JP2000169677A - Epoxy resin composition and semiconductor apparatus - Google Patents
Epoxy resin composition and semiconductor apparatusInfo
- Publication number
- JP2000169677A JP2000169677A JP10345275A JP34527598A JP2000169677A JP 2000169677 A JP2000169677 A JP 2000169677A JP 10345275 A JP10345275 A JP 10345275A JP 34527598 A JP34527598 A JP 34527598A JP 2000169677 A JP2000169677 A JP 2000169677A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- phenol resin
- formula
- resin composition
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 62
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 62
- 239000004065 semiconductor Substances 0.000 title claims abstract description 29
- 239000000203 mixture Substances 0.000 title claims abstract description 27
- 239000005011 phenolic resin Substances 0.000 claims abstract description 45
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 25
- 238000000465 moulding Methods 0.000 claims abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000005350 fused silica glass Substances 0.000 claims abstract description 6
- 125000005843 halogen group Chemical group 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 29
- 230000009477 glass transition Effects 0.000 claims description 17
- 238000005538 encapsulation Methods 0.000 claims description 9
- 150000002989 phenols Chemical class 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 229910000679 solder Inorganic materials 0.000 abstract description 14
- 238000007789 sealing Methods 0.000 abstract description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 abstract description 6
- -1 dicyclopentadiene modified phenol Chemical class 0.000 abstract description 5
- 229910052736 halogen Inorganic materials 0.000 abstract 1
- 239000011342 resin composition Substances 0.000 description 24
- 229920001568 phenolic resin Polymers 0.000 description 19
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 16
- 238000005476 soldering Methods 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 8
- 229920003986 novolac Polymers 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 206010040844 Skin exfoliation Diseases 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 238000001721 transfer moulding Methods 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 150000007514 bases Chemical class 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- USFPINLPPFWTJW-UHFFFAOYSA-N tetraphenylphosphonium Chemical compound C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 USFPINLPPFWTJW-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は成形性、信頼性、実
装性に優れた樹脂封止型半導体装置に関し、更に詳述す
ればプリント配線板や金属リードフレームの片面に半導
体素子を搭載し、その搭載面側の実質的に片面のみを樹
脂封止されたいわゆるエリア実装型半導体装置におい
て、樹脂封止後の反りや基板実装時の半田付け工程での
反りが小さく、また温度サイクル試験での耐パッケージ
クラック性や半田付け工程での耐パッケージクラック性
や耐剥離性に優れ、かつ成形性に優れる半導体封止用エ
ポキシ樹脂組成物及び該半導体封止用エポキシ樹脂組成
物で封止された半導体装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device having excellent moldability, reliability, and mountability. More specifically, a semiconductor device is mounted on one side of a printed wiring board or a metal lead frame. In a so-called area mounting type semiconductor device in which substantially only one of its mounting surfaces is resin-sealed, the warpage after resin sealing and the warping in the soldering process at the time of board mounting are small, and in a temperature cycle test. Epoxy resin composition for semiconductor encapsulation which has excellent package crack resistance and package crack resistance and exfoliation resistance in a soldering process, and is excellent in moldability, and a semiconductor encapsulated with the epoxy resin composition for semiconductor encapsulation It concerns the device.
【0002】[0002]
【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体の高集積化が年々進
み、又半導体パッケージの表面実装化が促進されるなか
で、新規にエリア実装のパッケージが開発され、従来構
造のパッケージから移行し始めている。エリア実装パッ
ケージとしてはBGA(ボールグリッドアレイ)あるい
は更に小型化を追求したCSP(チップスケールパッケ
ージ)が代表的であるが、これらは従来QFP、SOP
に代表される表面実装パッケージでは限界に近づいてい
る多ピン化・高速化への要求に対応するために開発され
たものである。構造としては、BT樹脂/銅箔回路基板
(ビスマレイミド・トリアジン/ガラスクロス基板)に
代表される硬質回路基板、あるいはポリイミド樹脂フィ
ルム/銅箔回路基板に代表されるフレキシブル回路基板
の片面上に半導体素子を搭載し、その素子搭載面、即ち
基板の片面のみがエポキシ樹脂組成物などで成形・封止
されている。また、基板の素子搭載面の反対面には半田
ボールを2次元的に並列して形成し、パッケージを実装
する回路基板との接合を行う特徴を有している。更に、
素子を搭載する基板としては、上記有機回路基板以外に
もリードフレーム等の金属基板を用いる構造も考案され
ている。2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, high integration of semiconductors has been progressing year by year, and surface mounting of semiconductor packages has been promoted. Packaging packages have been developed and are beginning to move away from packages with traditional structures. A typical example of an area mounting package is a BGA (ball grid array) or a CSP (chip scale package) pursuing further miniaturization.
The surface-mount package represented by is developed to meet the demand for higher pin count and higher speed, which is approaching the limit. The structure is as follows: a rigid circuit board represented by a BT resin / copper foil circuit board (bismaleimide / triazine / glass cloth board) or a flexible circuit board represented by a polyimide resin film / copper foil circuit board; An element is mounted, and only the element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. In addition, a solder ball is formed two-dimensionally in parallel on the surface opposite to the element mounting surface of the substrate, and has a feature of joining with a circuit board on which a package is mounted. Furthermore,
As a substrate on which the element is mounted, a structure using a metal substrate such as a lead frame has been devised in addition to the organic circuit substrate.
【0003】これらエリア実装型半導体パッケージの構
造は基板の素子搭載面のみを樹脂組成物で封止し、半田
ボール形成面側は封止しないという片面封止の形態をと
っている。ごく希に、リードフレーム等の金属基板など
では、半田ボール形成面でも数十μm程度の封止樹脂層
が存在することもあるが、素子搭載面では数百μmから
数mm程度の封止樹脂層が形成されるため、実質的に片
面封止となっている。このため、有機基板や金属基板と
樹脂組成物の硬化物との間での熱膨張・熱収縮の不整
合、あるいは樹脂組成物の成形・硬化時の硬化収縮によ
る影響により、これらのパッケージでは成形直後から反
りが発生しやすい。また、これらのパッケージを実装す
る回路基板上に半田接合を行う場合、200℃以上の加
熱工程を経るが、この際にパッケージの反りが発生し、
多数の半田ボールが平坦とならず、パッケージを実装す
る回路基板から浮き上がってしまい、電気的接合信頼性
が低下する問題も起こる。[0003] The structure of these area mounting type semiconductor packages adopts a single-sided sealing form in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface is not sealed. Very rarely, on a metal substrate such as a lead frame, a sealing resin layer of about several tens of μm may exist even on the solder ball forming surface, but a sealing resin layer of several hundred μm to several mm on the element mounting surface. Since the layer is formed, one-sided sealing is substantially achieved. For this reason, due to the mismatch of thermal expansion and thermal contraction between the organic substrate or metal substrate and the cured product of the resin composition, or the effect of curing shrinkage during molding and curing of the resin composition, these packages cannot be molded. Warpage tends to occur immediately after. In addition, when soldering is performed on a circuit board on which these packages are mounted, a heating step of 200 ° C. or more is performed. At this time, package warpage occurs.
A large number of solder balls are not flattened and rise from the circuit board on which the package is mounted, which causes a problem that electrical connection reliability is reduced.
【0004】また、赤外線リフロー、ベーパーフェイズ
ソルダリング、半田浸漬などの手段での半田処理による
半田接合を行う場合、樹脂組成物の硬化物並びに有機基
板からの吸湿によりパッケージ内部に存在する水分が高
温で急激に気化することによる応力でパッケージにクラ
ックが発生したり、基板の素子搭載面と樹脂組成物の硬
化物との界面で剥離が発生することもあり、硬化物の低
応力化・低吸湿化とともに、基板との密着性も求められ
る。さらに、基板と樹脂組成物の硬化物の線膨張係数の
不整合により、信頼性テストの代表例である温度サイク
ル試験でも、基板/硬化物界面の剥離やパッケージクラ
ックが発生する。従来のQFPやSOPなどの表面実装
パッケージでは、半田実装時のクラックや各素材界面で
の剥離の防止のために、ビフェニル型エポキシ樹脂に代
表されるような結晶性エポキシ樹脂を用いて成形時の低
粘度化を図り、かつ無機質充填材の配合量を増加するこ
とが対策としてとられてきた。しかし、この手法では、
片面封止パッケージにおける反りの問題は解決できない
のが現状であった。Further, when soldering is performed by soldering by means such as infrared reflow, vapor phase soldering, or solder immersion, moisture present inside the package due to moisture absorption from the cured product of the resin composition and the organic substrate is high. Cracks in the package due to stress caused by rapid vaporization in the package, and peeling at the interface between the device mounting surface of the substrate and the cured product of the resin composition, resulting in a low stress and low moisture absorption of the cured product. With the development, the adhesion to the substrate is also required. Further, due to the mismatch between the coefficient of linear expansion of the substrate and the cured product of the resin composition, peeling of the substrate / cured product interface and package cracking occur even in a temperature cycle test which is a typical example of a reliability test. In conventional surface mount packages such as QFP and SOP, in order to prevent cracks at the time of solder mounting and peeling at the interface of each material, a molding epoxy resin such as a biphenyl type epoxy resin is used. Attempts to reduce the viscosity and increase the amount of the inorganic filler added have been taken as countermeasures. However, with this approach,
At present, the problem of warpage in a single-sided sealed package cannot be solved.
【0005】基板上の実質的に片面のみを樹脂組成物で
封止したパッケージにおいて、反りを低減するには、基
板の線膨張係数と樹脂組成物の硬化物の線膨張係数を近
付けること、及び樹脂組成物の硬化収縮を小さくする二
つの方法が重要である。基板としては有機基板ではBT
樹脂やポリイミド樹脂のような高ガラス転移温度の樹脂
が広く用いられており、これらはエポキシ樹脂組成物の
成形温度である170℃近辺よりも高いガラス転移温度
を有する。従って、成形温度から室温までの冷却過程で
は有機基板のα1 の領域のみで収縮する。従って、樹脂
組成物もガラス転移温度が高くかつα1 が回路基板と同
じであり、さらに硬化収縮がゼロであれば反りはほぼゼ
ロであると考えられる。このため、多官能型エポキシ樹
脂と多官能型フェノール樹脂との組み合わせによりガラ
ス転移温度を高くし、無機質充填材の配合量でα1 を合
わせる手法が既に提案されている。In a package in which substantially only one surface of a substrate is sealed with a resin composition, to reduce warpage, the linear expansion coefficient of the substrate and the linear expansion coefficient of a cured product of the resin composition should be close to each other; Two methods for reducing the cure shrinkage of the resin composition are important. BT for organic substrate
High glass transition temperature resins such as resins and polyimide resins are widely used, and have a glass transition temperature higher than around 170 ° C., which is the molding temperature of the epoxy resin composition. Accordingly, in the cooling process from the molding temperature to room contracts only alpha 1 region of the organic substrate. Therefore, the resin composition is also the same as high and alpha 1 is a circuit board glass transition temperature, warpage is considered to be substantially zero when further curing shrinkage is zero. Therefore, the glass transition temperature higher by a combination of a polyfunctional epoxy resin and a polyfunctional phenol resin, methods to adjust the alpha 1 in the amount of the inorganic filler has been proposed.
【0006】ところが、一分子中に3個以上のエポキシ
基を有する多官能型エポキシ樹脂と一分子中に3個以上
のフェノール性水酸基を有する多官能型フェノール樹脂
との組み合わせ系は吸湿率が大きいこと、半田処理温度
でも高弾性を示し、発生応力が高いことなどから、半田
処理時のパッケージクラック発生や界面剥離の発生が解
決されていない。信頼性に優れるパッケージを得るに
は、回路基板やICチップと樹脂組成物の硬化物との密
着性を高めることが必須の条件であった。However, a combination system of a polyfunctional epoxy resin having three or more epoxy groups in one molecule and a polyfunctional phenol resin having three or more phenolic hydroxyl groups in one molecule has a large moisture absorption. In addition, it shows high elasticity even at the soldering temperature and high generated stress. Therefore, the occurrence of package cracks and the occurrence of interface peeling during the soldering process has not been solved. In order to obtain a package having excellent reliability, it was an essential condition to increase the adhesion between the circuit board or the IC chip and the cured product of the resin composition.
【0007】[0007]
【発明が解決しようとする課題】本発明は、エリア実装
パッケージでの成形後や半田処理時の反りが小さく、ま
た温度サイクル試験や半田処理時などの信頼性に優れた
半導体封止用エポキシ樹脂組成物及びそれにより封止さ
れた半導体装置の開発を目的としてなされたものであ
る。SUMMARY OF THE INVENTION The present invention relates to an epoxy resin for semiconductor encapsulation which has a small warpage after molding in an area mounting package or during soldering, and has excellent reliability in a temperature cycle test or soldering. The purpose of the present invention is to develop a composition and a semiconductor device sealed with the composition.
【0008】[0008]
【課題を解決するための手段】本発明者は鋭意検討した
結果、特定の多官能型エポキシ樹脂と多官能型フェノー
ル樹脂硬化剤との組み合わせに、ジシクロペンタジエン
変性フェノール樹脂硬化剤を併用することで、ガラス転
移温度の低下を少なくしたまま低吸湿化が図れること、
半田処理温度での熱時弾性率が低減できるため発生応力
が減少し、回路基板との密着性が向上することなどを明
らかにしたものである。Means for Solving the Problems As a result of intensive studies, the present inventors have found that a dicyclopentadiene-modified phenol resin curing agent is used in combination with a specific combination of a polyfunctional epoxy resin and a polyfunctional phenol resin curing agent. In that, it is possible to achieve low moisture absorption while reducing the decrease of the glass transition temperature,
It has been clarified that the thermal elasticity at the soldering temperature can be reduced, so that the generated stress is reduced and the adhesion to the circuit board is improved.
【0009】即ち本発明は、(A)一般式(1)、
(2)で示されるエポキシ樹脂からなる群から選択され
る少なくとも一つのエポキシ樹脂を総エポキシ樹脂中に
20重量%以上含むエポキシ樹脂、(B)一般式(3)
で示されるフェノール樹脂を総フェノール樹脂中に20
〜90重量%含み,一般式(4)で示されるジシクロペ
ンタジエン変性フェノール樹脂硬化剤を総フェノール樹
脂硬化剤中に10〜80重量%含むフェノール樹脂硬化
剤、(C)硬化促進剤、(D)溶融シリカ粉末からなる
ことを特徴とする半導体封止用エポキシ樹脂組成物であ
り、更に好ましくは、成形硬化時の硬化収縮率が0.1
5%以下、硬化後の線膨張係数α1 が8〜16ppm/
℃で、かつガラス転移温度が140℃以上であることを
特徴とした半導体封止用エポキシ樹脂組成物、及びこの
半導体封止用エポキシ樹脂組成物によって封止された半
導体装置である。That is, the present invention provides (A) a compound represented by the general formula (1):
An epoxy resin containing at least one epoxy resin selected from the group consisting of the epoxy resins represented by (2) in the total epoxy resin in an amount of 20% by weight or more; (B) a general formula (3)
In the total phenolic resin
A phenol resin curing agent containing 10 to 80% by weight of a dicyclopentadiene-modified phenol resin curing agent represented by the general formula (4) in the total phenol resin curing agent, (C) a curing accelerator, A) an epoxy resin composition for semiconductor encapsulation, comprising a fused silica powder, more preferably a curing shrinkage of 0.1 during molding and curing.
5%, linear expansion coefficient alpha 1 after curing 8~16Ppm /
An epoxy resin composition for encapsulating a semiconductor, wherein the epoxy resin composition has a glass transition temperature of 140 ° C. or higher, and a semiconductor device encapsulated with the epoxy resin composition for encapsulating a semiconductor.
【0010】[0010]
【化5】 Embedded image
【0011】[0011]
【化6】 Embedded image
【0012】[0012]
【化7】 Embedded image
【0013】[0013]
【化8】 式(1)〜(3)中のRはハロゲン原子又は炭素数1〜
12のアルキル基を示し、互いに同一であっても、異な
っていてもよい。lは1〜10、mは0もしくは1〜3
の正の整数、nは0もしくは1〜4の正の整数である。
式(4)のkは0〜6の正の整数である。Embedded image R in the formulas (1) to (3) is a halogen atom or a
Represents 12 alkyl groups, which may be the same or different from each other. l is 1 to 10, m is 0 or 1 to 3
Is a positive integer of 0 or n is a positive integer of 1 to 4.
K in the formula (4) is a positive integer of 0 to 6.
【0014】[0014]
【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に用いられる(A)成分のエポキシ樹脂のうち一
般式(1)で表されるエポキシ樹脂は通常トリフェノー
ルメタン型エポキシ樹脂と総称される樹脂で、具体例と
しては以下のものが挙げられるが、これらに限定される
ものではない。いずれも、これを用いた樹脂組成物の硬
化物は架橋密度が高く、高いガラス転移温度となり、ま
た硬化収縮率が小さい特徴を有する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The epoxy resin represented by the general formula (1) among the epoxy resins of the component (A) used in the present invention is a resin generally referred to as a triphenolmethane type epoxy resin, and specific examples thereof include the following. However, the present invention is not limited to these. In any case, a cured product of the resin composition using the same has characteristics of a high crosslinking density, a high glass transition temperature, and a small cure shrinkage.
【0015】[0015]
【化9】 Embedded image
【0016】一般式(2)で表されるエポキシ樹脂は式
(1)と同様、硬化物の高架橋密度構造と低硬化収縮性
を有するが、更に比較的低粘度であるという特徴も有し
ている。具体例としては以下のものが挙げられるが、こ
れらに限定されるものではない。The epoxy resin represented by the general formula (2) has a high crosslink density structure and a low curing shrinkage property of the cured product as in the case of the formula (1), but also has a feature that it has a relatively low viscosity. I have. Specific examples include the following, but are not limited thereto.
【化10】 Embedded image
【0017】一般式(1)、(2)で示される多官能型
エポキシ樹脂は総エポキシ樹脂中の20重量%以上含ま
れることがガラス転移温度及び硬化収縮の点から必要で
ある。20重量%未満では得られる架橋構造の架橋密度
が低下するためガラス転移温度が低下するとともに、硬
化収縮も増大する。本発明のエポキシ樹脂は更に他のエ
ポキシ樹脂と併用しても差し支えない。併用可能なエポ
キシ樹脂としては、エポキシ基を有するモノマー、オリ
ゴマー、ポリマー全般を指し、例えば、ビスフェノール
A型エポキシ樹脂、オルソクレゾールノボラック型エポ
キシ樹脂、ナフタレン型エポキシ樹脂等が挙げられる。
又、これらのエポキシ樹脂は、単独もしくは混合して用
いても差し支えない。The polyfunctional epoxy resin represented by the general formulas (1) and (2) needs to be contained in an amount of at least 20% by weight of the total epoxy resin from the viewpoint of glass transition temperature and curing shrinkage. When the content is less than 20% by weight, the crosslinking density of the obtained crosslinked structure decreases, so that the glass transition temperature decreases and the curing shrinkage increases. The epoxy resin of the present invention may be used in combination with another epoxy resin. The epoxy resin that can be used in combination refers to all monomers, oligomers, and polymers having an epoxy group, and includes, for example, bisphenol A type epoxy resin, orthocresol novolak type epoxy resin, and naphthalene type epoxy resin.
These epoxy resins may be used alone or as a mixture.
【0018】本発明で用いられる(B)成分のフェノー
ル樹脂硬化剤の内、式(3)で示されるフェノール樹脂
硬化剤はいわゆるトリフェノールメタン型フェノール樹
脂と呼ばれるもので、具体例を以下に示す。Among the phenolic resin curing agents of the component (B) used in the present invention, the phenolic resin curing agent represented by the formula (3) is a so-called triphenolmethane-type phenolic resin, and specific examples are shown below. .
【化11】 Embedded image
【0019】これらのフェノール樹脂を使用すると硬化
物の架橋密度が高くなり、高いガラス転移温度の硬化物
が得られる。式(3)のフェノール樹脂の使用量として
は、ガラス転移温度の点から総フェノール樹脂中の20
〜90重量%配合することが必要である。20重量%未
満ではガラス転移温度が低下し、また硬化収縮率も大き
くなり、成形後のパッケージの反り量が大きくなる。ま
た、90重量%を越えると成形時の流動性が低下し、金
線変形を起こし易く、また基板との密着性が低下する。
式(3)のフェノール樹脂は他のフェノール樹脂と適宜
併用可能であり、特に限定されるものではないが、フェ
ノールノボラック樹脂、クレゾールノボラック樹脂、ナ
フトールノボラック樹脂等が挙げられる。When these phenolic resins are used, the crosslink density of the cured product is increased, and a cured product having a high glass transition temperature can be obtained. The use amount of the phenol resin of the formula (3) is 20% in the total phenol resin in terms of the glass transition temperature.
9090% by weight is required. If it is less than 20% by weight, the glass transition temperature decreases, the curing shrinkage increases, and the amount of warpage of the molded package increases. On the other hand, if it exceeds 90% by weight, the fluidity at the time of molding is reduced, so that the gold wire is easily deformed, and the adhesion to the substrate is reduced.
The phenolic resin of the formula (3) can be appropriately used in combination with other phenolic resins, and is not particularly limited, and examples thereof include a phenol novolak resin, a cresol novolak resin, and a naphthol novolak resin.
【0020】一般式(4)で示されるフェノール樹脂硬
化剤は、ジシクロペンタジエンとフェノール類とを付加
反応により重合させることによって得られる。ジシクロ
ペンタジエン変性フェノール樹脂は、従来のフェノール
ノボラック樹脂に比べ、半田処理温度での熱時弾性率が
低減できるため発生応力が減少し、回路基板やICチッ
プとの密着性に優れる。また分子中にジシクロ骨格を有
する為、耐吸湿性に優れる。このフェノール樹脂硬化剤
の使用量は、これを調節することにより耐半田クラック
性を最大限に引き出すことができる。耐半田クラック性
の効果を引き出すためには式(4)で示されるフェノー
ル樹脂硬化剤を総フェノール樹脂硬化剤中に10〜80
重量%、好ましくは30〜80重量%使用することが望
ましい。10重量%未満だと高温時の低弾性率化及び回
路基板やICチップとの高密着性が得難く、80重量%
を越えると成形されたパッケージの反りが大きくなり好
ましくない。式(3)、式(4)のフェノール樹脂は他
のフェノール樹脂と適宜併用可能であり、特に限定され
るものではないが、フェノールノボラック樹脂、クレゾ
ールノボラック樹脂、ナフトールノボラック樹脂等が挙
げられる。The phenolic resin curing agent represented by the general formula (4) is obtained by polymerizing dicyclopentadiene and phenols by an addition reaction. The dicyclopentadiene-modified phenolic resin can reduce the generated stress as compared with the conventional phenol novolak resin because the elastic modulus at the time of the soldering process can be reduced at the heat treatment temperature, and is excellent in the adhesion to the circuit board and the IC chip. Further, since it has a dicyclo skeleton in the molecule, it has excellent moisture absorption resistance. By adjusting the amount of the phenol resin curing agent used, solder crack resistance can be maximized. In order to bring out the effect of the solder crack resistance, the phenol resin curing agent represented by the formula (4) is added in an amount of 10 to 80 in the total phenol resin curing agent.
%, Preferably 30 to 80% by weight. If it is less than 10% by weight, it is difficult to obtain a low elastic modulus at high temperature and high adhesion to a circuit board or an IC chip.
Exceeding the range undesirably increases the warpage of the molded package. The phenolic resins of the formulas (3) and (4) can be appropriately used in combination with other phenolic resins, and are not particularly limited. Examples thereof include a phenol novolak resin, a cresol novolak resin, and a naphthol novolak resin.
【0021】本発明で用いられる(C)成分の硬化促進
剤としては、前記エポキシ樹脂とフェノール樹脂硬化剤
との架橋反応の触媒となり得るものを指し、具体的には
トリブチルアミン等のアミン系化合物、トリフェニルホ
スフィン、テトラフェニルホスフォニウム・テトラフェ
ニルボレート塩等の有機リン系化合物、2−メチルイミ
ダゾール等のイミダゾール化合物等が例示できるがこれ
らに限定されるものではない。これらの硬化促進剤は単
独であっても混合して用いても差し支えない。The curing accelerator of the component (C) used in the present invention refers to those which can be a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin curing agent, and specifically, amine compounds such as tributylamine. And organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture.
【0022】本発明で用いられる(D)成分の溶融シリ
カ粉末は、破砕状、球状のいずれでも使用可能である
が、溶融シリカ粉末の配合量を高め、かつ樹脂組成物の
溶融粘度の上昇を抑えるためには、球状シリカを主に用
いる方が好ましい。更に球状シリカの配合量を高めるた
めには、球状シリカの粒度分布をより広くとるように調
整することが望ましい。The fused silica powder of the component (D) used in the present invention can be used in any of a crushed form and a spherical form. However, the amount of the fused silica powder is increased and the melt viscosity of the resin composition is increased. In order to suppress this, it is preferable to mainly use spherical silica. In order to further increase the blending amount of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider.
【0023】本発明の樹脂組成物は、(A)〜(D)ま
での必須成分以外にも必要に応じて臭素化エポキシ樹
脂、三酸化アンチモン等の難燃剤、カップリング剤、カ
ーボンブラックに代表される着色剤、天然ワックス及び
合成ワックス等の離型剤等が適宜配合可能である。樹脂
組成物とするには各成分を混合後、加熱ニーダや熱ロー
ルにより加熱混練し、続いて冷却、粉砕することで目的
とする樹脂組成物が得られる。本発明の半導体装置は、
上述の半導体封止用エポキシ樹脂組成物を用い、トラン
スファー成形、圧縮成形、射出成形等により、半導体素
子を封止することにより得られる。The resin composition of the present invention is represented by a brominated epoxy resin, a flame retardant such as antimony trioxide, a coupling agent, and carbon black, if necessary, in addition to the essential components (A) to (D). Coloring agents, release agents such as natural waxes and synthetic waxes, etc., can be appropriately compounded. In order to obtain a resin composition, the components are mixed, heated and kneaded with a heating kneader or a hot roll, and then cooled and pulverized to obtain a desired resin composition. The semiconductor device of the present invention
It is obtained by encapsulating a semiconductor element by transfer molding, compression molding, injection molding or the like using the above-described epoxy resin composition for semiconductor encapsulation.
【0024】本発明の半導体装置は有機基板としてBT
樹脂基板を用いる場合は、エポキシ樹脂組成物の硬化後
の線膨張係数(α1)が8〜16ppm/℃、熱機械分析
装置(TMA)で測定されるガラス転移温度が140℃
以上、かつ硬化収縮率が0.15%以下であることが特
に好ましい。BT樹脂基板の線膨張係数は14ppm/
℃程度であるが、これにシリコンチップ、銅箔回路など
の金属とが組合される複合基板では、チップの面積比
率、銅箔回路の面積比率により線膨張係数が変化する。
この基板の線膨張係数と合わせて樹脂組成物の硬化物の
線膨張係数と硬化収縮率を上記範囲とすることで、BT
樹脂基板の成形温度から室温までの熱収縮量に合わせて
樹脂組成物の硬化物の熱収縮量がほぼ同じとなり、成形
後の反りを小さくできる。なお、ここでいう硬化収縮率
とは、成形温度における金型の寸法と成形温度での成形
品寸法との比率を指す。The semiconductor device of the present invention uses BT as an organic substrate.
When a resin substrate is used, the coefficient of linear expansion (α 1 ) of the epoxy resin composition after curing is 8 to 16 ppm / ° C., and the glass transition temperature measured by a thermomechanical analyzer (TMA) is 140 ° C.
It is particularly preferable that the curing shrinkage is 0.15% or less. The linear expansion coefficient of the BT resin substrate is 14 ppm /
However, in a composite substrate in which a metal such as a silicon chip or a copper foil circuit is combined with this, the linear expansion coefficient changes depending on the area ratio of the chip and the area ratio of the copper foil circuit.
By setting the linear expansion coefficient and the curing shrinkage ratio of the cured product of the resin composition in the above ranges together with the linear expansion coefficient of the substrate, BT
The amount of heat shrinkage of the cured product of the resin composition becomes almost the same in accordance with the amount of heat shrinkage from the molding temperature of the resin substrate to room temperature, and the warpage after molding can be reduced. Here, the curing shrinkage ratio refers to the ratio between the size of the mold at the molding temperature and the size of the molded product at the molding temperature.
【0025】本発明でのガラス転移温度、線膨張係数、
硬化収縮率は以下の方法で測定する。 ・ガラス転移温度(Tg)及び線膨張係数(α1):樹脂
組成物を175℃、2分間トランスファー成形したテス
トピースを更に175℃で8時間、後硬化し、熱機械分
析装置[セイコー電子(株)製TMA−120、昇温速度
5℃/分]で測定した。 ・硬化収縮率:テストピースを180℃の金型温度、7
5kg/cm2 の射出圧力で2分間トランスファー成形
し、更に175℃で8時間、後硬化した。180℃に加
熱された状態の金型のキャビティ寸法と180℃に加熱
された成形品の寸法をノギスにより測定し、成形品寸法
/金型キャビティ寸法の比率で硬化収縮率を表した。In the present invention, the glass transition temperature, the coefficient of linear expansion,
The cure shrinkage is measured by the following method. Glass transition temperature (Tg) and coefficient of linear expansion (α 1 ): A test piece obtained by transfer-molding the resin composition at 175 ° C. for 2 minutes is post-cured at 175 ° C. for 8 hours, and a thermomechanical analyzer [Seiko Electronics ( Co., Ltd., TMA-120, heating rate 5 ° C./min]. Curing shrinkage: 180 ° C mold temperature of test piece, 7
Transfer molding was performed at an injection pressure of 5 kg / cm 2 for 2 minutes, and post-curing was further performed at 175 ° C. for 8 hours. The cavity dimensions of the mold heated to 180 ° C. and the dimensions of the molded article heated to 180 ° C. were measured with calipers, and the curing shrinkage was represented by the ratio of molded article dimension / mold cavity dimension.
【0026】[0026]
【実施例】以下、本発明を実施例で具体的に説明する。 《実施例1》 ・式(5)で示されるエポキシ樹脂: [軟化点60℃、エポキシ当量170] 8.3重量部 ・式(6)で示されるフェノール樹脂: [軟化点107℃、水酸基当量97] 3.4重量部 ・式(7)で示されるジシクロペンタジエン変性フェノール樹脂硬化剤: [軟化点106℃、水酸基当量181] 2.3重量部 ・トリフェニルホスフィン 0.2重量部 ・球状溶融シリカ 85.0重量部 ・カルナバワックス 0.5重量部 ・カーボンブラック 0.3重量部 上記の全成分をミキサーにより混合した後、表面温度が
90℃と45℃の2本ロールを用いて30回混練し、得
られた混練物シートを冷却後粉砕して、樹脂組成物とし
た。得られた樹脂組成物の特性を以下の方法で評価をし
た。評価結果を表1に示す。The present invention will be specifically described below with reference to examples. << Example 1 >> Epoxy resin represented by formula (5): [softening point 60 ° C., epoxy equivalent 170] 8.3 parts by weight ・ Phenolic resin represented by formula (6): [softening point 107 ° C., hydroxyl equivalent] 97] 3.4 parts by weight ・ Dicyclopentadiene-modified phenol resin curing agent represented by the formula (7): [softening point 106 ° C., hydroxyl equivalent 181] 2.3 parts by weight ・ Triphenylphosphine 0.2 parts by weight ・ Spherical 85.0 parts by weight of fused silica ・ 0.5 parts by weight of carnauba wax ・ 0.3 parts by weight of carbon black After mixing all the above components with a mixer, the surface temperature is adjusted to 30 ° C. using two rolls of 90 ° C. and 45 ° C. The resulting kneaded material sheet was cooled and pulverized to obtain a resin composition. The properties of the obtained resin composition were evaluated by the following methods. Table 1 shows the evaluation results.
【0027】実施例1で使用した式(5)〜(7)の構
造を以下に示す。The structures of formulas (5) to (7) used in Example 1 are shown below.
【化12】 Embedded image
【化13】 Embedded image
【化14】 Embedded image
【0028】《実施例2〜6》実施例1を基本配合と
し、式(5)、式(8)及び式(9)のエポキシ樹脂と
式(6)、式(7)及び式(10)のフェノール樹脂硬
化剤の配合比率を変えて、その他は基本配合と同じ割合
で各成分を配合し、実施例1と同様に混合、混練して樹
脂組成物を得た。実施例1と同様に評価を行った。配合
処方及び評価結果を表1に示す。 《比較例1〜5》実施例1を基本配合とし、実施例と同
様にエポキシ樹脂およびフェノール樹脂硬化剤の配合比
率を変えて、その他は基本配合と同じ割合で各成分を配
合し、実施例1と同様に混合、混練して樹脂組成物を得
た。実施例1と同様に評価を行った。配合処方及び評価
結果を表2に示す。<< Examples 2 to 6 >> Based on Example 1 as a basic formulation, the epoxy resins of the formulas (5), (8) and (9) and the formulas (6), (7) and (10) were used. The components were blended in the same proportions as in the basic blend except for the blending ratio of the phenolic resin curing agent, and mixed and kneaded in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Table 1 shows the formulation and evaluation results. << Comparative Examples 1 to 5 >> Example 1 was used as a basic compound, and the components were mixed at the same ratio as the basic compound except that the mixing ratio of the epoxy resin and the phenol resin curing agent was changed in the same manner as in the example. The mixture was mixed and kneaded in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Table 2 shows the formulation and evaluation results.
【0029】なお、上記実施例及び比較例で使用した式
(8)、(9)のエポキシ樹脂及び式(10)のフェノ
ール樹脂の構造及び性状を以下に示す。 ・式(8)のエポキシ樹脂:軟化点65℃、エポキシ当
量210 ・式(9)の構造を主成分とするエポキシ樹脂:融点1
05℃、エポキシ当量195 ・式(10)のフェノール樹脂:軟化点80℃、水酸基
当量104The structures and properties of the epoxy resins of formulas (8) and (9) and the phenol resin of formula (10) used in the above Examples and Comparative Examples are shown below.・ Epoxy resin of formula (8): softening point 65 ° C., epoxy equivalent 210 ・ Epoxy resin having a structure of formula (9) as a main component: melting point 1
05 ° C, epoxy equivalent 195 ・ Phenolic resin of formula (10): softening point 80 ° C, hydroxyl equivalent 104
【化15】 Embedded image
【化16】 Embedded image
【化17】 Embedded image
【0030】《評価方法》 ・ガラス転移温度(Tg)及び線膨張係数(α1):前
記した方法による。 ・熱時弾性率:240℃での曲げ弾性率をJIS−K6
911の試験条件により測定した。 ・硬化収縮率:前記した方法による。 ・パッケージ反り量:225ピンBGAパッケージ(基
板厚みは0.36mm、コア材にBT樹脂を使用、パッ
ケ ージサイズは24×24mm、厚み1.17mm、
シリコンチップはサイズ9×9mm、厚み0.35m
m、チップと回路基板のボンディングパッドとを25μ
m径の金線でボンディングしている)を180℃の金型
温度、75kg/cm2 の射出圧力で2分間トランスフ
ァー成形を行い、更に175℃で8時間、後硬化した。
室温に冷却後パッケージのゲートから対角線方向に、表
面粗さ計を用いて高さ方向の変位を測定し、変異差の最
も大きい値を反り量とした。 ・耐半田性:パッケージ反り量測定に用いた成形品パッ
ケージを85℃、相対湿度60%の環境下で168時間
放置し、その後240℃の半田槽に10秒間浸漬した。
超音波探傷機を用いてパッケージを観察し、内部クラッ
ク数及び基板/樹脂組成物界面の剥離数を(発生パッケ
ージ数)/(全パッケージ数)の%表示で表した。<< Evaluation Method >> Glass transition temperature (Tg) and coefficient of linear expansion (α1): Based on the above-mentioned methods.・ Heat elastic modulus: Flexural elastic modulus at 240 ° C is JIS-K6
It was measured under the test conditions of 911. Curing shrinkage: According to the method described above.・ Package warpage: 225-pin BGA package (substrate thickness 0.36 mm, BT resin used for core material, package size 24 × 24 mm, thickness 1.17 mm,
Silicon chip is 9 × 9mm in size and 0.35m in thickness
m, 25 μm between the chip and the bonding pad of the circuit board
transfer molding was performed at a mold temperature of 180 ° C. and an injection pressure of 75 kg / cm 2 for 2 minutes, and further post-cured at 175 ° C. for 8 hours.
After cooling to room temperature, the displacement in the height direction was measured diagonally from the gate of the package using a surface roughness meter, and the value with the largest variation difference was defined as the amount of warpage. Solder Resistance: The molded product package used for measuring the package warpage was left for 168 hours in an environment of 85 ° C. and 60% relative humidity, and then immersed in a 240 ° C. solder bath for 10 seconds.
The package was observed using an ultrasonic flaw detector, and the number of internal cracks and the number of peels at the interface between the substrate and the resin composition were represented by% of (number of generated packages) / (total number of packages).
【0031】 表 1 実 施 例 1 2 3 4 5 6 《エポキシ樹脂の種類 と配合量(重量部)》 式(5)のエポキシ樹脂 8.3 4.5 4.1 2.1 2.3 式(8)のエポキシ樹脂 8.6 式(9)のエポキシ樹脂 4.5 4.1 6.2 6.7 《硬化剤の種類と 配合量(重量部)》 式(6)のフェノール樹脂 3.4 4.2 1.5 2.2 1.4 4.2 式(7)のフェノール樹脂 2.3 0.8 2.8 3.2 2.9 0.8 式(10)のフェノール樹脂 1.5 1.4 《評価》 Tg(℃) 191 193 183 190 185 181 α1(ppm/℃) 13 13 13 13 13 13 熱時弾性率(N/mm2) 2960 3130 2800 3030 2560 2720 硬化収縮率(%) 0.05 0.07 0.07 0.07 0.09 0.08 パッケージ反り量(μm) 28 30 36 37 41 38 耐半田性:クラック数(%) 0 0 0 0 0 0 剥離数(%) 0 0 0 0 0 0 Table 1 Example 1 2 3 4 5 6 << Type and amount of epoxy resin (parts by weight) >> Epoxy resin of formula (5) 8.3 4.5 4.1 2.1 2.3 Epoxy resin of formula (8) 8.6 Epoxy resin of formula (9) 4.5 4.1 6.2 6.7 << Type and amount (parts by weight) of curing agent >> Phenolic resin of formula (6) 3.4 4.2 1.5 2.2 1.4 4.2 Phenolic resin of formula (7) 2.3 0.8 2.8 3.2 2.9 0.8 Phenolic resin of formula (10) 1.5 1.4 "evaluation" Tg (℃) 191 193 183 190 185 181 α 1 (ppm / ℃) 13 13 13 13 13 13 thermal time elastic modulus (N / mm 2) 2960 3130 2800 3030 2560 2720 cure shrinkage (%) 0.05 0.07 0.07 0.07 0.09 0.08 Package warpage (μm) 28 30 36 37 41 38 Solder resistance: number of cracks (%) 0 0 0 0 0 0 Number of peels (%) 0 0 0 0 0 0
【0032】 表 2 比 較 例 1 2 3 4 5 《エポキシ樹脂の種類 と配合量(重量部)》 式(5)のエポキシ樹脂 8.9 7.8 式(8)のエポキシ樹脂 9.6 式(9)のエポキシ樹脂 4.9 9.2 8.4 《硬化剤の種類と 配合量(重量部)》 式(6)のフェノール樹脂 5.1 4.4 4.3 1.1 式(7)のフェノール樹脂 3.1 0.5 2.8 式(10)のフェノール樹脂 3.1 1.7 《評価》 Tg(℃) 198 195 145 171 162 α1(ppm/℃) 13 13 13 13 13 熱時弾性率(N/mm2) 3450 3300 1860 3050 2110 硬化収縮率(%) 0.05 0.06 0.25 0.15 0.18 パッケージ反り量(μm) 30 35 107 78 91 耐半田性:クラック数(%) 90 80 70 30 0 剥離数(%) 50 60 40 10 0 Table 2 Comparative Example 1 2 3 4 5 << Type and amount of epoxy resin (parts by weight) >> Epoxy resin of formula (5) 8.9 7.8 Epoxy resin of formula (8) 9.6 Epoxy resin of formula (9) 4.9 9.2 8.4 << Curing Kind of agent and blending amount (parts by weight) >> Phenolic resin of formula (6) 5.1 4.4 4.3 1.1 Phenolic resin of formula (7) 3.1 0.5 2.8 Phenolic resin of formula (10) 3.1 1.7 << Evaluation >> Tg (° C) 198 195 145 171 162 α 1 (ppm / ° C) 13 13 13 13 13 Thermal elasticity (N / mm 2 ) 3450 3300 1860 3050 2110 Curing shrinkage (%) 0.05 0.06 0.25 0.15 0.18 Package warpage (μm) 30 35 107 78 91 Solder resistance: number of cracks (%) 90 80 70 30 0 Number of peelings (%) 50 60 40 100
【0033】[0033]
【発明の効果】本発明の半導体封止用エポキシ樹脂組成
物は金線変形など成形性においても優れおり、該半導体
封止用エポキシ樹脂組成物により封止されたエリア実装
型半導体装置は、室温及び半田付け工程での反りが小さ
く、耐半田性や耐温度サイクル性などの信頼性が高いも
のである。The epoxy resin composition for semiconductor encapsulation of the present invention is also excellent in moldability such as gold wire deformation, and the area mounting type semiconductor device sealed with the epoxy resin composition for semiconductor encapsulation can be used at room temperature. Also, the warpage in the soldering process is small, and the reliability such as solder resistance and temperature cycle resistance is high.
【手続補正書】[Procedure amendment]
【提出日】平成10年12月8日(1998.12.
8)[Submission date] December 8, 1998 (1998.12.
8)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項1[Correction target item name] Claim 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【化1】 Embedded image
【化2】 Embedded image
【化3】 Embedded image
【化4】 式(1)〜(3)中のRはハロゲン原子又は炭素数1〜
12のアルキル基を示し、互いに同一であっても、異な
っていてもよい。lは1〜10、mは0もしくは1〜3
の正の整数、nは0もしくは1〜4の正の整数である。
式(4)のkは1〜6の正の整数である。Embedded image R in the formulas (1) to (3) is a halogen atom or a
Represents 12 alkyl groups, which may be the same or different from each other. l is 1 to 10, m is 0 or 1 to 3
Is a positive integer of 0 or n is a positive integer of 1 to 4.
K in the formula (4) is a positive integer of 1 to 6.
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0013[Correction target item name] 0013
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0013】[0013]
【化8】 式(1)〜(3)中のRはハロゲン原子又は炭素数1〜
12のアルキル基を示し、互いに同一であっても、異な
っていてもよい。lは1〜10、mは0もしくは1〜3
の正の整数、nは0もしくは1〜4の正の整数である。
式(4)のkは1〜6の正の整数である。Embedded image R in the formulas (1) to (3) is a halogen atom or a
Represents 12 alkyl groups, which may be the same or different from each other. l is 1 to 10, m is 0 or 1 to 3
Is a positive integer of 0 or n is a positive integer of 1 to 4.
K in the formula (4) is a positive integer of 1 to 6.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08G 59/32 H01L 23/30 R 59/62 Fターム(参考) 4J002 CC06X CD03W CD05W CD06W CD07W CE00Y DJ017 EN026 EU116 EW016 EW176 FD017 FD090 FD130 FD14X FD14Y FD156 GJ02 GQ00 4J036 AC02 AE07 AF36 DA04 DA05 DC05 DC41 DD07 FA05 FB06 FB08 GA04 JA07 4M109 AA01 BA01 CA21 EA02 EB03 EB04 EB06 EB07 EB08 EB09 EB13 EC01 EC03 EC04 EC05Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) // C08G 59/32 H01L 23/30 R 59/62 F term (reference) 4J002 CC06X CD03W CD05W CD06W CD07W CE00Y DJ017 EN026 EU116 EW016 EW176 FD017 FD090 FD130 FD14X FD14Y FD156 GJ02 GQ00 4J036 AC02 AE07 AF36 DA04 DA05 DC05 DC41 DD07 FA05 FB06 FB08 GA04 JA07 4M109 AA01 BA01 CA21 EA02 EB03 EB04 EB06 EB07 EB08 EC03 EC01 EC01
Claims (3)
エポキシ樹脂からなる群から選択される少なくとも一つ
のエポキシ樹脂を総エポキシ樹脂中に20重量%以上含
むエポキシ樹脂、(B)一般式(3)で示されるフェノ
ール樹脂を総フェノール樹脂中に20〜90重量%含
み,一般式(4)で示されるジシクロペンタジエン変性
フェノール樹脂硬化剤を総フェノール樹脂硬化剤中に1
0〜80重量%含むフェノール樹脂硬化剤、(C)硬化
促進剤、(D)溶融シリカ粉末からなることを特徴とす
る半導体封止用エポキシ樹脂組成物。 【化1】 【化2】 【化3】 【化4】 式(1)〜(3)中のRはハロゲン原子又は炭素数1〜
12のアルキル基を示し、互いに同一であっても、異な
っていてもよい。lは1〜10、mは0もしくは1〜3
の正の整数、nは0もしくは1〜4の正の整数である。
式(4)のkは0〜6の正の整数である。(A) an epoxy resin containing at least one epoxy resin selected from the group consisting of the epoxy resins represented by the general formulas (1) and (2) in a total epoxy resin content of 20% by weight or more; ) The phenol resin represented by the general formula (3) is contained in the total phenol resin in an amount of 20 to 90% by weight, and the dicyclopentadiene-modified phenol resin curing agent represented by the general formula (4) is contained in the total phenol resin curing agent by 1%.
An epoxy resin composition for semiconductor encapsulation, comprising a phenol resin curing agent containing 0 to 80% by weight, (C) a curing accelerator, and (D) a fused silica powder. Embedded image Embedded image Embedded image Embedded image R in the formulas (1) to (3) is a halogen atom or a
Represents 12 alkyl groups, which may be the same or different from each other. l is 1 to 10, m is 0 or 1 to 3
Is a positive integer of 0 or n is a positive integer of 1 to 4.
K in the formula (4) is a positive integer of 0 to 6.
下、硬化後の線膨張係数α1 が8〜16ppm/℃であ
り、かつガラス転移温度が140℃以上である請求項1
に記載の半導体封止用エポキシ樹脂組成物。Wherein% cure shrinkage during molding curing 0.15, the linear expansion coefficient alpha 1 after curing is 8~16ppm / ℃, and claim 1 having a glass transition temperature of 140 ° C. or higher
The epoxy resin composition for semiconductor encapsulation according to the above.
の半導体素子が搭載された基板面側の実質的に片面のみ
が請求項1又は2記載のエポキシ樹脂組成物によって封
止されていることを特徴とする半導体装置。3. A semiconductor element is mounted on one side of a substrate, and substantially only one side on the side of the substrate on which the semiconductor element is mounted is sealed with the epoxy resin composition according to claim 1 or 2. A semiconductor device characterized by the above-mentioned.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10345275A JP2000169677A (en) | 1998-12-04 | 1998-12-04 | Epoxy resin composition and semiconductor apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10345275A JP2000169677A (en) | 1998-12-04 | 1998-12-04 | Epoxy resin composition and semiconductor apparatus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2000169677A true JP2000169677A (en) | 2000-06-20 |
Family
ID=18375498
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10345275A Pending JP2000169677A (en) | 1998-12-04 | 1998-12-04 | Epoxy resin composition and semiconductor apparatus |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2000169677A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001146511A (en) * | 1999-09-06 | 2001-05-29 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
| JP2001192532A (en) * | 2000-01-11 | 2001-07-17 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
| JP2002053643A (en) * | 2000-08-10 | 2002-02-19 | Sumikin Chemical Co Ltd | Curing agent for epoxy resin and composition for encapsulating semiconductor using the same |
| JP2002097252A (en) * | 2000-09-26 | 2002-04-02 | Matsushita Electric Works Ltd | Resin composition for optical semiconductor device and optical semiconductor device |
| CN102408679A (en) * | 2011-08-29 | 2012-04-11 | 天威新能源控股有限公司 | Epoxy resin composite material |
-
1998
- 1998-12-04 JP JP10345275A patent/JP2000169677A/en active Pending
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001146511A (en) * | 1999-09-06 | 2001-05-29 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
| JP2001192532A (en) * | 2000-01-11 | 2001-07-17 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
| JP2002053643A (en) * | 2000-08-10 | 2002-02-19 | Sumikin Chemical Co Ltd | Curing agent for epoxy resin and composition for encapsulating semiconductor using the same |
| JP2002097252A (en) * | 2000-09-26 | 2002-04-02 | Matsushita Electric Works Ltd | Resin composition for optical semiconductor device and optical semiconductor device |
| CN102408679A (en) * | 2011-08-29 | 2012-04-11 | 天威新能源控股有限公司 | Epoxy resin composite material |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH11147936A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device | |
| KR100663680B1 (en) | Epoxy Resin Compositions and Semiconductor Devices | |
| JP3292452B2 (en) | Epoxy resin composition and semiconductor device | |
| JP3365725B2 (en) | Epoxy resin composition and semiconductor device | |
| JPH11130936A (en) | Epoxy resin composition and semiconductor device | |
| JP2000169677A (en) | Epoxy resin composition and semiconductor apparatus | |
| JP3608930B2 (en) | Epoxy resin composition and semiconductor device | |
| JPH11130937A (en) | Epoxy resin composition and semiconductor device | |
| JPH1160901A (en) | Epoxy resin composition and semiconductor device | |
| JP4770024B2 (en) | Epoxy resin composition and semiconductor device | |
| JP3844098B2 (en) | Epoxy resin composition and semiconductor device | |
| JP3347228B2 (en) | Semiconductor device | |
| JP3390335B2 (en) | Semiconductor device | |
| JP3649554B2 (en) | Epoxy resin composition and semiconductor device | |
| JP4491884B2 (en) | Epoxy resin composition and semiconductor device | |
| JP4370666B2 (en) | Semiconductor device | |
| JPH1192629A (en) | Epoxy resin composition and semiconductor device | |
| JPH1192631A (en) | Epoxy resin composition and semiconductor device | |
| JP2005162826A (en) | Sealing resin composition and resin-sealed semiconductor device | |
| JPH11100491A (en) | Epoxy resin composition and semiconductor device | |
| JP3292456B2 (en) | Epoxy resin composition and semiconductor device | |
| JP2002020460A (en) | Epoxy resin composition and semiconductor device | |
| JPH1192630A (en) | Epoxy resin composition and semiconductor device | |
| JP4470264B2 (en) | Area type mounting semiconductor sealing epoxy resin composition and area type mounting semiconductor device | |
| JP2002121356A (en) | Epoxy resin composition and semiconductor device |