JP2000163896A - Piezoelectric element driven type fine displacement magnetic head actuator - Google Patents
Piezoelectric element driven type fine displacement magnetic head actuatorInfo
- Publication number
- JP2000163896A JP2000163896A JP10335422A JP33542298A JP2000163896A JP 2000163896 A JP2000163896 A JP 2000163896A JP 10335422 A JP10335422 A JP 10335422A JP 33542298 A JP33542298 A JP 33542298A JP 2000163896 A JP2000163896 A JP 2000163896A
- Authority
- JP
- Japan
- Prior art keywords
- displacement
- piezoelectric element
- magnetic head
- head actuator
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 104
- 230000007246 mechanism Effects 0.000 claims abstract description 54
- 230000003139 buffering effect Effects 0.000 claims abstract description 4
- 239000000725 suspension Substances 0.000 claims description 12
- 230000000452 restraining effect Effects 0.000 claims description 10
- 230000035939 shock Effects 0.000 abstract description 8
- 230000006378 damage Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000004020 conductor Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000011359 shock absorbing material Substances 0.000 description 4
- 239000011358 absorbing material Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Moving Of The Head To Find And Align With The Track (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気ディスク装置
の圧電素子駆動型微小変位磁気ヘッドアクチュエータに
関し、特に磁気ヘッドの位置決めを行うためのアクチュ
エータに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small displacement magnetic head actuator for driving a piezoelectric element of a magnetic disk drive, and more particularly to an actuator for positioning a magnetic head.
【0002】[0002]
【従来の技術】磁気ディスク装置の記録密度向上は、磁
気ディスクの周方向記録ビット密度(いわゆるBPI)
及び半径方向トラック密度(いわゆるTPI)を上げる
ことで達成されてきた。特にMR再生専用ヘッドの採用
からビット密度の向上がめざましく、MRヘッドから、ス
ピンバルブヘッド、GMRヘッドへ至る開発によって、
年率60%の記録密度上昇を維持している。しかしなが
ら、磁気ヘッドスライダの浮上量も媒体突起高さに限り
なく近づき、且つ、ディスク回転数の上昇と共にR/Wチ
ャネル転送レートもかなり高く、現在使用されているR/
WチャネルICでは追いつけない領域に近づきつつある。2. Description of the Related Art The improvement of the recording density of a magnetic disk drive is based on the circumferential recording bit density (so-called BPI) of a magnetic disk.
And increasing the radial track density (the so-called TPI). In particular, the bit density has been remarkably improved with the adoption of a head dedicated to MR reproduction. With the development from MR heads to spin valve heads and GMR heads,
The recording density is increasing at an annual rate of 60%. However, the flying height of the magnetic head slider also approaches the medium protrusion height without limit, and the R / W channel transfer rate is considerably high with the increase of the disk rotation speed.
We are approaching an area that W-channel ICs cannot keep up with.
【0003】そこで、最近ではトラック密度を上げる方
向に開発が進みつつある。一般にトラック密度向上に関
してはディスクの小型化によってなされてきた。すなわ
ち部品を小型化する事で振動振幅を抑制し、さらに振動
周波数を高帯域化する事で、制御帯域を上げて位置決め
精度を確保するのである。一方、大容量、高速転送レー
トが必要な機種に関しては、従来の3.5"サイズで、1000
0(rpm)以上が求められており、アクチュエータ等の位置
決め機構系部品の高剛性化を進めても十分な位置決め精
度を確保する事が困難であって、トラック密度を上げる
事は、容易なことではなかった。そこで、アクチュエー
タを小型化するのではなく、微小変位対応の小型アクチ
ュエータをメインアクチュエータに搭載することによっ
て追従する周波数帯域を分担して、位置決め精度の向上
を果たそうとする考え方が広がっている。いわゆるマイ
クロアクチュエータを付加した2段位置決め機構系の導
入である。[0003] Therefore, recently, development has been progressing in the direction of increasing the track density. Generally, the track density has been improved by downsizing the disk. In other words, the vibration amplitude is suppressed by reducing the size of the component, and the vibration frequency is further increased, thereby increasing the control band and securing the positioning accuracy. On the other hand, for models that require large capacity and high transfer rate,
0 (rpm) or higher is required, and it is difficult to secure sufficient positioning accuracy even if the rigidity of positioning mechanism components such as actuators is increased, and it is easy to increase the track density. Was not. Therefore, instead of downsizing the actuator, mounting a small actuator corresponding to minute displacement on the main actuator to share the frequency band to be followed, thereby improving the positioning accuracy. This is the introduction of a two-stage positioning mechanism system to which a so-called microactuator is added.
【0004】この微小変位アクチュエータ形式には、ま
ずサスペンション駆動型、スライダ駆動型、及び磁気ヘ
ッド駆動型に分類され、最近ではサスペンション駆動型
として"Flexural Piggyback Actuator for Magnetic Di
sk Drives", 小金沢新冶他日本機械学会、IIP'96情報・
知能・精密機器部門講演会 講演論文集に示すVCM型や"
DUAL STAGE ACTUATOR SYSTEM FOR MAGNETIC DISK DRIVE
S USINGA SHEAR MODE PIEZOELECTRIC MICRO-MOTOR", S.
Koganezawa.et.al FUJITSU Ltd., Asia-Pacific Magnet
ic Recording Conference(APMRC) 1998 FB-03に示す圧
電素子駆動型、スライダ駆動型として”PIEZOELECTRIC
PIGGY-BACK MICROACTUATOR FOR HARDDISK DRIVE", Y.So
eno,et,al., TDK Cor, APMRC 1998 FB-02に示す圧電素
子駆動型、磁気ヘッド駆動型として"A MICRO-ACTUATOR
FOR HEAD POSITIONING SYSTEMOF HARD DISKDRIVES", H.
FUJITA.et.al The University of Tokyo, APMRC1998 FB
-06に示す静電型の研究開発が活発に行われている。こ
の中で最後に述べたヘッド駆動型が微小変位アクチュエ
ータの究極型であって、より高トラック密度に対応可能
であるが、可動範囲が小さいため高トラック密度のみし
か対応できない事と、磁気ヘッドスライダとの一体成形
が求められるため、使用材料の制限がかなりある。スラ
イダ駆動型は、サスペンションの振動特性を考慮する必
要がなく、固体素子であるため、主共振周波数をかなり
高く設定することが可能であるが、圧電素子をスライダ
背面に接続するため実質的にスライダ厚が大きくなっ
て、装置全体の厚さを増加させてしまう。更に可動範囲
を広げるためには圧電素子を積層化しなければならず、
そのために駆動周波数の低下、駆動変位の非線形化が拡
大してしまう。駆動周波数に関してはそれでも20〜30(k
Hz) なので問題はないが、変位の非線形性が制御性能に
及ぼす影響はかなり大きい。[0004] The micro-displacement actuator types are first classified into a suspension drive type, a slider drive type, and a magnetic head drive type, and recently, a "Flexural Piggyback Actuator for Magnetic Diode" has been designated as a suspension drive type.
sk Drives ", Shinji Koganezawa et al. Japan Society of Mechanical Engineers, IIP'96
VCM type shown in the collection of lecture papers
DUAL STAGE ACTUATOR SYSTEM FOR MAGNETIC DISK DRIVE
S USINGA SHEAR MODE PIEZOELECTRIC MICRO-MOTOR ", S.
Koganezawa.et.al FUJITSU Ltd., Asia-Pacific Magnet
ic Recording Conference (APMRC) 1998 “PIEZOELECTRIC” as a piezoelectric element drive type and slider drive type shown in FB-03
PIGGY-BACK MICROACTUATOR FOR HARDDISK DRIVE ", Y.So
eno, et, al., TDK Cor, APMRC 1998 FB-02, "A MICRO-ACTUATOR"
FOR HEAD POSITIONING SYSTEMOF HARD DISKDRIVES ", H.
FUJITA.et.al The University of Tokyo, APMRC1998 FB
The research and development of the electrostatic type shown in -06 is actively underway. Among them, the head drive type described last is the ultimate type of the micro-displacement actuator, which can cope with a higher track density. There is a considerable limitation on the materials used since integral molding is required. The slider drive type does not need to consider the vibration characteristics of the suspension and is a solid element, so the main resonance frequency can be set quite high.However, since the piezoelectric element is connected to the back of the slider, the slider The thickness is increased, and the thickness of the entire device is increased. In order to further expand the movable range, piezoelectric elements must be laminated,
As a result, the drive frequency decreases and the drive displacement becomes non-linear. Regarding the driving frequency, it is still 20-30 (k
Hz), so there is no problem, but the effect of displacement nonlinearity on control performance is considerable.
【0005】これに対して、25000TPI〜40000TPIのトラ
ック密度、可動範囲±2(μm)程度を目標とする場
合、特に駆動範囲を確保するという観点からは、変位拡
大機構としてサスペンションそのものを利用できるサス
ペンション駆動型微小変位アクチュエータが有望であ
る。その中での選択肢としては先に述べたようにVCM 型
と圧電素子駆動型がある。VCM 型は1段目のアクチュエ
ータと同じ形式でり、安価な電源回路で駆動可能である
という利点がある。しかしながら入力電流に対して制御
できる物理量が加速度であるため、変位量を制御するた
めに2回積分が必要となるので、2〜3 (kHz)程度の制
御帯域を確保するための磁気ディスク上に記録するサー
ボデータ数が増加して、フォーマット効率が低下すると
いう欠点がある。一方圧電素子では入力電圧に対して制
御できる物理量が変位であるため、VCM 型に対してサー
ボデータ数が少なくて済むのでフォーマット効率が上昇
し、結果として記録容量を増加させる事ができる。ま
た、変位拡大機構を使用するため、単層あるいは単結晶
圧電素子が利用でき、変位の非線形性をかなり改善する
事が可能である。但し問題は、駆動電圧が高く、通常±
30〜40(V) になり外部よりこの電源電圧が供給できない
場合は昇圧回路を新たに設ける必要があり、その分コス
ト高となる。以上の様にどちらの形式においても一長一
短があるが、高TPI化による記録密度(容量)向上を狙
う場合には、圧電素子駆動型が有利になる。On the other hand, when a track density of 25,000 TPI to 40,000 TPI and a movable range of about ± 2 (μm) are targeted, the suspension itself can be used as a displacement enlarging mechanism from the viewpoint of securing a drive range. Driven micro-displacement actuators are promising. As mentioned above, the options include the VCM type and the piezoelectric element drive type. The VCM type has the same form as the first-stage actuator, and has the advantage that it can be driven by an inexpensive power supply circuit. However, since the physical quantity that can be controlled with respect to the input current is acceleration, it is necessary to perform twice integration to control the amount of displacement. Therefore, a magnetic disk for securing a control band of about 2 to 3 (kHz) is required. There is a disadvantage that the number of servo data to be recorded increases and the format efficiency decreases. On the other hand, in a piezoelectric element, since the physical quantity that can be controlled with respect to the input voltage is a displacement, the number of servo data is smaller than that of the VCM type, so the format efficiency is increased, and as a result, the recording capacity can be increased. Further, since the displacement magnifying mechanism is used, a single-layer or single-crystal piezoelectric element can be used, and the nonlinearity of the displacement can be considerably improved. However, the problem is that the drive voltage is high and
When the power supply voltage becomes 30 to 40 (V) and this power supply voltage cannot be supplied from the outside, it is necessary to newly provide a booster circuit, and the cost increases accordingly. As described above, both types have advantages and disadvantages, but when the recording density (capacity) is to be improved by increasing the TPI, the piezoelectric element drive type is advantageous.
【0006】[0006]
【発明が解決しようとする課題】最近の磁気ディスク装
置の性能要求仕様として、耐衝撃性が特に重視されてき
ている。これは装置の輸送やPCへの組み込みはもとよ
り、実際の使用環境においてもかなり装置に対して衝撃
が加わる事が多くなっており、特に2.5"以下の磁気ディ
スク装置では、携帯機器に搭載される事がほとんどであ
るため、更に高い耐衝撃仕様が求められている。耐衝撃
性を高めるには、装置内の各部品の耐衝撃特性を高める
と共に、部品間の相対変位特性も重要となっているが、
記録データの損傷という観点からみると、衝撃によって
磁気ディスク上にてスライダが跳躍し、ディスクに再衝
突する場合が最も問題となる。この場合、耐衝撃性を高
めるためには、スライダ・サスペンションアセンブリの
等価質量を軽減すると共にサスペンションがスライダに
加える荷重を増加させることが最も効果的である。ま
た、装置非動作時にスライダ・サスペンション部分をデ
ィスク外に位置させるヘッド・ロードアンロード機構を
設けると、装置非動作時だけではあるが、耐衝撃性を飛
躍的に高めることができる。As a performance requirement specification of a recent magnetic disk drive, impact resistance has been particularly emphasized. In addition to transporting the device and incorporating it into a PC, the device often receives a considerable impact even in the actual use environment. Especially, a magnetic disk device of 2.5 "or less is mounted on a portable device. In order to increase the impact resistance, not only the impact resistance of each component in the device but also the relative displacement characteristics between the components are important. But
From the viewpoint of damage to recorded data, the most problem is that the slider jumps on the magnetic disk due to impact and recollides with the disk. In this case, in order to enhance the impact resistance, it is most effective to reduce the equivalent mass of the slider / suspension assembly and increase the load applied to the slider by the suspension. Further, if a head load / unload mechanism for positioning the slider / suspension portion outside the disk when the apparatus is not operating is provided, the shock resistance can be drastically improved, not only when the apparatus is not operating.
【0007】ここで、圧電素子駆動型微小変位アクチュ
エータを考えると、図7に示す圧電素子の長さモードを
利用する形状の場合、変位拡大機構との接続は細長い棒
形状圧電素子の両端部分の接着となるため、サスペンシ
ョン荷重が大きいと圧電素子接着端は撓み変形等による
応力が集中しやすい。さらに圧電素子の弾性変形領域は
かなり小さいため、変形量が大きいと破断する可能性が
非常に高い。ここで、更に衝撃を受ける場合には、短時
間にかなりの変形が伴うため、圧電素子に加わる応力は
容易に弾性変形限界を越えて破断に至る可能性が非常に
高い。また、圧電素子が応力衝撃を受けた場合、電荷が
発生するので、例えば装置非動作時に圧電素子が短絡さ
れていない状態で衝撃が加わり続けると、圧電素子の両
電極表面に電荷が蓄積する。そしてその電荷によって、
圧電素子両端の電圧が駆動電圧を越えてしまうと、装置
動作開始時に圧電素子から駆動回路系に過大な電圧が加
わって最悪の場合、駆動回路を破損する可能性がある。[0007] Considering the piezoelectric element driving type small displacement actuator, in the case of the shape utilizing the length mode of the piezoelectric element shown in FIG. 7, the connection with the displacement enlarging mechanism is made at both ends of the elongated rod-shaped piezoelectric element. When the suspension load is large, stress due to bending deformation or the like tends to concentrate on the bonding end of the piezoelectric element because the suspension load is large. Further, since the elastic deformation area of the piezoelectric element is considerably small, the possibility of breakage is very high if the deformation amount is large. Here, when a further shock is applied, a considerable deformation is accompanied in a short time, so that the stress applied to the piezoelectric element easily exceeds the elastic deformation limit and is very likely to be broken. In addition, when the piezoelectric element receives a stress shock, an electric charge is generated. Therefore, for example, if the shock continues to be applied while the piezoelectric element is not short-circuited when the apparatus is not operated, the electric charge is accumulated on both electrode surfaces of the piezoelectric element. And by the charge,
If the voltage at both ends of the piezoelectric element exceeds the drive voltage, an excessive voltage is applied from the piezoelectric element to the drive circuit system at the start of operation of the apparatus, and in the worst case, the drive circuit may be damaged.
【0008】一方、図8に示す圧電素子の厚みすべりモ
ードを利用する形状の場合は、高荷重条件での圧電素子
の破断に関してはほとんど問題はないが、変位拡大機構
部分が変形する可能性が高い。本発明は係る課題を解決
するため、圧電素子駆動型微小変位アクチュエータの圧
電素子部分及び変位拡大機構部分に変位拘束機構を設け
て衝撃時の塑性変形や破壊を防止し、耐衝撃性の高い磁
気ディスク装置を提供する事を目的とする。On the other hand, in the case of the shape utilizing the thickness-shear mode of the piezoelectric element shown in FIG. 8, there is almost no problem with the breakage of the piezoelectric element under a high load condition, but there is a possibility that the displacement magnifying mechanism may be deformed. high. In order to solve the problem, the present invention provides a displacement restraining mechanism in a piezoelectric element portion and a displacement enlarging mechanism portion of a piezoelectric element driving type small displacement actuator to prevent plastic deformation and destruction at the time of impact, and to provide a high impact resistant magnetic material. It is intended to provide a disk device.
【0009】[0009]
【課題を解決するための手段】本発明は、圧電素子駆動
型微小変位磁気ヘッドアクチュエータの、圧電素子及び
/または変位拡大機構の上方に、シーク方向と概ね直交
する方向の変位を拘束する変位拘束機構を設置して耐衝
撃特性を付与したことを特徴とする圧電素子駆動型微小
変位磁気ヘッドである。前述の通り圧電素子等の耐衝撃
性は近年における特に2.5"以下の磁気ディスク装置で要
求される主要な性能のうちの一つである。圧電素子は通
常ベース上に設置され、ベース自体との接触による損傷
は起こり得ないが、外力が加えられるとベースと対して
直交方向に、つまりシーク方向と概ね直交する方向に変
位して圧電素子等自身が弾性限界を超える場合や、他の
部品と接触または衝突する場合には、圧電素子等が損傷
してしまう。従って本発明ではこの圧電素子等自身の変
形抑制とと他の部品との衝突等を回避するために、該圧
電素子等の周囲に該圧電素子等自身の変形抑制と他の部
品との衝突や接触を防止する変位拘束機構を設置して前
記圧電素子等を保護しようとするものである。SUMMARY OF THE INVENTION The present invention provides a displacement restraint for restraining a displacement in a direction substantially orthogonal to a seek direction above a piezoelectric element and / or a displacement enlarging mechanism of a piezoelectric element driven type micro displacement magnetic head actuator. A small displacement magnetic head driven by a piezoelectric element, characterized in that a mechanism is provided to impart impact resistance. As described above, the shock resistance of a piezoelectric element or the like is one of the main performances required in recent years, particularly for a magnetic disk device of 2.5 "or less. The piezoelectric element is usually installed on a base, and is connected to the base itself. Damage due to contact is not possible, but when an external force is applied, it displaces in a direction perpendicular to the base, that is, in a direction substantially perpendicular to the seek direction, causing the piezoelectric element or the like to exceed its elastic limit. In the case of contact or collision, the piezoelectric element or the like will be damaged, so in the present invention, in order to suppress deformation of the piezoelectric element or the like and to avoid collision with other parts, the surroundings of the piezoelectric element or the like are avoided. In addition, a displacement restricting mechanism for suppressing deformation of the piezoelectric element or the like and preventing collision or contact with other parts is installed in the piezoelectric element to protect the piezoelectric element or the like.
【0010】この変位拘束機構は、ベースの基部側の表
面から梁状に圧電素子等の上方まで延びる逆L字状とす
ることが望ましいが、圧電素子の変位量を最小限に抑制
するという機能から、この形状に限定されるものではな
く、ベースの側面側から圧電素子の上方に延びる形状と
しても良い。又圧電素子はベースに対して固定されてい
るためベースの撓み方向にベースとともに変位するた
め、前述の通りシーク方向と概ね直交する方向に変位
し、その方向に変位拘束機構を設置する。この変位拘束
機構は単に変位を拘束するだけでなく、変位する圧電素
子等を保護する役割を果たす。従って前記変位拘束機構
は、圧電素子が衝突する際に該圧電素子を損傷する材質
で構成されていると設置する意味がなくなる。特に変位
拘束機構が硬質材料で成形されている場合には、軟質ま
たは弾性材料から成る衝撃緩衝機能を有する構造体(衝
撃吸収材料)を前記変位拘束機構の圧電素子と接触する
箇所に張り付け等により形成する。前述の通り、圧電素
子には電荷が発生することがあり、この電荷が蓄積され
ると駆動回路の損傷が発生することがある。これを回避
するために本発明では変位拘束機構の圧電素子と接触す
る箇所に導電性材料を設け、該導電性材料に圧電素子を
接触させて電荷を逃がすことができる。The displacement restricting mechanism preferably has an inverted L-shape extending in a beam shape from the surface on the base side of the base to above the piezoelectric element or the like, but has a function of minimizing the displacement of the piezoelectric element. Therefore, the shape is not limited to this, but may be a shape extending above the piezoelectric element from the side surface of the base. Further, since the piezoelectric element is fixed to the base and is displaced together with the base in the bending direction of the base, the piezoelectric element is displaced in a direction substantially orthogonal to the seek direction as described above, and a displacement restricting mechanism is installed in that direction. The displacement restricting mechanism not only restricts the displacement but also protects the displaced piezoelectric element and the like. Therefore, if the displacement restricting mechanism is made of a material that damages the piezoelectric element when the piezoelectric element collides, there is no point in installing the mechanism. In particular, when the displacement restraining mechanism is formed of a hard material, a structure (shock absorbing material) made of a soft or elastic material and having a shock buffering function is attached to a portion of the displacement restraining mechanism that comes into contact with the piezoelectric element, or the like. Form. As described above, electric charges may be generated in the piezoelectric element, and if the electric charges are accumulated, the driving circuit may be damaged. In order to avoid this, in the present invention, a conductive material is provided at a position where the displacement restricting mechanism comes into contact with the piezoelectric element, and the electric charge can be released by bringing the piezoelectric element into contact with the conductive material.
【0011】[0011]
【発明の実施の形態】以下図面を用いて本発明の実施例
について詳細に説明する。図1は本発明の請求項第1項
に係わる圧電素子駆動型微小変位磁気ヘッドアクチュエ
ータにおける第1の実施例を示した図である。圧電素子
の変位拘束機構2は、1段目のVCMアーム3の先端
と、圧電素子駆動型微小変位磁気ヘッドアクチュエータ
1のベース4との接合部のベース側にその一端が固定さ
れた片持ち梁構造となっている。なお、この固定部分は
衝撃に対して大きく変位しない部分であればどこでもよ
く、VCMアーム先端側に固定してもよい。圧電素子の
変位拘束機構2の片持ち梁部分5は圧電素子6のほぼ上
方を覆っており、衝撃によりシーク方向と概ね直交する
方向に変位が生じると、圧電素子6はまずこの梁部分5
の下面と衝突し、それ以上の変位は拘束されるか、ある
いは梁部分5のバネ特性に依存した減速を受けるため、
過度の変位及び速度による塑性変形領域での破壊を抑制
する事が可能になる。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a view showing a first embodiment of a piezoelectric element driving type small displacement magnetic head actuator according to claim 1 of the present invention. The piezoelectric element displacement restraining mechanism 2 is a cantilever having one end fixed to the base side of the joint between the tip of the first-stage VCM arm 3 and the base 4 of the piezoelectric element driving type micro-displacement magnetic head actuator 1. It has a structure. The fixed portion may be any portion as long as it does not significantly displace in response to an impact, and may be fixed to the tip end side of the VCM arm. The cantilever portion 5 of the displacement restricting mechanism 2 of the piezoelectric element covers almost the upper part of the piezoelectric element 6, and when a displacement occurs in a direction substantially orthogonal to the seek direction due to an impact, the piezoelectric element 6 first
Collides with the lower surface of the beam portion, and any further displacement is restrained or decelerated depending on the spring characteristic of the beam portion 5,
Destruction in the plastic deformation region due to excessive displacement and speed can be suppressed.
【0012】図2は本発明の請求項第1項に係わる圧電
素子駆動型微小変位磁気ヘッドアクチュエータにおける
第2の実施例を示した図である。この実施例では、衝撃
時において圧電素子10そのものが変位し拘束機構11
の梁部分12に衝突するのではなく、圧電素子駆動型微
小変位磁気ヘッドアクチュエータ1の可動部分13に衝
突する。これによって、サスペンション材料に対してよ
り脆い圧電素子(セラミック)を破壊する可能性を抑制
する事ができる。この場合には可動部分13ではなく変
位拡大機構部分と衝突させて、その垂直方向変位及びね
じれ方向変位を直接拘束して、比較邸弱いバネ部分を塑
性変形させないように保護することも可能である。さら
には、図1の場合と組み合わせる事によって、更に大き
な効果が期待できる。FIG. 2 is a view showing a second embodiment of the piezoelectric element driving type small displacement magnetic head actuator according to the first aspect of the present invention. In this embodiment, at the time of impact, the piezoelectric element 10 itself is displaced and
Does not collide with the movable part 13 of the piezoelectric element driven type micro displacement magnetic head actuator 1. Thereby, the possibility of breaking a piezoelectric element (ceramic) which is more brittle with respect to the suspension material can be suppressed. In this case, it is possible to protect the weak spring portion from being plastically deformed by directly restraining the vertical displacement and the torsional displacement by colliding with the displacement enlarging mechanism portion instead of the movable portion 13. . Further, a greater effect can be expected by combining with the case of FIG.
【0013】図3は本発明の請求項第1項に係わる圧電
素子駆動型微小変位磁気ヘッドアクチュエータにおける
第3の実施例を示した図である。この場合は、圧電素子
21の上下両側に変位拘束機構22を配置することによ
って、衝撃時のバウンド・リバウンドの繰り返しに対し
ても有効な変位拘束を行う事が可能であり、その結果と
して、圧電素子21の破壊回避可能性を高める事が可能
である。また、変位拡大機構のバネ部分においても同様
に両側に変位拘束機構を設けることによってその塑性変
形を抑制する事が可能である。FIG. 3 is a view showing a third embodiment of the piezoelectric element driving type small displacement magnetic head actuator according to the first aspect of the present invention. In this case, by disposing the displacement restraint mechanism 22 on both the upper and lower sides of the piezoelectric element 21, it is possible to perform effective displacement restraint even for repetition of bound / rebound at the time of impact. It is possible to increase the possibility of avoiding destruction of the element 21. Similarly, by providing the displacement restricting mechanism on both sides of the spring portion of the displacement enlarging mechanism, it is possible to suppress the plastic deformation.
【0014】図4は本発明の請求項第2項に係わる圧電
素子駆動型微小変位磁気ヘッドアクチュエータにおける
第1の実施例を示した図である。変位拘束機構31の圧
電素子32と対向する部分に衝撃吸収材料33が配置さ
れている。衝撃が加わった場合、この実施例においては
衝撃吸収材料33が圧電素子32と衝突するが、衝撃吸
収材料33の効果によって、衝撃力及び衝撃速度が低下
するため、圧電素子32の衝撃破壊を防ぐ事が可能とな
る。これは、衝撃吸収材料33が変位拡大機構や、可動
部分に衝突する場合でも同様の効果が期待できる。FIG. 4 is a view showing a first embodiment of a piezoelectric element driving type small displacement magnetic head actuator according to the second aspect of the present invention. An impact absorbing material 33 is disposed on a portion of the displacement constraint mechanism 31 facing the piezoelectric element 32. When an impact is applied, the impact absorbing material 33 collides with the piezoelectric element 32 in this embodiment, but the impact force and the impact velocity are reduced by the effect of the impact absorbing material 33, so that the impact destruction of the piezoelectric element 32 is prevented. Things become possible. The same effect can be expected even when the shock absorbing material 33 collides with the displacement enlarging mechanism or the movable part.
【0015】図5は本発明の請求項第2項に係わる圧電
素子駆動型微小変位磁気ヘッドアクチュエータにおける
第2の実施例を示した図である。この場合には、変位拘
束機構41の梁部分42の側面とベース部分43の間に
衝撃吸収材料44が接続されている。これによって、梁
部分42のダンピング特性を増加させ、衝撃による圧電
素子45の垂直方向変位のバウンド・リバウンド振動減
衰特性向上させる事が可能となるため、衝撃による圧電
素子45の非破壊特性を高める事ができる。なお、この
場合も衝突部分を変位拡大機構、可動部分と併用する事
でより非破壊信頼性を高める事ができる。FIG. 5 is a view showing a second embodiment of the piezoelectric element driving type small displacement magnetic head actuator according to the second aspect of the present invention. In this case, a shock absorbing material 44 is connected between the side surface of the beam portion 42 of the displacement restraining mechanism 41 and the base portion 43. As a result, it is possible to increase the damping characteristics of the beam portion 42 and improve the bound / rebound vibration damping characteristics of the vertical displacement of the piezoelectric element 45 due to the impact, and to enhance the non-destructive characteristics of the piezoelectric element 45 due to the impact. Can be. In this case, the non-destructive reliability can be further improved by using the collision portion together with the displacement enlarging mechanism and the movable portion.
【0016】図6は本発明の請求項第3項に係わる圧電
素子駆動型微小変位磁気ヘッドアクチュエータにおける
実施例を示した図である。変位拘束機構51の圧電素子
52と対向する部分に導電性材料53が配置されてい
る。圧電素子52が衝撃を受けて変形した場合、圧電効
果によって、圧電素子52の両電極54、55に電荷が
発生する。非常に速い加速度を受け撓んだり捻れたりし
た場合には、発生する電荷は高く、両端の電位差は100
(V)以上に達する場合がある。本実施例の様に圧電素子
52に電荷が発生した段階で即時に圧電素子52の電極
部分と接地された導電性材料53と接触することで不要
な電荷を除去する事ができ、圧電素子52の駆動回路の
破損を抑制することが可能となる。なお、一般に圧電素
子は焦電効果も有しており、温度変化に対しても電荷を
生じる場合がある。このような場合に対しては、変位拘
束機構51を可動化し、装置起動時、装置動作時におい
て所定の時間に圧電素子52と導電性材料53を接触さ
せ、電極54を接地することで対処可能である。FIG. 6 is a view showing an embodiment of a piezoelectric element driving type small displacement magnetic head actuator according to claim 3 of the present invention. A conductive material 53 is disposed on a portion of the displacement constraint mechanism 51 facing the piezoelectric element 52. When the piezoelectric element 52 is deformed by an impact, electric charges are generated on both electrodes 54 and 55 of the piezoelectric element 52 by the piezoelectric effect. When bending or twisting due to very fast acceleration, the generated charge is high and the potential difference between both ends is 100
(V) or higher. As in the present embodiment, when an electric charge is generated in the piezoelectric element 52, an unnecessary electric charge can be removed by immediately contacting the electrode portion of the piezoelectric element 52 with the grounded conductive material 53. Can be prevented from being damaged. In general, a piezoelectric element also has a pyroelectric effect, and may generate an electric charge in response to a temperature change. Such a case can be dealt with by activating the displacement restricting mechanism 51, bringing the piezoelectric element 52 into contact with the conductive material 53 at a predetermined time when the apparatus is activated, and operating the apparatus, and grounding the electrode 54. It is.
【0017】なお、本実施例においては特に示さなかっ
たが、本発明の変位拘束機構は圧電素子駆動型微小変位
磁気ヘッドアクチュエータの衝撃を吸収してその破壊を
抑制する機構であれば何でもよく、また構成材料に関し
ては、請求項に示した特性を有するものであれば何でも
よく、本発明の趣旨に沿った変更は可能である。Although not particularly shown in the present embodiment, the displacement restricting mechanism of the present invention may be any mechanism that absorbs the impact of the piezoelectric element-driven micro-displacement magnetic head actuator and suppresses its destruction. As for the constituent material, any material having the characteristics shown in the claims may be used, and modifications in accordance with the gist of the present invention are possible.
【0018】[0018]
【発明の効果】以上、詳細に説明したように、本発明に
よる、変位拘束機構を設置した圧電素子駆動型微小変位
アクチュエータ(請求項1)を使用することによって、
耐衝撃性の高い2段アクチュエータ機構系を構成するこ
とが可能となり、より高トラック密度かつ記憶容量が大
きく、信頼性の高い磁気ディスク装置を提供する事がで
きる。又変位拘束機構の材質によっては該変位拘束機構
により圧電素子等が損傷する場合があり、これを回避す
るためには前記変位拘束機構の圧電素子と接触する箇所
に衝撃緩衝機能を有する構造体を形成すれば良い(請求
項2)。更に圧電素子には電荷が蓄積されやすく該蓄積
電荷は駆動回路を損傷することがある。これを回避する
ためには、変位拘束機構の圧電素子と接触する部分に導
電性を有する構造体を設置し、且つその構造体が装置の
電気的接地と同電位に保っておけば良く(請求項3)、
これにより圧電素子に発生した電荷が前記構造体を通し
て圧電素子から除去できる。As described above in detail, by using the piezoelectric element-driven small displacement actuator having the displacement restraining mechanism according to the present invention (claim 1),
It is possible to configure a two-stage actuator mechanism system having high shock resistance, and it is possible to provide a highly reliable magnetic disk device having a higher track density and a large storage capacity. Also, depending on the material of the displacement restricting mechanism, the piezoelectric element or the like may be damaged by the displacement restricting mechanism. To avoid this, a structure having an impact buffering function should be provided at a position where the displacement restricting mechanism comes into contact with the piezoelectric element. It may be formed (claim 2). Further, electric charges are easily accumulated in the piezoelectric element, and the accumulated electric charges may damage the driving circuit. In order to avoid this, a structure having conductivity is provided at a portion of the displacement restricting mechanism that comes into contact with the piezoelectric element, and the structure is maintained at the same potential as the electrical ground of the device. Item 3),
Thereby, the charge generated in the piezoelectric element can be removed from the piezoelectric element through the structure.
【図1】本発明の請求項第1項に係わる圧電素子駆動型
微小変位磁気ヘッドアクチュエータにおける第1の実施
例を示した図である。FIG. 1 is a view showing a first embodiment of a piezoelectric element driving type small displacement magnetic head actuator according to claim 1 of the present invention.
【図2】本発明の請求項第1項に係わる圧電素子駆動型
微小変位磁気ヘッドアクチュエータにおける第2の実施
例を示した図である。FIG. 2 is a view showing a second embodiment of the piezoelectric element driving type small displacement magnetic head actuator according to claim 1 of the present invention.
【図3】本発明の請求項第1項に係わる圧電素子駆動型
微小変位磁気ヘッドアクチュエータにおける第3の実施
例を示した図である。FIG. 3 is a view showing a third embodiment of the piezoelectric element driving type small displacement magnetic head actuator according to claim 1 of the present invention.
【図4】本発明の請求項第2項に係わる圧電素子駆動型
微小変位磁気ヘッドアクチュエータにおける第1の実施
例を示した図である。FIG. 4 is a view showing a first embodiment of a piezoelectric element driving type small displacement magnetic head actuator according to claim 2 of the present invention.
【図5】本発明の請求項第2項に係わる圧電素子駆動型
微小変位磁気ヘッドアクチュエータにおける第2の実施
例を示した図である。FIG. 5 is a view showing a second embodiment of the piezoelectric element driving type small displacement magnetic head actuator according to claim 2 of the present invention.
【図6】本発明の請求項第3項に係わる圧電素子駆動型
微小変位磁気ヘッドアクチュエータの実施例を示した図
である。FIG. 6 is a view showing an embodiment of a piezoelectric element driving type small displacement magnetic head actuator according to claim 3 of the present invention.
【図7】従来の圧電素子駆動型微小変位磁気ヘッドアク
チュエータ(長さモード変位)の例を示す概略図であ
る。FIG. 7 is a schematic view showing an example of a conventional piezoelectric element driving type micro displacement magnetic head actuator (length mode displacement).
【図8】従来の圧電素子駆動型微小変位磁気ヘッドアク
チュエータ(すべりモード変位)の例を示す概略図であ
る。FIG. 8 is a schematic view showing an example of a conventional piezoelectric element driving type micro displacement magnetic head actuator (slip mode displacement).
1、圧電素子駆動型微小変位磁気ヘッドアクチュエータ 2、11、22、31、41、51、変位拘束機構 3、VCMアーム 4、43、ベース 5、12、23、42、梁部分 6、10、21、32、42、52、圧電素子 33、44、衝撃吸収材料 53、導電性材料 54、55、電極 1. Piezoelectric element driven type micro-displacement magnetic head actuators 2, 11, 22, 31, 41, 51, displacement restraint mechanism 3, VCM arms 4, 43, bases 5, 12, 23, 42, beams 6, 10, 21 , 32, 42, 52, piezoelectric elements 33, 44, shock absorbing material 53, conductive materials 54, 55, electrodes
Claims (3)
変位を拡大する変位拡大機構と、前記変位拡大機構に接
続され、且つ変位拡大機構の一部となるサスペンション
と、サスペンション先端に接続され、情報の記録再生を
行う磁気ヘッドから構成される圧電素子駆動型微小変位
磁気ヘッドアクチュエータにおいて、圧電素子及び/ま
たは変位拡大機構の周囲に、該圧電素子及び/または変
位拡大機構のシーク方向と概ね直交する方向の変位を拘
束する変位拘束機構を設置して耐衝撃特性を付与したこ
とを特徴とする圧電素子駆動型微小変位磁気ヘッドアク
チュエータ。1. A displacement magnifying mechanism that mounts a piezoelectric element and the piezoelectric element and magnifies the displacement, a suspension that is connected to the displacement magnifying mechanism and that is a part of the displacement magnifying mechanism, and that is connected to a tip of the suspension. In a piezoelectric element-driven small displacement magnetic head actuator composed of a magnetic head for recording and reproducing information, a seek direction of the piezoelectric element and / or the displacement magnifying mechanism is set around the piezoelectric element and / or the displacement magnifying mechanism. A micro-displacement magnetic head actuator driven by a piezoelectric element, wherein a shock-resisting property is provided by installing a displacement restraining mechanism for restraining displacement in a direction perpendicular to the magnetic head.
いて、圧電素子及び/または変位拡大機構の周囲に位置
し、シーク方向と概ね直交する方向の変位を拘束する変
位拘束機構の圧電素子及び/または変位拡大機構と接触
し得る箇所の少なくとも一部分が衝撃緩衝機能を有する
構造体にて形成されていることを特徴とする圧電素子駆
動型微小変位磁気ヘッドアクチュエータ。2. The actuator according to claim 1, wherein the piezoelectric element and / or the displacement of the displacement restricting mechanism are located around the piezoelectric element and / or the displacement enlarging mechanism and restrict the displacement in a direction substantially orthogonal to the seek direction. A small displacement magnetic head actuator driven by a piezoelectric element, wherein at least a part of a portion that can come into contact with the enlargement mechanism is formed of a structure having an impact buffering function.
エータにおいて、変位拘束機構の圧電素子と対向する一
部分が導電性を有する構造体にて形成され、且つその構
造体が装置の電気的接地と同電位に保たれていることを
特徴とする圧電素子駆動型微小変位磁気ヘッドアクチュ
エータ。3. The actuator according to claim 1, wherein a portion of the displacement restraint mechanism facing the piezoelectric element is formed of a conductive structure, and the structure is connected to an electrical ground of the device. A small displacement magnetic head actuator driven by a piezoelectric element, which is maintained at the same potential.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10335422A JP3119253B2 (en) | 1998-11-26 | 1998-11-26 | Piezoelectric element driven small displacement magnetic head actuator |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10335422A JP3119253B2 (en) | 1998-11-26 | 1998-11-26 | Piezoelectric element driven small displacement magnetic head actuator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2000163896A true JP2000163896A (en) | 2000-06-16 |
| JP3119253B2 JP3119253B2 (en) | 2000-12-18 |
Family
ID=18288391
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10335422A Expired - Fee Related JP3119253B2 (en) | 1998-11-26 | 1998-11-26 | Piezoelectric element driven small displacement magnetic head actuator |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3119253B2 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3356138B2 (en) | 1999-10-27 | 2002-12-09 | 日本電気株式会社 | Magnetic head positioning mechanism |
| US6711229B1 (en) | 1999-12-01 | 2004-03-23 | Nec Electronics Corporation | Method of synchronizing phase-locked loop, phase-locked loop and semiconductor provided with same |
| US6738231B2 (en) | 2002-04-24 | 2004-05-18 | Hitachi Global Storage Technologies Netherlands B.V. | Piezoelectric microactuator for slider side actuation |
| US6987649B2 (en) | 2000-09-04 | 2006-01-17 | Alps Electric Co., Ltd. | Magnetic head apparatus with microactuator having function of short-circuiting both electrodes of epiezoelectric elements and method of manufacturing the same |
| US7061724B2 (en) | 2002-01-31 | 2006-06-13 | Fujitsu Limited | Disc drive magnetic head fine positioning mechanism including a base connecting a suspension to an arm, and having a piezoelectric drive element adjacent thereto |
| JP2011060361A (en) * | 2009-09-08 | 2011-03-24 | Nhk Spring Co Ltd | Disk drive suspension |
-
1998
- 1998-11-26 JP JP10335422A patent/JP3119253B2/en not_active Expired - Fee Related
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3356138B2 (en) | 1999-10-27 | 2002-12-09 | 日本電気株式会社 | Magnetic head positioning mechanism |
| US6711229B1 (en) | 1999-12-01 | 2004-03-23 | Nec Electronics Corporation | Method of synchronizing phase-locked loop, phase-locked loop and semiconductor provided with same |
| US6987649B2 (en) | 2000-09-04 | 2006-01-17 | Alps Electric Co., Ltd. | Magnetic head apparatus with microactuator having function of short-circuiting both electrodes of epiezoelectric elements and method of manufacturing the same |
| US7423846B2 (en) | 2000-09-04 | 2008-09-09 | Tdk Corporation | Magnetic-head apparatus with microactuator having function of short-circuiting both electrodes of epiezoelectric elements and method of manufacturing the same |
| US7061724B2 (en) | 2002-01-31 | 2006-06-13 | Fujitsu Limited | Disc drive magnetic head fine positioning mechanism including a base connecting a suspension to an arm, and having a piezoelectric drive element adjacent thereto |
| US6738231B2 (en) | 2002-04-24 | 2004-05-18 | Hitachi Global Storage Technologies Netherlands B.V. | Piezoelectric microactuator for slider side actuation |
| JP2011060361A (en) * | 2009-09-08 | 2011-03-24 | Nhk Spring Co Ltd | Disk drive suspension |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3119253B2 (en) | 2000-12-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5959808A (en) | Shielded electrostatic microactuators for magnetic-head positioning such devices | |
| US6262868B1 (en) | Method and structures used for connecting recording head signal wires in a microactuator | |
| US7345851B2 (en) | Disk drive with rotary piezoelectric microactuator | |
| US7382583B2 (en) | Rotary piezoelectric microactuator and disk drive head-suspension assembly | |
| US7110224B2 (en) | Disk drive having a two-stage actuator for suppressing a flying-height fluctuation | |
| US6195227B1 (en) | Integrated 3D limiters for microactuators | |
| US7508634B2 (en) | Micro-actuator, vibration canceller, head gimbal assembly, and disk drive unit with the same | |
| US6297936B1 (en) | Integral load beam push-pull microactuator | |
| US7068473B2 (en) | Piezoelectric microactuator for improved tracking control of disk drive read/write heads | |
| CN1828726B (en) | Rotatable piezoelectric micro-actuator and magnetic head folding sheet combination and disk drive unit thereof | |
| US5995334A (en) | Rotary electrostatic microactuator with area-efficient comb electrode arrangement | |
| US5982585A (en) | Rotary electrostatic microactuator with optimum flexure arrangement | |
| US20080144224A1 (en) | Head gimbal assembly for use in disk drive devices and method of making the same | |
| US7038888B2 (en) | Piezo-electric microactuator for dual stage actuator | |
| JP7742838B2 (en) | Three-stage design for actuator mounting process on flexure | |
| US5940251A (en) | Head suspension with dynamic vibration absorption extension | |
| US6704164B1 (en) | Vibration reducing members for head suspensions | |
| JP3119253B2 (en) | Piezoelectric element driven small displacement magnetic head actuator | |
| JP3699893B2 (en) | Magnetic disk unit | |
| CN101202052B (en) | Improved magnetic head tabs combination, magnetic disk driver and manufacturing method thereof | |
| JP2001035103A (en) | Disk unit | |
| US8159786B2 (en) | Suspension with locally strengthened integrated trace connections | |
| JP2002117638A (en) | Head suspension assembly for magnetic disk drive | |
| JPH0973746A (en) | Disk device head support mechanism | |
| WO2003102950A1 (en) | Method for encapsulation of a u shape micro-actuator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071013 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081013 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081013 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091013 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091013 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101013 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111013 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121013 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121013 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131013 Year of fee payment: 13 |
|
| LAPS | Cancellation because of no payment of annual fees |