[go: up one dir, main page]

JP2000155925A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JP2000155925A
JP2000155925A JP10325394A JP32539498A JP2000155925A JP 2000155925 A JP2000155925 A JP 2000155925A JP 10325394 A JP10325394 A JP 10325394A JP 32539498 A JP32539498 A JP 32539498A JP 2000155925 A JP2000155925 A JP 2000155925A
Authority
JP
Japan
Prior art keywords
layer
recording medium
magnetic recording
film
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10325394A
Other languages
Japanese (ja)
Inventor
Toshiya Ito
俊哉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP10325394A priority Critical patent/JP2000155925A/en
Publication of JP2000155925A publication Critical patent/JP2000155925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium for further improving a coercive force and an SN rate. SOLUTION: In this magnetic recording medium, an amorphous Ni/Zr layer is formed as a seed layer on a glass substrate, and the surface of this Ni/Zr layer is oxidized. Moreover, a Cr base film is formed on the surface of the oxidized Ni/Zr layer, and a C0CrPt magnetic film is formed on the Cr base film, and a C protecting film is formed on the C0CrPt magnetic film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えばハードディス
クドライブ用の記録媒体として使用される磁気記録媒体
に関する。
The present invention relates to a magnetic recording medium used as a recording medium for a hard disk drive, for example.

【0002】[0002]

【従来の技術】一般的なハードディスクドライブ用の記
録媒体は、Al−Mg合金基板や平滑に研磨したガラス基
板等の非磁性基板の表面に、バッファ層を介して、Cr
系下地層、Co系磁性層、C系保護膜及び潤滑膜を順次
形成した構成になっている。
2. Description of the Related Art A general recording medium for a hard disk drive comprises a nonmagnetic substrate, such as an Al-Mg alloy substrate or a smooth polished glass substrate, which is provided with a Cr layer via a buffer layer.
A system base layer, a Co system magnetic layer, a C system protective film, and a lubricating film are sequentially formed.

【0003】また、最近ではCr系下地層の結晶の微細
化、ひいてはCo系磁性層の結晶の微細化を図り、高保
磁力と低ノイズを実現する提案が、特開昭63−217
525号公報、特開平10−74619号公報及び特開
平10−74620号公報、ヨーロッパ特許第7048
39号公報になされている。
Recently, there has been proposed a technique for miniaturizing the crystal of the Cr-based underlayer and, consequently, the crystal of the Co-based magnetic layer to realize high coercive force and low noise.
525, JP-A-10-74619 and JP-A-10-74620, European Patent No. 7048
No. 39 publication.

【0004】特開昭63−217525号公報には、非
磁性基板(バッファ層がある場合にはバッファ層)とC
r系下地層との間に、シード層として非晶質のNiーP合
金層を形成する提案がなされている。また、特開平10
−74619号公報には、シード層としてNi−Cr、N
i−Cr−W、Ni−Cr−Moが記載され、特開平10−
74620号公報には、シード層としてNi−Cuが記載
され、更に、ヨーロッパ特許第704839号公報には
シード層として、Ni−Al、Al−Co、Fe−Al、Fe
−Ti、Co−Fe、Co−Ti、Co−Hf、Co−Zr、Ni
−Ti、Cu−Be、Cu−Zn、Al−Mn、Al−Re、Ag
−Mg、Al2−Fe−Mn2が記載されている。
JP-A-63-217525 discloses a non-magnetic substrate (a buffer layer if a buffer layer is provided) and C
Proposals have been made to form an amorphous Ni-P alloy layer as a seed layer between an r-based underlayer. Also, Japanese Patent Application Laid-Open
No. 74619 discloses that Ni—Cr, N
i-Cr-W and Ni-Cr-Mo are described.
No. 74620 describes Ni-Cu as a seed layer, and EP-A-704839 describes Ni-Al, Al-Co, Fe-Al, Fe as seed layers.
-Ti, Co-Fe, Co-Ti, Co-Hf, Co-Zr, Ni
-Ti, Cu-Be, Cu-Zn, Al-Mn, Al-Re, Ag
-Mg, Al 2 -Fe-Mn 2 are described.

【0005】[0005]

【発明が解決しようとする課題】ハードディスクの高密
度記録には、記録媒体の記録再生特性(R/W特性)の
改善、即ち保磁力の向上、SN比の向上が不可欠であ
り、これらの特性の向上には、磁性層を更に微細化する
ことが要求される。また、磁気抵抗効果によって記録磁
化の方向を検出する磁気抵抗効果素子ヘッド(MRヘッ
ド)の開発により、記録媒体には今までにも増して低ノ
イズ(高S/N比)が要求される。しかしながら、上述
した従来構成のシード層では十分な効果は得られていな
い。
For high-density recording on a hard disk, it is essential to improve the recording / reproducing characteristics (R / W characteristics) of the recording medium, that is, to improve the coercive force and the SN ratio. In order to improve the magnetic layer, it is required to further miniaturize the magnetic layer. In addition, with the development of a magnetoresistive element head (MR head) that detects the direction of recording magnetization by the magnetoresistance effect, recording media are required to have lower noise (higher S / N ratio) than ever before. However, the seed layer having the conventional configuration described above does not provide a sufficient effect.

【0006】[0006]

【課題を解決するための手段】Ni−Zr系合金は急冷凝
固法により、広い範囲で非晶質化することが確認されて
いる。本発明者は、このNi−Zr系合金の特性に着目
し、Ni−Zr系合金をシード層に適用することを試み
た。
It has been confirmed that Ni-Zr alloys become amorphous over a wide range by rapid solidification. The present inventor paid attention to the characteristics of the Ni-Zr-based alloy and tried to apply the Ni-Zr-based alloy to the seed layer.

【0007】その結果、成されたのが本発明であり、本
発明に係る磁気記録媒体は、非磁性基板表面に、シード
層、下地膜及び磁性膜を順次形成してなる磁気記録媒体
において、前記シード層をNiを主成分とした非晶質合
金から構成し、且つシード層の表面が酸化した構成とし
た。非磁性基板としては、Al−Mg合金やガラス基板の
他にポリカーボネイトやシリコーンウェーハ等も考えら
れる。
As a result, the present invention has been made, and a magnetic recording medium according to the present invention is a magnetic recording medium in which a seed layer, a base film, and a magnetic film are sequentially formed on a nonmagnetic substrate surface. The seed layer is made of an amorphous alloy containing Ni as a main component, and the surface of the seed layer is oxidized. As the non-magnetic substrate, a polycarbonate, a silicone wafer, or the like can be considered in addition to the Al-Mg alloy and the glass substrate.

【0008】Niを主成分とした非晶質合金としては、
Ni−Zr、Ni−Zr−Al、Ni−Zr−Ti、Ni−Zr−
V、Ni−Zr−Cu、Ni−Zr−Nb、Ni−Zr−Mo、
Ni−Zr−Ta、Ni−Zr−Wを例示することができ
る。
As an amorphous alloy containing Ni as a main component,
Ni-Zr, Ni-Zr-Al, Ni-Zr-Ti, Ni-Zr-
V, Ni-Zr-Cu, Ni-Zr-Nb, Ni-Zr-Mo,
Ni-Zr-Ta and Ni-Zr-W can be exemplified.

【0009】また、シード層表面の酸化している部分の
厚み及び酸素含有量には適正な範囲が存在する。即ち、
酸化している部分の厚みが厚くなると、強磁性を示す結
晶質金属Ni相が析出するので、酸化している部分の厚
みとしては、酸化物の結晶構造が実質的に認識できない
厚さ、例えば、数原子層分の厚さが好ましい。尚、シー
ド層内部に酸素不純物が多量に存在していると、内部に
強磁性を示す結晶質金属Ni相が析出するおそれがある
ので、シード層の原料となるターゲットにはできるだけ
酸素不純物が存在しないものを使用することが好まし
い。
There is an appropriate range for the thickness and oxygen content of the oxidized portion of the seed layer surface. That is,
When the thickness of the oxidized portion is increased, a crystalline metal Ni phase exhibiting ferromagnetism is precipitated. Therefore, as the thickness of the oxidized portion, a thickness in which the crystal structure of the oxide cannot be substantially recognized, for example, And a thickness of several atomic layers is preferable. If a large amount of oxygen impurities is present in the seed layer, a crystalline metal Ni phase exhibiting ferromagnetism may be precipitated inside the seed layer. It is preferable to use one that does not.

【0010】また、シード層表面の酸化している部分の
酸素含有量としては、1.0原子%〜10原子%が好ま
しい。1.0原子%未満では、Cr系下地層及びCo系磁
性層の微細化が不十分となり、逆に10原子%を超える
と、結晶質のZrO2-X(X<1)酸化物の形成が進行
し、強磁性を示す結晶質金属Ni相が析出する可能性が
生じる。尚、シード層表面には微細な凹凸が存在するた
め、例えば二次イオン質量分析(SIMS)にて表面の
酸素濃度を測定する際には、表層から約5nmまでの深
さを分析する。
[0010] The oxygen content of the oxidized portion of the surface of the seed layer is preferably 1.0 atomic% to 10 atomic%. If the content is less than 1.0 atomic%, the fineness of the Cr-based underlayer and the Co-based magnetic layer becomes insufficient. On the other hand, if the content exceeds 10 atomic%, a crystalline ZrO 2 -X (X <1) oxide is formed. Progresses, and there is a possibility that a crystalline metal Ni phase exhibiting ferromagnetism may precipitate. Since the surface of the seed layer has fine irregularities, for example, when measuring the oxygen concentration on the surface by secondary ion mass spectrometry (SIMS), the depth from the surface layer to about 5 nm is analyzed.

【0011】また、本発明に係る磁気記録媒体の構成と
しては、非磁性基板表面とシード層との間に、バッファ
層やテクスチャ層を形成した構成が含まれ、また磁性膜
の表面には通常保護膜及び潤滑膜が形成されている。
Further, the configuration of the magnetic recording medium according to the present invention includes a configuration in which a buffer layer or a texture layer is formed between the surface of the non-magnetic substrate and the seed layer, and the surface of the magnetic film usually has A protective film and a lubricating film are formed.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明に係る
磁気記録媒体の断面図、図2は本発明に係る磁気記録媒
体の基板上に形成した層の酸素イオン濃度とエッチング
タイムとの関係を示すグラフであり、図1に示すように
本発明に係る磁気記録媒体は、ガラス基板の表面にシー
ド層として非晶質のNi−Zr層が形成され、このNi−
Zr層の表面は酸化され、更に酸化されたNi−Zr層の
表面上にCr下地膜が形成され、このCr下地膜の上にC
oCrPt磁性膜が形成され、このCoCrPt磁性膜の上に
C保護膜が形成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a cross-sectional view of the magnetic recording medium according to the present invention, and FIG. 2 is a graph showing the relationship between the oxygen ion concentration and the etching time of the layer formed on the substrate of the magnetic recording medium according to the present invention. As shown in FIG. 1, in the magnetic recording medium according to the present invention, an amorphous Ni-Zr layer is formed as a seed layer on the surface of a glass substrate.
The surface of the Zr layer is oxidized, and a Cr underlayer is formed on the surface of the oxidized Ni-Zr layer.
An oCrPt magnetic film is formed, and a C protective film is formed on the CoCrPt magnetic film.

【0013】(実施例1)Niが90原子%、Zrが10
原子%のNi−Zr合金をターゲットとし、インライン型
スパッタ装置により、ガラス基板表面にNi−Zr薄膜を
成膜した。次いで、Ni−Zr薄膜を形成したガラス基板
をクリーンルーム(大気中)に取出し、1時間放置し、
Ni−Zr薄膜表面を酸化した。尚、クリーンルーム内の
温度は22℃、湿度は40%であった。また、Ni−Zr
薄膜の表面酸化手段としては、上記の他に酸素プラズマ
中に基板を晒す方法、真空装置中で加熱する方法等も考
えられる。次いで、クリーンルーム内で放置した基板を
再びインライン型スパッタ装置内に戻し、真空排気した
後に、Cr下地層、CoCrPt磁性層及びC保護膜を順次
形成し、この後装置から基板を取出し、C保護膜の表面
にパーフルオロカーボン系潤滑層を形成し媒体サンプル
とした。尚、X線回析(XD)測定によってNi−Zr薄
膜の構造を測定したところ、微視的には非晶質であっ
た。
(Example 1) Ni is 90 atomic% and Zr is 10
Using an atomic% Ni-Zr alloy as a target, a Ni-Zr thin film was formed on the glass substrate surface by an in-line type sputtering apparatus. Next, the glass substrate on which the Ni-Zr thin film has been formed is taken out into a clean room (in the air) and left for 1 hour.
The Ni-Zr thin film surface was oxidized. The temperature in the clean room was 22 ° C. and the humidity was 40%. Also, Ni-Zr
As a means for oxidizing the surface of the thin film, a method of exposing the substrate to oxygen plasma, a method of heating in a vacuum device, and the like can be considered in addition to the above. Next, the substrate left in the clean room is returned to the in-line type sputtering apparatus again, and after evacuation, a Cr underlayer, a CoCrPt magnetic layer, and a C protective film are sequentially formed. A medium sample was formed by forming a perfluorocarbon-based lubricating layer on the surface of. When the structure of the Ni-Zr thin film was measured by X-ray diffraction (XD) measurement, it was microscopically amorphous.

【0014】(比較例1)実施例1と同様の方法でガラ
ス基板表面にNi−Zr薄膜を成膜した後、クリーンルー
ム(大気中)に取出さずに、Cr下地層、CoCrPt磁性
層及びC保護膜を順次形成し、媒体サンプルを作製し
た。尚、X線回析(XD)測定によってNi−Zr薄膜の
構造を測定したところ、実施例1と同様に微視的には非
晶質であった。
Comparative Example 1 After a Ni—Zr thin film was formed on the surface of a glass substrate in the same manner as in Example 1, it was not taken out to a clean room (in the air), but a Cr underlayer, a CoCrPt magnetic layer and a C A protective film was sequentially formed to prepare a medium sample. When the structure of the Ni-Zr thin film was measured by X-ray diffraction (XD) measurement, it was microscopically amorphous as in Example 1.

【0015】(比較例2)ガラス基板をインライン型ス
パッタ装置内に投入し、真空排気した後に、Cr下地
層、CoCrPt磁性層及びC保護膜を順次形成し、この
後装置から基板を取出し、C保護膜の表面にパーフルオ
ロカーボン系潤滑層を形成して媒体サンプルを作製し
た。
(Comparative Example 2) A glass substrate was put into an in-line type sputtering apparatus, and after evacuation, a Cr underlayer, a CoCrPt magnetic layer, and a C protective film were sequentially formed. A medium sample was prepared by forming a perfluorocarbon-based lubricating layer on the surface of the protective film.

【0016】以上の実施例1、比較例1及び比較例2の
各層の厚さ及び成膜条件をまとめたものを以下の(表
1)に示す。
The following Table 1 summarizes the thicknesses and the film forming conditions of each layer of Example 1 and Comparative Examples 1 and 2.

【0017】[0017]

【表1】 [Table 1]

【0018】一方、図2は実施例1及び比較例1の各媒
体サンプルの基板上に形成した層の酸素イオン濃度とエ
ッチングタイムとの関係を示すグラフであり、このグラ
フから実施例1にあっては、Ni−Zr層内部及びCr層
内部の酸素不純物量に対して、界面近傍(半値幅で約1
0nm)における酸素不純物量の検出値が大きくなって
おり、またNi−Zr層の表面酸化を行わなかった比較例
1にあっては、界面近傍の酸素不純物量に変化が認めら
れなかった。
On the other hand, FIG. 2 is a graph showing the relationship between the oxygen ion concentration and the etching time of the layers formed on the substrates of the respective media samples of Example 1 and Comparative Example 1. FIG. In contrast, the amount of oxygen impurities in the Ni—Zr layer and the Cr layer is reduced in the vicinity of the interface (half width at about 1).
(0 nm), the detected value of the amount of oxygen impurities was large, and in Comparative Example 1 in which the surface of the Ni-Zr layer was not oxidized, no change was observed in the amount of oxygen impurities near the interface.

【0019】次に、図2で示された実施例1及び比較例
1の界面近傍の酸素不純物量と酸化している部分の厚み
を推定する。先ず、実施例1及び比較例1で使用したタ
ーゲット材料についての不純物分析結果では、Crター
ゲット中の酸素不純物は約500原子ppm、Ni−Zr合
金ターゲット中の酸素不純物は約50原子ppmであっ
た。また、実施例1及び比較例1で使用したインライン
型スパッタ装置の背圧は2×10-5Pa以下であり、別
途行った残留ガス分析(RGA)の結果から、酸素分圧
は2×10-7Pa以下であった。また、実施例1及び比
較例1において、成膜中に真空雰囲気から取り込まれる
酸素不純物量は以下に説明する(Appendix A:気体分子
運動論に基づいた真空雰囲気から膜中に取り込まれる酸
素量の見積り)から最大50原子ppmと見積ることがで
き、Ni−Zrターゲット中の酸素不純物(約50原子pp
m)と同等で、Crターゲット中の酸素不純物(約500
原子ppm)の1/10と考えられる。
Next, the amount of oxygen impurities near the interface of Example 1 and Comparative Example 1 shown in FIG. 2 and the thickness of the oxidized portion are estimated. First, according to the impurity analysis results of the target materials used in Example 1 and Comparative Example 1, the oxygen impurity in the Cr target was about 500 atomic ppm, and the oxygen impurity in the Ni-Zr alloy target was about 50 atomic ppm. . The back pressure of the in-line type sputtering apparatus used in Example 1 and Comparative Example 1 was 2 × 10 −5 Pa or less, and the result of the residual gas analysis (RGA) performed separately showed that the oxygen partial pressure was 2 × 10 −5 Pa. -7 Pa or less. In Example 1 and Comparative Example 1, the amount of oxygen impurities taken in from the vacuum atmosphere during film formation is described below (Appendix A: The amount of oxygen taken into the film from the vacuum atmosphere based on gas molecule kinetics). Estimate), it can be estimated to be 50 atomic ppm at the maximum, and oxygen impurities (about 50 atomic pp) in the Ni-Zr target can be estimated.
m), the oxygen impurity in the Cr target (about 500
1/10 of atomic ppm).

【0020】(Appendix A)気体分子運動論に基づき、
室温で薄膜表面に入射する酸素分子の量を見積ると、
(0.005〜0.01個/平方nm/秒)になる。一
方、Ni−Zr膜表面の原子密度をNi(111)面の原子密度
と同程度と考えれば、金属Niは面心立方格子構造でそ
の格子定数は0.352nmなので一辺が0.498n
mの正三角形中に2原子存在することになり、その原子
密度は37.3個/平方nmである。尚、原子面間距離
は0.20nmである。またCrについて同様の見積り
を行うと、体心立方格子の最密面(110)面の場合には、
格子定数が0.288nmなので、その原子密度は1
7.1個/平方nm、原子面間距離は0.20nmであ
る。比較例1の膜厚、成膜条件では、インライン式スパ
ッタ装置での成膜時間は約8秒であったことから、Cr
層は1秒間に約43原子層、同じくNi−Zr層は約25
原子層相当成膜されている。したがって、真空雰囲気か
ら取り込まれる酸素量は以下のように見積られる。 Cr層 =0.01(分子/秒)/{43(原子層/秒)×17.1(個/原子層)} =0.02(原子/秒)/{43(原子層/秒)×17.1(個/原子層)} =27.2(原子ppm) Ni−Zr層=0.01(分子/秒)/{25(原子層/秒)×37.3(個/原子層)} =0.02(原子/秒)/{25(原子層/秒)×37.3(個/原子層)} =21.4(原子ppm) これらの数値は、ターゲット中の不純物酸素量と比較し
て小さく、無視できる値である。
(Appendix A) Based on gas molecule kinetics,
Estimating the amount of oxygen molecules incident on the thin film surface at room temperature,
(0.005 to 0.01 nanometers / square nm / second). On the other hand, assuming that the atomic density of the Ni—Zr film surface is substantially the same as the atomic density of the Ni (111) plane, metal Ni has a face-centered cubic lattice structure and a lattice constant of 0.352 nm.
There are two atoms in the m equilateral triangle, and the atomic density is 37.3 / nm. The distance between atomic planes is 0.20 nm. When the same estimation is performed for Cr, in the case of the closest-packed (110) plane of the body-centered cubic lattice,
Since the lattice constant is 0.288 nm, the atomic density is 1
7.1 pieces / square nm, and the distance between atomic planes is 0.20 nm. Under the film thickness and film forming conditions of Comparative Example 1, the film forming time in the in-line type sputtering apparatus was about 8 seconds.
The layer is about 43 atomic layers per second, and the Ni-Zr layer is about 25 atomic layers per second.
A film equivalent to an atomic layer is formed. Therefore, the amount of oxygen taken in from the vacuum atmosphere is estimated as follows. Cr layer = 0.01 (molecule / sec) / {43 (atomic layer / sec) x 17.1 (piece / atomic layer)} = 0.02 (atom / sec) / {43 (atom layer / sec) x 17.1 (piece / atomic layer) )} = 27.2 (atomic ppm) Ni-Zr layer = 0.01 (molecule / sec) / {25 (atomic layer / sec) × 37.3 (pieces / atomic layer)} = 0.02 (atom / sec) / {25 (atomic layer) /S)×37.3 (pieces / atomic layer)} = 21.4 (atomic ppm) These numerical values are small and negligible compared to the amount of impurity oxygen in the target.

【0021】上記は成膜中に真空雰囲気から取り込まれ
る酸素不純物量についてであるが、次に、Ni−Zr層を
形成した後にCr層を成膜するまでの真空雰囲気中に暴
露される間にNi−Zr層表面に入射する酸素不純物取り
込み量は、暴露時間は30秒であったので、(Appendix
A)から1.6原子%の酸素不純物がNi−Zr層表面に
入射すると見積もられる。しかしながら、上記した成膜
中にはゲッタ作用による酸素不純物の取り込みがあった
が、Ni−Zr層を形成した後には成膜中のゲッタ作用は
なく吸着された酸素不純物の再離脱が容易と考えられる
ので、実際の酸素不純物取り込み量は1.6原子%より
も大幅に少なくなっている筈である。
The above description relates to the amount of oxygen impurities taken in from the vacuum atmosphere during the film formation. Next, after the Ni-Zr layer is formed, the film is exposed to the vacuum atmosphere until the Cr layer is formed. Since the exposure time was 30 seconds, the amount of oxygen impurities taken in on the surface of the Ni-Zr layer was as shown in (Appendix
From A), it is estimated that 1.6 atomic% of oxygen impurities enter the surface of the Ni-Zr layer. However, oxygen impurities were taken in by the getter function during the film formation described above. However, after the Ni-Zr layer was formed, there was no getter function during the film formation, and it was considered that the adsorbed oxygen impurities were easily desorbed again. Therefore, the actual oxygen impurity uptake should be significantly less than 1.6 atomic%.

【0022】以上から比較例1の界面近傍における酸素
不純物は0.1原子%以下と見積もることができ、実施
例1の界面近傍における酸素不純物はそのピーク高さを
比較例1と比較して1原子%から10原子%と見積もる
ことができる。
From the above, it can be estimated that the oxygen impurity in the vicinity of the interface in Comparative Example 1 is 0.1 atomic% or less. It can be estimated from atomic% to 10 atomic%.

【0023】次に、実施例1、比較例1及び比較例2で
作製した各媒体サンプルの静磁気特性の測定結果、MR
ヘッド用いて測定した記録再生特性の測定結果を以下の
(表2)に示す。この(表2)から、本発明に係る実施
例1の磁気記録媒体は、比較例1,2の磁気記録媒体に
比較して、保磁力の向上、ノイズの低減及びSN比の向
上が認められる。
Next, the measurement results of the magnetostatic properties of the medium samples produced in Example 1, Comparative Examples 1 and 2, and MR
The measurement results of the recording / reproducing characteristics measured using the head are shown in the following (Table 2). From this (Table 2), the magnetic recording medium of Example 1 according to the present invention has improved coercive force, reduced noise, and improved SN ratio compared to the magnetic recording media of Comparative Examples 1 and 2. .

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】以上に説明したように本発明によれば、
非磁性基板表面と下地膜との間に形成するシード層を、
Ni−ZrなどのNiを主成分とした非晶質合金から構成
し、且つシード層の表面を酸化せしめたことで、Cr系
下地層及びCo系磁性層の微細化を助長し、高保磁力及
び高SN比で、垂直磁化にも十分に対応することができ
る磁気記録媒体を提供することができる。
According to the present invention as described above,
A seed layer formed between the nonmagnetic substrate surface and the underlayer,
It is composed of an amorphous alloy containing Ni as a main component, such as Ni-Zr, and oxidizes the surface of the seed layer, which promotes the miniaturization of the Cr-based underlayer and the Co-based magnetic layer, and increases the coercive force and It is possible to provide a magnetic recording medium having a high SN ratio and capable of sufficiently responding to perpendicular magnetization.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る磁気記録媒体の断面図FIG. 1 is a sectional view of a magnetic recording medium according to the present invention.

【図2】実施例1に係る媒体サンプルと比較例1に係る
媒体サンプルの基板上に形成した層の酸素イオン濃度と
エッチングタイムとの関係を示すグラフ
FIG. 2 is a graph showing a relationship between an oxygen ion concentration and an etching time of a layer formed on a substrate of a medium sample according to Example 1 and a medium sample according to Comparative Example 1;

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板表面に、シード層、下地膜及
び磁性膜を順次形成してなる磁気記録媒体において、前
記シード層はNiを主成分とした非晶質合金から構成さ
れ、且つシード層の表面は酸化していることを特徴とす
る磁気記録媒体。
1. A magnetic recording medium comprising a seed layer, a base film, and a magnetic film sequentially formed on a surface of a non-magnetic substrate, wherein the seed layer is made of an amorphous alloy containing Ni as a main component. A magnetic recording medium characterized in that the surface of the layer is oxidized.
【請求項2】 請求項1に記載の磁気記録媒体におい
て、前記Niを主成分とした非晶質合金は、Ni−Zr、
Ni−Zr−Al、Ni−Zr−Ti、Ni−Zr−V、Ni−
Zr−Cu、Ni−Zr−Nb、Ni−Zr−Mo、Ni−Zr−
Ta、Ni−Zr−Wのいずれかであることを特徴とする
磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the amorphous alloy containing Ni as a main component is Ni-Zr,
Ni-Zr-Al, Ni-Zr-Ti, Ni-Zr-V, Ni-
Zr-Cu, Ni-Zr-Nb, Ni-Zr-Mo, Ni-Zr-
A magnetic recording medium characterized by being one of Ta and Ni-Zr-W.
【請求項3】 請求項1または請求項2に記載の磁気記
録媒体において、前記シード層の表面の酸化している部
分の厚さは、酸化物の結晶構造が実質的に認識できない
厚さであることを特徴とする磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the thickness of the oxidized portion on the surface of the seed layer is such that the crystal structure of the oxide cannot be substantially recognized. A magnetic recording medium, comprising:
【請求項4】 請求項1乃至請求項3に記載の磁気記録
媒体において、前記シード層の表面から5nmまでの部
分の酸素含有量が1.0原子%〜10原子%であること
を特徴とする磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the oxygen content of the portion from the surface of the seed layer to 5 nm is 1.0 at% to 10 at%. Magnetic recording medium.
【請求項5】 請求項1乃至請求項4に記載の磁気記録
媒体において、前記非磁性基板表面とシード層との間に
はバッファ層及びテクスチャ層が形成され、前記磁性膜
の表面には保護膜及び潤滑膜が形成されていることを特
徴とする磁気記録媒体。
5. The magnetic recording medium according to claim 1, wherein a buffer layer and a texture layer are formed between the surface of the non-magnetic substrate and the seed layer, and the surface of the magnetic film is protected. A magnetic recording medium comprising a film and a lubricating film.
JP10325394A 1998-11-16 1998-11-16 Magnetic recording medium Pending JP2000155925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10325394A JP2000155925A (en) 1998-11-16 1998-11-16 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10325394A JP2000155925A (en) 1998-11-16 1998-11-16 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2000155925A true JP2000155925A (en) 2000-06-06

Family

ID=18176358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10325394A Pending JP2000155925A (en) 1998-11-16 1998-11-16 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2000155925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930884A1 (en) * 2006-12-05 2008-06-11 Heraeus, Inc. Ni-X, NI-Y, and NI-X-Y alloys with or without oxides as sputter targets for perpendicular magnetic recording
JP2009081314A (en) * 2007-09-26 2009-04-16 Toshiba Corp Magnetoresistive element and magnetic memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930884A1 (en) * 2006-12-05 2008-06-11 Heraeus, Inc. Ni-X, NI-Y, and NI-X-Y alloys with or without oxides as sputter targets for perpendicular magnetic recording
JP2009081314A (en) * 2007-09-26 2009-04-16 Toshiba Corp Magnetoresistive element and magnetic memory

Similar Documents

Publication Publication Date Title
US7169488B2 (en) Granular perpendicular media with surface treatment for improved magnetic properties and corrosion resistance
JP3846900B2 (en) Multilayer magnetic recording medium and magnetoresistive drive system
US7056604B2 (en) Magnetic recording media and magnetic recording system using the same
TW424234B (en) Magnetic recording medium, method of fabricating magnetic recording medium, and magnetic storage
US6117570A (en) Thin film medium with surface-oxidized NiAl seed layer
EP0238047B1 (en) Magnetic storage medium with perpendicular anisotropy
JP3344468B2 (en) Thin film magnetic head
JP4211436B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4091228B2 (en) Perpendicular magnetic recording medium
US7510788B2 (en) Perpendicular magnetic recording medium utilizing a first cobalt magnetic layer and a second Pd-SiOx layer and method of manufacturing same
EP1211674A1 (en) Magnetic recording medium and production method therefor and magnetic recording device
JP3822387B2 (en) Magnetic recording medium
JP2001043526A (en) Magnetic recording medium and method of manufacturing the same
JP2000155925A (en) Magnetic recording medium
EP0809238B1 (en) Magnetic recording media and magnetic recording system using the same
JP2001134927A (en) Magnetic recording media
JP3217012B2 (en) Magnetic recording media
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JP2000322713A (en) Thin film magnetic head
JP4626861B2 (en) Perpendicular magnetic recording medium
CN101154392A (en) Magnetic recording medium and magnetic recording device
JP4037139B2 (en) Magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP4681262B2 (en) Method for manufacturing perpendicular magnetic recording medium and system for manufacturing perpendicular magnetic recording medium
EP1111595A1 (en) Base for magnetic recording medium, magnetic recording medium, method for producing the same, and magnetic recorder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106