[go: up one dir, main page]

JP2000183399A - GaN compound semiconductor light emitting device - Google Patents

GaN compound semiconductor light emitting device

Info

Publication number
JP2000183399A
JP2000183399A JP35312098A JP35312098A JP2000183399A JP 2000183399 A JP2000183399 A JP 2000183399A JP 35312098 A JP35312098 A JP 35312098A JP 35312098 A JP35312098 A JP 35312098A JP 2000183399 A JP2000183399 A JP 2000183399A
Authority
JP
Japan
Prior art keywords
layer
gan
torr
active layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35312098A
Other languages
Japanese (ja)
Inventor
Kiyoteru Yoshida
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP35312098A priority Critical patent/JP2000183399A/en
Publication of JP2000183399A publication Critical patent/JP2000183399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

(57)【要約】 【課題】 バンドギャップエネルギの低い良質の活性層
を備え、発光効率の高い安定な発光を得ることのできる
GaN系化合物半導体発光素子を提供する。 【解決手段】 活性層15としてIn1-xGax1-y-zAs
yz[但し、0≦x,y,z<1]からなる半導体層を形
成し、この活性層を挟むクラッド層14,16としてAl
aInbGa1-a-b1-c-dAscd[但し、0≦a,b,c,d
≦1]からなる半導体層を形成する。また上記各半導体
層の組成を変えることでその発光波長を紫外領域から赤
外領域まで広範囲に設定可能なGaN系化合物半導体発
光素子を実現する。
(57) [Problem] To provide a GaN-based compound semiconductor light-emitting device including a high-quality active layer with low bandgap energy and capable of obtaining stable light emission with high luminous efficiency. As An active layer 15 In 1-x Ga x N 1-yz As
y P z [where 0 ≦ x, y, z <1], a semiconductor layer is formed, and Al is formed as cladding layers 14 and 16 sandwiching the active layer.
a In b Ga 1-ab N 1-cd As c P d [ where, 0 ≦ a, b, c , d
≦ 1]. By changing the composition of each semiconductor layer, a GaN-based compound semiconductor light emitting device whose emission wavelength can be set in a wide range from the ultraviolet region to the infrared region is realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光効率の高い安
定な発光が得られるGaN系化合物半導体発光素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GaN-based compound semiconductor light-emitting device capable of obtaining stable light emission with high luminous efficiency.

【0002】[0002]

【関連する背景技術】近時、GaN系化合物半導体を用
いた発光ダイオード(LED)の開発が盛んに進められ
ている。この種のGaN系の発光ダイオード(発光素
子)は、一般的に半絶縁性のサファイヤ基板に有機金属
気相成長(MOCVD)法やガスソース分子線エピタキ
シー(MEB)法を用いてGaN系のクラッド層と活性
層とをエピタキシャル成長させて実現される。
2. Related Background Art Recently, light emitting diodes (LEDs) using GaN-based compound semiconductors have been actively developed. This type of GaN-based light-emitting diode (light-emitting element) is generally formed on a semi-insulating sapphire substrate using a metal-organic chemical vapor deposition (MOCVD) method or a gas source molecular beam epitaxy (MEB) method. This is realized by epitaxially growing a layer and an active layer.

【0003】例えばMOCVD法を用いる場合には、図
2に示すようにサファイヤ基板1上に、800℃の温度
環境で窒素源としてアンモニア[NH3]、またIII族の
有機金属原料としてトリメチルアルミニウム[TMA]
とを用いてAlNバッファ層2を成長させ、その上にSi
ドープのn-GaN層3を成長させる。このn-GaN層3
は、例えばトリメチルガリウム[TMG]、アンモニア
[NH3]、およびシランを原料として1050℃の温
度環境でエピタキシャル成長させることにより形成され
る。
For example, when using the MOCVD method, as shown in FIG. 2, on a sapphire substrate 1, ammonia [NH 3 ] as a nitrogen source and trimethylaluminum [ TMA]
The AlN buffer layer 2 is grown using
A doped n-GaN layer 3 is grown. This n-GaN layer 3
Is formed by, for example, using trimethyl gallium [TMG], ammonia [NH 3 ], and silane as raw materials and performing epitaxial growth in a temperature environment of 1050 ° C.

【0004】しかる後、上記原料にトリメチルアルミニ
ウム[TMA]とシランとを更に加えて前記n-GaN層
3上にn-AlGaNクラッド層4を成長させ、その上に
活性層5としてノンドープのInGaNを成長させる。こ
のノンドープのInGaN活性層5は、750℃の雰囲気
においてトリメチルインジウム[TMI]とトリメチル
ガリウム[TMG]、そしてアンモニア[NH3]を原
料として形成される。その後、このInGaN活性層5上
にp-AlGaNクラッド層6を成長させ、更にその上に
p-GaNキャップ層7を成長させる。ちなみに上記p-
AlGaNクラッド層6は、ビスシクロペンタジエニルマ
グネシウムをドーパントとして用いて結晶成長される。
[0004] Thereafter, trimethylaluminum [TMA] and silane are further added to the raw material to grow an n-AlGaN cladding layer 4 on the n-GaN layer 3, on which non-doped InGaN is formed as an active layer 5. Let it grow. The non-doped InGaN active layer 5 is formed in a 750 ° C. atmosphere using trimethylindium [TMI], trimethylgallium [TMG], and ammonia [NH 3 ] as raw materials. Thereafter, a p-AlGaN cladding layer 6 is grown on the InGaN active layer 5, and a p-GaN cap layer 7 is further grown thereon. By the way, the above p-
The AlGaN cladding layer 6 is grown using biscyclopentadienyl magnesium as a dopant.

【0005】以上のようにしてクラッド層4,6間に活
性層5を挟み込んだ多層膜構造のエピタキシャル成長膜
を形成した後、その表面にプラズマCVD装置を用いて
SiO2膜等を堆積させ、該SiO2膜をフォトレジストお
よび化学エッチング等によりエッチングし、これをパタ
ーニングする。その後、p電極としてAu/Ni等の金属
を、またn電極としてTi/Al等の金属を蒸着形成する
ことでGaN系化合物半導体からなる発光素子(LE
D)が製造される。
After forming an epitaxially grown film having a multilayer structure in which the active layer 5 is sandwiched between the clad layers 4 and 6 as described above, an SiO 2 film or the like is deposited on the surface thereof by using a plasma CVD apparatus. The SiO 2 film is etched by a photoresist and a chemical etching or the like, and is patterned. Thereafter, a metal such as Au / Ni is deposited as a p-electrode and a metal such as Ti / Al is deposited as an n-electrode to form a light-emitting element (LE) made of a GaN-based compound semiconductor.
D) is manufactured.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述した
如くして製造され、活性層5としてInGaNを成長させ
た発光素子にあっては、その結晶成長時に加えられる高
温によって活性層5中のIn成分が離脱し易く、高品質
のInGaN活性層5が得られ難いと言う問題がある。し
かもIn成分の離脱に伴って活性層5のバンドギャップ
エネルギが高まる結果、その発光効率が低下して発光し
難くなると言う問題が生じた。
However, in a light emitting device manufactured as described above and having InGaN grown as the active layer 5, the In component in the active layer 5 is reduced by the high temperature applied during the crystal growth. There is a problem that it is difficult to obtain a high quality InGaN active layer 5 because the active layer 5 is easily separated. Moreover, as the band gap energy of the active layer 5 increases with the elimination of the In component, there arises a problem that the light emission efficiency is reduced and light emission becomes difficult.

【0007】本発明はこのような事情を考慮してなされ
たもので、その目的は、バンドギャップエネルギを低く
抑えた良質の活性層を得ることができ、その発光効率を
高めて安定な発光を得ることのできるGaN系化合物半
導体発光素子を提供することにある。また本発明は上記
活性層のバンドギャップエネルギを可変することで、そ
の発光波長領域(中心発光波長)を紫外線から赤外線ま
で幅広く設定することのできるGaN系化合物半導体発
光素子を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a high-quality active layer in which the band gap energy is suppressed to a low level. An object of the present invention is to provide a GaN-based compound semiconductor light-emitting device that can be obtained. Another object of the present invention is to provide a GaN-based compound semiconductor light-emitting device in which the emission wavelength region (center emission wavelength) can be set widely from ultraviolet to infrared by changing the band gap energy of the active layer. I do.

【0008】[0008]

【課題を解決するための手段】上述した目的を達成する
べく本発明に係るGaN系化合物半導体発光素子は、そ
の活性層としてIn1-xGax1-y-zAsyz[但し、0≦
x,y,z<1]からなる半導体層を形成したことを特徴
としている。更に好ましくは、請求項2に記載するよう
に上記活性層を挟むクラッド層として、上記In1-xGax
1-y-zAsyz[但し、0≦x,y,z<1]よりもバン
ドギャップエネルギの大きいAlaInbGa1-a-b1-c-d
Ascd[但し、0≦a,b,c,d≦1]からなる半導体
層を形成することを特徴としている。
GaN-based compound semiconductor light-emitting device according to the present invention in order to achieve the above object, according to an aspect of the, In 1-x Ga x N 1-yz As y P z [ However, as an active layer, 0 ≤
x, y, z <1]. More preferably, as the cladding layer sandwiching the active layer as described in claim 2, the In 1-x Ga x
N 1-yz As y P z [ where, 0 ≦ x, y, z <1] a large Al a band gap energy than the In b Ga 1-ab N 1 -cd
As c P d [where, 0 ≦ a, b, c , d ≦ 1] is characterized by forming a semiconductor layer made of.

【0009】即ち、本発明は、その活性層としてIn1-x
Gax1-y-zAsyzを成長させることで、仮にInGaN
AsP活性層におけるIn成分が離脱し、Inの含有量が
極めて少なくなるような場合であっても、V族のAsま
たはPにより上記活性層のバンドギャップエネルギを小
さく抑えるようにし、更には非発光の要因の1つである
窒素抜けによる欠陥の発生を上記InGaNAsP中のAs
やPにて補償するようにしたもので、これによって発光
効率の高い安定した発光を実現し得る良質の活性層を備
えたGaN系化合物半導体発光素子を提供するものであ
る。
That is, according to the present invention, In 1-x
Ga x N 1-yz As y P z be to the growth, if InGaN
Even in the case where the In component in the AsP active layer is released and the content of In becomes extremely small, the band gap energy of the active layer is reduced by As or P of the V group, and furthermore, non-emission is performed. The occurrence of defects due to nitrogen loss, which is one of the causes of
The present invention provides a GaN-based compound semiconductor light emitting device having a high-quality active layer capable of realizing stable light emission with high luminous efficiency.

【0010】更には本発明は、In1-xGax1-y-zAsy
zからなる活性層の組成を変えることでそのバンドギ
ャップエネルギを、例えば3.5eVから1eV以下に
まで広範囲に変え、これによってその発光波長領域(中
心発光波長)を広範囲に設定し得るようにしたGaN系
化合物半導体発光素子を提供するものである。
Furthermore the present invention, In 1-x Ga x N 1-yz As y
By changing the composition of the active layer composed of P z , the band gap energy can be changed over a wide range, for example, from 3.5 eV to 1 eV or less, so that the emission wavelength region (center emission wavelength) can be set over a wide range. And a GaN-based compound semiconductor light-emitting device.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の一
実施形態に係るGaN系化合物半導体発光素子につい
て、その製造手順に従って説明する。この実施形態に係
るGaN系化合物半導体発光素子は、超高真空装置を用
い、ガスソース分子線エピタキシャル成長(GSMB
E)法によりサファイヤ、SiC、またはシリコン等を
基板11として該基板11上に活性層およびクラッド層
を含む半導体多層膜を図1に示すように順にエピタキシ
ャル成長させることにより実現される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A GaN-based compound semiconductor light-emitting device according to an embodiment of the present invention will be described below with reference to the drawings according to the manufacturing procedure. The GaN-based compound semiconductor light emitting device according to this embodiment uses a gas source molecular beam epitaxial growth (GSMB) using an ultra-high vacuum device.
The method is realized by epitaxially growing a semiconductor multilayer film including an active layer and a cladding layer on the substrate 11 by sapphire, SiC, silicon or the like by the method E) as shown in FIG.

【0012】具体的には先ずジメチルヒドラジン(5×
10-5Torr)とGa(5×10-7Torr)とを用い、成長
温度640℃で5nm厚のGaNバッファ層12を前記
基板11上に結晶成長させる。次いでこのGaNバッフ
ァ層12上に、Ga(5×10-7Torr)とアンモニア
[NH3](5×10-6Torr)とを原料として、850
℃でn型のGaN層13を2μm厚に成長させる。
Specifically, first, dimethylhydrazine (5 ×
Using 10 −5 Torr and Ga (5 × 10 −7 Torr), a GaN buffer layer 12 having a thickness of 5 nm is grown on the substrate 11 at a growth temperature of 640 ° C. Next, 850 g of Ga (5 × 10 −7 Torr) and ammonia [NH 3 ] (5 × 10 −6 Torr) are formed on the GaN buffer layer 12.
An n-type GaN layer 13 is grown at 2 ° C. to a thickness of 2 μm.

【0013】以上の前処理を施した後、上記n型のGa
N層13上にn型のクラッド層14としてAlaInbGa
1-a-b1-c-dAscdを、具体的にはAl0.16In0.01Ga
0.830.99As0.01を100nm厚に結晶成長させる。
但し、この場合、Pの組成dは零[=0]である。この
n型クラッド層14の成長は、前述した原料にAl(2
×10-7Torr)、In(1×10-7Torr)、Ga(6×1
-7Torr)、アルシン(6×10-7Torr)、アンモニア
[NH3](5×10-6Torr)、およびSi(5×10-9
Torr)をそれぞれ加えて行われる。
After performing the above pretreatment, the n-type Ga
As the cladding layer 14 of n-type on the N layer 13 Al a In b Ga
1-ab a N 1-cd As c P d , and specifically Al 0.16 In 0.01 Ga
A crystal of 0.83 N 0.99 As 0.01 is grown to a thickness of 100 nm.
However, in this case, the composition d of P is zero [= 0]. The growth of the n-type cladding layer 14 is performed by adding Al (2
× 10 −7 Torr), In (1 × 10 −7 Torr), Ga (6 × 1 Torr)
0 -7 Torr), arsine (6 × 10 -7 Torr), ammonia [NH 3 ] (5 × 10 -6 Torr), and Si (5 × 10 -9 Torr)
Torr).

【0014】次いで上記n型クラッド層14上に活性層
15としてIn1-xGax1-y-zAsyz、具体的にはノン
ドープのIn0.1Ga0.90.98As0.010.01を、成長温
度780℃で50nm厚に結晶成長させる。この活性層
15の結晶成長は、その原料としてアンモニア[N
3](5×10-5Torr)、Ga(7×10-7Torr)、I
n(1×10-7Torr)、アルシン(6×10-7Torr)、
フォスフィン(5×10-7Torr)を用いて行われる。
[0014] Then the In 1-x Ga x N 1 -yz As y P z, non-doped In 0.1 Ga 0.9 N 0.98 As 0.01 P 0.01 and specifically as an active layer 15 on the n-type cladding layer 14, the growth A crystal is grown to a thickness of 50 nm at a temperature of 780 ° C. The crystal growth of the active layer 15 is performed by using ammonia [N
H 3 ] (5 × 10 −5 Torr), Ga (7 × 10 −7 Torr), I
n (1 × 10 −7 Torr), arsine (6 × 10 −7 Torr),
This is performed using phosphine (5 × 10 −7 Torr).

【0015】その後、上記活性層15上にp型導電性の
クラッド層16としてAlaInbGa1 -a-b1-c-dAscd
を、具体的にはAl0.16In0.01Ga0.830.99As0.01
100nm厚に結晶成長させる。このp型クラッド層1
6の成長は、その原料にAl(1×10-7Torr)、In
(1×10-7Torr)、Ga(6×10-7Torr)、アルシ
ン(6×10-7Torr)、アンモニア[NH3](5×1
-6Torr)、およびマグネシウム(1×10-8Torr)を
用いて行われる。
[0015] Thereafter, Al a as p-type conductivity clad layer 16 on the active layer 15 In b Ga 1 -ab N 1 -cd As c P d
Specifically, Al 0.16 In 0.01 Ga 0.83 N 0.99 As 0.01 is grown to a thickness of 100 nm. This p-type cladding layer 1
The growth of Al 6 (1 × 10 −7 Torr), In
(1 × 10 −7 Torr), Ga (6 × 10 −7 Torr), arsine (6 × 10 −7 Torr), ammonia [NH 3 ] (5 × 1
0 -6 Torr) and magnesium (1 × 10 -8 Torr).

【0016】次いでこのp型クラッド層16上にキャッ
プ層17として、p型のGaN層を100nm厚に結晶
成長させる。このp-GaNキャップ層17はアンモニア
[NH3](5×10-6Torr)、Ga(5×10-7Tor
r)、およびマグネシウム(1×10-8Torr)を原料と
して結晶成長させることで形成される。しかる後、その
表面にプラズマCVD装置を用いてSiO2膜等を堆積さ
せ、該SiO2膜をフォトレジストおよび化学エッチング
等によりパターニングし、これをマスクとして前記エピ
タキシャル成長膜を選択的にエッチングして前記n型の
GaN層13を部分的に露出させる。その後、前記p型
のGaNキャップ層17の表面にp電極としてAu/Ni
等の金属を蒸着形成し、また上記n型のGaN層13の
表面にn電極としてTi/Al等の金属を蒸着形成する。
これによってその発光波長が紫外域のGaN系化合物半
導体からなる発光素子(LED)が製造される。
Next, a p-type GaN layer is grown as a cap layer 17 on this p-type cladding layer 16 so as to have a thickness of 100 nm. The p-GaN cap layer 17 is made of ammonia [NH 3 ] (5 × 10 −6 Torr), Ga (5 × 10 −7 Torr).
r) and magnesium (1 × 10 −8 Torr) as a raw material. Thereafter, an SiO 2 film or the like is deposited on the surface thereof using a plasma CVD apparatus, and the SiO 2 film is patterned by a photoresist and chemical etching, and the epitaxial growth film is selectively etched using the mask as a mask. The n-type GaN layer 13 is partially exposed. Thereafter, Au / Ni is formed on the surface of the p-type GaN cap layer 17 as a p-electrode.
And a metal such as Ti / Al is formed as an n-electrode on the surface of the n-type GaN layer 13 by vapor deposition.
Thus, a light emitting device (LED) made of a GaN-based compound semiconductor having an emission wavelength in the ultraviolet region is manufactured.

【0017】このようにして製造され、活性層15とし
てIn0.1Ga0.90.98As0.010.0 1を成長させたGaN
系化合物半導体からなる発光素子に電圧を印加してその
発光特性を調べたところ、4vの印加電圧にてバンド端
430nm付近で著しく強い発光ピークが観察され、そ
の他の発光ピークは観察されなかった。即ち、高輝度に
紫外発光し得る発光素子が実現できた。
[0017] In this manner is produced, GaN growing the In 0.1 Ga 0.9 N 0.98 As 0.01 P 0.0 1 as an active layer 15
When a voltage was applied to the light-emitting element made of a system compound semiconductor and the light-emitting characteristics were examined, a remarkably strong light-emitting peak was observed near a band edge of 430 nm at an applied voltage of 4 V, and no other light-emitting peaks were observed. That is, a light emitting element capable of emitting ultraviolet light with high luminance was realized.

【0018】一方、別の実施形態として前述したAl
0.16In0.01Ga0.830.99As0.01からなるn型導電性
のクラッド層14に代えて、In,AsおよびPの各組成
b,c,dをそれぞれ零[0]としたAl0.1Ga0.9Nから
なるn型のクラッド層14を形成した。このAl0.1Ga
0.9Nからなるn型のクラッド層14の形成は、その原
料としてAl(1×10-7Torr)、Ga(7×10-7Tor
r)、アンモニア[NH3](5×10-6Torr)、および
Si(5×10-9Torr)を用いて行われる。
On the other hand, as another embodiment, the Al
Instead of the n-type conductive cladding layer 14 made of 0.16 In 0.01 Ga 0.83 N 0.99 As 0.01 , Al 0.1 Ga 0.9 N in which each composition b, c, and d of In, As, and P is zero [0] is used. An n-type clad layer 14 was formed. This Al 0.1 Ga
The formation of the n-type cladding layer 14 of 0.9 N is performed by using Al (1 × 10 −7 Torr) and Ga (7 × 10 −7 Torr) as raw materials.
r), ammonia [NH 3 ] (5 × 10 −6 Torr), and Si (5 × 10 −9 Torr).

【0019】次いで上記クラッド層14上に活性層15
としてIn1-xGax1-y-zAsyz、具体的にはGa,Pの
各組成x,yをそれぞれ零[0]としたノンドープのIn
0. 9As0.01を、成長温度780℃で50nm厚に結晶
成長させた。この活性層15の結晶成長は、その原料と
してアンモニア[NH3](5×10-5Torr)、Ga(7
×10-7Torr)、In(1×10-7Torr)、アルシン
(6×10-7Torr)、フォスフィン(5×10-7Torr)
を用いて行われる。
Next, an active layer 15 is formed on the cladding layer 14.
As In 1-x Ga x N 1 -yz As y P z, in particular Ga, non-doped In that the composition x of P, y and respectively zero [0]
The N 0. 9 As 0.01, grown crystal at a growth temperature of 780 ° C. to 50nm thick. The crystal growth of the active layer 15 is performed by using ammonia [NH 3 ] (5 × 10 −5 Torr) and Ga (7
× 10 −7 Torr), In (1 × 10 −7 Torr), arsine (6 × 10 −7 Torr), phosphine (5 × 10 −7 Torr)
This is performed using

【0020】そしてこの活性層15上にp型のクラッド
層16としてAl0.1Ga0.9Nを、Al(1×10-7Tor
r)、Ga(7×10-7Torr)、アンモニア[NH3
(5×10-5Torr)、およびマグネシウム(1×10-8
Torr)を100nm厚に形成し、更にこのp型のクラッ
ド層16上にGa(5×10-7Torr)、アンモニア[N
3](5×10-6Torr)、およびマグネシウム(1×
10-8Torr)を原料としてp型のGaNからなるキャッ
プ層17を100nm厚に形成する。
On this active layer 15, Al 0.1 Ga 0.9 N is formed as a p-type cladding layer 16 by Al (1 × 10 −7 Torr).
r), Ga (7 × 10 −7 Torr), ammonia [NH 3 ]
(5 × 10 −5 Torr), and magnesium (1 × 10 −8 Torr)
Torr) is formed to a thickness of 100 nm, and Ga (5 × 10 −7 Torr) and ammonia [N
H 3 ] (5 × 10 −6 Torr), and magnesium (1 ×
A cap layer 17 made of p-type GaN is formed to a thickness of 100 nm using 10 -8 Torr as a raw material.

【0021】その後、先の実施形態と同様にしてエッチ
ング加工処理を施し、p電極およびn電極をそれぞれ蒸
着形成することで、その発光波長が赤外域のGaN系化
合物半導体からなる発光素子(LED)が製造される。
このようにして製造され、活性層15としてIn0.1
0.9As0.1を成長させたGaN系化合物半導体からなる発
光素子に電圧を印加してその発光特性を調べたところ、
4vの印加電圧にてバンド端860nm付近で著しく強
い発光ピークが観察され、その他の発光ピークは観察さ
れなかった。即ち、高輝度に赤外発光し得る発光素子が
実現できた。
Thereafter, an etching process is performed in the same manner as in the previous embodiment, and a p-electrode and an n-electrode are formed by vapor deposition, respectively. Is manufactured.
Manufactured in this manner, the active layer 15 is formed of In 0.1 N
When a voltage was applied to a light emitting device made of a GaN-based compound semiconductor on which 0.9 As 0.1 was grown and its light emitting characteristics were examined,
At an applied voltage of 4 V, a remarkably strong emission peak was observed near the band edge of 860 nm, and no other emission peak was observed. That is, a light emitting element capable of emitting infrared light with high luminance was realized.

【0022】尚、上述した実施形態においてはガスソー
スMBE法を用いて結晶成長させたが、有機金属気相成
長(MOCVD)法を用いることも可能である。この場
合、その原料として有機金属であるトリメチルガリウム
やトリメチルインジウム、トリメチルアルミニウム等を
用いれば良く、V族原料としてはアンモニア、そしてn
型のドーパントとしてシラン、p型のドーパントとして
ビスシクロペンタジエニルマグネシウムを用いるように
すれば良い。
In the above-described embodiment, the crystal is grown using the gas source MBE method, but it is also possible to use the metal organic chemical vapor deposition (MOCVD) method. In this case, trimethylgallium, trimethylindium, trimethylaluminum or the like which is an organic metal may be used as the raw material, and ammonia and n
It is sufficient to use silane as the type dopant and biscyclopentadienyl magnesium as the p-type dopant.

【0023】またクラッド層14,16をなすAlaInb
Ga1-a-b1-c-dAscdの組成を0≦a,b,c,d≦1
の範囲で可変して、その発光波長を代えることも可能で
ある。この場合、活性層15に対してクラッド層14,
16のバンドギャップエネルギが常に大きくなるように
その組成を選定することは勿論のことである。更には活
性層15としてInN1-zzやInN1-y-zAsyzを用い
るようにしても良い。
[0023] Al a an In b forming the cladding layers 14 and 16
Ga 1-ab N 1-cd As c P 0 ≦ a composition of d, b, c, d ≦ 1
It is also possible to change the emission wavelength by changing the emission wavelength in the range described above. In this case, the cladding layer 14,
It goes without saying that the composition is selected so that the bandgap energy of 16 is always large. Furthermore it may be used InN 1-z P z and InN 1-yz As y P z as the active layer 15.

【0024】また実施形態においては、その発光層を活
性層15およびクラッド層14,16からなるダブルへ
テロ構造として実現したが、InNAs、InNP、InN
AsP等の多重または単一の量子井戸構造として実現す
ることも可能である。更には選択成長法を用いることで
単一の基板11上に組成の異なるIn1-xGax1-y-zAs
yz/AlaInbGa1-a-b1-c-dAscd系の成長膜をそ
れぞれ選択的に形成し、例えば赤、緑、青からなる3原
色を発光させることで白色光を得るようにすることも可
能である。その他、本発明はその要旨を逸脱しない範囲
で種々変形して実施することができる。
Further, in the embodiment, the light emitting layer is realized as a double hetero structure composed of the active layer 15 and the cladding layers 14 and 16, but the light emitting layer is formed of InNAs, InNP, InNN.
It is also possible to realize a multiple or single quantum well structure such as AsP. Furthermore different compositions on a single substrate 11 by using a selective growth method In 1-x Ga x N 1 -yz As
y P z / Al a In b Ga 1-ab N 1-cd As c P d based growth film was selectively formed in, for example, red, green, and white light to emit light of three primary colors consisting of blue It is also possible to obtain. In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、活
性層としてIn1-xGax1-y-zAsyz[但し、0≦x,
y,z<1]からなる半導体層を形成しているので、そ
の結晶成長過程でIn成分が離脱してその含有量が少な
くなるような場合であっても、AsまたはPにより活性
層のバンドギャップエネルギを小さく抑えることがで
き、また窒素抜けによる欠陥の発生を上記InGaNAs
P中のAsやPにて補償し得るので、発光効率の高い安
定した発光を実現し得る良質の活性層を備えたGaN系
化合物半導体発光素子を実現することができる。
According to the present invention as described in the foregoing, In 1-x Ga x N 1-yz As y P z as an active layer [where, 0 ≦ x,
Since the semiconductor layer composed of y, z <1] is formed, the band of the active layer is determined by As or P even when the In component is released during the crystal growth process and the content thereof is reduced. The gap energy can be kept small, and the occurrence of defects due to nitrogen elimination can be reduced by the above-mentioned InGaNAs.
Since compensation can be performed by As or P in P, a GaN-based compound semiconductor light emitting device having a high quality active layer capable of realizing stable light emission with high luminous efficiency can be realized.

【0026】しかもIn1-xGax1-y-zAsyzからなる
活性層の組成を変えることでそのバンドギャップエネル
ギを変え、仕様に応じた発光波長のGaN系化合物半導
体発光素子を実現することができる等の効果が奏せられ
る。
[0026] Moreover In 1-x Ga x N change their bandgap energy at a 1-yz As changing the composition of y P z comprising the active layer, realizing a GaN-based compound semiconductor light-emitting device having an emission wavelength corresponding to the specification And the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るGaN系化合物半導
体発光素子の概略構成図。
FIG. 1 is a schematic configuration diagram of a GaN-based compound semiconductor light emitting device according to an embodiment of the present invention.

【図2】従来一般的なGaN系化合物半導体発光素子の
概略構成図。
FIG. 2 is a schematic configuration diagram of a conventional general GaN-based compound semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

11 基板 12 GaNバッファ層 13 n型のGaN層 14 n型のクラッド層(AlaInbGa1-a-b1-c-dAs
cd) 15 活性層(In1-xGax1-y-zAsyz) 16 p型のクラッド層(AlaInbGa1-a-b1-c-dAs
cd) 17 p型のGaNキャップ層
11 substrate 12 GaN buffer layer 13 n-type GaN layer 14 n-type cladding layer of (Al a In b Ga 1- ab N 1-cd As
c P d) 15 active layer (In 1-x Ga x N 1-yz As y P z) 16 p -type cladding layer (Al a In b Ga 1- ab N 1-cd As
c P d ) 17p-type GaN cap layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 GaN系化合物半導体からなる活性層と
クラッド層とを備えた発光素子であって、 前記活性層としてIn1-xGax1-y-zAsyz[但し、0
≦x,y,z<1]からなる半導体層を形成したことを特
徴とするGaN系化合物半導体発光素子。
1. A light emitting device comprising an active layer and a clad layer composed of a GaN-based compound semiconductor, In 1-x Ga x N 1-yz As y P z [ However, as the active layer, 0
GaN-based compound semiconductor light-emitting device, wherein a semiconductor layer comprising ≦ x, y, z <1] is formed.
【請求項2】 前記クラッド層としてAlaInbGa1-a-b
1-c-dAscd[但し、0≦a,b,c,d≦1]からな
る半導体層を形成したことを特徴とする請求項1に記載
のGaN系化合物半導体発光素子。
As claimed in claim 2, wherein said cladding layer Al a In b Ga 1-ab
N 1-cd As c P d [ where, 0 ≦ a, b, c , d ≦ 1] GaN -based compound semiconductor light-emitting device according to claim 1, characterized in that the formation of the semiconductor layer made of.
JP35312098A 1998-12-11 1998-12-11 GaN compound semiconductor light emitting device Pending JP2000183399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35312098A JP2000183399A (en) 1998-12-11 1998-12-11 GaN compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35312098A JP2000183399A (en) 1998-12-11 1998-12-11 GaN compound semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2000183399A true JP2000183399A (en) 2000-06-30

Family

ID=18428708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35312098A Pending JP2000183399A (en) 1998-12-11 1998-12-11 GaN compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2000183399A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021604A1 (en) * 2000-09-08 2002-03-14 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
WO2002025746A1 (en) * 2000-09-21 2002-03-28 Sharp Kabushiki Kaisha Nitride semiconductor light emitting element and optical device containing it
WO2003038957A1 (en) * 2001-10-29 2003-05-08 Sharp Kabushiki Kaisha Nitride semiconductor device, its manufacturing method, and semiconductor optical apparatus
DE10355962A1 (en) * 2003-09-30 2005-04-28 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor body with confinement layers
JP2008273835A (en) * 2008-06-09 2008-11-13 Sharp Corp Nitride semiconductor laser device and method for manufacturing nitride semiconductor laser device
US7495249B2 (en) 2003-09-30 2009-02-24 Osram Opto Semiconductors Gmbh Radiation-emitting semiconducting body with confinement layer
CN112490257A (en) * 2020-12-15 2021-03-12 南京工业职业技术大学 GaN-based hybrid three-dimensional imaging and distance measuring device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021604A1 (en) * 2000-09-08 2002-03-14 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
US6858882B2 (en) 2000-09-08 2005-02-22 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
US7012283B2 (en) 2000-09-21 2006-03-14 Sharp Kabushiki Kaisha Nitride semiconductor light emitting element and optical device containing it
WO2002025746A1 (en) * 2000-09-21 2002-03-28 Sharp Kabushiki Kaisha Nitride semiconductor light emitting element and optical device containing it
US7781244B2 (en) 2001-10-29 2010-08-24 Sharp Kabushiki Kaisha Method of manufacturing nitride-composite semiconductor laser element, with disclocation control
US7498608B2 (en) 2001-10-29 2009-03-03 Sharp Kabushiki Kaisha Nitride-composite semiconductor laser element, its manufacturing method, and semiconductor optical device
WO2003038957A1 (en) * 2001-10-29 2003-05-08 Sharp Kabushiki Kaisha Nitride semiconductor device, its manufacturing method, and semiconductor optical apparatus
US8334544B2 (en) 2001-10-29 2012-12-18 Sharp Kabushiki Kaisha Nitride semiconductor laser device including growth-inhibiting film at dislocation concentrated region
US8502238B2 (en) 2001-10-29 2013-08-06 Sharp Kabushiki Kaisha Nitride-composite semiconductor laser element, its manufacturing method, and semiconductor optical device
DE10355962A1 (en) * 2003-09-30 2005-04-28 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor body with confinement layers
US7495249B2 (en) 2003-09-30 2009-02-24 Osram Opto Semiconductors Gmbh Radiation-emitting semiconducting body with confinement layer
JP2008273835A (en) * 2008-06-09 2008-11-13 Sharp Corp Nitride semiconductor laser device and method for manufacturing nitride semiconductor laser device
CN112490257A (en) * 2020-12-15 2021-03-12 南京工业职业技术大学 GaN-based hybrid three-dimensional imaging and distance measuring device
CN112490257B (en) * 2020-12-15 2021-11-09 南京工业职业技术大学 GaN-based hybrid three-dimensional imaging and distance measuring device

Similar Documents

Publication Publication Date Title
JP4092927B2 (en) Group III nitride compound semiconductor, group III nitride compound semiconductor element, and method for manufacturing group III nitride compound semiconductor substrate
US6861663B2 (en) Group III nitride compound semiconductor light-emitting device
US6677617B2 (en) Semiconductor LED composed of group III nitrided emission and fluorescent layers
US20060223288A1 (en) Group-III nitride semiconductor stack, method of manufacturing the same, and group-III nitride semiconductor device
KR100898553B1 (en) III-nitride semiconductor device
JP2007227671A (en) Light emitting element
KR20090102203A (en) Light emitting device and method for fabricating the same
CN1431722A (en) Blue light emitting device of III group nitrogen semi-conductor
JP3105981B2 (en) Semiconductor light emitting device
KR100542870B1 (en) Semiconductor light emitting device and manufacturing method thereof
US6921923B1 (en) Group III nitride compound semiconductor device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH11354840A (en) Manufacturing method of GaN-based quantum dot structure and its use
JP2000183399A (en) GaN compound semiconductor light emitting device
JPH10270756A (en) Gallium nitride compound semiconductor device
JP2007200933A (en) Method of manufacturing nitride-based semiconductor element
JP2004014587A (en) Nitride-based compound semiconductor epitaxial wafer and light emitting device
JP2007214378A (en) Nitride semiconductor device
KR100728132B1 (en) Light Emitting Diode Using Current Diffusion Layer
JP2002075880A (en) Method for forming nitride-based semiconductor layer and method for manufacturing nitride-based semiconductor element
JP3302162B2 (en) Semiconductor light emitting device
KR100881053B1 (en) Nitride-based light emitting device
KR100853935B1 (en) Semiconductor light emitting diode and method of manufacturing the same
KR100742989B1 (en) Method of manufacturing gallium nitride based light emitting device
KR20060066872A (en) Substrate for semiconductor light emitting device and nitride semiconductor light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040825