[go: up one dir, main page]

JP2000195831A - Metal polishing method - Google Patents

Metal polishing method

Info

Publication number
JP2000195831A
JP2000195831A JP10372607A JP37260798A JP2000195831A JP 2000195831 A JP2000195831 A JP 2000195831A JP 10372607 A JP10372607 A JP 10372607A JP 37260798 A JP37260798 A JP 37260798A JP 2000195831 A JP2000195831 A JP 2000195831A
Authority
JP
Japan
Prior art keywords
metal
acid
polishing
liquid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10372607A
Other languages
Japanese (ja)
Other versions
JP4078473B2 (en
Inventor
Takeshi Uchida
剛 内田
Tetsuya Hoshino
鉄哉 星野
Hiroki Terasaki
裕樹 寺崎
Yasuo Kamigata
康雄 上方
Naoyuki Koyama
直之 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP37260798A priority Critical patent/JP4078473B2/en
Publication of JP2000195831A publication Critical patent/JP2000195831A/en
Application granted granted Critical
Publication of JP4078473B2 publication Critical patent/JP4078473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a highly reliable metal film-buried pattern by a method, wherein a metal polishing method uses an enriched liquid which is diluted, obtained by enriching an abrasive liquid for a metal containing a metallic oxidizing agent, a metal oxide solution agent, a protective film forming agent and water. SOLUTION: This method include 70 pts.wt. of water is added to 1.5 pts.wt. of a benzotriazole, and the benzotriazole is stirred in a hot water bath of 40 deg.C by a stirring vane and the water is dissolved in the benzotriazole. Continuingly, 0.5 pts.wt. (protective film forming agent) of a 4-carboxylbenzotriazole and 1.5 pts.wt. (metal oxide disolving agent) of a DL-malic acid (special grade reagent) are added to the benzotriazole to dissolve the 4-carboxylbenzotriazole and the DL-malic acid in the benzotriazole, and the obtained is used as an enriched liquid enriched at a concentration 10 times higher than the concentration of the benzotriazole. Then 63 pts.wt. of water is added to the obtained enriched liquid 7 to dissolve in the liquid 7, and the obtained solution by adding 33.2 pts.wt. (metal oxidizing agent) of hydrogen peroxide solution (special grade reagent, 30% aqueous solution) to that obtained by dissolving the water in the liquid 7 is used as an abrasive liquid for metals. This abrasive liquid is used, and chemical and mechanical polishing is carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に半導体デバイスの
配線工程における金属用研磨液及び研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal polishing liquid and a polishing method in a wiring process of a semiconductor device.

【0002】[0002]

【従来の技術】近年、半導体集積回路(以下LSIと記
す)の高集積化、高性能化に伴って新たな微細加工技術
が開発されている。化学機械研磨(以下CMPと記す)
法もその一つであり、LSI製造工程、特に多層配線形
成工程における層間絶縁膜の平坦化、金属プラグ形成、
埋め込み配線形成において頻繁に利用される技術であ
る。この技術は、例えば米国特許No.4944836
に開示されている。
2. Description of the Related Art In recent years, a new fine processing technology has been developed in accordance with high integration and high performance of a semiconductor integrated circuit (hereinafter, referred to as LSI). Chemical mechanical polishing (hereinafter referred to as CMP)
The method is one of them. For example, in an LSI manufacturing process, particularly, in a multilayer wiring forming process, an interlayer insulating film is flattened, a metal plug is formed,
This is a technique frequently used in the formation of embedded wiring. This technique is disclosed, for example, in US Pat. 4944836
Is disclosed.

【0003】また、最近はLSIを高性能化するため
に、配線材料として銅合金の利用が試みられている。し
かし、銅合金は従来のアルミニウム合金配線の形成で頻
繁に用いられたドライエッチング法による微細加工が困
難である。そこで、あらかじめ溝を形成してある絶縁膜
上に銅合金薄膜を堆積して埋め込み、溝部以外の銅合金
薄膜をCMPにより除去して埋め込み配線を形成する、
いわゆるダマシン法が主に採用されている。この技術
は、例えば特開平2−278822号に開示されてい
る。
Recently, use of a copper alloy as a wiring material has been attempted in order to improve the performance of an LSI. However, it is difficult to finely process a copper alloy by a dry etching method frequently used in forming a conventional aluminum alloy wiring. Therefore, a copper alloy thin film is deposited and buried on an insulating film in which a groove is formed in advance, and a copper alloy thin film other than the groove is removed by CMP to form a buried wiring.
The so-called damascene method is mainly employed. This technique is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-278822.

【0004】金属のCMPの一般的な方法は、円形の研
磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パ
ッド表面を金属用研磨液で浸し、基体の金属膜を形成し
た面を押し付けて、その裏面から所定の圧力(以下研磨
圧力と記す)を加えた状態で研磨定盤を回し、研磨液と
金属膜の凸部との機械的摩擦によって凸部の金属膜を除
去するものである。
A general method of metal CMP is to attach a polishing pad to a circular polishing platen (platen), immerse the surface of the polishing pad with a metal polishing solution, and press the surface of the substrate on which the metal film is formed. Then, the polishing platen is rotated while applying a predetermined pressure (hereinafter, referred to as a polishing pressure) from the back surface, and the metal film of the convex portion is removed by mechanical friction between the polishing liquid and the convex portion of the metal film. is there.

【0005】CMPに用いられる金属用研磨液は、一般
には酸化剤及び固体砥粒からなっており必要に応じてさ
らに酸化金属溶解剤、保護膜形成剤が添加される。まず
酸化によって金属膜表面を酸化し、その酸化層を固体砥
粒によって削り取るのが基本的なメカニズムと考えられ
ている。凹部の金属表面の酸化層は研磨パッドにあまり
触れず、固体砥粒による削り取りの効果が及ばないの
で、CMPの進行とともに凸部の金属層が除去されて基
体表面は平坦化される。この詳細についてはジャーナル
・オブ・エレクトロケミカルソサエティ誌の第138巻
11号(1991年発行)の3460〜3464頁に開
示されている。
[0005] The metal polishing liquid used for CMP generally comprises an oxidizing agent and solid abrasive grains, and if necessary, a metal oxide dissolving agent and a protective film forming agent are further added. It is considered that the basic mechanism is to first oxidize the surface of the metal film by oxidation and to scrape off the oxidized layer with solid abrasive grains. The oxide layer on the metal surface of the concave portion does not substantially touch the polishing pad, and the effect of the shaving by the solid abrasive grains does not reach. Therefore, as the CMP proceeds, the metal layer on the convex portion is removed and the substrate surface is flattened. The details are disclosed in Journal of Electrochemical Society, Vol. 138, No. 11, published in 1991, pp. 3460-3364.

【0006】固体砥粒によって削り取られた金属酸化物
の粒を研磨液に溶解させてしまうと固体砥粒による削り
取りの効果が増すためであるためと解釈できる。但し、
凹部の金属膜表面の酸化層も溶解(以下エッチングと記
す)されて金属膜表面が露出すると、酸化剤によって金
属膜表面がさらに酸化され、これが繰り返されると凹部
の金属膜のエッチングが進行してしまい、平坦化効果が
損なわれることが懸念される。これを防ぐためにさらに
保護膜形成剤が添加される。酸化金属溶解剤と保護膜形
成剤の効果のバランスを取ることが重要であり、凹部の
金属膜表面の酸化層はあまりエッチングされず、削り取
られた酸化層の粒が効率良く溶解されCMPによる研磨
速度が大きいことが望ましい。
It can be interpreted that dissolving the metal oxide particles removed by the solid abrasive grains in the polishing liquid increases the effect of the solid abrasive grains. However,
When the oxide layer on the surface of the metal film in the recess is also dissolved (hereinafter referred to as etching) and the surface of the metal film is exposed, the surface of the metal film is further oxidized by an oxidizing agent. When this is repeated, the etching of the metal film in the recess proceeds. Thus, there is a concern that the flattening effect is impaired. In order to prevent this, a protective film forming agent is further added. It is important to balance the effects of the metal oxide dissolving agent and the protective film forming agent. The oxide layer on the surface of the metal film in the concave portion is not etched so much, the particles of the cut oxide layer are efficiently dissolved, and polishing by CMP is performed. High speed is desirable.

【0007】この様に酸化金属溶解剤と保護膜形成剤を
添加して化学反応の効果を加えることにより、CMP速
度(CMPによる研磨速度)が向上すると共に、CMP
される金属層表面の損傷(ダメージ)も低減される効果
が得られる。
As described above, by adding the metal oxide dissolving agent and the protective film forming agent to add a chemical reaction effect, the CMP speed (polishing speed by CMP) is improved, and the CMP speed is improved.
The effect that the damage (damage) of the metal layer surface to be performed is also reduced is obtained.

【0008】しかしながら、従来の固体砥粒を含む金属
用研磨液を用いてCMPによる埋め込み配線形成を行う
場合には、(1)埋め込まれた金属配線の表面中央部分
が等方的に腐食されて皿の様に窪む現象(以下ディッシ
ングと記す)の発生、(2)固体砥粒に由来する研磨傷
(スクラッチ)の発生、(3)研磨後の基体表面に残留
する固体砥粒を除去するための洗浄プロセスが複雑であ
ること、(4)固体砥粒そのものの原価や廃液処理に起
因するコストアップ、等の問題が生じる。
However, when a buried wiring is formed by CMP using a conventional metal polishing slurry containing solid abrasive grains, (1) the surface central portion of the buried metal wiring is isotropically corroded. Generation of a dish-like phenomenon (hereinafter referred to as dishing), (2) generation of polishing scratches (scratch) derived from solid abrasive grains, and (3) removal of solid abrasive grains remaining on the substrate surface after polishing. The cleaning process is complicated, and (4) the cost of the solid abrasive grains itself and the cost increase due to the waste liquid treatment arise.

【0009】上記問題点の内(4)については、金属用
研磨液の濃縮液を用いることにより研磨液メーカの生産
コストを低減し、結果として濃縮液を希釈したもののコ
ストも下げることにより改善可能である。また、濃縮液
使用により研磨液生産設備のスケールを上げる必要がな
くなるため、新たな設備投資を行わずに量産化に対応で
きる利点がある。濃縮液使用によって得られる効果を考
慮すると10倍以上の濃縮液作製が可能であることが望
ましい。
The above problem (4) can be improved by reducing the production cost of the polishing solution maker by using the concentrated solution of the metal polishing solution, and consequently by reducing the cost of the diluted solution. It is. In addition, since the use of the concentrated solution eliminates the need to increase the scale of the polishing liquid production equipment, there is an advantage that it is possible to cope with mass production without investing in new equipment. In consideration of the effect obtained by using the concentrated solution, it is desirable that the concentrated solution can be prepared ten times or more.

【0010】ディッシングや研磨中の銅合金の腐食を抑
制し、信頼性の高いLSI配線を形成するために、グリ
シン等のアミノ酢酸又はアミド硫酸からなる酸化金属溶
解剤及びBTA(ベンゾトリアゾール)を含有する金属
用研磨液を用いる方法が提唱されている。この技術は例
えば特開平8−83780号に記載されている。
[0010] In order to suppress corrosion of the copper alloy during dishing and polishing and to form a highly reliable LSI wiring, a metal oxide dissolving agent composed of aminoacetic acid or amidosulfuric acid such as glycine and BTA (benzotriazole) are contained. A method using a metal polishing solution has been proposed. This technique is described in, for example, JP-A-8-83780.

【0011】[0011]

【発明が解決しようとする課題】しかし、BTAの水に
対する溶解度は低いため(2g/20℃水100c
c)、特定の金属用研磨液においては目標の10倍濃縮
ができなかった(例えばBTA0.2重量%を含む金属
研磨液の濃縮は5倍まで可能、10倍では室温10℃以
下で析出)。従って、研磨液を10倍以上濃縮可能で、
且つ室温0℃以上の通常の環境で濃縮液中のBTAを析
出させないような金属用研磨液が望まれていた。本発明
は、金属研磨液の濃縮液を希釈することを特徴とし、信
頼性の高い金属膜の埋め込みパターン形成を可能とする
金属研磨方法を提供するものである。
However, since the solubility of BTA in water is low (2 g / 20 ° C. water 100c).
c) In the polishing solution for a specific metal, the target concentration of 10 times could not be concentrated (for example, the concentration of a metal polishing solution containing 0.2% by weight of BTA can be increased up to 5 times, and in the case of 10 times, precipitation at room temperature of 10 ° C. or less). . Therefore, the polishing liquid can be concentrated 10 times or more,
In addition, there has been a demand for a metal polishing solution that does not precipitate BTA in a concentrated solution in a normal environment at room temperature of 0 ° C. or higher. SUMMARY OF THE INVENTION The present invention provides a metal polishing method characterized by diluting a concentrated solution of a metal polishing liquid and enabling formation of a highly reliable embedded pattern of a metal film.

【0012】[0012]

【課題を解決するための手段】本発明の金属研磨方法
は、金属の酸化剤、酸化金属溶解剤、保護膜形成剤及び
水を含有する金属用研磨液の濃縮液を希釈して使用する
ことを特徴とする。金属用研磨液の濃縮液に親水性基を
有する保護膜形成剤を添加することが好ましい。本発明
の金属研磨液は、金属の酸化剤、酸化金属溶解剤、保護
膜形成剤及び水を含有する。保護膜形成剤は金属表面に
保護膜を形成するもので、アンモニア、アルキルアミ
ン、アミノ酸、イミン、アゾール等の含窒素化合物及び
その塩、及びメルカプタプタン、グルコース及びセルロ
ースから選ばれた少なくとも一種が好ましい。
According to the metal polishing method of the present invention, a concentrated metal polishing solution containing a metal oxidizing agent, a metal oxide dissolving agent, a protective film forming agent and water is diluted and used. It is characterized by. It is preferable to add a protective film forming agent having a hydrophilic group to the concentrate of the metal polishing solution. The metal polishing liquid of the present invention contains a metal oxidizing agent, a metal oxide dissolving agent, a protective film forming agent, and water. The protective film forming agent forms a protective film on the metal surface, and is preferably at least one selected from nitrogen-containing compounds such as ammonia, alkylamines, amino acids, imines and azoles and salts thereof, and mercaptan, glucose and cellulose.

【0013】酸化剤としては、過酸化水素、硝酸、過ヨ
ウ素酸カリウム、次亜塩素酸及びオゾン水から選ばれた
少なくとも一種が好ましい。酸化金属溶解剤としては、
有機酸、そのアンモニウム塩及び硫酸から選ばれた少な
くとも一種が好ましい。本発明の研磨方法は、上記の金
属用研磨液を用いて銅、銅合金及び銅又は銅合金の酸化
物から選ばれた少なくとも1種の金属層を含む積層膜か
らなる金属膜を研磨する工程によって少なくとも金属膜
の一部を除去する研磨方法である。
The oxidizing agent is preferably at least one selected from hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid and ozone water. As a metal oxide dissolving agent,
At least one selected from organic acids, ammonium salts thereof, and sulfuric acid is preferred. The polishing method of the present invention is a step of polishing a metal film made of a laminated film including at least one metal layer selected from copper, a copper alloy, and an oxide of copper or a copper alloy using the above-mentioned metal polishing liquid. Is a polishing method for removing at least a part of the metal film.

【0014】抑制すべきエッチング速度の値としては1
0nm/min以下に抑制できれば好ましい平坦化効果
が得られることが分かった。CMP速度の低下が許容で
きる範囲であればエッチング速度はさらに低い方が望ま
しく、5nm/min以下に抑制できれば例えば50%
程度の過剰CMP(金属膜をCMP除去するに必要な時
間の1.5倍のCMPを行うこと)を行ってもディッシ
ングは問題とならない程度に留まる。さらにエッチング
速度を1nm/min以下に抑制できれば、100%以
上の過剰CMPを行ってもディッシングは問題とならな
い。エッチング速度は、研磨液中に被研磨基板(表面に
凹部を有する基体上に金属膜を形成・充填した基板)を
浸し、室温で100rpmで攪拌したときの、金属膜の
エッチング速度であり、金属膜厚差を電気抵抗値から換
算して求める。
The value of the etching rate to be suppressed is 1
It has been found that a preferable flattening effect can be obtained if it can be suppressed to 0 nm / min or less. If the decrease in the CMP rate is within an acceptable range, it is desirable that the etching rate be even lower, and if it can be suppressed to 5 nm / min or less, for example, 50%
Even if an excessive amount of CMP is performed (performing CMP 1.5 times as long as the time required for removing the metal film by CMP), dishing is not a problem. Further, if the etching rate can be suppressed to 1 nm / min or less, dishing does not pose a problem even if excess CMP of 100% or more is performed. The etching rate is an etching rate of a metal film when a substrate to be polished (a substrate in which a metal film is formed and filled on a substrate having a concave portion on the surface) is immersed in a polishing liquid and stirred at 100 rpm at room temperature. The difference in film thickness is obtained by converting from the electric resistance value.

【0015】[0015]

【発明の実施の形態】本発明においては、表面に凹部を
有する基体上に銅、銅合金(銅/クロム等)を含む金属
膜を形成・充填する。この基体を本発明による研磨液を
用いてCMPすると、基体の凸部の金属膜が選択的にC
MPされて、凹部に金属膜が残されて所望の導体パター
ンが得られる。本発明の研磨液では、実質的に固体砥粒
を含まなくとも良く、固体砥粒よりもはるかに機械的に
柔らかい研磨パッドとの摩擦によってCMPが進むため
に研磨傷は劇的に低減される。本発明の金属用研磨液
は、酸化剤、酸化金属溶解剤、保護膜形成剤及び水を必
須成分とする。固体砥粒は実質的に含まれなくとも良い
が、使用することもできる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a metal film containing copper and a copper alloy (such as copper / chromium) is formed and filled on a substrate having a concave portion on the surface. When this substrate is subjected to CMP using the polishing liquid according to the present invention, the metal film on the convex portion of the substrate is selectively subjected to the CMP.
By performing the MP, the metal film is left in the concave portion to obtain a desired conductor pattern. The polishing liquid of the present invention may be substantially free of solid abrasive grains, and polishing scratches are dramatically reduced because CMP proceeds by friction with a polishing pad that is much more mechanically softer than solid abrasive grains. . The metal polishing slurry of the present invention contains an oxidizing agent, a metal oxide dissolving agent, a protective film forming agent, and water as essential components. Solid abrasive particles need not be substantially contained, but may be used.

【0016】金属の酸化剤としては、過酸化水素(H2
2 )、硝酸、過ヨウ素酸カリウム、次亜塩素酸、オゾ
ン水等が挙げられ、その中でも過酸化水素が特に好まし
い。基体が集積回路用素子を含むシリコン基板である場
合、アルカリ金属、アルカリ土類金属、ハロゲン化物な
どによる汚染は望ましくないので、不揮発成分を含まな
い酸化剤が望ましい。但し、オゾン水は組成の時間変化
が激しいので過酸化水素が最も適している。但し、適用
対象の基体が半導体素子を含まないガラス基板などであ
る場合は不揮発成分を含む酸化剤であっても差し支えな
い。
As a metal oxidizing agent, hydrogen peroxide (H 2
O 2 ), nitric acid, potassium periodate, hypochlorous acid, ozone water, etc., of which hydrogen peroxide is particularly preferred. When the base is a silicon substrate including an element for an integrated circuit, contamination by an alkali metal, an alkaline earth metal, a halide, or the like is not desirable. Therefore, an oxidizing agent containing no nonvolatile component is desirable. However, hydrogen peroxide is most suitable because the composition of ozone water changes drastically with time. However, when the substrate to be applied is a glass substrate or the like containing no semiconductor element, an oxidizing agent containing a nonvolatile component may be used.

【0017】酸化金属溶解剤は、水溶性のものが望まし
い。以下の群から選ばれたものの水溶液が適している。
ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル
酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エ
チル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2
−メチルヘキサン酸、n−オクタン酸、2−エチルヘキ
サン酸、安息香酸、グリコ−ル酸、サリチル酸、グリセ
リン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、
アジピン酸、ピメリン酸、マレイン酸、フタル酸、リン
ゴ酸、酒石酸、クエン酸等、及びそれらの有機酸のアン
モニウム塩等の塩、硫酸、硝酸、アンモニア、アンモニ
ウム塩類、例えば過硫酸アンモニウム、硝酸アンモニウ
ム、塩化アンモニウム等、クロム酸等又はそれらの混合
物等が挙げられる。これらの中ではギ酸、マロン酸、リ
ンゴ酸、酒石酸、クエン酸が銅、銅合金及び銅又は銅合
金の酸化物から選ばれた少なくとも1種の金属層を含む
積層膜に対して好適である。これらは後述の保護膜形成
剤とのバランスが得やすい点で好ましい。特に、リンゴ
酸、酒石酸、クエン酸については実用的なCMP速度を
維持しつつ、エッチング速度を効果的に抑制できるとい
う点で好ましい。
The metal oxide dissolving agent is preferably water-soluble. Aqueous solutions of those selected from the following groups are suitable.
Formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid,
-Methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid,
Adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid, etc., and salts of these organic acids such as ammonium salt, sulfuric acid, nitric acid, ammonia, ammonium salts such as ammonium persulfate, ammonium nitrate, ammonium chloride And chromic acid and the like, and mixtures thereof. Among these, formic acid, malonic acid, malic acid, tartaric acid, and citric acid are suitable for a laminated film including at least one metal layer selected from copper, a copper alloy, and an oxide of copper or a copper alloy. These are preferred because they can be easily balanced with a protective film forming agent described later. In particular, malic acid, tartaric acid, and citric acid are preferable in that the etching rate can be effectively suppressed while maintaining a practical CMP rate.

【0018】添加する保護膜形成剤は、以下の群から選
ばれたものが好適である。アンモニア、ジメチルアミ
ン、トリメチルアミン、トリエチルアミン、プロピレン
ジアミン、エチレンジアミンテトラ酢酸(EDTA)、
ジエチルジチオカルバミン酸ナトリウム及びキトサン等
のアンモニア及びアルキルアミン;グリシン、L−アラ
ニン、β−アラニン、L−2−アミノ酪酸、L−ノルバ
リン、L−バリン、L−ロイシン、L−ノルロイシン、
L−イソロイシン、L−アロイソロイシン、L−フェニ
ルアラニン、L−プロリン、サルコシン、L−オルニチ
ン、L−リシン、タウリン、L−セリン、L−トレオニ
ン、L−アロトレオニン、L−ホモセリン、L−チロシ
ン、3,5−ジヨ−ド−L−チロシン、β−(3,4−
ジヒドロキシフェニル)−L−アラニン、L−チロキシ
ン、4−ヒドロキシ−L−プロリン、L−システィン、
L−メチオニン、L−エチオニン、L−ランチオニン、
L−シスタチオニン、L−シスチン、L−システィン
酸、L−アスパラギン酸、L−グルタミン酸、S−(カ
ルボキシメチル)−L−システィン、4−アミノ酪酸、
L−アスパラギン、・L−グルタミン、アザセリン、L
−アルギニン、L−カナバニン、L−シトルリン、δ−
ヒドロキシ−L−リシン、クレアチン、L−キヌレニ
ン、L−ヒスチジン、1−メチル−L−ヒスチジン、3
−メチル−L−ヒスチジン、エルゴチオネイン、L−ト
リプトファン、アクチノマイシンC1、アパミン、アン
ギオテンシンI、アンギオテンシンII及びアンチパイ
ン等のアミノ酸;ジチゾン、クプロイン(2,2’−ビ
キノリン)、ネオクプロイン(2,9−ジメチル−1,
10−フェナントロリン)、バソクプロイン(2,9−
ジメチル−4,7−ジフェニル−1,10−フェナント
ロリン)及びキュペラゾン(ビスシクロヘキサノンオキ
サリルヒドラゾン)等のイミン;ベンズイミダゾール−
2−チオール、トリアジンジチオール、トリアジントリ
チオール、2−[2−(ベンゾチアゾリル)チオプロピ
オン酸、2−[2−(ベンゾチアゾリル)チオブチル
酸、2−メルカプトベンゾチアゾール)、1,2,3−
トリアゾール、1,2,4−トリアゾール、3−アミノ
−1,2,4−トリアゾール、ベンゾトリアゾール、1
−ヒドロキシベンゾトリアゾール、1−ジヒドロキシプ
ロピルベンゾトリアゾール、2,3−ジカルボキシプロ
ピルベンゾトリアゾール、4−ヒドロキシベンゾトリア
ゾール、4−カルボキシルベンゾトリアゾール、4−カ
ルボキシルベンゾトリアゾールメチルルエステル、4−
カルボキシルベンゾトリアゾールブチルエステル、4−
カルボキシルベンゾトリアゾールオクチルエステル、5
−ヘキシルベンゾトリアゾール、[1,2,3−ベンゾ
トリアゾリル−1−メチル][1,2,4−トリアゾリ
ル−1−メチル][2−エチルヘキシル]アミン、トリ
ルトリアゾール、ナフトトリアゾール、ビス[(1−ベ
ンゾトリアゾリル)メチル]ホスホン酸等のアゾール;
ノニルメルカプタン及びドデシルメルカプタン等のメル
カプタン;並びにグルコース、セルロース等が挙げられ
る。その中でも、ベンズイミダゾール−2−チオール、
トリアジンジチオール、トリアジントリチオール、2−
[2−(ベンゾチアゾリル)チオプロピオン酸、2−
[2−(ベンゾチアゾリル)チオブチル酸、2−メルカ
プトベンゾチアゾール)、1−ヒドロキシベンゾトリア
ゾール、1−ジヒドロキシプロピルベンゾトリアゾー
ル、2,3−ジカルボキシプロピルベンゾトリアゾー
ル、4−ヒドロキシベンゾトリアゾール、4−カルボキ
シルベンゾトリアゾール、4−カルボキシルベンゾトリ
アゾールメチルルエステル、4−カルボキシルベンゾト
リアゾールブチルエステル、4−カルボキシルベンゾト
リアゾールオクチルエステル、ビス[(1−ベンゾトリ
アゾリル)メチル]ホスホン酸が親水性基を有する点で
好ましい。
The added protective film forming agent is preferably selected from the following group. Ammonia, dimethylamine, trimethylamine, triethylamine, propylenediamine, ethylenediaminetetraacetic acid (EDTA),
Ammonia and alkylamines such as sodium diethyldithiocarbamate and chitosan; glycine, L-alanine, β-alanine, L-2-aminobutyric acid, L-norvaline, L-valine, L-leucine, L-norleucine;
L-isoleucine, L-alloisoleucine, L-phenylalanine, L-proline, sarcosine, L-ornithine, L-lysine, taurine, L-serine, L-threonine, L-allothreonine, L-homoserine, L-tyrosine, 3,5-diiodo-L-tyrosine, β- (3,4-
Dihydroxyphenyl) -L-alanine, L-thyroxine, 4-hydroxy-L-proline, L-cystine,
L-methionine, L-ethionine, L-lanthionine,
L-cystathionine, L-cystin, L-cystinic acid, L-aspartic acid, L-glutamic acid, S- (carboxymethyl) -L-cystine, 4-aminobutyric acid,
L-asparagine, L-glutamine, azaserine, L
-Arginine, L-canavanine, L-citrulline, δ-
Hydroxy-L-lysine, creatine, L-kynurenine, L-histidine, 1-methyl-L-histidine, 3
Amino acids such as -methyl-L-histidine, ergothioneine, L-tryptophan, actinomycin C1, apamin, angiotensin I, angiotensin II and antipain; dithizone, cuproin (2,2'-biquinoline), neocuproin (2,9-dimethyl) -1,
10-phenanthroline), bathocuproine (2,9-
Imines such as dimethyl-4,7-diphenyl-1,10-phenanthroline) and cuperazone (biscyclohexanone oxalylhydrazone); benzimidazole-
2-thiol, triazinedithiol, triazinetrithiol, 2- [2- (benzothiazolyl) thiopropionic acid, 2- [2- (benzothiazolyl) thiobutyric acid, 2-mercaptobenzothiazole), 1,2,3-
Triazole, 1,2,4-triazole, 3-amino-1,2,4-triazole, benzotriazole, 1
-Hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxylbenzotriazole, 4-carboxylbenzotriazole methyl ester, 4-
Carboxylbenzotriazole butyl ester, 4-
Carboxylbenzotriazole octyl ester, 5
-Hexylbenzotriazole, [1,2,3-benzotriazolyl-1-methyl] [1,2,4-triazolyl-1-methyl] [2-ethylhexyl] amine, tolyltriazole, naphthotriazole, bis [( Azoles such as 1-benzotriazolyl) methyl] phosphonic acid;
Mercaptans such as nonyl mercaptan and dodecyl mercaptan; and glucose, cellulose and the like. Among them, benzimidazole-2-thiol,
Triazinedithiol, triazinetrithiol, 2-
[2- (benzothiazolyl) thiopropionic acid, 2-
[2- (benzothiazolyl) thiobutyric acid, 2-mercaptobenzothiazole), 1-hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxylbenzotriazole , 4-carboxylbenzotriazolemethyl ester, 4-carboxylbenzotriazolebutyl ester, 4-carboxylbenzotriazoleoctyl ester, and bis [(1-benzotriazolyl) methyl] phosphonic acid are preferred because they have a hydrophilic group.

【0019】本発明を適用する金属膜としては、銅、銅
合金及び銅又は銅合金の酸化物(以下銅合金という)か
ら選ばれた少なくとも1種を含む積層膜である。
The metal film to which the present invention is applied is a laminated film containing at least one selected from copper, a copper alloy, and an oxide of copper or a copper alloy (hereinafter, referred to as a copper alloy).

【0020】酸化剤成分の配合量は、酸化剤、酸化金属
溶解剤、保護膜形成剤及び水の総量100gに対して、
0.003mol〜0.7molとすることが好まし
く、0.03mol〜0.5molとすることがより好
ましく、0.2mol〜0.3molとすることが特に
好ましい。この配合量が 0.003mol未満では、
金属の酸化が不十分でCMP速度が低く、0.7mol
を超えると、研磨面に荒れが生じる傾向がある。
The amount of the oxidizing agent is based on 100 g of the total amount of the oxidizing agent, the metal oxide dissolving agent, the protective film forming agent and the water.
It is preferably from 0.003 mol to 0.7 mol, more preferably from 0.03 mol to 0.5 mol, and particularly preferably from 0.2 mol to 0.3 mol. If the amount is less than 0.003 mol,
Insufficient metal oxidation, low CMP rate, 0.7mol
If it exceeds, the polished surface tends to be rough.

【0021】本発明における酸化金属溶解剤成分の配合
量は、酸化剤、酸化金属溶解剤、保護膜形成剤及び水の
総量100gに対して0〜0.005molとすること
が好ましく、0.00005mol〜0.0025mo
lとすることがより好ましく、0.0005mol〜
0.0015molとすることが特に好ましい。この配
合量が0.005molを超えると、エッチングの抑制
が困難となる傾向がある。
The compounding amount of the metal oxide dissolving agent component in the present invention is preferably 0 to 0.005 mol, preferably 0.00005 mol, per 100 g of the total amount of the oxidizing agent, the metal oxide dissolving agent, the protective film forming agent and water. ~ 0.0025mo
1 is more preferable, and 0.0005 mol or more.
It is particularly preferred that the content be 0.0015 mol. When the amount exceeds 0.005 mol, it tends to be difficult to suppress the etching.

【0022】保護膜形成剤の配合量は、酸化剤、酸化金
属溶解剤、保護膜形成剤及び水の総量100gに対して
0.0001mol〜0.05molとすることが好ま
しく0.0003mol〜0.005molとすること
がより好ましく、0.0005mol〜0.0035m
olとすることが特に好ましい。この配合量が0.00
01mol未満では、エッチングの抑制が困難となる傾
向があり、0.05molを超えるとCMP速度が低く
なってしまう傾向がある。又、濃縮液作製時に使用する
保護膜形成剤の内、室温での水に対する溶解度が5%未
満のものの配合量は、室温での水に対する溶解度の2倍
以内とすることが好ましく、1.5倍以内とすることが
より好ましい。この配合量が2倍以上では濃縮品を5℃
に冷却した際の析出を防止するのが困難となる。
The compounding amount of the protective film forming agent is preferably 0.0001 mol to 0.05 mol based on 100 g of the total amount of the oxidizing agent, the metal oxide dissolving agent, the protective film forming agent and water. 005 mol, more preferably 0.0005 mol to 0.0035 m
ol is particularly preferred. This compounding amount is 0.00
If it is less than 01 mol, it tends to be difficult to suppress etching, and if it exceeds 0.05 mol, the CMP rate tends to be low. Further, among the protective film forming agents used in preparing the concentrated liquid, those having a solubility in water at room temperature of less than 5% are preferably mixed with water at room temperature within twice as much as 1.5%. More preferably, it is within a factor of two. If the blending amount is more than twice, concentrate
It is difficult to prevent precipitation when cooled to a low temperature.

【0023】[0023]

【作用】本発明は、従来の研磨液とは異なり、金属用研
磨液の濃縮液を用いることにより金属用研磨液の生産コ
ストを低減する金属研磨方法を提供することができる。
この研磨液においては、必要に応じて親水性基を有する
保護膜形成剤を単独使用もしくは併用することができ
る。これにより、保護膜形成機能は低下するが所望の研
磨特性に応じたより広範で且つ高濃度の金属用研磨液の
濃縮液作製が可能となる。
According to the present invention, unlike the conventional polishing liquid, it is possible to provide a metal polishing method for reducing the production cost of the metal polishing liquid by using a concentrated solution of the metal polishing liquid.
In this polishing liquid, a protective film forming agent having a hydrophilic group can be used alone or in combination as needed. As a result, the function of forming the protective film is reduced, but it is possible to prepare a broader and higher-concentration metal-polishing liquid in accordance with desired polishing characteristics.

【0024】[0024]

【実施例】以下、実施例により本発明を説明する。本発
明はこれらの実施例により限定されるものではない。 実施例1 ベンゾトリアゾール1.5重量部に水70重量部を加
え、40℃湯浴中撹拌羽根で撹拌し溶解させた。続いて
4−カルボキシベンゾトリアゾール0.5重量部DL−
リンゴ酸(試薬特級)1.5重量部を加えて溶かし得ら
れたものを10倍濃縮液とした。次に、得られた濃縮液
7重量部に水63重量部を加えて溶解し、これに過酸化
水素水(試薬特級、30%水溶液)33.2重量部を加
えて得られたものを金属用研磨液とした。上記金属用研
磨液を用いて、下記研磨条件でCMPした。 《研磨条件》 基体:厚さ1μmの銅膜を形成したシリコン基板 研磨パッド:IC1000(ロデール社製) 研磨圧力:210g/cm2 基体と研磨定盤との相対速度:36m/min 《研磨品評価項目》 CMP速度:銅膜のCMP前後での膜厚差を電気抵抗値
から換算して求めた。 エッチング速度:撹拌した研磨液への浸漬前後の銅層膜
厚差を電気抵抗値から換算して求めた。又、実際のCM
P特性を評価するため、絶縁層中に深さ0.5μmの溝
を形成して公知のスパッタ法によって銅膜を形成して公
知の熱処理によって埋め込んだシリコン基板についても
基体として用いてCMPを行った。CMP後の基体の目
視、光学顕微鏡観察、及び電子顕微鏡観察によりエロー
ジョン及び研磨傷発生の有無を確認した。その結果、エ
ロージョン及び研磨傷の発生は見られなかった。その結
果、CMP速度が181nm/min、エッチング速度
も0.4nm/minといずれも良好であった。
The present invention will be described below with reference to examples. The present invention is not limited by these examples. Example 1 70 parts by weight of water was added to 1.5 parts by weight of benzotriazole, and the mixture was dissolved by stirring with a stirring blade in a 40 ° C. water bath. Subsequently, 0.5 parts by weight of 4-carboxybenzotriazole DL-
1.5 parts by weight of malic acid (special grade reagent) was added and dissolved to obtain a 10-fold concentrated solution. Next, 63 parts by weight of water was added to and dissolved in 7 parts by weight of the obtained concentrated liquid, and 33.2 parts by weight of hydrogen peroxide (special grade reagent, 30% aqueous solution) was added thereto. Polishing liquid. Using the above metal polishing liquid, CMP was performed under the following polishing conditions. << Polishing Condition >> Base: Silicon substrate on which copper film of 1 μm thickness was formed Polishing pad: IC1000 (manufactured by Rodale) Polishing pressure: 210 g / cm 2 Relative speed between substrate and polishing platen: 36 m / min << Polishing product evaluation Item> CMP rate: The difference in film thickness before and after the CMP of the copper film was calculated from the electrical resistance value. Etching rate: The difference in the thickness of the copper layer before and after immersion in the agitated polishing liquid was determined by converting from the electrical resistance value. Also, the actual CM
In order to evaluate the P characteristics, CMP was also performed on a silicon substrate in which a groove having a depth of 0.5 μm was formed in the insulating layer, a copper film was formed by a known sputtering method, and embedded by a known heat treatment, as a base. Was. The presence or absence of erosion and polishing scratches was confirmed by visual observation, optical microscope observation, and electron microscope observation of the substrate after CMP. As a result, no erosion or polishing scratches were found. As a result, the CMP rate was 181 nm / min, and the etching rate was 0.4 nm / min.

【0025】実施例2 トリアジンチオール2重量部に水70重量部を加え、4
0℃湯浴中撹拌羽根で撹拌し溶解させた。続いてDL−
酒石酸(試薬特級)1.5重量部を加えて溶かし得られ
たものを10倍濃縮液とした。次に、得られた濃縮液7
重量部に水63重量部を加えて溶解し、これに過酸化水
素水(試薬特級、30%水溶液)33.2重量部を加え
て得られたものを金属用研磨液とした。上記金属用研磨
液を用いて、実施例1と同様のCMP条件でCMPを施
した。その結果、CMP速度が188nm/min、エ
ッチング速度も0.9nm/minといずれも良好であ
った。又、エロージョン及び研磨傷の発生も見られなか
った。
Example 2 70 parts by weight of water was added to 2 parts by weight of triazine thiol, and
The mixture was stirred and dissolved in a 0 ° C. water bath with a stirring blade. Then DL-
Tartaric acid (special grade reagent) was added and dissolved in 1.5 parts by weight to obtain a 10-fold concentrated solution. Next, the obtained concentrated solution 7
63 parts by weight of water was added to and dissolved in parts by weight, and 33.2 parts by weight of hydrogen peroxide solution (special grade reagent, 30% aqueous solution) was added thereto, and the resultant was used as a metal polishing slurry. Using the above metal polishing liquid, CMP was performed under the same CMP conditions as in Example 1. As a result, the CMP rate was 188 nm / min, and the etching rate was 0.9 nm / min. Erosion and polishing scratches were not observed.

【0026】比較例1 実施例1の金属用研磨液作製工程で濃縮工程を省き、下
記方法で金属用研磨液を作製した。ベンゾトリアゾール
0.15重量部に水70重量部を加え、40℃湯浴中撹
拌羽根で撹拌し溶解させた。さらに4−カルボキシベン
ゾトリアゾール0.05重量部及びDL−リンゴ酸(試
薬特級)0.15重量部を加えて溶かした。最後に、過
酸化水素水(試薬特級、30%水溶液)33.2重量部
を加えて得られたものを金属用研磨液とした。上記金属
用研磨液を用いて、実施例1と同様のCMP条件でCM
Pを施した。その結果、CMP速度が182nm/mi
n、エッチング速度も0.4nm/minといずれも良
好で、且つ濃縮工程の有無によるCMP速度及びエッチ
ング速度には差が生じなかった。又、エロージョン及び
研磨傷の発生も見られなかった。
Comparative Example 1 The metal polishing slurry was prepared by the following method without the concentration step in the metal polishing slurry preparation process of Example 1. 70 parts by weight of water was added to 0.15 parts by weight of benzotriazole, and the mixture was stirred and dissolved in a 40 ° C. water bath with a stirring blade. Further, 0.05 parts by weight of 4-carboxybenzotriazole and 0.15 parts by weight of DL-malic acid (special grade reagent) were added and dissolved. Finally, 33.2 parts by weight of a hydrogen peroxide solution (reagent grade, 30% aqueous solution) was added to obtain a polishing liquid for metal. Using the above-mentioned metal polishing liquid, the same CMP conditions as in Example 1 were applied to the CM.
P was applied. As a result, the CMP speed becomes 182 nm / mi.
n, the etching rate was also good at 0.4 nm / min, and there was no difference between the CMP rate and the etching rate depending on the presence or absence of the concentration step. Erosion and polishing scratches were not observed.

【0027】比較例2 実施例1の金属用研磨液で、4−カルボキシベンゾトリ
アゾールの添加を省きベンゾトリアゾール2重量部を溶
かして10倍濃縮液を作製した。しかし、これを5℃で
冷蔵保存したところ、析出分が生じてしまい、金属用研
磨液としての評価が困難となった。
Comparative Example 2 A 10-fold concentrated liquid was prepared by dissolving 2 parts by weight of benzotriazole in the polishing liquid for metal of Example 1 without adding 4-carboxybenzotriazole. However, when this was refrigerated and stored at 5 ° C., a deposit was generated, which made it difficult to evaluate the metal polishing slurry.

【0028】[0028]

【発明の効果】本発明の金属用研磨方法は、金属研磨液
の濃縮を可能とし、且つ信頼性の高い金属膜の埋め込み
パターンを形成することができる。
According to the metal polishing method of the present invention, a metal polishing liquid can be concentrated, and a highly reliable metal film embedding pattern can be formed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺崎 裕樹 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 上方 康雄 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 小山 直之 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 Fターム(参考) 4K057 WA02 WB04 WE01 WE02 WE03 WE04 WE11 WE12 WE13 WE14 WE15 WE21 WE23 WE25 WF10 WG03 WN01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroki Terasaki 48 Wadai, Tsukuba, Ibaraki Pref.Hitachi Chemical Industry Co., Ltd. Within the Research Laboratory (72) Inventor Naoyuki Koyama 48 Wadai, Tsukuba, Ibaraki Prefecture F-term within the Tsukuba Development Laboratory, Hitachi Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属の酸化剤、酸化金属溶解剤、保護膜形
成剤及び水を含有する金属用研磨液の濃縮液を希釈して
使用することを特徴とする金属研磨方法。
1. A metal polishing method comprising diluting a concentrated metal polishing solution containing a metal oxidizing agent, a metal oxide dissolving agent, a protective film forming agent and water.
【請求項2】金属用研磨液の濃縮液に親水性基を有する
保護膜形成剤を添加する請求項1記載の金属研磨方法。
2. The metal polishing method according to claim 1, wherein a protective film-forming agent having a hydrophilic group is added to the concentrate of the metal polishing liquid.
JP37260798A 1998-12-28 1998-12-28 Metal polishing method Expired - Lifetime JP4078473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37260798A JP4078473B2 (en) 1998-12-28 1998-12-28 Metal polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37260798A JP4078473B2 (en) 1998-12-28 1998-12-28 Metal polishing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007132969A Division JP2007221170A (en) 2007-05-18 2007-05-18 Method of preparing polishing solution for metal

Publications (2)

Publication Number Publication Date
JP2000195831A true JP2000195831A (en) 2000-07-14
JP4078473B2 JP4078473B2 (en) 2008-04-23

Family

ID=18500735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37260798A Expired - Lifetime JP4078473B2 (en) 1998-12-28 1998-12-28 Metal polishing method

Country Status (1)

Country Link
JP (1) JP4078473B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463045B2 (en) 2000-03-03 2003-11-05 Necエレクトロニクス株式会社 Anticorrosion treatment stock solution
WO2006103751A1 (en) * 2005-03-29 2006-10-05 Mitsubishi Chemical Corporation Copper etchant and method of etching
US7186354B2 (en) 2000-03-03 2007-03-06 Nec Electronics Corporation Anticorrosive treating concentrate
JP2007221170A (en) * 2007-05-18 2007-08-30 Hitachi Chem Co Ltd Method of preparing polishing solution for metal
JP2014082510A (en) * 2006-10-11 2014-05-08 Hitachi Chemical Co Ltd Polishing fluid for metal and manufacturing method thereof, and method of polishing film to be polished using polishing fluid for metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463045B2 (en) 2000-03-03 2003-11-05 Necエレクトロニクス株式会社 Anticorrosion treatment stock solution
US7186354B2 (en) 2000-03-03 2007-03-06 Nec Electronics Corporation Anticorrosive treating concentrate
WO2006103751A1 (en) * 2005-03-29 2006-10-05 Mitsubishi Chemical Corporation Copper etchant and method of etching
JP2014082510A (en) * 2006-10-11 2014-05-08 Hitachi Chemical Co Ltd Polishing fluid for metal and manufacturing method thereof, and method of polishing film to be polished using polishing fluid for metal
JP2007221170A (en) * 2007-05-18 2007-08-30 Hitachi Chem Co Ltd Method of preparing polishing solution for metal

Also Published As

Publication number Publication date
JP4078473B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
EP2242091B1 (en) Polishing solution for metal and polishing method
US8900477B2 (en) Materials for polishing liquid for metal, polishing liquid for metal, method for preparation thereof and polishing method using the same
JP4078473B2 (en) Metal polishing method
JP2000252243A (en) Polishing liquid for metal and polishing method using the same
JP2007019531A (en) Abrasive for chemical mechanical polishing, and polishing method
JP2001144044A (en) Metal polishing fluid and polishing method using it
JP2007221170A (en) Method of preparing polishing solution for metal
JP4263397B2 (en) Polishing liquid for metal
JP2004146840A (en) Polishing liquid material for metal, polishing liquid for metal, method for producing the same, and polishing method using the same
JP4486774B2 (en) Polishing liquid for metal and polishing method using the same
JP2000252244A (en) Polishing liquid for metal and polishing method using the same
JP2002198332A (en) Metal polishing liquid and polishing method using it
JP2001144047A (en) Metal polishing fluid and polishing method using it
JP2001144052A (en) Method of polishing substrate
JP4448519B2 (en) Polishing liquid for metal and polishing method
JP4448435B2 (en) Polishing liquid for metal and polishing method
JP4448522B2 (en) Polishing liquid for metal and polishing method
JP4448520B2 (en) Polishing liquid for metal and polishing method
JP4448521B2 (en) Polishing liquid for metal and polishing method
JP2002176015A (en) Polishing liquid for metal and polishing method
JP4062903B2 (en) Polishing liquid for metal and polishing method
JP2001144042A (en) Metal polishing method
JP2001144055A (en) Method of polishing substrate having metallic laminated film
JP2005142597A (en) Polishing liquid for metal and method of polishing using same
JP2001144041A (en) Metal polishing fluid and polishing method using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term