 shows the transmission / reception signal frequency setting process.

【0037】親局4は、問合せ信号の周波数をあらかじ
め決めた周波数(例えば1キロヘルツ)に設定後、問合
せ信号を供給電流に同期して2サイクル送信し、その後
電力電流の2サイクル間待機する。親局4は、送信後灯
火供給電流の波数をカウントし、子局2の応答を待つ。
各子局2は、親局4が送信した問合せ信号を2回受信す
ると信号の周波数を測定し、応答信号として自局が受信
した周波数と同一の周波数を設定し、電力電流の波数を
カウントして自局の応答送信タイミングを待つ。図6に
示す通り親局送信終了後の次の供給電流サイクルに同期
して、アドレスの1からMまでの子局2が順番に自局の
応答信号を1サイクルおきに送信する。
After setting the frequency of the inquiry signal to a predetermined frequency (for example, 1 kHz), the master station 4 transmits the inquiry signal in two cycles in synchronization with the supply current, and then waits for two cycles of the power current. The master station 4 counts the wave number of the lamp supply current after transmission, and waits for a response from the slave station 2.
When each slave station 2 receives the inquiry signal transmitted by the master station 4 twice, it measures the frequency of the signal, sets the same frequency as the frequency received by its own station as a response signal, and counts the number of waves of the power current. Wait for the response transmission timing of the own station. As shown in FIG. 6, in synchronization with the next supply current cycle after the completion of the transmission of the master station, the slave stations 2 from address 1 to M sequentially transmit their own response signals every other cycle.

【0038】全ての子局の応答信号受信が終了すると、
親局は受信回数がM回であったか否かを判定し、M回で
あれば該周波数が通信可能周波数であると判定し、信号
の周波数に設定する。受信回数がMでない場合は、該周
波数は通信不可能と判定し、問合せ信号の周波数をあら
かじめ決めた増分値(例えば100ヘルツ)だけ変化さ
せて上記動作を実行し、これを受信子局数がM個となる
まで繰り返す。周波数を上限値(例えば5キロヘルツ)
まで試行してもM個にならないときは、回答無しの子局
が故障または断芯と判断し、子局および灯火を交換す
る。
When the response signals of all the slave stations have been received,
The master station determines whether the number of receptions is M, and if the number is M, determines that the frequency is a communicable frequency and sets the frequency to a signal. If the number of receptions is not M, it is determined that the frequency cannot be communicated, the above operation is executed by changing the frequency of the inquiry signal by a predetermined increment value (for example, 100 Hz), and the number of receiving child stations is changed. Repeat until M is reached. Set the frequency to the upper limit (for example, 5 kHz)
If the number of M does not become M even after trials, the slave station with no answer is determined to be faulty or broken, and the slave station and the lamp are replaced.

【0039】親局4は自局にて信号の周波数を設定後、
信号周波数を3サイクル送信し、その後3サイクル待機
する。子局2は親局が送信した問合せ信号を3サイクル
受信したら、該周波数を制御信号の周波数として設定す
る。
The master station 4 sets the signal frequency at its own station,
Transmits the signal frequency for 3 cycles, then waits for 3 cycles. When the slave station 2 receives the inquiry signal transmitted by the master station for three cycles, the slave station 2 sets the frequency as the frequency of the control signal.

【0040】[0040]

【発明の効果】本発明の効果は、請求項1により灯火の
予寿命を予測し、灯火の信頼性を確保できる。また、請
求項2により灯火余命を延命することができ、さらに、
請求項3および4により信号送受信を高信頼化すること
ができる。
According to the effects of the present invention, it is possible to predict the life expectancy of a lamp according to claim 1 and to secure the reliability of the lamp. According to the second aspect, the life expectancy of the lamp can be prolonged.
According to claims 3 and 4, signal transmission and reception can be made highly reliable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 灯火制御装置の全体構成図。FIG. 1 is an overall configuration diagram of a light control device.

【図2】 灯火制御装置子局のブロック構成図。FIG. 2 is a block diagram of a light control device slave station.

【図3】 灯火制御装置親局のブロック構成図。FIG. 3 is a block diagram of a light control device master station.

【図4】 子局および親局の位相検出部、信号検出部の
詳細回路図。
FIG. 4 is a detailed circuit diagram of a phase detection unit and a signal detection unit of the slave station and the master station.

【図5】 子局および親局の信号送出・電流調整部の詳
細回路図。
FIG. 5 is a detailed circuit diagram of a signal transmission / current adjustment unit of a slave station and a master station.

【図6】 子局−親局間の信号伝送波形図(電力電流正
弦波のとき)。
FIG. 6 is a signal transmission waveform diagram between a slave station and a master station (in the case of a power current sine wave).

【図7】 子局−親局間の信号伝送波形図(電力電流位
相制御のとき)。
FIG. 7 is a signal transmission waveform diagram between a slave station and a master station (at the time of power current phase control).

【図8】 灯火点灯時間−フィラメント抵抗値特性図。FIG. 8 is a characteristic diagram of lamp lighting time-filament resistance value.

【図9】 電流波形と信号重畳位相の関係を示す図。FIG. 9 is a diagram showing a relationship between a current waveform and a signal superimposed phase.

【図10】 送受信周波数設定フローを示す。FIG. 10 shows a transmission / reception frequency setting flow.

【図11】 送受信周波数設定処理を示す。FIG. 11 shows a transmission / reception frequency setting process.

【図12】 送受信周波数設定処理と制御動作問合せ信
号サイクルを示す。
FIG. 12 shows a transmission / reception frequency setting process and a control operation inquiry signal cycle.

【符号の説明】[Explanation of symbols]

1…灯火、1A…負荷抵抗器、2…子局、3…ゴムトラ
ンス、4…親局、5…給電線、6…給電装置、7…終端
器、8…集中制御装置、9…操作卓、10…マイクロ・
プロセッサ、11…FROM、12…SRAM、13…
信号送出・電流制御部、13A…信号送出部、14…フ
ォトカプラ、15…電流測定部、16…検出器、17…
位相検出部、18…信号検出部、19…アナログ・デジ
タル変換器、20…電源、21…電圧検出抵抗器、22
…通信制御部、23…LPF位相検出、24…コンパレ
ータ、25…BPF信号検出、26…コンパレータ、2
7…ゲート電圧安定化回路
DESCRIPTION OF SYMBOLS 1 ... Light, 1A ... Load resistor, 2 ... Substation, 3 ... Rubber transformer, 4 ... Master station, 5 ... Power supply line, 6 ... Power supply device, 7 ... Terminal device, 8 ... Central control device, 9 ... Operation console … 10… micro ・
Processor, 11 FROM, 12 SRAM, 13
Signal transmission / current control unit, 13A: Signal transmission unit, 14: Photocoupler, 15: Current measurement unit, 16: Detector, 17:
Phase detector, 18 signal detector, 19 analog-to-digital converter, 20 power supply, 21 voltage detection resistor, 22
... Communication control unit, 23 ... LPF phase detection, 24 ... Comparator, 25 ... BPF signal detection, 26 ... Comparator, 2
7 ... Gate voltage stabilization circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榊 直浩 茨城県日立市大みか町五丁目2番1号 日 立プロセスコンピュータエンジニアリング 株式会社内 (72)発明者 大谷 英雄 茨城県日立市大みか町五丁目2番1号 日 立プロセスコンピュータエンジニアリング 株式会社内 (72)発明者 鎌田 安治 茨城県日立市大みか町五丁目2番1号 日 立プロセスコンピュータエンジニアリング 株式会社内 (72)発明者 中原 正二 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 渥美 寿一郎 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 後藤 聡 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 池田 昭二 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 Fターム(参考) 3K073 AA13 AA86 AA87 AA95 BA01 BA09 BA16 CB02 CD04 CE06 CE17 CG06 CG09 CG21 CH01 CH21 5K046 AA03 BB06 CC16 PP02 PS05 PS41 ZZ16  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naohiro Sakaki 5-2-1 Omikacho, Hitachi City, Ibaraki Pref. Process Engineering Co., Ltd. (72) Inventor Hideo Otani 5-chome Omikacho, Hitachi City, Ibaraki Prefecture No. 1 Nippon Process Computer Engineering Co., Ltd. (72) Inventor Yasuharu Kamata 5-2-1 Omika-cho, Hitachi City, Ibaraki Prefecture Nippon Process Computer Engineering Co., Ltd. (72) Inventor Shoji Nakahara Omika, Hitachi City, Ibaraki Prefecture 5-2-1, Machi-cho, Omika Plant, Hitachi, Ltd. (72) Inventor Juichiro Atsumi 5-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Omika Plant, Hitachi, Ltd. (72) Satoshi Goto Ibaraki 5-2-1, Omika-cho, Hitachi City, Japan (72) Inventor Shoji Ikeda 5-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term (reference) 3K073 AA13 AA86 AA87 AA95 BA01 BA09 BA16 CB02 CD04 CE06 CE17 CG06 CG09 CG21 CH01 CH21 5K046 AA03 BB06 CC16 PP02 PS05 PS41 ZZ16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】航空機の通路に配置した複数の灯火とゴム
トランスと子局と、前記複数の灯火に商用周波数の電力
を供給する給電装置を地中に配置した給電線によってル
ープ状に接続し、灯火の断芯検出やON/OFF制御を
行う灯火制御装置において、前記子局は、前記灯火に流
れる電流と前記灯火に発生する電圧を測定し、前記電流
と電圧から灯火の抵抗値を算出し、前記抵抗値の経時的
変化から前記灯火の余寿命を予測することを特徴とする
空港灯火制御装置。
A plurality of lights, a rubber transformer, and a slave station disposed in a passage of an aircraft, and a power supply device for supplying commercial frequency power to the plurality of lights are connected in a loop by a power supply line disposed underground. In a lamp control device for detecting a core disconnection or ON / OFF control of a lamp, the slave station measures a current flowing in the lamp and a voltage generated in the lamp, and calculates a resistance value of the lamp from the current and the voltage. An airport light control device, wherein a remaining life of the light is predicted from a change with time of the resistance value.
【請求項2】航空機の通路に配置した複数の灯火とゴム
トランスと子局と、前記複数の灯火に商用周波数の電力
を供給する給電装置と、親局を地中に埋設した給電線に
よってループ状に接続し、前記給電線に商用周波数より
も高周波の信号を重畳し前記子局と前記親局との間で信
号を送受信し灯火の断芯検出やON/OFF制御を行う
灯火制御装置において、前記電力電流に前記高周波信号
を重畳する位相を電気角で180度よりも大きく360度より
も小さい値の範囲に限定して、灯火輝度を個別制御可能
にしたことを特徴とする空港灯火制御装置。
2. A loop formed by a plurality of lights, a rubber transformer, and a slave station arranged in an aisle of an aircraft, a power supply device for supplying power of a commercial frequency to the plurality of lights, and a power supply line having a master station buried underground. In a light control device, a signal having a frequency higher than a commercial frequency is superimposed on the power supply line, a signal is transmitted and received between the slave station and the master station, and disconnection detection of the light and ON / OFF control are performed. Airport light control, wherein the phase in which the high-frequency signal is superimposed on the electric power current is limited to a range of electric angle values larger than 180 degrees and smaller than 360 degrees, so that the light brightness can be individually controlled. apparatus.
【請求項3】航空機の通路に配置した複数の灯火とゴム
トランスと子局と、前記複数の灯火に商用周波数の電力
を供給する給電装置と、親局を地中に埋設した給電線に
よってループ状に接続し、前記給電線に商用周波数より
も高周波の信号を重畳し前記子局と前記親局との間で信
号を送受信し灯火の断芯検出やON/OFF制御を行う
灯火制御装置において、前記電力電流に前記信号を重畳
する位相を、前記電力電流の安定した点の値に設定した
ことを特徴とする空港灯火制御装置。
3. A loop formed by a plurality of lights, a rubber transformer, and a slave station disposed in a passage of an aircraft, a power supply device for supplying power of a commercial frequency to the plurality of lights, and a power supply line having a master station embedded in the ground. In a light control device, a signal having a frequency higher than a commercial frequency is superimposed on the power supply line, a signal is transmitted and received between the slave station and the master station, and disconnection detection of the light and ON / OFF control are performed. An airport light control device, wherein a phase at which the signal is superimposed on the power current is set to a value at a stable point of the power current.
【請求項4】航空機の通路に配置した複数の灯火とゴム
トランスと子局と、前記複数の灯火に商用周波数の電力
を供給する給電装置と、親局を地中に埋設した給電線に
よってループ状に接続し、前記給電線に商用周波数より
も高周波の信号を重畳し前記子局と前記親局との間で信
号を送受信し灯火の断芯検出やON/OFF制御を行う
灯火制御装置において、信号の周波数を、試行送受信に
より全子局と親局が送受信可能な値に設定したことを特
徴とする空港灯火制御装置。
4. A loop formed by a plurality of lights, a rubber transformer, and a slave station disposed in a passage of an aircraft, a power supply device for supplying power of a commercial frequency to the plurality of lights, and a power supply line having a master station buried underground. In a light control device, a signal having a frequency higher than a commercial frequency is superimposed on the power supply line, a signal is transmitted and received between the slave station and the master station, and disconnection detection of the light and ON / OFF control are performed. An airport light control device, characterized in that the signal frequency is set to a value that all the slave stations and the master station can transmit and receive by trial transmission and reception.
JP32514198A 1998-11-16 1998-11-16 Airport light control device Pending JP2000150174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32514198A JP2000150174A (en) 1998-11-16 1998-11-16 Airport light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32514198A JP2000150174A (en) 1998-11-16 1998-11-16 Airport light control device

Publications (1)

Publication Number Publication Date
JP2000150174A true JP2000150174A (en) 2000-05-30

Family

ID=18173520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32514198A Pending JP2000150174A (en) 1998-11-16 1998-11-16 Airport light control device

Country Status (1)

Country Link
JP (1) JP2000150174A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218566A (en) * 2000-12-13 2002-08-02 Lg Electronics Inc Apparatus and method for remotely controlling household appliances
JP2005536083A (en) * 2002-06-13 2005-11-24 インベンテイオ・アクテイエンゲゼルシヤフト State remote reader and method of applying the same
JP2011172228A (en) * 2010-02-18 2011-09-01 Ls Industrial Systems Co Ltd Power line communication system based on constant current source
JP2012146623A (en) * 2010-04-09 2012-08-02 Mitsubishi Chemicals Corp Dimmer and led illumination system
JP2013012455A (en) * 2010-09-27 2013-01-17 Mitsubishi Chemicals Corp Led illuminator and led lighting system
JPWO2013008922A1 (en) * 2011-07-13 2015-02-23 住友電気工業株式会社 Communications system
JP2017033868A (en) * 2015-08-05 2017-02-09 株式会社東芝 Lighting supervisory controller

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218566A (en) * 2000-12-13 2002-08-02 Lg Electronics Inc Apparatus and method for remotely controlling household appliances
JP2005536083A (en) * 2002-06-13 2005-11-24 インベンテイオ・アクテイエンゲゼルシヤフト State remote reader and method of applying the same
JP2011172228A (en) * 2010-02-18 2011-09-01 Ls Industrial Systems Co Ltd Power line communication system based on constant current source
JP2012146623A (en) * 2010-04-09 2012-08-02 Mitsubishi Chemicals Corp Dimmer and led illumination system
JP2013012455A (en) * 2010-09-27 2013-01-17 Mitsubishi Chemicals Corp Led illuminator and led lighting system
US9198241B2 (en) 2010-09-27 2015-11-24 Mitsubishi Chemical Corporation LED illumination apparatus and led illumination system
JPWO2013008922A1 (en) * 2011-07-13 2015-02-23 住友電気工業株式会社 Communications system
US9240821B2 (en) 2011-07-13 2016-01-19 Sumitomo Electric Industries, Ltd. Communication system
JP2017033868A (en) * 2015-08-05 2017-02-09 株式会社東芝 Lighting supervisory controller

Similar Documents

Publication Publication Date Title
CN105122661B (en) The light adjusting and controlling device and method of the amplitude variations for commonly using power supply are utilized in power line communication
US9401654B2 (en) Device for modifying an AC voltage, AC voltage having a superimposed data signal, method for data transmission, use of a receiver and communication architecture
CN110601363B (en) Station area branch identification method and system based on sinusoidal current disturbance
CN102946259B (en) Carrier wave communication system based on electric power line and carrier wave communication method
JP2000150174A (en) Airport light control device
WO2015000754A1 (en) Problem detection in cable system with fuses
US11804710B2 (en) Arc detection
CA2435333C (en) Method of an apparatus for testing wiring
KR101950875B1 (en) An Apparatus for Charging a Electrical Vehicle Having a Plural of Channel Structure of an Automatic Electrical Power Distribution Function
US10638579B2 (en) Power supply system
JPH11204269A (en) Light control communication device
US7122917B2 (en) Control arrangement and isolated power supplies for power electronic system
EP0582287A2 (en) On-off and intensity remote control of lighting systems by means of power line carrier waves
EP2104240B2 (en) Digital control of electronic ballasts using AC power lines as a communication medium
US6483314B2 (en) System for monitoring airport lamps
JP3615121B2 (en) Supervisory control system using power line carrier
EP2533613A1 (en) Public space lighting
US11169196B2 (en) Partial discharge monitoring system with a compatibility-function for a voltage indication system
JP2018102024A (en) Check device for removing grounding for work and control system
JP3548045B2 (en) Monitoring and control system using dip method
US20110074211A1 (en) Apparatus and method for controlling the switching frequency of a power converter
RU2145119C1 (en) Device for checking ice load of aerial electric power transmission lines
KR101515401B1 (en) Apparatus for controlling zone dimming in power Line communication
RU2145118C1 (en) Device for checking ice load of electric power transmission lines
KR20170025015A (en) An apparatus and method for performing wireless charging in vehicle