JP2000179541A - Liquid dynamic pressure bearing and spindle motor - Google Patents
Liquid dynamic pressure bearing and spindle motorInfo
- Publication number
- JP2000179541A JP2000179541A JP10357567A JP35756798A JP2000179541A JP 2000179541 A JP2000179541 A JP 2000179541A JP 10357567 A JP10357567 A JP 10357567A JP 35756798 A JP35756798 A JP 35756798A JP 2000179541 A JP2000179541 A JP 2000179541A
- Authority
- JP
- Japan
- Prior art keywords
- dynamic pressure
- shaft member
- cylindrical shaft
- coating layer
- resin coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、円柱状軸部材と円
筒状受け部材とを具備し前記円柱状軸部材の外周面と円
筒状受け部材の内周面の両方又はいずれか一方に樹脂被
覆層が形成された液体動圧軸受、及びこの液体動圧軸受
を備えたスピンドルモータに関する。The present invention relates to a cylindrical shaft member and a cylindrical receiving member. The outer peripheral surface of the cylindrical shaft member and / or the inner peripheral surface of the cylindrical receiving member are coated with a resin. The present invention relates to a liquid dynamic pressure bearing having a layer formed thereon and a spindle motor including the liquid dynamic pressure bearing.
【0002】[0002]
【従来の技術】携帯者が移動中にも使用可能な小型軽量
の携帯型コンピュータや情報端末のハードディスクドラ
イブ(HDD)の駆動源には10mm程度、或いはそれ
以下の薄さの超小型スピンドルモータが採用されてい
る。当然ながら、その軸受である液体動圧軸受は超小型
スピンドルモータの寸法より更に小さいものとなる。軸
受は超小型スピンドルモータの性能を左右する重要な構
成要素であるから、高安定化、小型化、低価格化の要求
は更に厳しいものがある。2. Description of the Related Art An ultra-small spindle motor having a thickness of about 10 mm or less is used as a drive source of a hard disk drive (HDD) of a small and lightweight portable computer or information terminal that can be used while a person is traveling. Has been adopted. Naturally, the liquid dynamic pressure bearing, which is the bearing, is smaller than the size of the micro spindle motor. Bearings are important components that determine the performance of ultra-small spindle motors, and there are even more stringent demands for high stability, small size, and low cost.
【0003】そこで、特開平7−332353号特許公
報に開示されている如き、金属の軸の外周面に樹脂被覆
が形成された軸部材と、この軸部材が回転自在に嵌合す
るスリーブ状受け部材とを主構成要素とする液体動圧軸
受、いわゆる樹脂加工により製造された液体動圧軸受が
提案された。この液体動圧軸受は、軸と共働するスリー
ブを備えた液体動圧軸受であって、軸外面にインサート
成形された合成樹脂には動圧発生用の溝を有する軸受面
が設けられていることを特徴とするものである。このよ
うな構成により、軸受面の摺動性と量産性に優れるとと
もに低コスト、また合成樹脂の成形収縮を利用すること
から収縮が比較的大きい熱可塑性樹脂の使用が可能、か
つ合成樹脂層と金属の軸とが密着するから寸法精度に優
れるとともに寸法の経時変化も少ない、更にラジアル軸
受面とスラスト軸受面の直角度が金型精度で決まり、製
品の品質が安定するという旨の発明の効果が記載されて
いる。Accordingly, as disclosed in Japanese Patent Application Laid-Open No. 7-332353, a shaft member having a resin coating formed on the outer peripheral surface of a metal shaft, and a sleeve-shaped receiving member into which the shaft member is rotatably fitted. There has been proposed a liquid dynamic bearing having a member as a main component, that is, a liquid dynamic bearing manufactured by so-called resin processing. This liquid dynamic pressure bearing is a liquid dynamic pressure bearing provided with a sleeve cooperating with a shaft, and a synthetic resin insert-molded on the outer surface of the shaft is provided with a bearing surface having a groove for generating dynamic pressure. It is characterized by the following. With such a configuration, it is possible to use a thermoplastic resin having a relatively large shrinkage by utilizing the molding shrinkage of the synthetic resin, as well as being excellent in slidability and mass productivity of the bearing surface, and using the synthetic resin layer. The effect of the invention is that the dimensional accuracy is excellent and the dimensional change is small with time because the metal shaft is in close contact, and the squareness between the radial bearing surface and the thrust bearing surface is determined by the mold accuracy, and the product quality is stable. Is described.
【0004】しかしながら、上述の従来の液体動圧軸受
には、被覆材料の問題がある。即ち、金属の軸を被覆す
る樹脂はPPS(ポリフェニレンサルファイド)樹脂や
エポキシ樹脂、ポリアミド樹脂、ポリアセタール樹脂
に、炭素繊維、エコノール、グラファイト、二硫化モリ
ブデン、ポリイミド等の耐摩耗性向上物質を充填された
ものであるが、これらの耐摩耗性向上物質はハードディ
スク等の記憶媒体や読取装置を汚染するPb、Si、S
n、P、S等の元素が含まれていることである。この従
来の液体動圧軸受を長期間使用すると、上述の汚染元素
が被覆樹脂から溶出してくることになる。溶出した汚染
元素がハードディスク等の記憶媒体に付着すると、記憶
媒体自体の品質低下や装置の誤動作をもたらすことにな
る。従って、上記の如き汚染元素を含む耐摩耗性向上物
質を充填した樹脂を金属の軸に被覆した軸部材を有する
液体動圧軸受は、ハードディスク等の記憶媒体又は読取
装置を回転駆動するスピンドルモータには採用できない
という問題がある。However, the above-mentioned conventional liquid dynamic bearing has a problem of a coating material. That is, the resin that coats the metal shaft is a PPS (polyphenylene sulfide) resin, an epoxy resin, a polyamide resin, or a polyacetal resin, which is filled with an abrasion resistance improving substance such as carbon fiber, econol, graphite, molybdenum disulfide, or polyimide. However, these abrasion resistance improving substances contaminate a storage medium such as a hard disk or a reading device and Pb, Si, S
That is, elements such as n, P, and S are included. When this conventional liquid dynamic pressure bearing is used for a long period of time, the above-mentioned contaminant elements elute from the coating resin. If the eluted contaminant element adheres to a storage medium such as a hard disk, the quality of the storage medium itself deteriorates and the device malfunctions. Accordingly, a liquid dynamic bearing having a shaft member in which a metal shaft is coated with a resin filled with a wear resistance improving substance containing a contaminant element as described above is used for a spindle motor that rotates a storage medium such as a hard disk or a reading device. There is a problem that can not be adopted.
【0005】他の問題は、被覆樹脂の厚みに関するもの
である。上述の従来の液体動圧軸受において、軸受面で
あるラジアル受面の合成樹脂層の厚さは、薄すぎると樹
脂の流動が悪く、厚すぎると成形精度が確保しにくくな
るので、0.2〜1mm程度とされているが、10mm
程度又はそれ以下の薄さの小型スピンドルモータに採用
される軸受にとっては、この厚みは回転負荷に耐えられ
るだけの充分なヤング率を実現すること、及び樹脂材料
のコスト節減の妨げとなっている。[0005] Another problem relates to the thickness of the coating resin. In the above-described conventional liquid dynamic pressure bearing, the thickness of the synthetic resin layer on the radial receiving surface, which is the bearing surface, is too small, the flow of the resin is poor, and if the thickness is too large, it is difficult to secure molding accuracy. ~ 1mm, but 10mm
For bearings used in small spindle motors of the order of magnitude or less, this thickness prevents a sufficient Young's modulus to withstand the rotational load and prevents cost savings of the resin material. .
【0006】更に他の問題は、上記のものを含む従来の
液体動圧軸受に共通したものであるが、超小型の液体動
圧軸受では動圧発生溝の寸法が制限されるから、その分
だけ発生する動圧が小さくなるということである。Still another problem is common to the conventional liquid dynamic pressure bearings including the above-mentioned ones. However, in the case of a very small liquid dynamic pressure bearing, the size of the dynamic pressure generating groove is limited. This means that the generated dynamic pressure becomes smaller.
【0007】[0007]
【発明が解決しようとする課題】本発明が解決しようと
する第1の課題は、高負荷能力を有する液体動圧軸受を
提供することである。解決しようとする第2の課題は、
ハードディスク等の記憶媒体や読取装置を汚染すること
のない液体動圧軸受を提供することである。解決しよう
とする第3の課題は、樹脂被覆を有する液体動圧軸受の
コストを低減することである。更に解決しようとする第
4の課題は、樹脂被覆を有する液体動圧軸受を備えた小
型スピンドルモータの品質と動作の安定性を高めること
である。A first object of the present invention is to provide a liquid dynamic bearing having a high load capacity. The second problem to be solved is
An object of the present invention is to provide a liquid dynamic bearing that does not contaminate a storage medium such as a hard disk or a reading device. A third problem to be solved is to reduce the cost of a liquid dynamic bearing having a resin coating. A fourth object to be solved is to improve the quality and operation stability of a small spindle motor having a liquid dynamic pressure bearing having a resin coating.
【0008】[0008]
【課題を解決するための手段】上記第1の課題を解決す
るために、円柱状軸部材とこの円柱状軸部材が回転自在
に嵌合する円筒状受け部材とを有し、前記円柱状軸部材
の外周面または円筒状受け部材の内周面のいずれか一方
に動圧発生溝が形成された液体動圧軸受において、前記
動圧発生溝の少なくとも回転方向側の壁面をテーパ壁面
とした。In order to solve the above-mentioned first problem, there is provided a cylindrical shaft member and a cylindrical receiving member into which the cylindrical shaft member is rotatably fitted. In a liquid dynamic pressure bearing in which a dynamic pressure generating groove is formed on one of the outer peripheral surface of the member and the inner peripheral surface of the cylindrical receiving member, at least a wall surface on the rotation direction side of the dynamic pressure generating groove is a tapered wall surface.
【0009】また、円柱状軸部材とこの円柱状軸部材が
回転自在に嵌合する円筒状受け部材とを有し、前記円柱
状軸部材の外周面または円筒状受け部材の内周面のいず
れか一方に動圧発生溝が形成された液体動圧軸受におい
て、前記動圧発生溝の回転方向側の壁面と反対側の壁面
を共にテーパ壁面とし、且つ後者のテーパ角を前者のテ
ーパ角よりも小さくした。[0009] Further, there is provided a cylindrical shaft member and a cylindrical receiving member into which the cylindrical shaft member is rotatably fitted. Either the outer peripheral surface of the cylindrical shaft member or the inner peripheral surface of the cylindrical receiving member. In the liquid dynamic pressure bearing in which the dynamic pressure generating groove is formed on one side, both the wall surface on the rotation direction side and the opposite wall surface of the dynamic pressure generating groove are tapered wall surfaces, and the latter taper angle is larger than the former taper angle. Was also smaller.
【0010】更に、前記テーパ角は軸受面に立てた垂線
を基準にして約20ないし約70度とした。Further, the taper angle is set to about 20 to about 70 degrees with respect to a perpendicular line formed on the bearing surface.
【0011】上記第2の課題を解決するために、円柱状
軸部材とこの円柱状軸部材が回転自在に嵌合する円筒状
受け部材とを有する液体動圧軸受において、前記円柱状
軸部材の金属心材に施された樹脂被覆層とこの樹脂被覆
層に設けられた動圧発生溝を液晶高分子材料の成形加工
により一体に形成した。In order to solve the above second problem, a liquid dynamic pressure bearing having a cylindrical shaft member and a cylindrical receiving member into which the cylindrical shaft member is rotatably fitted is provided. The resin coating layer provided on the metal core material and the dynamic pressure generating grooves provided on the resin coating layer were integrally formed by molding a liquid crystal polymer material.
【0012】また、円柱状軸部材とこの円柱状軸部材が
回転自在に嵌合する円筒状受け部材とを有する液体動圧
軸受において、前記円筒状受け部材の金属心材に施され
た樹脂被覆層とこの樹脂被覆層に設けられた動圧発生溝
を液晶高分子材料の成形加工により一体に形成した。Further, in a liquid dynamic pressure bearing having a cylindrical shaft member and a cylindrical receiving member into which the cylindrical shaft member is rotatably fitted, a resin coating layer applied to a metal core of the cylindrical receiving member is provided. And the dynamic pressure generating groove provided in the resin coating layer were integrally formed by molding a liquid crystal polymer material.
【0013】更に、前記液晶高分子材料を、ポリヒドロ
キシ安息香酸とビスフェノールとテレフタル酸との重合
物を出発原料とした重合物、ポリヒドロキシ安息香酸と
6−ヒドロキシナフトエ酸を出発原料とした重合物、或
いはポリエチレンテレフタレートとポリヒドロキシ安息
香酸を出発原料とした重合物の中から選定した。Further, the liquid crystal polymer material may be a polymer starting from a polymer of polyhydroxybenzoic acid, bisphenol and terephthalic acid, or a polymer starting from polyhydroxybenzoic acid and 6-hydroxynaphthoic acid. Alternatively, it was selected from polymers using polyethylene terephthalate and polyhydroxybenzoic acid as starting materials.
【0014】上記第3の課題を解決するために、フラン
ジ付円柱状軸部材と、このフランジ付円柱状軸部材が回
転自在に嵌合する段付円筒状受け部材とを具備する液体
動圧軸受によってロータがステータに軸支されたスピン
ドルモータにおいて、前記フランジ付円柱状軸部材の金
属心材に施された樹脂被覆層とこの樹脂被覆層に設けら
れた動圧発生溝を液晶高分子材料の成形加工により一体
に形成した。In order to solve the third problem, a liquid dynamic pressure bearing comprising a cylindrical shaft member with a flange and a stepped cylindrical receiving member into which the cylindrical shaft member with a flange is rotatably fitted. In the spindle motor in which the rotor is supported by the stator, the resin coating layer formed on the metal core of the cylindrical shaft member with the flange and the dynamic pressure generating groove provided in the resin coating layer are formed by molding a liquid crystal polymer material. It was formed integrally by processing.
【0015】また、前記スピンドルモータにおいて、前
記動圧発生溝の少なくとも回転方向側の壁面をテーパ壁
面とした。更に又、前記動圧発生溝の回転方向側の壁面
と反対側の壁面を共にテーパ壁面とし、且つ後者のテー
パ角を前者のテーパ角よりも小さくした。Further, in the spindle motor, at least a wall surface on the rotation direction side of the dynamic pressure generating groove is a tapered wall surface. Further, both the wall surface on the rotation direction side and the wall surface on the opposite side of the dynamic pressure generating groove are tapered wall surfaces, and the taper angle of the latter is smaller than the taper angle of the former.
【0016】[0016]
【発明の実施の形態】図1は本発明に係る液体動圧軸受
の一実施例の断面図、図2は図1の液体動圧軸受において
フランジ付円柱状軸部材のみを側面図として示したもの
である。これら図1及び図2において、1はフランジ付円
柱状軸部材、2はこのフランジ付円柱状軸部材1が回転
自在に嵌合する段付円筒状受け部材である。3はスラス
ト押さえ板としても機能する蓋部材であり、フランジ付
円柱状軸部材1の上側の外周面との間にキャピラリーシ
ールSを形成する貫通孔をその中心部に有する。R1は
軸部材1の下端面と受け部材2の底面との間に形成され
た微小隙間、R2は軸部材1の下側円柱部の外周面と受
け部材2の小径円筒部の内周面との間に形成された微小
隙間、R3は軸部材1のフランジ部の下面と受け部材2
の大径円筒部の底面との間に形成された微小隙間、R4
は軸部材1のフランジ部の外周面と受け部材2の大径円
筒部の内周面との間に形成された微小隙間、R5は軸部
材1のフランジ部の上面と蓋部材3の下面との間に形成
された微小隙間、及びR6はフランジ付円柱状軸部材1
の上側円柱部の外周面と蓋部材3の貫通孔との間に形成
された微小隙間である。これらの微小隙間は、液体動圧
軸受のサイズにもよるが、数μmないし数10μmであ
る。Fは、これらの隙間に充填された潤滑油である。FIG. 1 is a sectional view of one embodiment of a liquid dynamic pressure bearing according to the present invention, and FIG. 2 is a side view of only the cylindrical shaft member with a flange in the liquid dynamic pressure bearing of FIG. Things. 1 and 2, reference numeral 1 denotes a cylindrical shaft member with a flange, and reference numeral 2 denotes a stepped cylindrical receiving member into which the cylindrical shaft member 1 with a flange is rotatably fitted. Reference numeral 3 denotes a lid member which also functions as a thrust holding plate, and has a through hole at the center thereof for forming a capillary seal S with the upper outer peripheral surface of the cylindrical shaft member 1 with flange. R1 is a minute gap formed between the lower end surface of the shaft member 1 and the bottom surface of the receiving member 2, and R2 is the outer peripheral surface of the lower cylindrical portion of the shaft member 1 and the inner peripheral surface of the small-diameter cylindrical portion of the receiving member 2. Between the lower surface of the flange portion of the shaft member 1 and the receiving member 2.
A small gap formed between the bottom surface of the large-diameter cylindrical portion of
R5 is a minute gap formed between the outer peripheral surface of the flange portion of the shaft member 1 and the inner peripheral surface of the large-diameter cylindrical portion of the receiving member 2, and R5 is the upper surface of the flange portion of the shaft member 1 and the lower surface of the lid member 3. And R6 are the cylindrical shaft member 1 with flange.
Are small gaps formed between the outer peripheral surface of the upper cylindrical portion and the through hole of the lid member 3. These minute gaps are several μm to several tens μm, depending on the size of the liquid dynamic pressure bearing. F is a lubricating oil filled in these gaps.
【0017】フランジ付円柱状軸部材1は、図5の斜視
図に示す如く、円柱部1aとフランジ部1bとからなる
十字型断面の円柱状軸部材である。フランジ付円柱状軸
部材1は、十字型断面の円柱状の金属心材とその外周面
に施された液晶高分子材料の樹脂被覆層Pとからなる。
円柱部1aの下側の樹脂被覆層Pには、ラジアル動圧発
生溝G1が、且つフランジ部1bの上面と下面にはスラ
スト動圧発生溝G2が夫々形成されている。As shown in the perspective view of FIG. 5, the cylindrical shaft member 1 with a flange is a cross-shaped cylindrical shaft member including a cylindrical portion 1a and a flange portion 1b. The cylindrical shaft member 1 with a flange is composed of a cylindrical metal core material having a cross-shaped cross section and a resin coating layer P of a liquid crystal polymer material applied to the outer peripheral surface thereof.
A radial dynamic pressure generating groove G1 is formed in the resin coating layer P below the cylindrical portion 1a, and a thrust dynamic pressure generating groove G2 is formed on the upper surface and the lower surface of the flange portion 1b.
【0018】図3と図4は、フランジ付円柱状軸部材1
の夫々異なる実施例の断面図である。フランジ付円柱状
軸部材1は、十字型断面の円柱状金属心材とその外周面
に施された液晶高分子材料の樹脂被覆層Pとから構成さ
れている。図3と図4に示すフランジ付円柱状軸部材1
の相違点は2つある。第1は十字型断面の円柱状金属心
材の構成に関するもの、第2は液晶高分子材料の樹脂被
覆層Pと動圧発生溝の形成に関するものである。FIGS. 3 and 4 show a cylindrical shaft member 1 with a flange.
3 is a cross-sectional view of a different embodiment. The cylindrical shaft member 1 with a flange is composed of a cylindrical metal core material having a cross-shaped cross section and a resin coating layer P of a liquid crystal polymer material applied to the outer peripheral surface thereof. Flanged cylindrical shaft member 1 shown in FIGS. 3 and 4
There are two differences. The first relates to the configuration of a cylindrical metal core having a cross-shaped cross section, and the second relates to the formation of a resin coating layer P of a liquid crystal polymer material and a dynamic pressure generating groove.
【0019】十字型断面の円柱状金属心材は、円柱部1
aの金属心材である円柱部材1cと、フランジ部1bの
金属心材である円盤部材1dとから構成されたものであ
る。十字型断面の円柱状金属心材は、図3においては円
柱部材1cと円盤部材1dを一体にして作成したもので
あるのに対し、図4においては円柱部材1cと貫通孔付
円盤部材1dを別々に作成した後に前者を後者に圧入し
て作成したものである。これらの金属心材は、鋳造また
は切削加工により製作される。The columnar metal core material having a cross-shaped cross section has a cylindrical portion 1
The cylindrical member 1c is a metal core material of a and a disk member 1d is a metal core material of a flange portion 1b. The columnar metal core material having a cross-shaped cross section is formed by integrally forming the columnar member 1c and the disk member 1d in FIG. 3, whereas the columnar member 1c and the disk member with through-hole 1d are separately formed in FIG. And then press-fit the former into the latter. These metal cores are manufactured by casting or cutting.
【0020】液晶高分子材料の樹脂被覆層Pは、円柱部
1aの金属心材である円柱部材1cと、フランジ部1b
の金属心材である円盤部材1dとから構成された十字型
断面の円柱状金属心材に形成された被覆層であり、且つ
動圧発生溝G1とG2は液晶高分子材料の樹脂被覆層P
に形成された微小溝である。液晶高分子材料の樹脂被覆
層Pは、図3においては円柱部材1cと円盤部材1dの
両方に形成されているのに対し、図4においては円盤部
材1dのみに形成されている。そして、図3において
は、ラジアル動圧発生溝G1は円柱部1aの下側円柱部
の樹脂被覆層Pに形成され、スラスト動圧発生溝G2は
フランジ部1bの上側と下側の樹脂被覆層Pに夫々形成
されている。他方、図4においては、スラスト動圧発生
溝G2はフランジ部1bの上側と下側の樹脂被覆層Pに
夫々形成されているが、ラジアル動圧発生溝G1はフラ
ンジ部1bの外周面の樹脂被覆層Pに形成されている。The resin coating layer P of the liquid crystal polymer material includes a cylindrical member 1c, which is a metal core material of the cylindrical portion 1a, and a flange portion 1b.
And a disk member 1d, which is a metal core material, is a coating layer formed on a columnar metal core material having a cross-shaped cross section, and the dynamic pressure generating grooves G1 and G2 are formed of a resin coating layer P of a liquid crystal polymer material.
The micro-grooves formed in FIG. The resin coating layer P of the liquid crystal polymer material is formed on both the columnar member 1c and the disk member 1d in FIG. 3, but is formed only on the disk member 1d in FIG. In FIG. 3, the radial dynamic pressure generating groove G1 is formed in the resin coating layer P on the lower cylindrical portion of the cylindrical portion 1a, and the thrust dynamic pressure generating groove G2 is formed on the upper and lower resin coating layers of the flange portion 1b. P are formed respectively. On the other hand, in FIG. 4, the thrust dynamic pressure generating groove G2 is formed on the resin coating layer P on the upper side and the lower side of the flange portion 1b, respectively, but the radial dynamic pressure generating groove G1 is formed on the outer peripheral surface of the flange portion 1b. It is formed on the coating layer P.
【0021】段付円筒状受け部材2は、図6の斜視図に
示す如く、小径円筒部2aが下段に且つ大径円筒部2b
が上段に形成されている。段付円筒状受け部材2の小径
円筒部2aには、フランジ付円柱状軸部材1の円柱部1
aの下部、即ちラジアル動圧用円柱部が回転自在に嵌合
し、且つその大径円筒部2bには、フランジ付円柱状軸
部材1のフランジ部1b、即ちスラスト動圧用円盤部が
回転自在に嵌合する。As shown in the perspective view of FIG. 6, the stepped cylindrical receiving member 2 has a small-diameter cylindrical portion 2a at a lower level and a large-diameter cylindrical portion 2b.
Are formed in the upper stage. The small-diameter cylindrical portion 2a of the stepped cylindrical receiving member 2 has a cylindrical portion 1 of a cylindrical shaft member 1 with a flange.
The lower part of a, that is, the radial dynamic pressure column part is rotatably fitted, and the large diameter cylindrical part 2b is rotatably fitted with the flange part 1b of the flanged cylindrical shaft member 1, ie, the thrust dynamic pressure disk part. Fit.
【0022】上述の如く構成された本発明に係る液体動
圧軸受は、例えば図7に示すスピンドルモータに適用さ
れ、超小型スピンドルモータが実現される。即ち、図7
に示す超小型スピンドルモータは、十字型断面のフラン
ジ付円柱状軸部材1と段付円筒状受け部材2を基本構成
要素とする液体動圧軸受によって、そのロータがステー
タに軸支されているものである。図示は省略されている
が、十字型断面のフランジ付円柱状軸部材1は、十字型
断面の円柱状金属心材に液晶高分子の樹脂被覆層が形成
され、且つこの樹脂被覆層には動圧発生溝が形成さたも
のである。3は蓋部材で、スラスト押え板としても機能
する。この超小型スピンドルモータには、フランジ付円
柱状軸部材1の端部に同軸にして固着されハードディス
ク等の回転体を保持するカップ状ハブ部材4、このカッ
プ状ハブ部材4のスリーブ部の内周面に取り付けられた
ロータ磁石5、段付円筒状受け部材2の外周面に取り付
けられてロータ磁石5と共働して回転力を発生させるス
テータコイル6、及び段付円筒状受け部材2が立設され
た基板7も含まれている。The liquid dynamic bearing according to the present invention configured as described above is applied to, for example, a spindle motor shown in FIG. 7 to realize a microminiature spindle motor. That is, FIG.
Is a micro-spindle motor whose rotor is axially supported by a stator by a liquid dynamic pressure bearing whose basic components are a cylindrical shaft member 1 with a cross-shaped cross section and a cylindrical receiving member 2 with a step. It is. Although not shown, the cylindrical shaft member 1 with a cross-shaped cross-section has a liquid-crystal polymer resin coating layer formed on a column-shaped metal core material having a cross-shaped cross section, and the resin coating layer has a dynamic pressure. This is one in which a generation groove is formed. Reference numeral 3 denotes a lid member, which also functions as a thrust holding plate. The micro spindle motor includes a cup-shaped hub member 4 coaxially fixed to an end of a cylindrical shaft member 1 with a flange and holding a rotating body such as a hard disk, and an inner periphery of a sleeve portion of the cup-shaped hub member 4. The rotor magnet 5 attached to the surface, the stator coil 6 attached to the outer peripheral surface of the stepped cylindrical receiving member 2 to generate a rotational force in cooperation with the rotor magnet 5, and the stepped cylindrical receiving member 2 stand. The provided substrate 7 is also included.
【0023】図7に示すフランジ部1bが軸方向中央部
に形成された十字型断面のフランジ付円柱状軸部材1と
このフランジ付円柱状軸部材1を回転自在に収容する段
付円筒状受け部材2とで構成された液体動圧軸受は、フ
ランジ部が軸の一方の端部に形成されたT字型断面のフ
ランジ付円柱状軸部材及びこのフランジ付円柱状軸部材
を回転自在に収容する円筒状受け部材とで構成された液
体動圧軸受が有する固有の問題、即ち高速回転時に軸変
位の方向とその変位に対する復元力の方向が一致しない
ことによって生じるハーフホワール現象に起因する回転
の不安定さを除去し、高速回転時の高安定化を実現でき
た。A flanged columnar shaft member 1 having a cross-shaped cross-section and having a flange portion 1b formed at the center in the axial direction shown in FIG. 7 and a stepped cylindrical receiver for rotatably housing the flanged columnar shaft member 1 are shown. The liquid dynamic pressure bearing composed of the member 2 has a flanged cylindrical shaft member having a T-shaped cross section with a flange formed at one end of the shaft, and rotatably accommodates the flanged cylindrical shaft member. The problem inherent in the liquid dynamic pressure bearing composed of the cylindrical receiving member that is formed, that is, the rotation caused by the half-whirl phenomenon caused by the inconsistency between the direction of the axial displacement and the direction of the restoring force at the time of high speed rotation. Instability was eliminated and high stability at high speed rotation was realized.
【0024】本発明は、図7に示す軸回転型の液体動圧
軸受けだけでなく、図8に示す軸一端固定型の液体動圧
軸受、即ちフランジ部が軸の一方の端部に形成されたT
字型断面のフランジ付円柱状軸部材1及びこのフランジ
付円柱状軸部材1を回転自在に収容する円筒状受け部材
2とで構成された液体動圧軸受であって、軸の一端が基
板7に固定された液体動圧軸受にも適用できる。更に、
本発明に係る液体動圧軸受は、図9に示す軸両端固定型
の液体動圧軸受、即ちフランジ部が軸の一方の端部に形
成されたT字型断面のフランジ付円柱状軸部材1及びこ
のフランジ付円柱状軸部材1を回転自在に収容する円筒
状受け部材2とで構成された液体動圧軸受であって、軸
の両端が基板7に固定された液体動圧軸受にも適用でき
る。According to the present invention, not only the shaft-rotating liquid dynamic pressure bearing shown in FIG. 7 but also a shaft-fixed liquid dynamic pressure bearing shown in FIG. 8, that is, a flange is formed at one end of the shaft. T
A liquid dynamic pressure bearing comprising a flanged cylindrical shaft member 1 having a U-shaped cross section and a cylindrical receiving member 2 rotatably accommodating the flanged cylindrical shaft member 1, wherein one end of the shaft is a substrate 7. The present invention can also be applied to a liquid dynamic pressure bearing fixed to a bearing. Furthermore,
The liquid dynamic pressure bearing according to the present invention is a liquid dynamic pressure bearing of a fixed type at both ends shown in FIG. 9, that is, a flanged cylindrical shaft member 1 having a T-shaped cross section and a flange formed at one end of the shaft. And a cylindrical receiving member 2 rotatably accommodating the columnar shaft member 1 with a flange, and is also applicable to a liquid dynamic bearing in which both ends of the shaft are fixed to a substrate 7. it can.
【0025】次に、本発明における動圧発生溝の形状に
ついて、図10ないし図14を参照して説明する。図1
0は、ラジアル動圧発生溝G1を誇張して示した円柱状
軸部材1の一実施例の部分斜視図である。ラジアル動圧
発生溝G1は、図5においては上下二段に分けて形成さ
れたヘリングボーン溝であるが、図10においてはV字
型のヘリングボーン溝である。円柱状軸部材1の回転方
向は、いずれも反時計方向である。ラジアル動圧発生溝
G1は金属心材に施された樹脂被覆層に形成された深さ
が数μmの細長い溝であり、回転方向側の壁面Wa、回
転方向とは反対側の壁面Wb、回転方向に平行な2つの
壁面、及び底面Wcを有する。Next, the shape of the dynamic pressure generating groove according to the present invention will be described with reference to FIGS. FIG.
0 is a partial perspective view of one embodiment of the cylindrical shaft member 1 in which the radial dynamic pressure generating groove G1 is exaggerated. The radial dynamic pressure generating groove G1 is a herringbone groove formed in two steps in the upper and lower parts in FIG. 5, but is a V-shaped herringbone groove in FIG. The rotation directions of the cylindrical shaft members 1 are all counterclockwise. The radial dynamic pressure generating groove G1 is an elongated groove having a depth of several μm formed in the resin coating layer formed on the metal core, and has a wall surface Wa on the rotation direction side, a wall surface Wb on the opposite side to the rotation direction, a rotation direction. And two bottom walls Wc.
【0026】従来は、図12に示す如く、動圧発生溝の
壁面は軸受表面に対して直角に形成されていた。本発明
は、動圧発生溝の少なくとも回転方向側の壁面Waをテ
ーパ壁面としたものである。即ち、図13に示す如く、
回転方向とは反対側の壁面Wbは従来通り軸受表面に対
して直角としたが、回転方向側の壁面Waは軸受表面に
立てた垂線に対して角度αだけ傾斜したテーパ壁面とし
た。また、図14に示す如く、回転方向とは反対側の壁
面Wbを軸受表面に立てた垂線に対して角度βだけ傾斜
したテーパ壁面とし、回転方向側の壁面Waを角度αだ
け傾斜したテーパ壁面とし、前者のテーパ角βを後者の
テーパ角αよりも小さくした動圧発生溝を形成してもよ
い。そして、これらのテーパ角は、約20度ないし約7
0度とした。Conventionally, as shown in FIG. 12, the wall surface of the dynamic pressure generating groove is formed at right angles to the bearing surface. In the present invention, at least the wall surface Wa of the dynamic pressure generating groove on the rotation direction side is a tapered wall surface. That is, as shown in FIG.
The wall surface Wb on the side opposite to the rotation direction is perpendicular to the bearing surface as before, but the wall surface Wa on the rotation direction side is a tapered wall surface inclined by an angle α with respect to a perpendicular to the bearing surface. Further, as shown in FIG. 14, the wall surface Wb on the opposite side to the rotation direction is a tapered wall surface inclined by an angle β with respect to a perpendicular to the bearing surface, and the wall surface Wa on the rotation direction side is inclined by an angle α. Alternatively, a dynamic pressure generating groove may be formed in which the former taper angle β is smaller than the latter taper angle α. These taper angles range from about 20 degrees to about 7 degrees.
0 degrees.
【0027】図11は、横軸にテーパ角αを、縦軸に負
荷能力をとり、且つテーパ角αとテーパ角βとの角度
差、即ちテーパ角度差をパラメータとした動圧発生溝の
特性図である。なお、テーパ角αは時計回りを正とし、
テーパ角βは反時計回りを正としている。図11に示さ
れている4本の曲線a、b、c、dは、テーパ角度差が
20度、10度、0度、及びマイナス10度のものの特
性曲線である。図11から明らかな如く、テーパ角αを
増加させると、特性曲線dで示すテーパ角度マイナス1
0度のものの負荷能力は約20度から約50度までは殆
ど変化しないで、それ以降は徐々に低下している。特性
曲線cで示すテーパ角度0度のもの、即ち図12に示す
従来のものの負荷能力は約30度までは殆ど変化しない
が、それから徐々に増加し50度付近でピークとなり、
それ以降は徐々に低下している。FIG. 11 shows the characteristics of the dynamic pressure generating groove with the taper angle α on the horizontal axis, the load capacity on the vertical axis, and the angle difference between the taper angle α and the taper angle β, that is, the taper angle difference as a parameter. FIG. Note that the taper angle α is positive in the clockwise direction,
The taper angle β is positive in the counterclockwise direction. The four curves a, b, c, and d shown in FIG. 11 are characteristic curves for taper angle differences of 20 degrees, 10 degrees, 0 degrees, and minus 10 degrees. As is apparent from FIG. 11, when the taper angle α is increased, the taper angle minus 1 shown by the characteristic curve d is obtained.
The load capacity of the 0 degree hardly changes from about 20 degrees to about 50 degrees, and thereafter gradually decreases. The load capacity of the taper angle of 0 degree shown by the characteristic curve c, that is, the conventional one shown in FIG. 12, hardly changes until about 30 degrees, but then gradually increases and peaks at about 50 degrees,
Since then, it has been gradually declining.
【0028】これに対して、本発明に係る図13又は図
14に示す形状の動圧発生溝の場合は、テーパ角αが約
20度から約70度の間で負荷能力が著しく増加してお
り、特に50度の付近で最大となっている。それもテー
パ角度差が10度よりも20度と、角度差が大きくなれ
ばなるだけ増加する傾向が認められる。因みに、テーパ
角度差が20度の場合は、従来の直角壁面の場合に比べ
て最大で3割近い負荷能力の増加が認められた。On the other hand, in the case of the dynamic pressure generating groove having the shape shown in FIG. 13 or FIG. 14 according to the present invention, the load capacity is significantly increased when the taper angle α is between about 20 degrees and about 70 degrees. And it reaches a maximum especially at around 50 degrees. It is also recognized that the taper angle difference tends to increase as the angle difference increases from 20 degrees to 10 degrees as the angle difference increases. Incidentally, when the taper angle difference was 20 degrees, an increase in the load capacity of up to nearly 30% was recognized as compared with the case of the conventional right-angled wall surface.
【0029】図13ないし図14に示した動圧発生溝の
形状は、ラジアル動圧発生溝G1だけでなく、スラスト
動圧発生溝G2にも適用される。従って、フランジ付円
柱状軸部材と、このフランジ付円柱状軸部材が回転自在
に嵌合する段付円筒状受け部材とを具備する液体動圧軸
受によってロータがステータに軸支されたスピンドルモ
ータにおいて、前記フランジ付円柱状軸部材1の金属心
材に施された樹脂被覆層Pとこの樹脂被覆層Pに設けら
れた動圧発生溝G1、G2を液晶高分子材料の成形加工
により一体に形成し、且つ前記動圧発生溝の少なくとも
回転方向側の壁面をテーパ壁面とした図7の超小型スピ
ンドルモータは、その負荷能力が向上した。The shape of the dynamic pressure generating groove shown in FIGS. 13 and 14 is applied not only to the radial dynamic pressure generating groove G1 but also to the thrust dynamic pressure generating groove G2. Therefore, in a spindle motor in which a rotor is supported by a stator by a liquid dynamic pressure bearing including a flanged cylindrical shaft member and a stepped cylindrical receiving member into which the flanged cylindrical shaft member is rotatably fitted. The resin coating layer P formed on the metal core material of the flanged cylindrical shaft member 1 and the dynamic pressure generating grooves G1 and G2 provided on the resin coating layer P are integrally formed by molding a liquid crystal polymer material. In addition, the load capacity of the ultra-small spindle motor of FIG. 7 in which at least the wall surface on the rotation direction side of the dynamic pressure generating groove is tapered is improved.
【0030】以上詳細に説明した如く、本発明に係る液
体動圧軸受は、その主要構成部材である円柱状軸部材1
と円筒状受け部材2の両方、又は少なくとも円柱状軸部
材1は金属心材に樹脂被覆層Pが施された部材である。
そして、樹脂被覆層Pを金属心材に施すこと、並びに樹
脂被覆層Pに動圧発生溝を設けることは、液晶高分子材
料の樹脂成形加工により一体に形成されるものである。
この液晶高分子材料の樹脂成形加工により形成被覆層P
と動圧発生溝とを一体に形成する方法を、図15を参照
して説明する。即ち、コンプレッション成形による樹脂
加工方法である図15において、先ず金属心材Nを下型
10に位置づけ且つ上型11をその上に配置して金型に
装填した後、計量した液晶高分子材料Mを上型11の充
填口から金型に充填する(15図a)。次いで、この状態
にした金型をプレス機の上にセットして、加熱加圧して
溶融した液晶高分子材料Mの樹脂を金型と金属心材Nと
の間隙にプランジャー12により流し込む(15図
b)。溶融した液晶高分子材料Mの樹脂の流し込みが完
了した後、上型を開き、製品を金型から取り出す(15
図c)。上型11の所定の面には、動圧発生溝を形成す
るための溝が形成されており、従って、この製品は、樹
脂被覆層Pと動圧発生溝とが一体に形成された部材であ
る。本発明に係る液体動圧軸受の主要構成部材の樹脂成
形加工は、図15のコンプレッション成形に限られず、
トランスファー成形、射出成形、射出圧縮成形のいずれ
の方法も利用できる。As described in detail above, the liquid dynamic pressure bearing according to the present invention has a cylindrical shaft member 1 which is a main component thereof.
Both the cylindrical member 2 and at least the cylindrical shaft member 1 are members in which a resin coating layer P is applied to a metal core material.
Applying the resin coating layer P to the metal core material and providing the resin coating layer P with the dynamic pressure generating groove are integrally formed by resin molding of a liquid crystal polymer material.
A coating layer P formed by resin molding of this liquid crystal polymer material
A method of integrally forming the dynamic pressure generating groove and the dynamic pressure generating groove will be described with reference to FIG. That is, in FIG. 15 which is a resin processing method by compression molding, first, the metal core material N is positioned on the lower mold 10 and the upper mold 11 is disposed thereon and loaded into the mold. The mold is filled from the filling port of the upper mold 11 (FIG. 15A). Next, the mold in this state is set on a press machine, and the resin of the liquid crystal polymer material M melted by heating and pressing is poured into the gap between the mold and the metal core N by the plunger 12 (FIG. 15). b). After the molten resin of the liquid crystal polymer material M has been poured, the upper mold is opened and the product is taken out of the mold (15).
Figure c). A groove for forming a dynamic pressure generating groove is formed on a predetermined surface of the upper die 11, and therefore, this product is a member in which the resin coating layer P and the dynamic pressure generating groove are integrally formed. is there. The resin molding of the main components of the liquid dynamic pressure bearing according to the present invention is not limited to the compression molding of FIG.
Any method of transfer molding, injection molding, and injection compression molding can be used.
【0031】なお、前記液晶高分子材料は、ポリヒドロ
キシ安息香酸とビスフェノールとテレフタル酸との重合
物を出発原料とした重合物、ポリヒドロキシ安息香酸と
6−ヒドロキシナフトエ酸を出発原料とした重合物、或
いはポリエチレンテレフタレートとポリヒドロキシ安息
香酸を出発原料とした重合物の中から選定した。このよ
うな樹脂材料を用いたために、特に200μm以下の非
常に薄い肉圧の樹脂被覆層を形成することが可能になっ
た。しかも形成された超薄肉の樹脂被覆層は潤滑性、耐
衝撃性、耐熱性、耐薬品性に優れたものである。これら
の液晶高分子材料の他に使える材料は、全芳香族ポリイ
ミド樹脂、ポリアミドイミド樹脂、ポリフタルアミド樹
脂、ポリエーテルイミド樹脂、ポリイミド樹脂、PEE
K樹脂、ポリケトン樹脂、フッソ系樹脂等である。ま
た、これらの樹脂単体、又は樹脂マトリックスに、カー
ボン、グラファイト、二酸化珪素等の無機フィラー類
や、ウィスカー類、炭素繊維、ガラス繊維等の強化繊維
を含めた液晶高分子材料も利用可能である。The liquid crystal polymer material is a polymer starting from a polymer of polyhydroxybenzoic acid, bisphenol and terephthalic acid, or a polymer starting from polyhydroxybenzoic acid and 6-hydroxynaphthoic acid. Alternatively, it was selected from polymers using polyethylene terephthalate and polyhydroxybenzoic acid as starting materials. The use of such a resin material has made it possible to form a very thin resin coating layer having a particularly small thickness of 200 μm or less. Moreover, the formed ultra-thin resin coating layer is excellent in lubricity, impact resistance, heat resistance and chemical resistance. Materials that can be used besides these liquid crystal polymer materials include wholly aromatic polyimide resins, polyamideimide resins, polyphthalamide resins, polyetherimide resins, polyimide resins, and PEEs.
K resin, polyketone resin, fluorine resin and the like. In addition, liquid crystal polymer materials containing inorganic fillers such as carbon, graphite, and silicon dioxide, and reinforced fibers such as whiskers, carbon fibers, and glass fibers in the resin alone or the resin matrix can also be used.
【0032】[0032]
【発明の効果】本発明により、ハードディスク等の記憶
媒体や読取装置を汚染することのない樹脂被覆層を有す
る液体動圧軸受を提供することができた。液体動圧軸受
の主要構成部材である円柱状軸部材と円筒状受け部材の
両方、又は少なくとも円柱状軸部材は金属心材を200
μm以下の非常に薄い肉圧の液晶高分子材料の樹脂被覆
層が施されたものであるから、従来の200μm以上の
肉圧の樹脂被覆層を有する液体動圧軸受に比べると、同
じサイズであれば金属心材のサイズを大きくできるから
軸部材のヤング率即ち強度が向上し、また樹脂被覆に使
用する樹脂材料の量は少なくなるから材料費の節減が図
られた。液体動圧軸受の主要構成部材に液晶高分子材料
により樹脂被覆層を形成すること並びに樹脂被覆層に動
圧発生溝を形成することは、通常の樹脂成形加工法によ
り同時に行えるから、製造コストも低減できた。樹脂被
覆層に形成される動圧発生溝は、従来の直角壁面の溝で
なくテーパ壁面の溝としたので、製品の金型からの抜け
がよくなり、動圧発生溝の加工時の損傷がなくなり品質
も向上した。要するに、本発明により樹脂被覆層を有す
る液体動圧軸受の超小型化とコスト低減を実現できた。According to the present invention, a liquid dynamic bearing having a resin coating layer which does not contaminate a storage medium such as a hard disk or a reader can be provided. Both the cylindrical shaft member and the cylindrical receiving member, which are the main components of the liquid dynamic pressure bearing, or at least the cylindrical shaft member has a metal core material of 200 mm.
Since the resin coating layer of a liquid crystal polymer material with a very thin wall thickness of less than μm is applied, compared to the conventional liquid dynamic pressure bearing having a resin coating layer with a wall thickness of more than 200 μm, it has the same size. With such a structure, the size of the metal core can be increased, thereby improving the Young's modulus, that is, the strength, of the shaft member. In addition, the amount of the resin material used for the resin coating can be reduced, thereby reducing the material cost. Forming a resin coating layer of a liquid crystal polymer material on the main components of a liquid dynamic pressure bearing and forming a dynamic pressure generating groove in the resin coating layer can be performed simultaneously by a normal resin molding method, so that the manufacturing cost is also reduced. Could be reduced. The dynamic pressure generating groove formed in the resin coating layer is not a conventional groove with a right-angled wall, but a groove with a tapered wall, so that the product can be easily removed from the mold and damage during processing of the dynamic pressure generating groove Quality has improved. In short, according to the present invention, ultra-small size and cost reduction of the liquid dynamic bearing having the resin coating layer can be realized.
【0033】更に、上述の特長を有する超小型の液体動
圧軸受を採用することによって、超小型スピンドルモー
タの品質、動作の安定性、及び負荷能力の向上を実現で
きた。更にまた、動圧発生溝の加工にエッチングなどの
産業廃棄物を大量に出す方法を取らずに済み、仮に樹脂
被覆不良品が生じても樹脂は容易に再生可能であるた
め、環境破壊を最小に押さえることができた。Further, by adopting the ultra-compact liquid dynamic pressure bearing having the above-mentioned features, the quality, operation stability and load capacity of the ultra-compact spindle motor can be improved. Furthermore, there is no need to take a large amount of industrial waste such as etching for the processing of the dynamic pressure generation groove. Even if defective resin coating occurs, the resin can be easily regenerated, minimizing environmental destruction. Could be held down.
【図1】本発明に係る液体動圧軸受の一実施例の断面図
である。FIG. 1 is a sectional view of one embodiment of a liquid dynamic pressure bearing according to the present invention.
【図2】本発明に係る液体動圧軸受の他の実施例の断面
図である。FIG. 2 is a sectional view of another embodiment of the liquid dynamic pressure bearing according to the present invention.
【図3】円柱状軸部材の一実施例の断面図である。FIG. 3 is a sectional view of one embodiment of a cylindrical shaft member.
【図4】円柱状軸部材の他の実施例の断面図である。FIG. 4 is a sectional view of another embodiment of the cylindrical shaft member.
【図5】円柱状軸部材の一実施例の斜視図である。FIG. 5 is a perspective view of one embodiment of a cylindrical shaft member.
【図6】円筒状受け部材の一実施例の斜視図である。FIG. 6 is a perspective view of one embodiment of a cylindrical receiving member.
【図7】本発明に係る液体動圧軸受を用いた超小型スピ
ンドルモータの一実施例の断面図である。FIG. 7 is a cross-sectional view of one embodiment of a microminiature spindle motor using the liquid dynamic pressure bearing according to the present invention.
【図8】本発明が適用できる液体動圧軸受の他の実施例
の断面図である。FIG. 8 is a sectional view of another embodiment of the liquid dynamic bearing to which the present invention can be applied.
【図9】本発明が適用できる液体動圧軸受の更に他の実
施例の断面図である。FIG. 9 is a sectional view of still another embodiment of the liquid dynamic pressure bearing to which the present invention can be applied.
【図10】ラジアル動圧発生溝を誇張して示した円柱状
軸部材の一実施例の部分斜視図である。FIG. 10 is a partial perspective view of an example of a cylindrical shaft member in which a radial dynamic pressure generating groove is exaggerated.
【図11】本発明に係る動圧発生溝の効果を示す特性図
である。FIG. 11 is a characteristic diagram showing an effect of the dynamic pressure generating groove according to the present invention.
【図12】従来の動圧発生溝の部分拡大断面図である。FIG. 12 is a partially enlarged sectional view of a conventional dynamic pressure generating groove.
【図13】本発明に係る動圧発生溝の一実施例の部分拡
大断面図である。FIG. 13 is a partially enlarged sectional view of one embodiment of a dynamic pressure generating groove according to the present invention.
【図14】本発明に係る動圧発生溝の他の実施例の部分
拡大断面図である。FIG. 14 is a partially enlarged sectional view of another embodiment of the dynamic pressure generating groove according to the present invention.
【図15a】本発明に係る液体動圧軸受の製造方法の一
例を示す図である。FIG. 15a is a view showing one example of a method for manufacturing a liquid dynamic bearing according to the present invention.
【図15b】本発明に係る液体動圧軸受の製造方法の一
例を示す図である。FIG. 15b is a diagram showing an example of the method for manufacturing a liquid dynamic bearing according to the present invention.
【図15c】本発明に係る液体動圧軸受の製造方法の一
例を示す図である。FIG. 15c is a view showing one example of a method for manufacturing a liquid dynamic bearing according to the present invention.
1 円柱状軸部材 1a 円柱部 1b フランジ部 1c 円柱部1aの金属心材である円柱部材 1d 円柱部1bの金属心材である円盤部材 2 円筒状受け部材 2a 小径円筒部 2b 大径円筒部 3 蓋部材 4 カップ状ハブ 5 ロータ磁石 6 ステータコイル 7 基板 10 下型 11 上型 12 プランジャー F 潤滑油 G1 ラジアル動圧発生溝 G2 スラスト動圧発生溝 M 液晶高分子材料 N 金属心材 P 樹脂被覆層 R1、 R2、 R3、 R4、 R5、 R6 微小隙間 S キャピラリーシール Wa 動圧発生溝の回転方向側の壁面 Wb 動圧発生溝の回転方向と反対側の壁面 Wc 動圧発生溝の底面 Reference Signs List 1 cylindrical shaft member 1a cylindrical portion 1b flange portion 1c cylindrical member which is metal core material of cylindrical portion 1a disk member which is metal core material of cylindrical portion 1b 2 cylindrical receiving member 2a small diameter cylindrical portion 2b large diameter cylindrical portion 3 lid member 4 Cup-shaped hub 5 Rotor magnet 6 Stator coil 7 Substrate 10 Lower die 11 Upper die 12 Plunger F Lubricating oil G1 Radial dynamic pressure generating groove G2 Thrust dynamic pressure generating groove M Liquid crystal polymer material N Metal core material P Resin coating layer R1, R2, R3, R4, R5, R6 Minute gap S Capillary seal Wa Wall surface on rotating side of dynamic pressure generating groove Wb Wall surface on opposite side of rotating direction of dynamic pressure generating groove Wc Bottom surface of dynamic pressure generating groove
───────────────────────────────────────────────────── フロントページの続き (72)発明者 兵部 行遠 東京都豊島区西池袋1丁目18番2号 株式 会社柿崎製作所内 Fターム(参考) 3J011 AA04 BA02 BA04 BA09 CA03 QA05 SC01 SC12 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yukien Hyobu 1-18-2 Nishiikebukuro, Toshima-ku, Tokyo F-term in Kakizaki Manufacturing Co., Ltd. (Reference) 3J011 AA04 BA02 BA04 BA09 CA03 QA05 SC01 SC12
Claims (9)
在に嵌合する円筒状受け部材とを有し、前記円柱状軸部
材の外周面または円筒状受け部材の内周面のいずれか一
方に動圧発生溝が形成された液体動圧軸受において、前
記動圧発生溝の少なくとも回転方向側の壁面をテーパ壁
面としたことを特徴とする液体動圧軸受。1. A cylindrical shaft member and a cylindrical receiving member into which the cylindrical shaft member is rotatably fitted, wherein either an outer peripheral surface of the cylindrical shaft member or an inner peripheral surface of the cylindrical receiving member. A liquid dynamic pressure bearing in which a dynamic pressure generating groove is formed on one side, wherein at least a wall surface on the rotation direction side of the dynamic pressure generating groove is a tapered wall surface.
在に嵌合する円筒状受け部材とを有し、前記円柱状軸部
材の外周面または円筒状受け部材の内周面のいずれか一
方に動圧発生溝が形成された液体動圧軸受において、前
記動圧発生溝の回転方向側の壁面と反対側の壁面を共に
テーパ壁面とし、且つ後者のテーパ角を前者のテーパ角
よりも小さくしたことを特徴とする液体動圧軸受。2. A cylindrical shaft member and a cylindrical receiving member into which the cylindrical shaft member is rotatably fitted, wherein either the outer peripheral surface of the cylindrical shaft member or the inner peripheral surface of the cylindrical receiving member. In the liquid dynamic pressure bearing in which the dynamic pressure generating groove is formed on one side, both the wall surface on the rotation direction side and the opposite wall surface of the dynamic pressure generating groove are tapered wall surfaces, and the latter taper angle is larger than the former taper angle. Liquid dynamic pressure bearing characterized in that the size is also reduced.
にして約20ないし約70度としたことを特徴とする請
求項1又は2の液体動圧軸受。3. A liquid dynamic pressure bearing according to claim 1, wherein said taper angle is set to about 20 to about 70 degrees with respect to a vertical line formed on the bearing surface.
在に嵌合する円筒状受け部材とを有する液体動圧軸受に
おいて、前記円柱状軸部材は金属心材に樹脂被覆層が施
されたものであり、且つ前記樹脂被覆層とこの樹脂被覆
層に設けられた動圧発生溝は液晶高分子材料の成形加工
により一体に形成されたものであることを特徴とする液
体動圧軸受。4. A liquid dynamic pressure bearing having a cylindrical shaft member and a cylindrical receiving member into which the cylindrical shaft member is rotatably fitted, wherein the cylindrical shaft member has a resin coating layer formed on a metal core material. Wherein the resin coating layer and the dynamic pressure generation groove provided in the resin coating layer are integrally formed by molding a liquid crystal polymer material.
在に嵌合する円筒状受け部材とを有する液体動圧軸受に
おいて、前記円筒状受け部材は金属心材に樹脂被覆層が
施されたものであり、且つ前記樹脂被覆層とこの樹脂被
覆層に設けられた動圧発生溝は液晶高分子材料の成形加
工により一体に形成されたものであることを特徴とする
液体動圧軸受。5. A liquid dynamic pressure bearing having a cylindrical shaft member and a cylindrical receiving member into which the cylindrical shaft member is rotatably fitted, wherein the cylindrical receiving member is formed by applying a resin coating layer to a metal core material. Wherein the resin coating layer and the dynamic pressure generation groove provided in the resin coating layer are integrally formed by molding a liquid crystal polymer material.
息香酸とビスフェノールとテレフタル酸との重合物を出
発原料とした重合物、ポリヒドロキシ安息香酸と6−ヒ
ドロキシナフトエ酸を出発原料とした重合物、或いはポ
リエチレンテレフタレートとポリヒドロキシ安息香酸を
出発原料とした重合物の中から選ばれたものであること
を特徴とする請求項4又は請求項5の液体動圧軸受。6. A polymer starting from a polymer of polyhydroxybenzoic acid, bisphenol and terephthalic acid, and a polymer starting from polyhydroxybenzoic acid and 6-hydroxynaphthoic acid. 6. The liquid dynamic pressure bearing according to claim 4, wherein the liquid dynamic pressure bearing is selected from a polymer starting from polyethylene terephthalate and polyhydroxybenzoic acid.
付円柱状軸部材が回転自在に嵌合する段付円筒状受け部
材とを具備する液体動圧軸受によってロータがステータ
に軸支されたスピンドルモータにおいて、前記フランジ
付円柱状軸部材は金属心材に樹脂被覆層が施されたもの
であり、且つ前記樹脂被覆層とこの樹脂被覆層に設けら
れた動圧発生溝は液晶高分子材料の成形加工により一体
に形成されたものであることを特徴とするスピンドルモ
ータ。7. A rotor is supported by a stator by a liquid dynamic pressure bearing having a flanged cylindrical shaft member and a stepped cylindrical receiving member into which the flanged cylindrical shaft member is rotatably fitted. In the spindle motor, the flanged cylindrical shaft member is a metal core material provided with a resin coating layer, and the resin coating layer and the dynamic pressure generating groove provided in the resin coating layer are made of a liquid crystal polymer material. A spindle motor which is formed integrally by molding.
壁面をテーパ壁面としたことを特徴とする請求項7のス
ピンドルモータ。8. The spindle motor according to claim 7, wherein at least a wall surface on the rotation direction side of said dynamic pressure generating groove is a tapered wall surface.
側の壁面を共にテーパ壁面とし、且つ後者のテーパ角を
前者のテーパ角よりも小さくしたことを特徴とする請求
項7のスピンドルモータ。9. The taper angle of the dynamic pressure generating groove according to claim 7, wherein both the wall surface on the rotation direction side and the wall surface on the opposite side are tapered, and the taper angle of the latter is smaller than the taper angle of the former. Spindle motor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10357567A JP2000179541A (en) | 1998-12-16 | 1998-12-16 | Liquid dynamic pressure bearing and spindle motor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10357567A JP2000179541A (en) | 1998-12-16 | 1998-12-16 | Liquid dynamic pressure bearing and spindle motor |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008041040A Division JP2008133965A (en) | 2008-02-22 | 2008-02-22 | Liquid dynamic pressure bearing and spindle motor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2000179541A true JP2000179541A (en) | 2000-06-27 |
Family
ID=18454791
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10357567A Pending JP2000179541A (en) | 1998-12-16 | 1998-12-16 | Liquid dynamic pressure bearing and spindle motor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2000179541A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005337307A (en) * | 2004-05-24 | 2005-12-08 | Ntn Corp | Dynamic pressure bearing device |
| JP2007327649A (en) * | 2007-08-30 | 2007-12-20 | Seiko Instruments Inc | Fluid dynamic-pressure bearing |
| JP2022506443A (en) * | 2018-11-05 | 2022-01-17 | エナジー リカバリー,インコーポレイティド | Hybrid dynamic pressure hydrostatic thrust bearing system and method |
-
1998
- 1998-12-16 JP JP10357567A patent/JP2000179541A/en active Pending
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005337307A (en) * | 2004-05-24 | 2005-12-08 | Ntn Corp | Dynamic pressure bearing device |
| JP2007327649A (en) * | 2007-08-30 | 2007-12-20 | Seiko Instruments Inc | Fluid dynamic-pressure bearing |
| JP2022506443A (en) * | 2018-11-05 | 2022-01-17 | エナジー リカバリー,インコーポレイティド | Hybrid dynamic pressure hydrostatic thrust bearing system and method |
| JP7631194B2 (en) | 2018-11-05 | 2025-02-18 | エナジー リカバリー,インコーポレイティド | HYBRID HYDROHYDRODYNAMIC THRUST BEARING SYSTEM AND METHOD - Patent application |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN100552244C (en) | Flow dynamic bearing device and electric motor provided therewith | |
| US5357163A (en) | Motor with dynamic-pressure type bearing device | |
| US6390681B1 (en) | Dynamic pressure bearing-unit | |
| US8356938B2 (en) | Fluid dynamic bearing apparatus | |
| US8826541B2 (en) | Method for manufacturing a fluid bearing device | |
| JP2005045924A (en) | Spindle motor, method of manufacturing rotor applied to the spindle motor, and hard disc drive equipped with the spindle motor | |
| US7576947B2 (en) | Fluid dynamic pressure bearing device, spindle motor provided with fluid dynamic pressure bearing device, and recording disk drive device | |
| WO2007007481A1 (en) | Dynamic pressure bearing device | |
| WO2006013417A1 (en) | Fluid dynamic pressure bearing, spindle motor provided with the fluid dynamic pressure bearing, and recording disk drive device provided with the fluid dynamic pressure bearing | |
| WO2005117239A1 (en) | Dynamic pressure bearing device and motor using the same | |
| US7798721B2 (en) | Fluid dynamic bearing device | |
| JPH07332353A (en) | Hydrodynamic bearing | |
| US8403565B2 (en) | Fluid dynamic bearing device | |
| WO2005017380A1 (en) | Fluid bearing device and method of producing the same | |
| JP2000179541A (en) | Liquid dynamic pressure bearing and spindle motor | |
| WO2005036001A1 (en) | Dynamic pressure bearing device | |
| JP2002061637A (en) | Dynamic pressure type bearing device | |
| JP2001027226A (en) | Conical fluid dynamic bearing and spindle motor | |
| JP2008008367A (en) | Dynamic pressure bearing device | |
| JP4738868B2 (en) | Hydrodynamic bearing device | |
| CN101263644B (en) | Fluid bearing device and manufacturing method thereof | |
| US6024492A (en) | Hemispherical bearing apparatus | |
| CN101002032A (en) | Fluid dynamic pressure bearing, spindle motor using the same, and recording disk drive unit using the same | |
| JP2008133965A (en) | Liquid dynamic pressure bearing and spindle motor | |
| JPH07310733A (en) | Dynamic pressure bearing device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050517 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071225 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080222 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080415 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080612 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080909 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081029 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081010 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20081111 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20081111 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081212 |
|
| A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081219 |
|
| A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20090220 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090831 |
|
| RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091104 |
|
| RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091113 |