[go: up one dir, main page]

JP2000124603A - Printed wiring board - Google Patents

Printed wiring board

Info

Publication number
JP2000124603A
JP2000124603A JP22294199A JP22294199A JP2000124603A JP 2000124603 A JP2000124603 A JP 2000124603A JP 22294199 A JP22294199 A JP 22294199A JP 22294199 A JP22294199 A JP 22294199A JP 2000124603 A JP2000124603 A JP 2000124603A
Authority
JP
Japan
Prior art keywords
wiring board
layer
heat
printed wiring
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22294199A
Other languages
Japanese (ja)
Inventor
Motoo Asai
元雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP22294199A priority Critical patent/JP2000124603A/en
Publication of JP2000124603A publication Critical patent/JP2000124603A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Chemically Coating (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve interline and interlayer insulation reliability by composing an adhesive layer with an adhesive for electroless plating, where a heat- resistance resin particle that is soluble to acid and is subjected to curing treatment is dispersed in a non-cured heat-resistance resin matrix and setting the size of the heat-resistance resin particle of the adhesive to a specific average particle diameter or less. SOLUTION: A lower-layer conductor circuit 4 partially with a roughened layer 11 is provided on a substrate 1, and an adhesive layer 2 for electrodes plating whose surface is roughened is provided on the surface. The adhesive layer 2 for electroless plating is subjected to curing treatment and is constituted by dispersing a heat-resistance resin particle that is soluble to acid or an oxidizer and is subjected to curing treatment into the non-cured heat resistance resin matrix that becomes solution-retardant to the acid or the oxidizer. The size of the heat-resistance resin particle of the adhesive layer 2 for electroless plating is formed as average particle diameter, that is equal to or less than 1.5 ÎŒm and hence improving the insulation reliability between lines and layers by maintaining peeling strength.

Description

【発明の詳现な説明】DETAILED DESCRIPTION OF THE INVENTION

【】[0001]

【発明の属する技術分野】本発明は、プリント配線板に
関し、特に、セミアディティブ法においおは、実甚的な
ピヌル匷床を維持したたた線間の絶瞁信頌性を確保で
き、たた、フルアディティブ法においおは、実甚的なピ
ヌル匷床を維持したたた高枩倚湿条件でも線間の絶瞁
信頌性を保蚌できるプリント配線板に぀いおの提案であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a printed wiring board, and more particularly, to a semi-additive method, in which insulation reliability between lines can be ensured while maintaining practical peel strength. This is a proposal for a printed wiring board that can guarantee insulation reliability between wires under high temperature and high humidity conditions while maintaining practical peel strength.

【】[0002]

【埓来の技術】近幎、倚局配線基板の高密床化ずいう芁
請から、いわゆるビルドアップ倚局配線基板が泚目され
おいる。このビルドアップ倚局配線基板は、䟋えば特公
平−55555 号公報に開瀺されおいるような方法により
補造される。即ち、コア基板䞊に、感光性の無電解めっ
き甚接着剀からなる局間暹脂絶瞁剀を塗垃し、これを也
燥したのち露光珟像するこずにより、バむアホヌル甚
開口を有する局間暹脂絶瞁局を圢成し、次いで、この局
間暹脂絶瞁局の衚面を酞化剀等による凊理にお粗化した
のち、その粗化面に感光性の暹脂局を露光珟像凊理し
おなるめっきレゞストを蚭け、その埌、めっきレゞスト
非圢成郚分に無電解めっきを斜しおバむアホヌルを含む
導䜓回路パタヌンを圢成し、このような工皋を耇数回繰
り返すこずにより、倚局化したアディティブ法によるビ
ルドアップ配線基板が埗られる。
2. Description of the Related Art In recent years, so-called build-up multilayer wiring boards have been receiving attention due to a demand for higher density of the multilayer wiring boards. This build-up multilayer wiring board is manufactured by a method disclosed in, for example, Japanese Patent Publication No. 4-55555. That is, an interlayer resin insulating layer made of a photosensitive electroless plating adhesive is applied on the core substrate, dried, exposed and developed to form an interlayer resin insulating layer having a via hole opening. Then, after the surface of the interlayer resin insulating layer is roughened by treatment with an oxidizing agent or the like, a plating resist obtained by exposing and developing a photosensitive resin layer on the roughened surface is provided. A conductive circuit pattern including via holes is formed by applying electroless plating to the non-resist-formed portions, and such a process is repeated a plurality of times to obtain a multi-layered build-up wiring board by the additive method.

【】このような方法で補造されるビルドアップ
配線基板においお、局間暹脂絶瞁局に甚いられる無電解
めっき甚接着剀ずしおは、特開昭63-158156 号公報や特
開平−188992号公報USP5055321号、USP5519177号)
に蚘茉されおいるように、平均粒埄〜10Όの粗粒子
ず平均粒埄Ό以䞋の埮粒子ずからなる溶解可胜な硬
化凊理枈の暹脂粒子を硬化凊理によっお難溶性ずなる耐
熱性暹脂マトリックス䞭に分散させたものがある。た
た、特開昭61-276875 号公報USP4752499号、USP50214
72号) には、平均粒埄1.6 Όに砎砕した溶解可胜な硬
化凊理枈の゚ポキシ暹脂粉末を難溶性の耐熱性暹脂マト
リックス䞭に分散した無電解めっき甚接着剀が開瀺され
おいる。
In a build-up wiring board manufactured by such a method, as an adhesive for electroless plating used for an interlayer resin insulating layer, JP-A-63-158156 and JP-A-2-188992 ( (USP5055321, USP5519177)
As described in the above, in the heat-resistant resin matrix which becomes hardly soluble by the curing treatment, the soluble cured resin particles comprising coarse particles having an average particle diameter of 2 to 10 ÎŒm and fine particles having an average particle diameter of 2 ÎŒm or less are hardened. Some are dispersed. Also, JP-A-61-276875 (USP4752499, USP50214)
No. 72) discloses an adhesive for electroless plating in which a dissolvable cured epoxy resin powder crushed to an average particle size of 1.6 ÎŒm is dispersed in a hardly soluble heat-resistant resin matrix.

【】これらの接着剀を甚いお基板䞊に圢成され
る局間暹脂絶瞁局は、衚局に存圚する耐熱性暹脂粒子が
溶解陀去されおその衚面が粗化されるので、その粗化面
䞊にめっきレゞストを介しお圢成される導䜓回路ずの密
着性に優れる。
The surface of the interlayer resin insulation layer formed on the substrate using these adhesives is roughened by dissolving and removing the heat-resistant resin particles present on the surface layer. Excellent adhesion to conductor circuits formed via plating resist.

【】しかしながら、フルアディティブ法によっ
お補造した配線基板のように、めっきレゞストが氞久レ
ゞストずしお残存するビルドアップ配線基板は、その氞
久レゞストず導䜓回路ずの界面での密着性が悪い。この
ため、このビルドアップ配線基板は、チップを搭茉
するず、めっきレゞストず導䜓回路の熱膚匵率差に起因
しお、これらの界面を起点ずするクラックが局間暹脂絶
瞁局に発生するずいう問題があった。
However, a build-up wiring board in which a plating resist remains as a permanent resist, such as a wiring board manufactured by the full additive method, has poor adhesion at the interface between the permanent resist and the conductor circuit. For this reason, when this build-up wiring board is mounted with an IC chip, there is a problem that cracks originating from the interface between the plating resist and the conductive circuit are generated in the interlayer resin insulating layer due to a difference in thermal expansion coefficient between the plating resist and the conductive circuit. there were.

【】これに察し埓来、局間暹脂絶瞁局に発生す
るクラックを阻止できる技術ずしお、めっきレゞストを
陀去しお導䜓回路の少なくずも偎面を粗化凊理するこず
により、その導䜓回路䞊に圢成される局間暹脂絶瞁局ず
の密着性を改善する方法が提案されおいる。この方法を
有利に適甚できる配線板の補造方法ずしお、セミアディ
ティブ法が挙げられる。
Conventionally, as a technique for preventing cracks generated in an interlayer resin insulating layer, a plating resist is removed to roughen at least a side surface of a conductive circuit, thereby forming an interlayer formed on the conductive circuit. A method for improving the adhesion to a resin insulating layer has been proposed. As a method for manufacturing a wiring board to which this method can be advantageously applied, there is a semi-additive method.

【】このセミアディティブ法は、たず、局間暹
脂絶瞁局の衚面を粗化し、その粗化面の党面に無電解め
っきを薄く斜し、次いで、その無電解めっき膜の非導䜓
郚分にめっきレゞストを圢成し、そのレゞスト非圢成郚
分に電解めっきを厚く斜した埌、そのめっきレゞストず
めっきレゞスト䞋の無電解めっき膜を陀去するこずによ
り、導䜓回路パタヌンを圢成する方法である。
In the semi-additive method, first, the surface of an interlayer resin insulating layer is roughened, electroless plating is thinly applied on the entire roughened surface, and then a plating resist is applied to a non-conductive portion of the electroless plated film. This is a method of forming a conductive circuit pattern by forming, applying a thick electrolytic plating to a portion where the resist is not formed, and removing the plating resist and the electroless plating film under the plating resist.

【】しかしながら、前述した接着剀を甚いお補
造したセミアディティブ法によるビルドアップ配線基板
は、レゞスト䞋にある接着剀局衚面の粗化面の窪みア
ンカヌ内に無電解めっき膜が残り、線間の絶瞁信頌性
を䜎䞋させおしたうずいう問題があった。
However, in the build-up wiring board manufactured by the semi-additive method manufactured using the above-mentioned adhesive, the electroless plating film remains in the depression (anchor) of the roughened surface of the adhesive layer under the resist, There is a problem that the insulation reliability between the wires is reduced.

【】たた、䞊蚘接着剀を甚いお補造したフルア
ディティブ法によるビルドアップ配線基板も、高枩倚湿
条件䞋においお導䜓回路間の絶瞁抵抗倀が䜎䞋するずい
う問題を抱えおいた。
Also, the build-up wiring board manufactured by the full additive method using the above-mentioned adhesive has a problem that the insulation resistance value between the conductor circuits is reduced under the condition of high temperature and high humidity.

【】さらに、フルアディティブ法あるいはセミ
アディテむブ法によっお補造した配線基板は、いずれの
堎合も、接着剀䞭に平均粒埄Ό以䞊の比范的倧きな
耐熱性暹脂粒子を含むず、局間絶瞁を砎壊するずいう問
題を抱えおいた。
Further, in any case, the wiring board manufactured by the full-additive method or the semi-additive method may break the interlayer insulation if the adhesive contains relatively large heat-resistant resin particles having an average particle diameter of 2 ÎŒm or more. Had the problem of doing so.

【】[0011]

【発明が解決しようずする課題】本発明は、䞊述したフ
ルアディティブ法あるいはセミアディティブ法によっお
補造した配線板が抱える問題を解消するための技術を提
案する。本発明の目的は、実甚的なピヌル匷床を維持し
お、線間、局間の絶瞁信頌性の高いプリント配線板を提
䟛するこずにある。
SUMMARY OF THE INVENTION The present invention proposes a technique for solving the problem of the wiring board manufactured by the full additive method or the semi-additive method described above. An object of the present invention is to provide a printed wiring board having high insulation reliability between lines and between layers while maintaining practical peel strength.

【】[0012]

【課題を解決するための手段】発明者は、䞊蚘目的の実
珟に向け鋭意研究した。その結果、䞊述したような問題
が発生するのは、溶解陀去される耐熱性暹脂粒子の平均
粒埄が倧きすぎるこずに原因があるず考え、以䞋のよう
な知芋を埗た。即ち、平均粒埄〜10Όの粗粒子ず平
均粒埄Ό以䞋の埮粒子からなる溶解可胜な暹脂粒子
を難溶性の耐熱性暹脂マトリックス䞭に分散させた前述
の接着剀からなる局間暹脂絶瞁局は、その局衚面に圢成
される粗化面の窪みアンカヌの深さは10Ό皋床
䟋えば、特開平−34048 号 5519177号公
報の実斜䟋である。このため、セミアディティブ法
では、無電解めっき膜がその窪みの深郚にたで圢成され
る結果、その無電解めっき膜が完党に゚ッチング陀去で
きずに残留しお線間絶瞁性を䜎䞋させるものず考えられ
る。䞀方、フルアディティブ法では、粗化面の窪みが深
いずその衚面積が倧きくなり、無電解めっき膜の觊媒栞
であるパラゞりムが線間のめっきレゞスト䞋に倚数付着
するこずになる。その結果、そのパラゞりムが、高枩倚
湿条件䞋においお、耐熱性暹脂䞭の塩玠むオンなどず反
応しお導電性の化合物を圢成し、線間の絶瞁特性を䜎䞋
させおしたうず考えられる。たた、平均粒埄Ό以䞊
の耐熱性暹脂粒子が局間暹脂絶瞁局䞭に存圚しおいる堎
合、粗化凊理により、局間に空隙が発生しやすく、この
空隙にめっき膜が析出しお䞊局ず䞋局の導䜓回路を電気
的に接続し、局間絶瞁が砎壊されおしたうず考えられ
る。
Means for Solving the Problems The inventor of the present invention has intensively studied to realize the above object. As a result, it is considered that the above-mentioned problem occurs because the average particle size of the heat-resistant resin particles to be dissolved and removed is too large, and the following knowledge was obtained. That is, the interlayer resin insulating layer made of the above-mentioned adhesive in which dissolvable resin particles composed of coarse particles having an average particle diameter of 2 to 10 ÎŒm and fine particles having an average particle diameter of 2 ÎŒm or less are dispersed in a hardly heat-resistant resin matrix. The depth of the depression (anchor) of the roughened surface formed on the surface of the layer is about 10 ÎŒm (for example, Example 1 of JP-A-7-34048 (US Pat. No. 5,519,177)). For this reason, in the semi-additive method, the electroless plating film is formed to the deep portion of the depression, and the electroless plating film is not completely removed by etching, and is considered to decrease the line insulation. Can be On the other hand, in the full-additive method, the deeper the roughened surface is, the larger the surface area becomes, and a large number of palladium, which is the catalyst nucleus of the electroless plating film, adheres under the plating resist between the wires. As a result, it is considered that the palladium reacts with chlorine ions or the like in the heat-resistant resin under a high-temperature and high-humidity condition to form a conductive compound, thereby deteriorating insulation properties between wires. Further, when heat-resistant resin particles having an average particle diameter of 2 ÎŒm or more are present in the interlayer resin insulating layer, voids are easily generated between the layers due to the roughening treatment, and a plating film is deposited in the voids to form an upper layer and a lower layer. It is considered that the conductive circuits are electrically connected and the interlayer insulation is broken.

【】発明者は、このような知芋に基づき、以䞋
の点を芁旚構成ずするプリント配線板を開発した。基板
䞊に、少なくずもその䞀郚に粗化局を有する䞋局の導䜓
回路が蚭けられ、その䞊に衚面が粗化された硬化凊理枈
の無電解めっき甚接着剀局が蚭けられ、その接着剀局衚
面の粗化面䞊には䞊局の導䜓回路が圢成されおなるプリ
ント配線板においお、前蚘接着剀局は、硬化凊理によっ
お酞あるいは酞化剀に難溶性ずなる未硬化の耐熱性暹脂
マトリックス䞭に、酞あるいは酞化剀に可溶性の硬化凊
理された耐熱性暹脂粒子を分散しおなる無電解めっき甚
接着剀からなり、この接着剀の耐熱性暹脂粒子の倧きさ
は、平均粒埄が 1.5Ό以䞋であるこずを特城ずする。
なお、前蚘接着剀局は、窪みの深さmax が〜Ό
になるように粗化された粗化面を有し、か぀この接着剀
局䞭に分散しおいる前蚘耐熱性暹脂粒子は最倧粒埄が
Ό未満であっお、ピヌクを瀺す粒埄が1.5 Ό以䞋の
領域にくるような粒床分垃をも぀ものであるこずが奜た
しい。
Based on such knowledge, the inventor has developed a printed wiring board having the following points as the main components. A lower conductive circuit having a roughened layer on at least a portion thereof is provided on a substrate, and a hardened electroless plating adhesive layer having a roughened surface is provided thereon, and the adhesive layer is provided on the lower conductive circuit. In a printed wiring board in which an upper conductive circuit is formed on a roughened surface of the surface, the adhesive layer is in an uncured heat-resistant resin matrix which becomes hardly soluble in an acid or an oxidizing agent by a curing treatment. It consists of an adhesive for electroless plating which is obtained by dispersing cured heat-resistant resin particles soluble in acid or oxidizing agent. The size of the heat-resistant resin particles of this adhesive is 1.5 ÎŒm or less in average particle size. There is a feature.
The adhesive layer has a depth Rmax of 1 to 5 ÎŒm.
The heat-resistant resin particles having a roughened surface roughened so as to be dispersed in the adhesive layer and having a maximum particle size of 2
It is preferable that the particles have a particle size distribution of less than ÎŒm and a particle size showing a peak falling in a region of 1.5 ÎŒm or less.

【】ここで、前蚘耐熱性暹脂粒子は、その平均
粒埄が 0.1〜1.0 Όの範囲のものがさらに奜たしく、
たた、球状粒子であるこず、および粒床分垃のピヌクは
䞀぀であるこずが奜たしい。たた、前蚘接着剀局衚面の
粗化面䞊に圢成した導䜓回路は、無電解めっき膜ず電解
めっき膜ずによっお構成されおいるこずが奜たしい。さ
らに、前蚘接着剀局衚面の粗化面䞊に圢成した䞊局の導
䜓回路には、衚面の少なくずも䞀郚に粗化局が圢成され
おいるこずが奜たしい。
Here, it is more preferable that the heat-resistant resin particles have an average particle size in the range of 0.1 to 1.0 ÎŒm.
Further, it is preferable that the particles are spherical particles and that the particle size distribution has one peak. Further, it is preferable that the conductor circuit formed on the roughened surface of the adhesive layer surface is constituted by an electroless plating film and an electrolytic plating film. Furthermore, it is preferable that a roughened layer is formed on at least a part of the surface of the upper conductive circuit formed on the roughened surface of the adhesive layer surface.

【】[0015]

【発明の実斜の圢態】さお、セミアディティブ法の堎合
は、前述したように、めっきレゞスト䞋の無電解めっき
膜を溶解陀去する必芁がある。このため、粗化面の窪み
が深いず、その窪み内に無電解めっき膜が残りやすく、
線間絶瞁抵抗倀が䜎䞋する原因ずなっおしたう。䞀方
で、その窪みが単玔な圢状で浅い堎合には、めっき膜の
ピヌル匷床が䜎䞋しお導䜓が剥がれやすくなっおした
う。フルアディティブ法の堎合は、前述したように、め
っきレゞスト䞋にパラゞりム觊媒が残存するので、粗化
面の窪みが深いず、高枩倚湿条件䞋で線間の絶瞁抵抗倀
が䜎䞋しおしたう。䞀方、その窪みが単玔な圢状で浅い
堎合には、セミアディティブ法の堎合ず同様に、めっき
膜のピヌル匷床が䜎䞋しお導䜓が剥がれやすくなっおし
たう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the case of the semi-additive method, as described above, it is necessary to dissolve and remove the electroless plating film under the plating resist. Therefore, if the depression on the roughened surface is deep, the electroless plating film tends to remain in the depression,
This causes the insulation resistance between lines to decrease. On the other hand, if the depression is a simple shape and shallow, the peel strength of the plating film is reduced and the conductor is easily peeled. In the case of the full additive method, as described above, since the palladium catalyst remains under the plating resist, if the depression on the roughened surface is deep, the insulation resistance between the wires decreases under high-temperature and high-humidity conditions. On the other hand, when the depression is simple and shallow, the peel strength of the plating film is reduced and the conductor is liable to peel off, as in the case of the semi-additive method.

【】この点、本発明に係るプリント配線板にお
いお甚いられる無電解めっき甚接着剀は、平均粒埄が
1.5Ό以䞋である耐熱性暹脂粒子であっお、粒床分垃
のピヌクにおける粒埄が1.5 Ό以䞋の領域にくるよう
な分垃をも぀耐熱性暹脂粒子を含むこずに特城がある。
これにより、粒埄の倧きい暹脂粒子の溶解によっお粗化
面の窪みが深くなるのを防止しお粗化面の窪みを浅く
しお、その窪み内での無電解めっき膜の溶解残枣をな
くしたり、めっきレゞスト䞋のパラゞりム觊媒量を少な
くしたりしおいるので、窪みの浅い粗化面でも実甚的な
ピヌル匷床を維持し぀぀、線間、局間の絶瞁信頌性を確
保するこずができる。
In this respect, the adhesive for electroless plating used in the printed wiring board according to the present invention has an average particle size.
It is characterized by containing heat-resistant resin particles having a size of 1.5 ÎŒm or less, and having a distribution such that the particle size at the peak of the particle size distribution falls within a region of 1.5 ÎŒm or less.
This prevents deepening of the pits on the roughened surface due to dissolution of the resin particles having a large particle diameter (shallowing the dents on the roughened surface), and dissolving residues of the electroless plating film in the pits. Eliminating or reducing the amount of palladium catalyst under the plating resist ensures the reliability of insulation between lines and between layers while maintaining practical peel strength even on roughened surfaces with shallow depressions. .

【】䞊蚘接着剀においお、䞊蚘耐熱性暹脂粒子
は、平均粒埄が 1.5Ό以䞋であり、粒床分垃のピヌク
における粒埄が1.5 Ό以䞋の領域にくるような分垃を
も぀ものであるので、埓来技術のような粒埄の倧きい暹
脂粒子がなく、溶解陀去されお圢造る窪みの深さは浅
く、粗化が進行しすぎお空隙を発生させるこずがない。
それ故に、この耐熱性暹脂粒子を含む接着剀を甚いお補
造したプリント配線板は、局間絶瞁性に優れおいる。
In the above adhesive, the heat-resistant resin particles have an average particle size of 1.5 ÎŒm or less, and have a distribution such that the particle size at the peak of the particle size distribution falls within a region of 1.5 ÎŒm or less. There is no resin particle having a large particle diameter as in the prior art, and the depth of the recess formed by being dissolved and removed is shallow, so that roughening does not proceed too much and no void is generated.
Therefore, a printed wiring board manufactured using the adhesive containing the heat-resistant resin particles has excellent interlayer insulation properties.

【】そしお、このような耐熱性暹脂粒子を含む
接着剀を甚いお補造したプリント配線板は、粗化面の窪
みが浅くおも実甚的なピヌル匷床を維持できるずいう、
意倖な事実を知芋した。即ち、フルアディティブ法の堎
合、粗化面にめっきレゞスト圢成のために蚭けた感光性
暹脂局を露光珟像凊理しおめっきレゞストを圢成す
る。そのため、粗化面の窪みが深いず、その窪み内にめ
っきレゞストの珟像残りが生じやすくなる。この点、本
発明では、圢造られる窪みは浅く、その窪み内のレゞス
トを容易に珟像できるので、めっきレゞストの珟像残り
が生じにくく、窪みを浅くしおもピヌル匷床の䜎䞋が比
范的少ないのである。䞀方、セミアディティブ法の堎合
は、粗化面に盎に無電解めっき膜を圢成する方法である
ので、粗化面の窪み内にめっきレゞストが残るこずはな
く、窪みを浅くしおもピヌル匷床の䜎䞋が比范的少な
い。
A printed wiring board manufactured using an adhesive containing such heat-resistant resin particles can maintain a practical peel strength even if the depression on the roughened surface is shallow.
I found an unexpected fact. That is, in the case of the full additive method, a photosensitive resin layer provided on a roughened surface for forming a plating resist is exposed and developed to form a plating resist. Therefore, when the depression on the roughened surface is deep, the development residue of the plating resist easily occurs in the depression. In this regard, in the present invention, the recess formed is shallow, and the resist in the recess can be easily developed, so that the development residue of the plating resist is less likely to occur, and the reduction in peel strength is relatively small even if the recess is made shallow. is there. On the other hand, in the case of the semi-additive method, since the electroless plating film is formed directly on the roughened surface, the plating resist does not remain in the dents on the roughened surface. Is relatively small.

【】なお、バむアホヌル圢成甚の開口を露光
珟像凊理やレヌザ加工等で圢成する堎合、バむアホヌル
圢成甚の開口の底郚には無電解めっき甚接着剀が残枣ず
しお残る。この点に関し、本発明では、無電解めっき甚
接着剀䞭に酞や酞化剀に溶解する平均粒埄 1.5Ό以䞋
奜たしくは、平均粒埄 0.1〜1.0 Όの埮现な耐熱
性暹脂粒子しか存圚しないので、このような残枣は、酞
や酞化剀による粗化凊理によっお容易に陀去でき、残枣
陀去のための局を接着剀局の䞋にわざわざ圢成する必芁
がない。しかも、この堎合、圢造られる窪みが浅いの
で、セミアディティブ法あるいはフルアディティブ法の
いずれを採甚した堎合でも、線間線幅以䞋、単に
ず称する4040Ό未満のファむンパタヌンを
圢成できる。
The opening for forming the via hole is exposed,
In the case of forming by development processing or laser processing, the adhesive for electroless plating remains as a residue at the bottom of the opening for forming the via hole. In this regard, in the present invention, only heat-resistant resin particles having an average particle size of 1.5 ÎŒm or less (preferably, an average particle size of 0.1 to 1.0 ÎŒm) dissolved in an acid or an oxidizing agent are present in the adhesive for electroless plating. Therefore, such a residue can be easily removed by a roughening treatment using an acid or an oxidizing agent, and there is no need to separately form a layer for removing the residue under the adhesive layer. In addition, in this case, since the depression to be formed is shallow, the line spacing / line width (hereinafter simply referred to as L) is obtained regardless of whether the semi-additive method or the full additive method is employed.
/ S) = 40/40 ÎŒm.

【】ずころで、前蚘耐熱性暹脂粒子ずしおは、
砎砕粒子ではなく球状粒子であるこずが奜たしい。この
理由は、耐熱性暹脂粒子が砎砕粒子であるず、粗化面の
窪み圢状が角匵ったものずなり、その角に応力集䞭が発
生しやすく、ヒヌトサむクルによりその角からクラック
が生じやすいからである。
Incidentally, the heat-resistant resin particles include:
It is preferred that the particles are not crushed particles but spherical particles. The reason for this is that when the heat-resistant resin particles are crushed particles, the dent shape of the roughened surface becomes angular, stress is likely to be generated at the corner, and cracks are likely to occur from the corner due to the heat cycle. .

【】この耐熱性暹脂粒子は、平均粒埄が 0.1〜
1.0 Όであるこずが奜たしい。この理由は、平均粒埄
がこの範囲内にあるず、前蚘耐熱性暹脂粒子が溶解陀去
されお圢造る窪みの深さは、抂ねmax Ό皋床ず
なる。その結果、セミアディテむブ法では、非導䜓郚分
の無電解めっき膜を容易に゚ッチング陀去できるだけで
はなく、その無電解めっき膜䞋の觊媒栞をも容易に
陀去でき、しかも、導䜓郚分のピヌル匷床を、実甚的な
レベルである 1.0〜1.3 kgcmに維持できるからであ
る。䞀方、フルアディティブ法では、めっきレゞスト䞋
の觊媒栞の量を枛らすこずができるだけでなく、導
䜓郚分のめっきレゞスト残りをなくすこずができるの
で、浅い窪みでも実甚的なピヌル匷床である 1.0〜1.3
kgcmに維持できるからである。
The heat-resistant resin particles have an average particle diameter of 0.1 to
Preferably it is 1.0 ÎŒm. The reason is that when the average particle size is within this range, the depth of the depression formed by dissolving and removing the heat-resistant resin particles is approximately Rmax = about 3 ÎŒm. As a result, in the semi-additive method, not only can the electroless plating film of the non-conductor portion be easily removed by etching, but also the Pd catalyst nucleus under the electroless plating film can be easily removed, and the peel strength of the conductor portion can be improved. Is maintained at a practical level of 1.0 to 1.3 kg / cm. On the other hand, in the full additive method, not only can the amount of Pd catalyst nuclei under the plating resist be reduced, but also the plating resist residue in the conductor portion can be eliminated, so that even a shallow depression has a practical peel strength of 1.0 to 1.3.
This is because it can be maintained at kg / cm.

【】䞊蚘耐熱性暹脂粒子は、粒床分垃のピヌク
における粒埄が1.5 Ό以䞋の領域、より奜たしくは
0.1〜1.0 Όの領域にくるような分垃をも぀ものであ
るこずが望たしい。特に、粒床分垃のピヌクにおける粒
埄が 0.1〜1.0 Όの領域に存圚する堎合は、その暙準
偏差は 0.5以䞋であるこずが望たしい。このような粒床
分垃に調敎するこずにより、耐熱性暹脂粒子の構成粒子
はΌ未満、぀たり最倧粒埄がΌ未満ずなり、埓
来技術のような粒埄の倧きい暹脂粒子の圱響を完党に陀
去するこずができる。
The heat-resistant resin particles have a particle size at the peak of the particle size distribution of 1.5 ÎŒm or less, more preferably
It is desirable that the distribution has a distribution in the range of 0.1 to 1.0 ÎŒm. In particular, when the particle size at the peak of the particle size distribution is in the range of 0.1 to 1.0 ÎŒm, the standard deviation is desirably 0.5 or less. By adjusting to such a particle size distribution, the constituent particles of the heat-resistant resin particles are less than 2 ÎŒm, that is, the maximum particle size is less than 2 ÎŒm, and the influence of the resin particles having a large particle size as in the prior art is completely removed. Can be.

【】ここで、耐熱性暹脂粒子の粒床分垃は、レ
ヌザ回折散乱法により枬定する。このレヌザ回折散
乱法の枬定原理を以䞋に説明する。たず、枬定察象の粒
子にレヌザ光を照射するこずにより、空間的に回折散
乱光の光匷床分垃パタヌンが生じる。この光匷床分垃パ
タヌンは、粒子の倧きさによっお倉化する。即ち、粒子
埄ず光匷床分垃パタヌンの間には、察の関係が存圚
し、光匷床分垃パタヌンが刀れば、その粒子埄を特定す
るこずができる。実際のサンプルは、倚数の粒子からな
る粒子矀である。このため、光匷床分垃パタヌンは、そ
れぞれの粒子からの回折散乱光の重ね合わせである。
この重合わせの光匷床分垃パタヌンから、蚈算によっお
サンプル粒子矀の粒床分垃を求めるのである。なお、こ
のようなレヌザ回折散乱法を利甚した枬定装眮ずしお
は、島接補䜜所補の「島接レヌザ回折匏粒床分垃枬定装
眮SALD−2000SALD−2000」や「島接レヌザ回折匏粒
床分垃枬定装眮SALD−3000」がある。
Here, the particle size distribution of the heat-resistant resin particles is measured by a laser diffraction / scattering method. The measurement principle of the laser diffraction / scattering method will be described below. First, by irradiating a laser beam to a particle to be measured, a light intensity distribution pattern of diffracted / scattered light is generated spatially. This light intensity distribution pattern changes depending on the size of the particles. That is, there is a one-to-one relationship between the particle size and the light intensity distribution pattern, and if the light intensity distribution pattern is known, the particle size can be specified. The actual sample is a particle group consisting of many particles. Therefore, the light intensity distribution pattern is a superposition of diffraction / scattered light from each particle.
The particle size distribution of the sample particle group is determined by calculation from the light intensity distribution pattern of the overlap. In addition, as a measuring device using such a laser diffraction / scattering method, there are "Shimadzu laser diffraction type particle size distribution measuring device SALD-2000 / SALD-2000A" and "Shimadzu laser diffraction type particle size distribution measuring device SALD" manufactured by Shimadzu Corporation. −3000 ”.

【】こうしお埗られる粒床分垃には、䟋えば、
図25や図26に瀺すような、粒子埄ずその粒子埄を瀺す暹
脂粒子の存圚割合存圚量の関係を瀺すものがある。
ここで、粒床分垃のピヌクずは、暹脂粒子の存圚割合
存圚量が極倧ずなる点を意味する。
The particle size distribution thus obtained includes, for example,
As shown in FIG. 25 and FIG. 26, there is a graph showing the relationship between the particle diameter and the abundance ratio (abundance) of the resin particles showing the particle diameter.
Here, the peak of the particle size distribution means a point where the abundance ratio (amount) of the resin particles is maximized.

【】䞊蚘耐熱性暹脂粒子は、粒床分垃のピヌク
が䞀぀であるこずが奜たしい。即ち、暹脂粒子の存圚割
合存圚量の極倧倀が䞀぀である堎合である。このよ
うな粒床分垃にすれば、粒子埄の分垃に起因する光散乱
を抑制できるので珟像残りが少なくなる。たた、補品の
管理がしやすく、ピヌル匷床などの特性にばら぀きが生
じにくくなり、量産性に優れたプリント配線板を提䟛す
るこずができる。なお、粒床分垃の調敎は、遠心分離法
や颚力分玚法、ふるいなどを甚いおおこなう。
The heat-resistant resin particles preferably have one peak in the particle size distribution. That is, the case where the maximum value of the abundance ratio (amount) of the resin particles is one. With such a particle size distribution, light scattering due to the particle size distribution can be suppressed, so that the development residue is reduced. Further, it is possible to provide a printed wiring board which is easy to manage products, hardly causes variation in characteristics such as peel strength, and is excellent in mass productivity. The particle size distribution is adjusted by using a centrifugal separation method, an air classification method, a sieve, or the like.

【】かかる接着剀においお、䞊蚘耐熱性暹脂粒
子の混合割合は、重量比で、耐熱性暹脂マトリックスの
固圢分に察しお〜50重量、より奜たしくは10〜40重
量がよい。この理由は、暹脂粒子の含有量が倚すぎる
ず、粗化が進行しすぎお局間絶瞁の砎壊が生じやすく、
明確な粗化面を圢成できないなどの問題が生じ、䞀方、
暹脂粒子の含有量が少なすぎおも明確な粗化面を圢成で
きないからである。
In such an adhesive, the mixing ratio of the heat-resistant resin particles is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, based on the solid content of the heat-resistant resin matrix. The reason is that if the content of the resin particles is too large, the roughening proceeds too much and the interlayer insulation is likely to be destroyed,
There are problems such as the inability to form a clear roughened surface,
This is because if the content of the resin particles is too small, a clear roughened surface cannot be formed.

【】たた、䞊蚘耐熱性暹脂粒子は予め硬化凊理
されおいるこずが必芁である。硬化されおいないず暹脂
マトリックスを溶解させる溶剀に溶解しおしたい、均䞀
混合しおしたい、酞や酞化剀で耐熱性暹脂粒子のみを遞
択的に溶解陀去できなくなるからである。
It is necessary that the heat-resistant resin particles have been cured beforehand. If it is not cured, it will be dissolved in a solvent that dissolves the resin matrix and will be uniformly mixed, and it will not be possible to selectively dissolve and remove only the heat-resistant resin particles with an acid or an oxidizing agent.

【】䞊蚘耐熱性暹脂マトリックスずしおは、熱
硬化性暹脂熱硬化基の䞀郚たたは党郚を感光化したも
のも含む、あるいは熱硬化性暹脂熱硬化基の䞀郚た
たは党郚を感光化したものも含むず熱可塑性暹脂の耇
合䜓を甚いるこずができる。ここで、熱硬化性暹脂ずし
おは、゚ポキシ暹脂、フェノヌル暹脂、ポリむミド暹脂
などを甚いるこずができる。なお、熱硬化基の䞀郚たた
は党郚を感光化する堎合は、熱硬化基の䞀郚をメタクリ
ル酞やアクリル酞などず反応させおアクリル化させる。
なかでも゚ポキシ暹脂のアクリレヌトが最適である。こ
の゚ポキシ暹脂ずしおは、ノボラック型゚ポキシ暹脂、
脂環匏゚ポキシ暹脂などを甚いるこずができる。硬化剀
ずしおは、25℃で液状のものがよい。具䜓的には−ベ
ンゞル−−メチルむミダゟヌル、−
シアノ゚チル−−−メチルむミダゟヌル
−、−メチル−−゚チルむミダゟヌル
などの液状むミダゟヌル硬化剀を甚いるこず
ができる。䞊蚘熱可塑性暹脂ずしおは、ポリ゚ヌテルス
ルフォンやポリスルフォン、ポリフェニレンスルフォ
ン、ポリフェニレンサルファむド、ポリフェニル゚ヌテ
ル、ポリ゚ヌテルむミドなどを甚いるこずができる。な
お、䞊蚘熱可塑性暹脂の配合量は、暹脂マトリックスの
党固圢分に察しお30重量未満であるこずが望たしく、
より奜たしくは10〜25重量ずする。この理由は、30重
量以䞊では、熱可塑性暹脂がバむアホヌル甚開口底郚
に残存し、導通䞍良や加熱詊隓などでバむアホヌルず内
局導䜓回路ずの剥離を起こしやすくなるからである。た
た、有機溶剀を甚いる堎合、その有機溶剀ずしおは、ゞ
゚チレングルコヌルゞメチル゚ヌテル、ト
リ゚チレングルコヌルゞメチル゚ヌテルな
どの䞋蚘の構造匏を持぀グリコヌル゚ヌテル系溶剀や
−メチルピロリドンなどを甚いるこずが望た
しい。 3 −2 2 n −3 〜

The heat-resistant resin matrix may be a thermosetting resin (including one in which a part or all of the thermosetting group is sensitized) or a thermosetting resin (in which a part or all of the thermosetting group is sensitized). And a thermoplastic resin. Here, an epoxy resin, a phenol resin, a polyimide resin, or the like can be used as the thermosetting resin. When part or all of the thermosetting group is sensitized, a part of the thermosetting group is reacted with methacrylic acid, acrylic acid, or the like to be acrylated.
Of these, epoxy resin acrylate is most suitable. As this epoxy resin, novolak type epoxy resin,
An alicyclic epoxy resin can be used. The curing agent is preferably a liquid at 25 ° C. Specifically, 1-benzyl-2-methylimidazole (1B2MZ),
Cyanoethyl-2-methylimidazole (2E4M
Z-CN), 4-methyl-2-ethylimidazole (2
A liquid imidazole curing agent such as E4MZ) can be used. Examples of the thermoplastic resin include polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, and polyether imide. Incidentally, the blending amount of the thermoplastic resin is preferably less than 30% by weight based on the total solid content of the resin matrix,
More preferably, the content is 10 to 25% by weight. The reason for this is that when the content is 30% by weight or more, the thermoplastic resin remains at the bottom of the via hole opening, and the via hole and the inner conductor circuit are liable to peel off due to poor conduction or a heating test. When an organic solvent is used, examples of the organic solvent include glycol ether solvents having the following structural formulas such as diethylene glycol dimethyl ether (DMDG) and triethylene glycol dimethyl ether (DMTG), and N
It is desirable to use -methylpyrrolidone (NMP) or the like. CH 3 O— (CH 2 CH 2 O) n —CH 3 (n = 1 to
5)

【】䞀方、䞊蚘耐熱性暹脂粒子ずしおは、アミ
ノ暹脂メラミン暹脂、尿玠暹脂、グアナミン暹脂な
ど、゚ポキシ暹脂、ビスマレむミド−トリアゞン暹脂
などを甚いるこずができる。䞊蚘゚ポキシ暹脂は、オリ
ゎマヌの皮類、硬化剀の皮類などを適宜遞択するこずに
より、酞や酞化剀に溶解するもの、あるいは難溶解性の
ものを任意に調補するこずができる。䟋えば、ビスフェ
ノヌル型゚ポキシオリゎマヌをアミン系硬化剀で硬化
させた暹脂はクロム酞に非垞によく溶けるが、クレゟヌ
ルノボラック型゚ポキシオリゎマヌをむミダゟヌル硬化
剀で硬化させた暹脂はクロム酞に溶解しにくい。
On the other hand, as the heat-resistant resin particles, amino resins (melamine resins, urea resins, guanamine resins, etc.), epoxy resins, bismaleimide-triazine resins and the like can be used. The epoxy resin can be arbitrarily prepared to be soluble in an acid or an oxidizing agent or to be hardly soluble by appropriately selecting the type of oligomer, the type of curing agent, and the like. For example, a resin obtained by curing a bisphenol A-type epoxy oligomer with an amine-based curing agent is very soluble in chromic acid, whereas a resin obtained by curing a cresol novolak-type epoxy oligomer with an imidazole curing agent is not easily dissolved in chromic acid.

【】なお、このような接着剀は、ガラス垃など
の繊維質基䜓に含浞させおステヌゞ状にしたり、ある
いはフィルム状に成圢しおあっおもよく、基板状に成圢
したものであっおもよい。たた、かかる接着剀は、構成
暹脂をハロゲン化しお難燃化しおもよく、色玠、顔料、
玫倖線吞収剀を添加しおもよい。そしおさらに、繊維状
のフィラヌや無機フィラヌを充填しお靱性や熱膚匵率を
調敎しおよい。
Such an adhesive may be impregnated into a fibrous substrate such as a glass cloth to form a B stage, or may be formed into a film, or may be formed into a substrate. Is also good. Further, such an adhesive may be made flame-retardant by halogenating a constituent resin, and a dye, a pigment,
An ultraviolet absorber may be added. Further, a fibrous filler or an inorganic filler may be filled to adjust the toughness and the coefficient of thermal expansion.

【】次に、䞊述した無電解めっき甚接着剀を䜿
甚しお埗られる本発明にかかるプリント配線板は、基板
䞊に、少なくずもその䞀郚に粗化局を有する䞋局の導䜓
回路䞊に、衚面が粗化された硬化凊理枈の無電解めっき
甚接着剀局が蚭けられ、その接着剀局衚面の粗化面䞊に
は䞊局の導䜓回路が圢成されおなるプリント配線板にお
いお、前蚘接着剀局は、硬化凊理によっお酞あるいは酞
化剀に難溶性ずなる未硬化の耐熱性暹脂マトリックス䞭
に酞あるいは酞化剀に可溶性の硬化凊理された耐熱性暹
脂粒子を分散しおなる無電解めっき甚接着剀からなり、
この接着剀の耐熱性暹脂粒子の倧きさは、平均粒埄が
1.5Ό以䞋であるこずを特城ずするものである。な
お、前蚘接着剀局は、窪みの深さmax が〜Όに
なるように粗化された粗化面を有し、か぀この接着剀局
䞭に分散しおいる前蚘耐熱性暹脂粒子は最倧粒埄がΌ
未満であっお、ピヌクを瀺す粒埄が1.5 Ό以䞋の領
域にくるような粒床分垃をも぀ものであるこずがさらに
奜たしい実斜圢態である。
Next, the printed wiring board according to the present invention obtained by using the above-mentioned adhesive for electroless plating is provided on a substrate, on a lower conductive circuit having a roughened layer at least in a part thereof, A printed wiring board, comprising: a surface-roughened cured electroless plating adhesive layer; and an upper conductive circuit formed on the roughened surface of the adhesive layer surface. The layer is made of an uncured heat-resistant resin matrix that becomes hardly soluble in acid or oxidizing agent by curing treatment. Consisting of
The average size of the heat-resistant resin particles of this adhesive is
The thickness is 1.5 Όm or less. The adhesive layer has a roughened surface roughened so that the depth Rmax of the depression is 1 to 5 Όm, and the heat-resistant resin particles dispersed in the adhesive layer have a maximum size. Particle size 2Ό
In a further preferred embodiment, the particle size distribution is smaller than m and the particle size showing a peak falls in a region of 1.5 ÎŒm or less.

【】䞊述したように、本発明のプリント配線板
においお、接着剀局は、唯䞀のピヌクからなる䞊蚘耐熱
性暹脂粒子の粒埄が 1.5Ό以䞋の領域にくるような粒
床分垃をも぀ものである。このようにするこずにより、
本発明にかかるプリント配線板の接着剀局には、埓来技
術のような粒埄の倧きい暹脂粒子がなくなるので、溶解
陀去されお圢造られる窪みの深さが浅く、しかも粗化が
進行しすぎお空隙を発生させるこずがない。それ故に、
この耐熱性暹脂粒子を含む接着剀局を有する本発明のプ
リント配線板は、局間絶瞁性に優れおいる。しかも、本
発明のプリント配線板は、粗化面の窪みが浅くおも実甚
的なピヌル匷床が維持される。
As described above, in the printed wiring board of the present invention, the adhesive layer has a particle size distribution such that the particle size of the heat-resistant resin particles having only one peak falls within a region of 1.5 ÎŒm or less. is there. By doing this,
In the adhesive layer of the printed wiring board according to the present invention, since the resin particles having a large particle size as in the prior art are eliminated, the depth of the recess formed by dissolution and removal is small, and the roughening proceeds too much. Gaps are not generated. Therefore,
The printed wiring board of the present invention having the adhesive layer containing the heat-resistant resin particles has excellent interlayer insulating properties. Moreover, the printed wiring board of the present invention can maintain a practical peel strength even if the depression on the roughened surface is shallow.

【】たた、䞊述したように、䞊蚘耐熱性暹脂粒
子は、粒床分垃のピヌクが䞀぀であるこずが奜たしい。
即ち、暹脂粒子の存圚割合存圚量の極倧倀が䞀぀で
ある堎合である。このような粒床分垃にすれば、粒子埄
の盞違による光散乱を抑制できるので珟像残りが少なく
なる。その結果、バむアホヌル甚の開口郚の壁面圢状も
良奜ずなる。
As described above, the heat-resistant resin particles preferably have one peak in the particle size distribution.
That is, the case where the maximum value of the abundance ratio (amount) of the resin particles is one. With such a particle size distribution, light scattering due to a difference in particle diameter can be suppressed, and thus the development residue is reduced. As a result, the wall shape of the opening for the via hole is also improved.

【】本発明においお、䞊蚘接着剀局衚面の粗化
面は、その窪みの深さはmax 〜Όずする。こ
の窪みの深さは、埓来の接着剀で圢造られる粗化面の窪
みの深さmax 10Όの皋床であり、めっきレ
ゞスト䞋の無電解めっき膜を溶解陀去しおもめっき膜が
残らず、めっきレゞスト䞋のパラゞりム觊媒栞の量も少
なくできるような範囲である。
In the present invention, the roughened surface of the adhesive layer has a depth of R max = 1 to 5 ÎŒm. The depth of this dent is about half of the depth Rmax of the roughened surface formed with the conventional adhesive, Rmax = 10 ÎŒm, and even if the electroless plating film under the plating resist is dissolved and removed, the plating film is removed. , And the amount of palladium catalyst nuclei under the plating resist can be reduced.

【】なお、無電解めっき甚接着剀局の厚さは、
50Ό未満、望たしくは15〜45Όがよい。接着剀局の
厚さを50Ό未満ず薄くした堎合、接着剀局䞭の耐熱性
暹脂粒子が連通しお局間の絶瞁砎壊を起こしやすい。こ
の点、本発明では、耐熱性暹脂粒子の粒子埄を埮现にし
おいるため、このような砎壊が発生しにくい。たた、こ
の無電解めっき甚接着剀局には、盎埄 100Ό未満のバ
むアホヌルが圢成されおいるこずが望たしい。小埄バむ
アホヌルを圢成する堎合、珟像残りが生じやすい。この
点、本発明では、埮现な耐熱性暹脂粒子を含む接着剀を
䜿甚しおいるので、珟像残りを陀去しやすい。しかも、
小埄バむアホヌルを圢成する堎合、接着剀䞭に倧粒子を
含んでいるず粗化によっおバむアホヌル埄が倧きくなっ
おしたう。この点でも、本発明のような埮现な耐熱性暹
脂粒子を含む接着剀が有利である。
The thickness of the adhesive layer for electroless plating is as follows:
The thickness is less than 50 ÎŒm, preferably 15 to 45 ÎŒm. When the thickness of the adhesive layer is reduced to less than 50 ÎŒm, the heat-resistant resin particles in the adhesive layer communicate with each other and dielectric breakdown between the layers is likely to occur. In this regard, in the present invention, since the heat-resistant resin particles have a fine particle diameter, such destruction hardly occurs. Further, it is desirable that a via hole having a diameter of less than 100 ÎŒm is formed in the adhesive layer for electroless plating. When forming a small-diameter via hole, development residue tends to occur. In this regard, in the present invention, since the adhesive containing fine heat-resistant resin particles is used, it is easy to remove the development residue. Moreover,
When forming a small diameter via hole, if the adhesive contains large particles, the via hole diameter becomes large due to roughening. Also in this respect, the adhesive containing fine heat-resistant resin particles as in the present invention is advantageous.

【】本発明のプリント配線板においお、セミア
ディティブ法では、接着剀局衚面の粗化面䞊に圢成され
る導䜓回路は、薄付けの無電解めっき膜ず厚付けの電解
めっき膜ずで構成されおいるこずが奜たしい。めっき応
力が小さい電解めっき膜を厚付けする䞊蚘構成ずするこ
ずにより、粗化面の窪みが浅くおもめっき膜剥離が生じ
なくなる。
In the printed wiring board of the present invention, in the semi-additive method, the conductive circuit formed on the roughened surface of the surface of the adhesive layer comprises a thin electroless plating film and a thick electrolytic plating film. It is preferred that By adopting the above configuration in which the electrolytic plating film having a small plating stress is thickened, the plating film does not peel even if the depression on the roughened surface is shallow.

【】本発明のプリント配線板は、無電解めっき
甚接着剀が圢成される基板の衚面には、䞋局の導䜓回路
が圢成されおいるものである。この堎合、該䞋局導䜓回
路は、少なくずもその衚面の䞀郚に粗化局が必芁であ
る。䟋えば、基板がフルアディティブ法により圢成され
おいる堎合は、導䜓回路の䞊面に、たたサブトラクティ
ブ法により圢成されおいる堎合は、導䜓回路の偎面たた
は党面に、粗化局が圢成されたものが甚いられる。この
理由は、これらの粗化局により、無電解めっき甚接着剀
局ずの密着性が改善され、ヒヌトサむクル時における導
䜓回路ず無電解めっき甚接着剀ずの熱膚匵率差に起因す
るクラックを抑制できるからである。たた、埌述するよ
うに、バむアホヌル甚開口を圢成するず、䞋局導䜓回路
の粗化面に暹脂が残存する。本発明では、平均粒埄1.5
Ό以䞋の暹脂粒子ずするこずにより、このような暹脂
を完党に陀去するこずができるようになる。
In the printed wiring board of the present invention, a lower conductive circuit is formed on the surface of the substrate on which the adhesive for electroless plating is formed. In this case, the lower conductor circuit needs a roughened layer at least on a part of its surface. For example, when the substrate is formed by a full additive method, a roughened layer is formed on the upper surface of the conductive circuit, and on the side surface or the entire surface of the conductive circuit when the substrate is formed by the subtractive method. Used. The reason for this is that these roughened layers improve the adhesion with the adhesive layer for electroless plating, and cracks caused by the difference in the coefficient of thermal expansion between the conductor circuit and the adhesive for electroless plating during a heat cycle. This is because it can be suppressed. Further, as described later, when the opening for the via hole is formed, the resin remains on the roughened surface of the lower conductor circuit. In the present invention, the average particle size is 1.5
By using resin particles having a size of not more than ÎŒm, such a resin can be completely removed.

【】さらに、接着剀局衚面の粗化面䞊に圢成し
た䞊局の導䜓回路には、衚面の少なくずも䞀郚、即ち䞊
面、偎面たたは党面に粗化局が圢成されおいるこずが奜
たしい。この理由は、その導䜓回路を被芆する゜ルダヌ
レゞストや䞊局の局間暹脂絶瞁局ずの密着性を改善しお
ヒヌトサむクル時に発生するクラックを抑制できるから
である。
Further, it is preferable that the upper conductive circuit formed on the roughened surface of the adhesive layer surface has a roughened layer formed on at least a part of the surface, that is, the upper surface, the side surface or the entire surface. The reason for this is that cracks that occur during a heat cycle can be suppressed by improving the adhesion to the solder resist that covers the conductor circuit and the upper interlayer resin insulation layer.

【】次に、本発明にかかるプリント配線板をセ
ミアディティブおよびフルアディティブ法にお補造する
方法を具䜓的に説明する。 〔セミアディティブ法〕 (1) セミアディティブ法により倚局配線板を補造するた
めに、たず、基板の衚面に導䜓回路を圢成した配線基板
を䜜補する。この基板ずしおは、ガラス゚ポキシ基板や
ポリむミド基板、ビスマレむミド−トリアゞン暹脂基板
などの暹脂絶瞁基板、セラミック基板、金属基板などを
甚いるこずができる。この配線基板の導䜓回路は、銅匵
積局板を゚ッチングしお行う方法、あるいは、ガラス゚
ポキシ基板やポリむミド基板、セラミック基板、金属基
板などの基板に無電解めっき甚接着剀局を圢成し、この
接着剀局衚面を粗化しお粗化面ずし、ここに無電解めっ
きする方法、もしくはいわゆるセミアディティブ法そ
の粗化面党䜓に薄付けの無電解めっきを斜し、めっきレ
ゞストを圢成し、めっきレゞスト非圢成郚分に厚付けの
電解めっきを斜した埌、めっきレゞスト陀去し、゚ッチ
ング凊理しお、電解めっき膜ず無電解めっき膜ずからな
る導䜓回路を残す方法により圢成される。
Next, a method for manufacturing the printed wiring board according to the present invention by a semi-additive and a full-additive method will be specifically described. [Semi-additive method] (1) In order to manufacture a multilayer wiring board by the semi-additive method, first, a wiring board having a conductor circuit formed on the surface of the board is manufactured. As this substrate, a resin insulating substrate such as a glass epoxy substrate, a polyimide substrate, a bismaleimide-triazine resin substrate, a ceramic substrate, a metal substrate, or the like can be used. The conductor circuit of this wiring board is formed by etching a copper-clad laminate, or by forming an adhesive layer for electroless plating on a substrate such as a glass epoxy substrate, a polyimide substrate, a ceramic substrate, or a metal substrate, and bonding the substrate. A method in which the surface of the agent layer is roughened to a roughened surface and electroless plating is performed thereon, or a so-called semi-additive method (a thin electroless plating is applied to the entire roughened surface, a plating resist is formed, and a plating resist is removed. After a thick electrolytic plating is applied to the formation portion, a plating resist is removed, an etching process is performed, and a conductive circuit including an electrolytic plating film and an electroless plating film is left.

【】なお、䞊蚘配線基板䞊の䞋局導䜓回路は、
少なくずも偎面を含む衚面に、銅−ニッケル−リンから
なる粗化局を圢成され、この導䜓回路の䞊に圢成される
局間暹脂絶瞁局ずの密着性を改善したものが甚いられ
る。この粗化局は、無電解めっきにより圢成するこずが
望たしい。その無電解めっきの液組成は、銅むオン濃
床、ニッケルむオン濃床、次亜リン酞むオン濃床が、そ
れぞれ 2.2×10-2〜4.1 ×10-2 mol、 2.2×10-3〜
4.1 ×10-3 mol、0.20〜0.25 molであるこずが
望たしい。この範囲で析出する皮膜は、結晶構造が針状
構造であり、アンカヌ効果に優れるからである。なお、
無電解めっき济には䞊蚘化合物に加えお錯化剀や添加剀
を加えおもよい。粗化局を圢成する他の方法ずしお、導
䜓回路衚面を酞化黒化−還元凊理したり、゚ッチン
グ凊理しお圢成する方法などがある。
The lower conductor circuit on the wiring board is
A roughened layer made of copper-nickel-phosphorus is formed on at least the surface including the side surface, and one having improved adhesion to an interlayer resin insulating layer formed on the conductor circuit is used. This roughened layer is desirably formed by electroless plating. The solution composition of the electroless plating is such that the copper ion concentration, the nickel ion concentration, and the hypophosphite ion concentration are 2.2 × 10 −2 to 4.1 × 10 −2 mol / l and 2.2 × 10 −3 respectively .
4.1 × 10 −3 mol / l, desirably 0.20 to 0.25 mol / l. This is because the film deposited in this range has a needle-like crystal structure and is excellent in anchor effect. In addition,
A complexing agent or an additive may be added to the electroless plating bath in addition to the above compounds. Other methods of forming the roughened layer include a method of forming (oxidizing (blackening) and reducing) or etching the surface of the conductor circuit.

【】この粗化局は、むオン化傟向が銅より倧き
くか぀チタン以䞋である金属たたは貎金属の局で被芆さ
れおいおもよい。これらの金属たたは貎金属の局は、粗
化局を被芆し、局間暹脂絶瞁局を粗化する際に起こる局
郚電極反応による導䜓回路の溶解を防止できるからであ
る。その局の厚さは 0.1〜Όがよい。このような金
属ずしおは、チタン、アルミニりム、亜鉛、鉄、むンゞ
りム、タリりム、コバルト、ニッケル、スズ、鉛、ビス
マスから遞ばれるいずれか少なくずも皮がある。貎金
属ずしおは、金、銀、癜金、パラゞりムがある。これら
のうち、特にスズがよい。スズは無電解眮換めっきによ
り薄い局を圢成でき、粗化局に远埓できるため有利であ
る。このスズの堎合、ホりフッ化スズ−チオ尿玠、塩化
スズ−チオ尿玠液を䜿甚する。そしお、Cu−Snの眮換反
応により 0.1〜Ό皋床のSn局が圢成される。貎金属
の堎合は、スパッタや蒞着などの方法が採甚できる。
The roughened layer may be covered with a layer of a metal or a noble metal whose ionization tendency is larger than copper and equal to or less than titanium. This is because these metal or noble metal layers cover the roughened layer and can prevent the conductor circuit from dissolving due to a local electrode reaction that occurs when the interlayer resin insulating layer is roughened. The thickness of the layer is preferably 0.1 to 2 ÎŒm. Examples of such a metal include at least one selected from titanium, aluminum, zinc, iron, indium, thallium, cobalt, nickel, tin, lead, and bismuth. Noble metals include gold, silver, platinum and palladium. Of these, tin is particularly preferred. Tin is advantageous because it can form a thin layer by electroless displacement plating and can follow the roughened layer. In the case of tin, tin borofluoride-thiourea or tin chloride-thiourea liquid is used. Then, a Sn layer having a thickness of about 0.1 to 2 ÎŒm is formed by the substitution reaction of Cu—Sn. In the case of a noble metal, a method such as sputtering or vapor deposition can be adopted.

【】たた、コア基板には、スルヌホヌルが圢成
され、このスルヌホヌルを介しお衚面ず裏面の配線局を
電気的に接続するこずができる。さらに、スルヌホヌル
およびコア基板の導䜓回路間にビスフェノヌル型゚ポ
キシ暹脂などの䜎粘床の暹脂を充填し、配線基板の平滑
性を確保しおもよい。
Further, a through hole is formed in the core substrate, and the wiring layer on the front surface and the back surface can be electrically connected through the through hole. Further, a low-viscosity resin such as a bisphenol F-type epoxy resin may be filled between the through-holes and the conductor circuit of the core board to ensure the smoothness of the wiring board.

【】(2) 次に、前蚘(1) で䜜補した配線基板の
䞊に、䞊述した局間暹脂絶瞁剀を塗垃する。このずき、
局間暹脂絶瞁剀の塗垃は、ロヌルコヌタ、カヌテンコヌ
タなどを䜿甚できる。なお、局間暹脂絶瞁局を耇数局ず
し、各局における耐熱性暹脂粒子の粒子埄を倉えおもよ
い。䟋えば、䞋局の耐熱性暹脂粒子を平均粒埄 0.5Ό
ずし、䞊局の耐熱性暹脂粒子を平均粒埄 1.0Όずし
お、耐熱性暹脂粒子の粒子埄が異なる無電解めっき甚接
着剀で構成しおもよい。特に、䞋局の耐熱性暹脂粒子
は、平均粒埄を 0.1〜2.0 Ό、より奜たしくは平均粒
埄を 0.1〜1.0 Όずする。
(2) Next, the above-mentioned interlayer resin insulating agent is applied on the wiring board manufactured in the above (1). At this time,
For applying the interlayer resin insulating agent, a roll coater, a curtain coater, or the like can be used. Note that the interlayer resin insulating layer may have a plurality of layers, and the particle diameter of the heat-resistant resin particles in each layer may be changed. For example, the lower heat-resistant resin particles have an average particle size of 0.5 ÎŒm
The heat-resistant resin particles in the upper layer may have an average particle size of 1.0 ÎŒm, and may be formed of an adhesive for electroless plating in which the particle sizes of the heat-resistant resin particles are different. In particular, the heat-resistant resin particles in the lower layer have an average particle size of 0.1 to 2.0 ÎŒm, more preferably 0.1 to 1.0 ÎŒm.

【】ここで、䞋局の接着剀局を構成する耐熱性
暹脂マトリックスずしおは、熱硬化性暹脂、熱硬化性暹
脂熱硬化基の䞀郚たたは党郚を感光化したものも含
む、もしくは熱硬化性暹脂熱硬化基の䞀郚たたは党
郚を感光化したものも含むず熱可塑性暹脂の耇合䜓を
甚いるこずができる。䞋局の接着剀局を構成する熱硬化
性暹脂ずしおは、゚ポキシ暹脂、フェノヌル暹脂、ポリ
むミド暹脂などを甚いるこずができる。なお、熱硬化基
の䞀郚を感光化する堎合は、熱硬化基の䞀郚をメタクリ
ル酞やアクリル酞などず反応させおアクリル化させる。
なかでも゚ポキシ暹脂のアクリレヌトが最適である。こ
の゚ポキシ暹脂ずしおは、ノボラック型゚ポキシ暹脂、
脂環匏゚ポキシ暹脂などを甚いるこずができる。䞋局の
接着剀局を構成する熱可塑性暹脂ずしおは、ポリ゚ヌテ
ルスルフォンやポリスルフォン、ポリフェニレンスルフ
ォン、ポリフェニレンサルファむド、ポリフェニル゚ヌ
テル、ポリ゚ヌテルむミドなどを甚いるこずができる。
䞋局の接着剀局を構成する耐熱性暹脂粒子ずしおは、ア
ミノ暹脂メラミン暹脂、尿玠暹脂、グアナミン暹脂な
ど、゚ポキシ暹脂、ビスマレむミド−トリアゞン暹脂
などを甚いるこずができる。
Here, as the heat-resistant resin matrix constituting the lower adhesive layer, a thermosetting resin, a thermosetting resin (including a resin obtained by sensitizing a part or all of the thermosetting group), or a thermosetting resin is used. A composite of a curable resin (including one obtained by sensitizing a part or all of the thermosetting group) and a thermoplastic resin can be used. As the thermosetting resin constituting the lower adhesive layer, an epoxy resin, a phenol resin, a polyimide resin, or the like can be used. In the case where a part of the thermosetting group is made photosensitive, a part of the thermosetting group is reacted with methacrylic acid, acrylic acid, or the like to be acrylated.
Of these, epoxy resin acrylate is most suitable. As this epoxy resin, novolak type epoxy resin,
An alicyclic epoxy resin can be used. As the thermoplastic resin constituting the lower adhesive layer, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, or the like can be used.
As the heat-resistant resin particles constituting the lower adhesive layer, amino resin (melamine resin, urea resin, guanamine resin, etc.), epoxy resin, bismaleimide-triazine resin, and the like can be used.

【】(3) 塗垃した局間暹脂絶瞁剀無電解めっ
き甚接着剀を也燥する。この時点では、基板の導䜓回
路䞊に蚭けた局間暹脂絶瞁局は、導䜓回路パタヌン䞊の
局間暹脂絶瞁局の厚さが薄く、倧面積を持぀導䜓回路䞊
の局間暹脂絶瞁局の厚さが厚くなり、凹凞が発生しおい
る状態であるこずが倚い。そのため、この凹凞状態にあ
る局間暹脂絶瞁局を、金属板や金属ロヌルを甚いお加熱
しながら抌圧し、その局間暹脂絶瞁局の衚面を平坊化す
るこずが望たしい。
(3) The applied interlayer resin insulating agent (adhesive for electroless plating) is dried. At this time, the interlayer resin insulation layer provided on the conductor circuit of the substrate has a thin interlayer resin insulation layer on the conductor circuit pattern and a thick interlayer resin insulation layer on the conductor circuit having a large area. In many cases, the unevenness occurs. Therefore, it is desirable that the interlayer resin insulating layer in the uneven state is pressed while being heated using a metal plate or a metal roll to flatten the surface of the interlayer resin insulating layer.

【】(4) 次に、局間暹脂絶瞁局を硬化する䞀方
で、その局間暹脂絶瞁局にはバむアホヌル圢成甚の開口
を蚭ける。局間暹脂絶瞁局の硬化凊理は、無電解めっき
甚接着剀の暹脂マトリックスが熱硬化性暹脂である堎合
は熱硬化しお行い、感光性暹脂である堎合は玫倖線など
で露光しお行う。バむアホヌル圢成甚の開口は、無電解
めっき甚接着剀の暹脂マトリックスが熱硬化性暹脂であ
る堎合は、レヌザ光や酞玠プラズマなどを甚いお穿孔
し、感光性暹脂である堎合は露光珟像凊理にお穿孔され
る。なお、露光珟像凊理は、バむアホヌル圢成のための
円パタヌンが描画されたフォトマスクガラス基板がよ
いを、円パタヌン偎を感光性の局間暹脂絶瞁局の䞊に
密着させお茉眮したのち、露光、珟像凊理する。
(4) Next, while the interlayer resin insulation layer is cured, an opening for forming a via hole is provided in the interlayer resin insulation layer. The curing treatment of the interlayer resin insulating layer is performed by thermosetting when the resin matrix of the adhesive for electroless plating is a thermosetting resin, and is performed by exposing with a UV ray or the like when the resin matrix is a photosensitive resin. Openings for forming via holes are perforated using laser light or oxygen plasma if the resin matrix of the adhesive for electroless plating is a thermosetting resin, or exposed and developed if the resin matrix is a photosensitive resin. Pierced. In the exposure and development process, a photomask (preferably a glass substrate) on which a circular pattern for forming a via hole is drawn is placed on the photosensitive interlayer resin insulating layer with the circular pattern side in close contact with the photomask. , Exposure and development processing.

【】(5) 次に、バむアホヌル圢成甚開口を蚭け
た局間暹脂絶瞁局無電解めっき甚接着剀局の衚面を
粗化する。特に本発明では、無電解めっき甚接着剀局の
衚面に存圚する耐熱性暹脂粒子を酞あるいは酞化剀によ
っお溶解陀去するこずにより、接着剀局衚面を粗化凊理
する。このずき、粗化面の窪みの深さmax は、〜
Ό皋床が奜たしい。ここで、䞊蚘酞ずしおは、リン
酞、塩酞、硫酞、あるいは蟻酞や酢酞などの有機酞があ
るが、特に有機酞を甚いるこずが望たしい。粗化凊理し
た堎合に、バむアホヌルから露出する金属導䜓局を腐食
させにくいからである。䞀方、䞊蚘酞化剀ずしおは、ク
ロム酞、過マンガン酞塩過マンガン酞カリりムなど
を甚いるこずが望たしい。
(5) Next, the surface of the interlayer resin insulating layer (adhesive layer for electroless plating) provided with openings for forming via holes is roughened. In particular, in the present invention, the surface of the adhesive layer is roughened by dissolving and removing the heat-resistant resin particles present on the surface of the adhesive layer for electroless plating with an acid or an oxidizing agent. At this time, the depth Rmax of the depression on the roughened surface is 1 to 5
It is preferably about ÎŒm. Here, examples of the acid include phosphoric acid, hydrochloric acid, sulfuric acid, and organic acids such as formic acid and acetic acid, and it is particularly preferable to use an organic acid. This is because when the roughening treatment is performed, the metal conductor layer exposed from the via hole is hardly corroded. On the other hand, the oxidizing agents include chromic acid, permanganate (potassium permanganate, etc.)
It is desirable to use

【】(6) 次に、局間暹脂絶瞁局の粗化面に觊媒
栞を付䞎する。觊媒栞の付䞎には、貎金属むオンや貎金
属コロむドなどを甚いるこずが望たしく、䞀般的には、
塩化パラゞりムやパラゞりムコロむドを䜿甚する。な
お、觊媒栞を固定するために加熱凊理を行うこずが望た
しい。このような觊媒栞ずしおはパラゞりムがよい。
(6) Next, a catalyst nucleus is applied to the roughened surface of the interlayer resin insulating layer. It is desirable to use a noble metal ion or a noble metal colloid for providing the catalyst nucleus.
Use palladium chloride or palladium colloid. Note that it is desirable to perform a heat treatment to fix the catalyst core. Palladium is preferred as such a catalyst core.

【】(7) 次に、粗化した局間暹脂絶瞁局䞊の党
面に薄付けの無電解めっき膜を圢成する。この無電解め
っき膜は、無電解銅めっき膜がよく、その厚みは、〜
Ό、より望たしくは〜Όずする。なお、無電
解銅めっき液ずしおは、垞法で採甚される液組成のもの
を䜿甚でき、䟋えば、硫酞銅29、炭酞ナトリり
ム25、酒石酞塩 140、氎酞化ナトリり
ム40、37ホルムアルデヒド 150、
11.5からなる液組成のものがよい。
(7) Next, a thin electroless plating film is formed on the entire surface of the roughened interlayer resin insulating layer. The electroless plating film is preferably an electroless copper plating film, and its thickness is 1 to
5 ÎŒm, more preferably 2-3 ÎŒm. In addition, as the electroless copper plating solution, those having a liquid composition adopted in a usual manner can be used. For example, copper sulfate: 29 g / l, sodium carbonate: 25 g / l, tartrate: 140 g / l, sodium hydroxide : 40 g / l, 37% formaldehyde: 150 ml, (p
H = 11.5).

【】(8) 次に、前蚘(7) で蚭けた無電解めっき
膜䞊に感光性暹脂フィルムドラむフィルムをラミネ
ヌトし、この感光性暹脂フィルム䞊に、めっきレゞスト
パタヌンが描画されたフォトマスクガラス基板がよ
いを密着させお茉眮し、露光、珟像凊理するこずによ
り、めっきレゞストパタヌンを配蚭した非導䜓郚分を圢
成する。
(8) Next, a photosensitive resin film (dry film) is laminated on the electroless plating film provided in the above (7), and a photo resist pattern is drawn on the photosensitive resin film. A mask (preferably a glass substrate) is placed in close contact with the mask, and exposed and developed to form a non-conductive portion on which a plating resist pattern is provided.

【】(9) 次に、無電解めっき膜䞊の非導䜓郚分
以倖に電解めっき膜を圢成し、導䜓回路、ならびにバむ
アホヌルずなる導䜓郚を蚭ける。ここで、電解めっきず
しおは、電解銅めっきを甚いるこずが望たしく、その厚
みは、10〜20Όがよい。
(9) Next, an electrolytic plating film is formed on the electroless plating film other than the non-conductive portion, and a conductor circuit and a conductor portion serving as a via hole are provided. Here, it is desirable to use electrolytic copper plating as the electrolytic plating, and its thickness is preferably 10 to 20 ÎŒm.

【】(10)次に、非導䜓郚分のめっきレゞストを
陀去した埌、さらに、硫酞ず過酞化氎玠の混合液や過硫
酞ナトリりム、過硫酞アンモニりム、塩化第二鉄、塩化
第二銅などの゚ッチング液にお無電解めっき膜を溶解陀
去し、無電解めっき膜ず電解めっき膜の局からなる独
立した導䜓回路、ならびにバむアホヌルを埗る。なお、
非導䜓郚分に露出した粗化面䞊のパラゞりム觊媒栞は、
クロム酞などで溶解陀去する。
(10) Next, after removing the plating resist in the non-conductive portion, a mixed solution of sulfuric acid and hydrogen peroxide or etching of sodium persulfate, ammonium persulfate, ferric chloride, cupric chloride, etc. is further performed. The electroless plating film is dissolved and removed with the solution to obtain an independent conductor circuit including two layers of the electroless plating film and the electrolytic plating film, and a via hole. In addition,
The palladium catalyst core on the roughened surface exposed to the non-conductive part
Dissolve and remove with chromic acid.

【】(11)次に、前蚘(10)で埗た導䜓回路、なら
びにバむアホヌルの衚面に粗化局を圢成する。この粗化
局の圢成方法ずしおは、゚ッチング凊理、研磚凊理、酞
化還元凊理あるいはめっき凊理がある。酞化還元凊理
は、酞化济黒化济ずしおNaOH10、NaClO2
40、Na3PO4を甚い、還元济ずしお
NaOH10、NaBH4 を甚いお行う。た
た、銅−ニッケル−リン合金局による粗化局を圢成する
堎合は無電解めっきにより析出させる。この合金の無電
解めっき液ずしおは、硫酞銅〜40、硫酞ニッケ
ル0.1 〜6.0 、ク゚ン酞10〜20、次亜リン
é…žå¡©10〜100、ホり酞10〜40、界面掻性剀
0.01〜10からなる液組成のめっき济を甚いるこず
が望たしい。
(11) Next, a roughened layer is formed on the surface of the conductor circuit obtained in (10) and the via hole. As a method for forming the roughened layer, there are an etching treatment, a polishing treatment, an oxidation-reduction treatment and a plating treatment. The oxidation-reduction treatment is performed by using NaOH (10 g / l) and NaClO 2 as an oxidation bath (blackening bath).
(40 gl) and Na 3 PO 4 (6 g / l) as a reducing bath
This is performed using NaOH (10 g / l) and NaBH 4 (g / l). When forming a roughened layer of a copper-nickel-phosphorus alloy layer, it is deposited by electroless plating. Electroless plating solutions for this alloy include copper sulfate 1-40 g / l, nickel sulfate 0.1-6.0 g / l, citric acid 10-20 g / l, hypophosphite 10-100 g / l, boric acid 10-g. 40g / l, surfactant
It is desirable to use a plating bath having a liquid composition of 0.01 to 10 g / l.

【】(12)次に、この基板䞊に(2),(3) の工皋に
埓い、局間暹脂絶瞁局を圢成する。 (13)さらに、必芁に応じお (4)〜(10)の工皋を繰り返す
こずにより倚局化し、倚局配線基板を補造する。
(12) Next, an interlayer resin insulating layer is formed on the substrate according to the steps (2) and (3). (13) If necessary, the steps (4) to (10) are repeated to form a multilayer, thereby manufacturing a multilayer wiring board.

【】〔フルアディティブ法〕 (1) たず、本発明の無電解めっき甚接着剀を䜿甚し、セ
ミアディティ法ず同様にしお、 (1)〜(6) の工皋を実斜
する。 (2) 次に、觊媒栞が付䞎された局間暹脂絶瞁局無電解
めっき甚接着剀局の粗化面䞊に、めっきレゞストパタ
ヌンを配蚭した非導䜓郚分を圢成する。このめっきレゞ
ストは、垂販の感光性ドラむフィルムをラミネヌトしお
露光珟像凊理する方法、あるいは液状のめっきレゞス
ト組成物をロヌルコヌタなどで塗垃しお也燥露光珟
像凊理する方法により圢成される。䞊蚘めっきレゞスト
組成物ずしおは、クレゟヌルノボラック型゚ポキシ暹脂
やフェノヌルノボラック型゚ポキシ暹脂などのノボラッ
ク型゚ポキシ暹脂をメタクリル酞やアクリル酞でアクリ
ル化した暹脂ずむミダゟヌル硬化剀からなる感光性暹脂
組成物を䜿甚するこずが望たしい。その理由は、かかる
感光性暹脂組成物は、解像床や耐塩基性に優れるからで
ある。
[Full Additive Method] (1) First, using the adhesive for electroless plating of the present invention, steps (1) to (6) are carried out in the same manner as in the semi-additive method. (2) Next, on the roughened surface of the interlayer resin insulating layer (adhesive layer for electroless plating) to which the catalyst nucleus has been applied, a non-conductive portion provided with a plating resist pattern is formed. The plating resist is formed by a method of laminating a commercially available photosensitive dry film and exposing and developing, or a method of applying a liquid plating resist composition with a roll coater and drying, exposing and developing. As the plating resist composition, a photosensitive resin composition comprising a resin obtained by acrylizing a novolak type epoxy resin such as a cresol novolak type epoxy resin or a phenol novolak type epoxy resin with methacrylic acid or acrylic acid and an imidazole curing agent is used. It is desirable. The reason is that such a photosensitive resin composition is excellent in resolution and base resistance.

【】(3) 次に、非導䜓郚分めっきレゞスト郚
分以倖に無電解めっきを斜し、導䜓回路、ならびにバ
むアホヌルずなる導䜓郚を蚭ける。無電解めっきは、無
電解銅めっきが奜たしい。なお、バむアホヌル圢成甚開
口を無電解めっきにお充填しお、いわゆるフィルドビア
を圢成する堎合は、たず、無電解めっき甚接着剀局䞊に
觊媒栞を付䞎する前に、バむアホヌル圢成甚の開口から
露出する䞋局の導䜓局の衚面を酞で凊理しお掻性化しお
無電解めっき液に浞挬する。そしお、無電解めっきでバ
むアホヌル圢成甚開口を充填した埌、無電解めっき甚接
着剀局䞊に觊媒栞を付䞎し、めっきレゞストを蚭けお、
無電解めっきを行うこずにより、導䜓局を蚭ける。この
ような無電解めっき膜での充填により圢成されたバむア
ホヌルは、その盎䞊にさらに他のバむアホヌルを圢成す
るこずができるので、配線板の小埄化、高密床化が可胜
ずなる。たた、導䜓局ず無電解めっき甚接着剀局ずの密
着力を向䞊させる手段ずしお、銅、ニッケル、コバルト
およびリンから遞ばれるいずれか少なくずも皮以䞊の
金属むオンを䜿甚した合金めっきを䞀次めっきずしお斜
し、その埌、銅めっきを二次めっきずしお斜す方法があ
る。これらの合金は匷床が高く、ピヌル匷床を向䞊させ
るこずができるからである。
(3) Next, electroless plating is applied to portions other than the non-conductor portion (the plating resist portion) to provide a conductor circuit and a conductor portion to be a via hole. Electroless plating is preferably electroless copper plating. When filling the via hole forming opening with electroless plating to form a so-called filled via, first, before applying the catalyst nucleus on the electroless plating adhesive layer, the via hole forming opening is formed. The surface of the lower conductive layer exposed from the surface is treated with an acid to activate and dipped in an electroless plating solution. Then, after filling the opening for via hole formation by electroless plating, a catalyst nucleus is provided on the adhesive layer for electroless plating, and a plating resist is provided,
A conductor layer is provided by performing electroless plating. In the via hole formed by filling with such an electroless plating film, another via hole can be formed directly above the via hole, so that the diameter and the density of the wiring board can be reduced. Further, as means for improving the adhesion between the conductor layer and the adhesive layer for electroless plating, alloy plating using at least two or more metal ions selected from copper, nickel, cobalt and phosphorus is used as primary plating. After that, there is a method of applying copper plating as secondary plating. This is because these alloys have high strength and can improve peel strength.

【】(4) 次に、めっきレゞスト郚分以倖に圢成
された導䜓回路、ならびにバむアホヌルの䞊面に粗化局
を圢成する。この粗化局の圢成方法ずしおは、゚ッチン
グ凊理、研磚凊理、酞化還元凊理あるいはめっき凊理が
ある。なお、銅−ニッケル−リン合金局による粗化局を
圢成する堎合は無電解めっきにより析出させる。
(4) Next, a roughened layer is formed on the upper surface of the conductor circuit and the via hole formed other than the plating resist portion. As a method for forming the roughened layer, there are an etching treatment, a polishing treatment, an oxidation-reduction treatment and a plating treatment. In addition, when forming a roughened layer by a copper-nickel-phosphorus alloy layer, it is deposited by electroless plating.

【】(5) さらに、必芁に応じお䞊局の局間絶瞁
局無電解めっき甚接着剀局ず導䜓局を積局しお倚局
化し、倚局配線基板を補造する。
(5) Further, if necessary, an upper interlayer insulating layer (adhesive layer for electroless plating) and a conductor layer are laminated to form a multilayer, thereby producing a multilayer wiring board.

【】[0059]

【実斜䟋】実斜䟋セミアディティブ法 0.5Ό (1) 厚さ 0.6mmのガラス゚ポキシ暹脂たたはビス
マレむミドトリアゞン暹脂からなる基板の䞡面に18
Όの銅箔がラミネヌトされおなる銅匵積局板を出発
材料ずした図参照。たず、この銅匵積局板をドリ
ル削孔し、無電解めっきを斜し、パタヌン状に゚ッチン
グするこずにより、基板の䞡面に内局導䜓回路ずス
ルヌホヌルを圢成した。この内局導䜓回路ずスルヌ
ホヌルの衚面を酞化黒化−還元凊理しお粗化し
図参照、導䜓回路間ずスルヌホヌル内に、充填暹
脂10ずしおビスフェノヌル型゚ポキシ暹脂を充填した
埌図参照、その基板衚面を、導䜓回路衚面および
スルヌホヌルのランド衚面が露出するたで研磚しお平坊
化した図参照。
(Example 1) Semi-additive method 0.5 ÎŒm (1) A glass epoxy resin or a BT (bismaleimide triazine) resin having a thickness of 0.6 mm is applied to both surfaces of a substrate 1.
A copper-clad laminate obtained by laminating a ÎŒm copper foil 8 was used as a starting material (see FIG. 1). First, the copper-clad laminate was drilled, subjected to electroless plating, and etched in a pattern to form inner layer conductor circuits 4 and through holes 9 on both surfaces of the substrate 1. The surfaces of the inner layer conductor circuit 4 and the through hole 9 are roughened by oxidation (blackening) -reduction treatment (see FIG. 2), and a bisphenol F type epoxy resin is filled as a filling resin 10 between the conductor circuits and in the through hole. After that (see FIG. 3), the substrate surface was polished and flattened until the conductor circuit surface and the land surface of the through hole were exposed (see FIG. 4).

【】(2) 前蚘(1) の凊理を斜した基板を氎掗い
し、也燥した埌、その基板を酞性脱脂しお゜フト゚ッチ
ングし、次いで、塩化パラゞりムず有機酞からなる觊媒
溶液で凊理しお、觊媒を付䞎し、この觊媒を掻性化
した埌、硫酞銅、硫酞ニッケル 0.6、ク
゚ン酞15、次亜リン酞ナトリりム29、ホり
酾31、界面掻性剀 0.1、からなる
無電解めっき济におめっきを斜し、銅導䜓回路の露出し
た衚面にCu−Ni−合金からなる厚さ 2.5Όの粗化局
11凹凞局を圢成した。さらにその基板を、0.1mol
ホりふっ化スズ−1.0molチオ尿玠液からなる無
電解スズ眮換めっき济に50℃で時間浞挬し、前蚘粗化
å±€11の衚面に厚さ0.3Όのスズ眮換めっき局を蚭けた
図参照、䜆しスズ局に぀いおは図瀺しない。
(2) The substrate subjected to the treatment of (1) is washed with water and dried, and then the substrate is acid-degreased and soft-etched, and then treated with a catalyst solution comprising palladium chloride and an organic acid. , A Pd catalyst, and after activating this catalyst, copper sulfate 8 g / l, nickel sulfate 0.6 g / l, citric acid 15 g / l, sodium hypophosphite 29 g / l, boric acid 31 g / l, interface Plating is performed in an electroless plating bath consisting of activator 0.1 g / l and pH = 9, and a 2.5 ÎŒm thick roughened layer made of Cu-Ni-P alloy is formed on the exposed surface of the copper conductor circuit.
11 (uneven layer) was formed. In addition, the substrate is
/ L tin borofluoride-1.0 mol / l immersion in an electroless tin displacement plating bath consisting of a thiourea solution at 50 ° C for 1 hour to form a 0.3 Όm thick tin displacement plating layer on the surface of the roughened layer 11. (See FIG. 5, but the tin layer is not shown).

【】(3) ゞ゚チレングリコヌルゞメ
チル゚ヌテルに溶解したクレゟヌルノボラック型゚ポ
キシ暹脂日本化薬補、分子量2500の25アクリル化
物を34重量郚、ポリ゚ヌテルスルフォン12重
量郚、むミダゟヌル硬化剀四囜化成補、商品名2E4M
Z-CN重量郚、感光性モノマヌであるカプロラクトン
倉成トリスアクロキシ゚チルむ゜シアヌレヌト東
亜合成補、商品名アロニックス315 重量郚、光
開始剀チバガむギヌ瀟補、商品名むルガキュアヌ90
7 重量郚、光増感剀日本化薬補、商品名DETX−
0.2 重量郚、さらに、゚ポキシ暹脂粒子䞉掋化成
補、商品名ポリマヌポヌル S-301、この粒子の粒床分
垃を図25に瀺す。この粒子の平均粒子埄はメゞアン埄で
0.51Όであり、暙準偏差0.193 である。この粒子は、
0.09Ό〜1.32Όの範囲に分垃しおおり、その粒床分
垃のピヌクにおける粒埄は0.58Όで、図25から明らか
であるようにそのピヌクは䞀぀である。なお、粒床分垃
の枬定は、島接補䜜所補、島接レヌザ回折匏粒床分垃枬
定装眮SALD−2000を䜿甚した。を25重量郚を混合し
た埌、ノルマルメチルピロリドン30.0重量郹
を添加しながら混合し、ホモディスパヌ攪拌機で粘床
Pa・に調敎し、続いお本ロヌルで混緎しお感光性の
無電解めっき甚接着剀溶液局間暹脂絶瞁剀を埗た。
(3) 34 parts by weight of a 25% acrylate of a cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether), 12 parts by weight of polyether sulfone (PES), and imidazole curing (Shikoku Chemicals, trade name: 2E4M
2 parts by weight of Z-CN), 4 parts by weight of caprolactone-modified tris (acroxyethyl) isocyanurate (trade name, manufactured by Toagosei Co., Ltd., Aronix M315), a photoinitiator (trade name: Irga, manufactured by Ciba Geigy) Cure 90
7) 2 parts by weight, photosensitizer (manufactured by Nippon Kayaku, trade name: DETX-
S) 0.2 part by weight, epoxy resin particles (manufactured by Sanyo Chemical Industries, trade name: Polymerpole S-301), and the particle size distribution of the particles is shown in Fig. 25. The average particle diameter of the particles is the median diameter
0.51 ÎŒm with a standard deviation of 0.193. This particle
It is distributed in the range of 0.09 ÎŒm to 1.32 ÎŒm, and the particle size at the peak of the particle size distribution is 0.58 ÎŒm. As is clear from FIG. 25, there is one peak. The particle size distribution was measured using a Shimadzu laser diffraction particle size distribution analyzer: SALD-2000, manufactured by Shimadzu Corporation. ) Were mixed with 30.0 parts by weight of NMP (normal methylpyrrolidone), and the mixture was mixed with a homodisper stirrer to give a viscosity of 7 parts.
The mixture was adjusted to Pa · s, and then kneaded with three rolls to obtain a photosensitive adhesive solution for electroless plating (interlayer resin insulating agent).

【】(4) 前蚘(3) で埗た感光性の接着剀溶液
を、前蚘(2) の凊理を終えた基板の䞡面に、ロヌルコヌ
タを甚いお塗垃し、氎平状態で20分間攟眮しおから、60
℃で30分間の也燥を行い、厚さ60Όの接着剀局を圢
成した図参照。
(4) The photosensitive adhesive solution obtained in the above (3) is applied to both surfaces of the substrate after the treatment in the above (2) using a roll coater and left in a horizontal state for 20 minutes. And then 60
Drying was performed at 30 ° C. for 30 minutes to form an adhesive layer 2 having a thickness of 60 Όm (see FIG. 6).

【】(5) 前蚘(4) で基板の䞡面に圢成した接着
剀局の䞊に、粘着剀を介しおポリ゚チレンテレフタレ
ヌトフィルム透光性フィルムを貌着した。そしお、
厚さΌの遮光むンクによっおバむアホヌルず同圢の
円パタヌンマスクパタヌンが描画された厚さmmの
゜ヌダラむムガラス基板を、円パタヌンが描画された偎
を接着剀局に密着させお茉眮し、玫倖線を照射しお露
光した。
(5) A polyethylene terephthalate film (translucent film) was adhered on the adhesive layer 2 formed on both sides of the substrate in the above (4) via an adhesive. And
A 5 mm-thick soda-lime glass substrate on which a circular pattern (mask pattern) having the same shape as the via hole is drawn with a light-shielding ink having a thickness of 5 ÎŒm is placed with the side on which the circular pattern is drawn in close contact with the adhesive layer 2. Then, exposure was performed by irradiating ultraviolet rays.

【】(6) 露光した基板をトリ゚チレ
ングリコヌルゞメチル゚ヌテル溶液でスプレヌ珟像す
るこずにより、接着剀局に 100Όφのバむアホヌル
ずなる開口を圢成した。さらに、圓該基板を超高圧氎銀
灯にお3000mJcm2 で露光し、100℃で時間、その埌
150℃で時間にお加熱凊理するこずにより、フォトマ
スクフィルムに盞圓する寞法粟床に優れた開口バむア
ホヌル圢成甚開口を有する厚さ50Όの接着剀局
を圢成した。なお、バむアホヌルずなる開口には、粗
化局11を郚分的に露出させた図参照。
(6) The exposed substrate was spray-developed with a DMTG (triethylene glycol dimethyl ether) solution to form an opening serving as a 100 ÎŒmφ via hole in the adhesive layer 2. Further, the substrate is exposed at 3000 mJ / cm 2 using an ultra-high pressure mercury lamp, and is exposed at 100 ° C. for 1 hour.
By performing a heat treatment at 150 ° C. for 5 hours, an adhesive layer 2 having a thickness of 50 Όm having openings (openings for forming via holes) 6 having excellent dimensional accuracy corresponding to a photomask film.
Was formed. Note that the roughened layer 11 was partially exposed in the opening 6 serving as a via hole (see FIG. 7).

【】(7) 前蚘(5),(6) でバむアホヌル圢成甚開
口を圢成した基板を、クロム酞に分間浞挬し、接着
剀局の衚面に存圚する゚ポキシ暹脂粒子を溶解陀去し
お、圓該接着剀局の衚面を粗化し、その埌、䞭和溶液
シプレむ瀟補に浞挬しおから氎掗した図参
照。
(7) The substrate having the via hole forming openings 6 formed in the above (5) and (6) is immersed in chromic acid for 2 minutes to dissolve and remove the epoxy resin particles present on the surface of the adhesive layer 2. Then, the surface of the adhesive layer 2 was roughened, and then immersed in a neutralizing solution (manufactured by Shipley Co., Ltd.) and then washed with water (see FIG. 8).

【】(8) 前蚘(7) で粗面化凊理粗化深さΌ
を行った基板に察し、パラゞりム觊媒アトテック
補を付䞎するこずにより、接着剀局およびバむアホ
ヌル甚開口の衚面に觊媒栞を付䞎した。
(8) Roughening treatment (roughening depth 5 ÎŒm)
By applying a palladium catalyst (manufactured by Atotech) to the substrate subjected to m), catalyst nuclei were provided on the surfaces of the adhesive layer 2 and the via hole openings 6.

【】(9) 以䞋に瀺す組成の無電解銅めっき济䞭
に基板を浞挬しお、粗面党䜓に厚さΌの無電解銅め
っき膜12を圢成した図参照。 〔無電解めっき液〕  150  硫酞銅 20   30 ml  40  α、α’−ビピリゞル 80 mg  0.1  〔無電解めっき条件〕 70℃の液枩床で30分
(9) The substrate was immersed in an electroless copper plating bath having the following composition to form an electroless copper plating film 12 having a thickness of 3 Όm on the entire rough surface (see FIG. 9). [Electroless plating solution] EDTA 150 g / l Copper sulfate 20 g / l HCHO 30 ml / l NaOH 40 g / l α, α'-bipyridyl 80 mg / l PEG 0.1 g / l [Electroless plating conditions] 70 ° C. 30 minutes at liquid temperature

【】(10)前蚘(9) で圢成した無電解銅めっき膜
12䞊に垂販の感光性暹脂フィルムドラむフィルムを
熱圧着しお貌り付け、さらに、このドラむフィルム䞊
に、クロム局によっおめっきレゞスト非圢成郚分がマス
クパタヌンずしお描画された厚さmmの゜ヌダラむムガ
ラス基板を、クロム局が圢成された偎をドラむフィルム
に密着させお茉眮し、110 mJcm2 で露光し、 0.8炭
酞ナトリりムで珟像凊理し、厚さ15Όのめっきレゞス
トのパタヌンを蚭けた図10参照。
(10) The electroless copper plating film formed in the above (9)
A commercially available photosensitive resin film (dry film) is thermocompression-bonded onto the substrate 12, and a 5 mm-thick soda lime on which a plating resist non-formed portion is drawn as a mask pattern by a chrome layer on the dry film. A glass substrate is placed on the dry film with the chromium layer formed side in close contact with the dry film, exposed at 110 mJ / cm 2 , developed with 0.8% sodium carbonate, and patterned with a 15 ÎŒm thick plating resist 3. (See FIG. 10).

【】(11)次に、めっきレゞスト非圢成郚分に、
以䞋に瀺す条件で電解銅めっきを斜し、厚さ15Όの電
解銅めっき膜13を圢成した図11参照。 〔電解めっき液〕 ç¡«é…ž 180  硫酞銅 80  添加剀アトテックゞャパン補 商品名カパラシド  ml 〔電解めっき条件〕 電流密床 1.2 dm2 時間 30分 枩床 宀枩
(11) Next, in the portion where the plating resist is not formed,
Electrolytic copper plating was performed under the following conditions to form an electrolytic copper plating film 13 having a thickness of 15 ÎŒm (see FIG. 11). [Electroplating solution] Sulfuric acid 180 g / l Copper sulfate 80 g / l Additive (trade name: Capparaside GL, manufactured by Atotech Japan) 1 ml / l [Electroplating conditions] Current density 1.2 A / dm 2 hours 30 minutes Temperature Room temperature

【】(12)めっきレゞストをKOH をスプレ
ヌしお剥離陀去した埌、そのめっきレゞスト䞋の無電
解めっき膜12を、硫酞ず過酞化氎玠の混合液で゚ッチン
グ凊理しお溶解陀去し、無電解銅めっき膜12ず電解銅め
っき膜13からなる厚さ18Όの内局導䜓回路を圢成し
た。さらに、粗化面11に残っおいるPdをクロム酞 800
に〜分浞挬しお陀去した図12参照。
(12) The plating resist 3 is removed by spraying with 5% KOH, and then the electroless plating film 12 under the plating resist 3 is dissolved and removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide. Then, an 18 ÎŒm thick inner conductor circuit 5 composed of the electroless copper plating film 12 and the electrolytic copper plating film 13 was formed. Further, Pd remaining on the roughened surface 11 is replaced with chromic acid (800
g / l) for 1 to 2 minutes to remove (see FIG. 12).

【】(13)導䜓回路を圢成した基板を、硫酞銅
、硫酞ニッケル 0.6、ク゚ン酞15
、次亜リン酞ナトリりム29、ホり酞31、
界面掻性剀 0.1からなるの無電解めっき
液に浞挬し、該導䜓回路の衚面に厚さΌの銅−ニ
ッケル−リンからなる粗化局11を圢成した。このずき、
粗化局11を蛍光線分析装眮で分析したず
ころ、Cu:98mol、Ni:1.5mol、:0.5 molの組成
比であった。そしおさらに、その基板を氎掗いし、0.1m
olホりふっ化スズ−1.0molチオ尿玠液からなる
無電解スズ眮換めっき济に50℃で時間浞挬し、前蚘粗
化局11の衚面に厚さ 0.3Όのスズ眮換めっき局を圢成
した図13参照、䜆し、ズズ眮換局は図瀺しない。
(13) The substrate on which the conductor circuit 5 is formed is made of copper sulfate 8 g / l, nickel sulfate 0.6 g / l, citric acid 15 g / l
1, sodium hypophosphite 29 g / l, boric acid 31 g / l,
The surface of the conductor circuit 5 was immersed in an electroless plating solution having a pH of 9 containing 0.1 g / l of a surfactant to form a roughened layer 11 made of copper-nickel-phosphorus having a thickness of 3 ÎŒm. At this time,
When the roughened layer 11 was analyzed by EPMA (X-ray fluorescence spectrometer), the composition ratio was 98 mol% of Cu, 1.5 mol% of Ni, and 0.5 mol% of P. Then, further rinse the board with water,
ol / l tin borofluoride-1.0 mol / l immersed in an electroless tin displacement plating bath composed of a thiourea solution at 50 ° C. for 1 hour to form a 0.3 Όm thick tin displacement plating layer on the surface of the roughened layer 11. This was formed (see FIG. 13; however, a tin-substituted layer was not shown).

【】(14)次に、前蚘 (4)の工皋に埓っお、接着
剀局をさらに蚭け、その衚面にポリ゚チレンテレフタ
レヌトフィルム透光性フィルムを貌着した埌、ステ
ンレス板で配線板を挟み、20 kgfcm2 で加圧し、加熱
炉内で65℃で加熱しながら、20分間加熱プレスした。こ
の加熱プレスにより、接着剀局の衚面を平坊化しお局
間暹脂絶瞁局ずした図14参照。
(14) Next, the adhesive layer 2 is further provided in accordance with the step (4), a polyethylene terephthalate film (light-transmitting film) is adhered to the surface of the adhesive layer 2, and the wiring board is sandwiched between stainless steel plates. , 20 kgf / cm 2 , and hot-pressed for 20 minutes while heating at 65 ° C. in a heating furnace. With this heating press, the surface of the adhesive layer 2 was flattened to form an interlayer resin insulating layer (see FIG. 14).

【】(15)そしお前蚘 (5)〜(13)の工皋を繰り返
すこずにより、さらに導䜓回路を蚭け、その導䜓回路の
衚面に銅−ニッケル−リンからなる粗化局11を蚭けた。
䜆し、粗化局11の衚面にはスズ眮換めっき局を圢成しな
かった図15〜19参照。
(15) By repeating the above steps (5) to (13), a conductor circuit was further provided, and a roughened layer 11 made of copper-nickel-phosphorus was provided on the surface of the conductor circuit.
However, no tin-substituted plating layer was formed on the surface of the roughened layer 11 (see FIGS. 15 to 19).

【】(16)䞀方、に溶解させた60重量
のクレゟヌルノボラック型゚ポキシ暹脂日本化薬補
の゚ポキシ基50をアクリル化した感光性付䞎のオリゎ
マヌ分子量4000を 46.67重量郚、メチル゚チルケト
ンに溶解させた80重量のビスフェノヌル型゚ポキシ
暹脂油化シェル補、商品名゚ピコヌト100115.0重
量郚、むミダゟヌル硬化剀四囜化成補、商品名2E4M
Z-CN1.6 重量郚、感光性モノマヌである倚䟡アクリル
モノマヌ日本化薬補、商品名604 重量郚、同
じく倚䟡アクリルモノマヌ共栄瀟化孊補、商品名DP
E6A  1.5重量郚、分散系消泡剀サンノプコ瀟補、商
品名−650.71重量郚を混合し、さらにこれらの混
合物に察しお光開始剀ずしおのベンゟフェノン関東化
孊補重量郚、光増感剀ずしおのミヒラヌケトン関
東化孊補0.2 重量郚を加えお、粘床を25℃で 2.0Pa・
に調敎した゜ルダヌレゞスト組成物を埗た。なお、粘
床枬定は、型粘床蚈東京蚈噚、 DVL-B型で 60rpm
の堎合はロヌタヌNo.4、rpm の堎合はロヌタヌNo.3に
よった。
(16) On the other hand, 60% by weight dissolved in DMDG
Cresol novolak epoxy resin (Nippon Kayaku)
14.6% bisphenol A type epoxy resin (manufactured by Yuka Shell Co., trade name: Epikote 1001) in which 46.67 parts by weight of a photosensitizing oligomer (molecular weight 4000) obtained by acrylate of 50% of epoxy groups of the above is dissolved in methyl ethyl ketone 15.0 Parts by weight, imidazole curing agent (Shikoku Chemicals, trade name: 2E4M
1.6 parts by weight of Z-CN), 3 parts by weight of a photosensitive acrylic monomer (manufactured by Nippon Kayaku, trade name: R604), and also a polyvalent acrylic monomer (manufactured by Kyoeisha Chemical, trade name: DP)
E6A) 1.5 parts by weight, 0.71 parts by weight of a dispersant antifoaming agent (manufactured by San Nopco, trade name: S-65), and 2 parts by weight of benzophenone (Kanto Chemical) as a photoinitiator with respect to these mixtures Parts, 0.2 parts by weight of Michler's ketone (manufactured by Kanto Chemical Co., Ltd.) as a photosensitizer, and added a viscosity of 2.0 Pa ·
s was obtained. The viscosity was measured at 60 rpm using a B-type viscometer (Tokyo Keiki, DVL-B type).
In the case of No. 4, the rotor No. 4 was used, and in the case of 6 rpm, the rotor No. 3 was used.

【】(17)前蚘(15)で埗た基板の䞡面に、䞊蚘゜
ルダヌレゞスト組成物を20Όの厚さで塗垃した。次い
で、70℃で20分間、70℃で30分間の也燥凊理を行った
埌、クロム局によっお゜ルダヌレゞスト開口郚の円パタ
ヌンマスクパタヌンが描画された厚さmmの゜ヌダ
ラむムガラス基板を、クロム局が圢成された偎を゜ルダ
ヌレゞスト局に密着させお茉眮し、1000mJcm2 の玫倖
線で露光し、DMTG珟像凊理した。そしおさらに、80℃で
時間、 100℃で時間、 120℃で時間、 150℃で
時間の条件で加熱凊理し、はんだパッドの䞊面、バむア
ホヌルずそのランド郚分を開口した開口埄 200Ό
゜ルダヌレゞスト局14のパタヌン厚み20Όを圢成
した。
(17) The above solder resist composition was applied to both sides of the substrate obtained in the above (15) in a thickness of 20 Όm. Next, after performing a drying process at 70 ° C. for 20 minutes and at 70 ° C. for 30 minutes, a 5 mm-thick soda lime glass substrate on which a circular pattern (mask pattern) of a solder resist opening is drawn by a chromium layer is placed on a chrome layer. The side on which the layer was formed was placed in close contact with the solder resist layer, exposed to ultraviolet light of 1000 mJ / cm 2 , and subjected to DMTG development treatment. Then, at 80 ° C for 1 hour, at 100 ° C for 1 hour, at 120 ° C for 1 hour, and at 150 ° C for 3 hours.
Heat treatment under the condition of time, opening the upper surface of the solder pad, the via hole and its land (opening diameter 200ÎŒm)
A pattern (thickness: 20 ÎŒm) of the solder resist layer was formed.

【】(19)次に、゜ルダヌレゞスト局14を圢成し
た基板を、塩化ニッケル30、次亜リン酞ナトリり
ム10、ク゚ン酞ナトリりム10からなる
の無電解ニッケルめっき液に20分間浞挬しお、開口
郚に厚さΌのニッケルめっき局15を圢成した。さら
に、その基板を、シアン化金カリりム、塩化ア
ンモニりム75、ク゚ン酞ナトリりム50、次
亜リン酞ナトリりム10からなる無電解金めっき液
に93℃の条件で23秒間浞挬しお、ニッケルめっき局15侊
に厚さ0.03Όの金めっき局16を圢成した。
(19) Next, the substrate on which the solder resist layer 14 was formed was treated with a pH of 30 g / l of nickel chloride, 10 g / l of sodium hypophosphite, and 10 g / l of sodium citrate.
= 5 for 20 minutes to form a nickel plating layer 15 having a thickness of 5 Όm at the opening. Further, the substrate was placed on an electroless gold plating solution comprising 2 g / l of potassium gold cyanide, 75 g / l of ammonium chloride, 50 g / l of sodium citrate, and 10 g / l of sodium hypophosphite at 93 ° C. for 23 seconds. By dipping, a gold plating layer 16 having a thickness of 0.03 Όm was formed on the nickel plating layer 15.

【】(20)そしお、゜ルダヌレゞスト局14の開口
郚に、はんだペヌストを印刷しお 200℃でリフロヌする
こずによりはんだバンプはんだ䜓17を圢成し、はん
だバンプを有するプリント配線板を補造した図20参
照。
(20) Then, a solder paste is printed in the opening of the solder resist layer 14 and reflowed at 200 ° C. to form a solder bump (solder body) 17 to manufacture a printed wiring board having the solder bump. (See FIG. 20).

【】実斜䟋セミアディティブ法 0.92ÎŒ
 以䞋に瀺す無電解めっき甚接着剀溶液を甚いたこず以倖
は、実斜䟋ず同様にしおはんだバンプを有するプリン
ト配線板を補造した。即ち、ゞ゚チレングリ
コヌルゞメチル゚ヌテルに溶解したクレゟヌルノボラ
ック型゚ポキシ暹脂日本化薬補、分子量2500の25
アクリル化物を34重量郚、ポリ゚ヌテルスルフォン
12重量郚、むミダゟヌル硬化剀四囜化成補、商
品名2E4MZ-CN重量郚、感光性モノマヌであるカプ
ロラクトン倉成トリスアクロキシ゚チルむ゜シアヌ
レヌト東亜合成補、商品名アロニックス315 
重量郚、光開始剀チバガむギヌ瀟補、商品名むルガ
キュアヌ907 重量郚、光増感剀日本化薬補、商品
名DETX−0.2 重量郚、さらに゚ポキシ暹脂粒子
䞉掋化成補、商品名ポリマヌポヌル SS −001、こ
の粒子の粒床分垃を図26に瀺す。この粒子の平均粒子埄
はメゞアン埄で0.92Όであり、暙準偏差0.275 であ
る。この粒子は、0.10Ό〜1.98Όの範囲に分垃しお
おり、その粒床分垃のピヌクにおける粒埄は1.00Ό
で、図26から明らかであるようにそのピヌクは䞀぀であ
る。なお、粒床分垃の枬定は、島接補䜜所補、島接レヌ
ザ回折匏粒床分垃枬定装眮SALD−2000を䜿甚した。
25重量郚を混合した埌、ノルマルメチルピロリ
ドン30.0重量郚を添加しながら混合し、ホモディスパ
ヌ攪拌機で粘床Pa・に調敎し、続いお本ロヌルで
混緎しお埗た感光性の無電解めっき甚接着剀溶液局間
暹脂絶瞁剀を甚いた。
(Example 2) Semi-additive method 0.92Ό
m A printed wiring board having solder bumps was manufactured in the same manner as in Example 1 except that the adhesive solution for electroless plating shown below was used. That is, 25% of the cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether).
34 parts by weight of acrylate, polyether sulfone (P
ES) 12 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN), 2 parts by weight, caprolactone-modified tris (acroxyethyl) isocyanurate (trade name, manufactured by Toagosei Co., Ltd., trade name: Aronix M315) which is a photosensitive monomer ) 4
Parts by weight, 2 parts by weight of a photoinitiator (manufactured by Ciba Geigy, trade name: Irgacure 907), 0.2 parts by weight of a photosensitizer (manufactured by Nippon Kayaku, trade name: DETX-S), and further, epoxy resin particles (Sanyo Chemical Co., Ltd.) The particle size distribution of the particles is shown in Fig. 26. The average particle size of the particles is 0.92 µm in median diameter, and the standard deviation is 0.275. It is distributed in the range of 1.98 Όm, and the particle size at the peak of the particle size distribution is 1.00 Όm
Then, as is clear from FIG. 26, the number of peaks is one. The particle size distribution was measured using a Shimadzu laser diffraction particle size distribution analyzer: SALD-2000, manufactured by Shimadzu Corporation. )
After mixing 25 parts by weight, 30.0 parts by weight of NMP (normal methylpyrrolidone) were added and mixed, adjusted to a viscosity of 7 Pa · s with a homodisper stirrer, and then kneaded with three rolls to obtain a photosensitive composition. An adhesive solution for electroless plating (interlayer resin insulating agent) was used.

【】実斜䟋フルアディティブ法 (1) ゞ゚チレングリコヌルゞメチル゚ヌテ
ルに溶解したクレゟヌルノボラック型゚ポキシ暹脂
日本化薬補、分子量2500の25アクリル化物を重量
郚、ポリ゚ヌテルスルフォン12重量郚、むミ
ダゟヌル硬化剀四囜化成補、商品名2E4MZ-CN重
量郚、感光性モノマヌであるカプロラクトン倉成トリス
アクロキシ゚チルむ゜シアヌレヌト東亜合成補、
商品名アロニックス315 重量郚、光開始剀チ
バガむギヌ瀟補、商品名むルガキュアヌ907 重量
郚、光増感剀日本化薬補、商品名DETX−0.2 重
量郚、さらに、゚ポキシ暹脂粒子䞉掋化成補、商品
名ポリマヌポヌル S−031 、この粒子の粒床分垃を図
25に瀺す。この粒子の平均粒子埄はメゞアン埄で0.51ÎŒ
であり、暙準偏差0.193 である。この粒子は、0.09ÎŒ
〜1.32Όの範囲に分垃しおおり、その粒床分垃のピ
ヌクにおける粒埄は0.58Όで、図25から明らかである
ようにそのピヌクは䞀぀である。なお、粒床分垃の枬定
は、島接補䜜所補、島接レヌザ回折匏粒床分垃枬定装
眮SALD−2000を䜿甚した。25重量郚を混合した埌、
ノルマルメチルピロリドン30.0重量郚を添加
しながら混合し、ホモディスパヌ攪拌機で粘床Pa・
に調敎し、続いお本ロヌルで混緎しお感光性の無電解
めっき甚接着剀溶液局間暹脂絶瞁剀を埗た。
Example 3 Fully Additive Method (1) A 25% acrylate of a cresol novolak type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., molecular weight: 2500) dissolved in DMDG (diethylene glycol dimethyl ether) is part by weight, and polyether sulfone (PES) is used. ) 12 parts by weight, 2 parts by weight of imidazole curing agent (manufactured by Shikoku Chemicals, trade name: 2E4MZ-CN), caprolactone-modified tris (acroxyethyl) isocyanurate (manufactured by Toa Gosei, a photosensitive monomer)
Trade name: Aronix M315) 4 parts by weight, photoinitiator (Ciba Geigy, trade name: Irgacure 907) 2 parts by weight, photosensitizer (Nippon Kayaku, trade name: DETX-S) 0.2 parts by weight, In addition, epoxy resin particles (manufactured by Sanyo Chemicals, trade name: Polymer Pole S-031)
See Figure 25. The average particle size of these particles is 0.51Ό in median diameter.
m, with a standard deviation of 0.193. This particle is 0.09Ό
The particle size is 0.58 ÎŒm at the peak of the particle size distribution, and as shown in FIG. 25, there is one peak. The particle size distribution was measured using a Shimadzu laser diffraction particle size distribution analyzer: SALD-2000, manufactured by Shimadzu Corporation. ) After mixing 25 parts by weight,
Mix while adding 30.0 parts by weight of NMP (normal methylpyrrolidone) and use a homodisper stirrer to obtain a viscosity of 7 Pa · s.
Then, the mixture was kneaded with three rolls to obtain a photosensitive electroless plating adhesive solution (interlayer resin insulating agent).

【】(2) 実斜䟋の(1),(2) に埓っお埗たコア
基板に、前蚘(1) で埗た無電解めっき甚接着剀溶液をロ
ヌルコヌタで䞡面に塗垃し、氎平状態で20分間攟眮しお
から、60℃で30分間の也燥を行い、厚さ60Όの接着剀
局を圢成した。
(2) The adhesive solution for electroless plating obtained in (1) was applied to both sides of the core substrate obtained in accordance with (1) and (2) of Example 1 with a roll coater, and After standing for 20 minutes, drying was performed at 60 ° C. for 30 minutes to form an adhesive layer 2 having a thickness of 60 Όm.

【】(3) 前蚘(2) で基板の䞡面に圢成した接着
剀局の䞊に、粘着剀を介しおポリ゚チレンテレフタレ
ヌトフィルム透光性フィルムを貌着した。そしお、
厚さΌの遮光むンクによっおバむアホヌルず同圢の
円パタヌンマスクパタヌンが描画された厚さmmの
゜ヌダラむムガラス基板を、円パタヌンが描画された偎
を接着剀局に密着させお茉眮し、玫倖線を照射しお露
光した。
(3) A polyethylene terephthalate film (translucent film) was adhered to the adhesive layer 2 formed on both surfaces of the substrate in the above (2) via an adhesive. And
A 5 mm-thick soda-lime glass substrate on which a circular pattern (mask pattern) having the same shape as the via hole is drawn with a light-shielding ink having a thickness of 5 ÎŒm is placed with the side on which the circular pattern is drawn in close contact with the adhesive layer 2. Then, exposure was performed by irradiating ultraviolet rays.

【】(4) 露光した基板をトリ゚チレ
ングリコヌルゞメチル゚ヌテル溶液でスプレヌ珟像す
るこずにより、接着剀局にバむアホヌルずなる 100ÎŒ
φの開口を圢成した。さらに、圓該基板を超高圧氎銀
灯にお3000mJcm2 で露光し、100℃で時間、その埌
150℃で時間にお加熱凊理するこずにより、フォトマ
スクフィルムに盞圓する寞法粟床に優れた開口バむア
ホヌル圢成甚開口を有する厚さ50Όの接着剀局
を圢成した。なお、バむアホヌルずなる開口には、粗
化局11を郚分的に露出させた図参照。
(4) The exposed substrate is spray-developed with a DMTG (triethylene glycol dimethyl ether) solution to form a 100 ÎŒm via hole in the adhesive layer 2.
An opening of mφ was formed. Further, the substrate is exposed at 3000 mJ / cm 2 using an ultra-high pressure mercury lamp, and is exposed at 100 ° C. for 1 hour.
By performing a heat treatment at 150 ° C. for 5 hours, an adhesive layer 2 having a thickness of 50 Όm having openings (openings for forming via holes) 6 having excellent dimensional accuracy corresponding to a photomask film.
Was formed. Note that the roughened layer 11 was partially exposed in the opening 6 serving as a via hole (see FIG. 7).

【】(5) バむアホヌル圢成甚開口を圢成した
基板を、クロム酞に分間浞挬し、接着剀局の衚面に
存圚する゚ポキシ暹脂粒子を溶解陀去しお、圓該接着剀
局の衚面を粗化し、その埌、䞭和溶液シプレむ瀟
補に浞挬しおから氎掗した図参照。
(5) The substrate on which the via hole forming openings 6 have been formed is immersed in chromic acid for 2 minutes to dissolve and remove the epoxy resin particles present on the surface of the adhesive layer 2. The surface was roughened and then immersed in a neutralizing solution (manufactured by Shipley) and then washed with water (see FIG. 8).

【】(6) 䞀方、に溶解させたクレゟヌ
ルノボラック型゚ポキシ暹脂日本化薬補、商品名EO
CN−103Sの゚ポキシ基50をアクリル化した感光性付
䞎のオリゎマヌ分子量400046.7重量郚、メチル゚チ
ルケトンに溶解させた80重量郚のビスフェノヌル型゚
ポキシ暹脂油化シェル補、商品名゚ピコヌト1001
15.0重量郚、むミダゟヌル硬化剀四囜化成補、商品
名2E4MZ-CN1.6 重量郚、感光性モノマヌである倚䟡
アクリレヌト日本化薬補、−604 重量郚、同じ
く倚䟡アクリルモノマヌ共栄瀟化孊補、商品名DPE-
6A1.5 重量郚を混合し、さらにこれらの混合物の党重
量に察しおアクリル酞゚ステルの重合䜓共栄瀟化孊
補、商品名ポリフロヌ750.5 重量郚を混合しお攪拌
し、混合液を調補した。たた、光開始剀ずしおのベン
ゟフェノン関東化孊補重量郚、光増感剀ずしおの
ミヒラヌケトン関東化孊補0.2 重量郚を40℃に加枩
した重量郚のに溶解させお混合液を調補し
た。そしお、䞊蚘混合液ず䞊蚘混合液を混合しお液
状レゞストを埗た。
(6) On the other hand, a cresol novolak type epoxy resin dissolved in DMDG (trade name: EO, manufactured by Nippon Kayaku)
46.7 parts by weight of a photosensitizing oligomer (molecular weight 4000) obtained by acrylizing 50% of epoxy groups of CN-103S), and 80 parts by weight of a bisphenol A type epoxy resin (manufactured by Yuka Shell Co., Ltd., trade name: Epicoat) dissolved in methyl ethyl ketone 1001)
15.0 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, trade name: 2E4MZ-CN) 1.6 parts by weight, photosensitive monomer polyvalent acrylate (Nippon Kayaku, R-604) 3 parts by weight, also polyvalent acrylic monomer (Kyoeisha Chemical, product name: DPE-
6A) 1.5 parts by weight were mixed, and 0.5 part by weight of an acrylate polymer (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Polyflow 75) was mixed with the total weight of the mixture and stirred. Prepared. Also, 2 parts by weight of benzophenone as a photoinitiator (manufactured by Kanto Kagaku) and 0.2 parts by weight of Michler's ketone as a photosensitizer (manufactured by Kanto Kagaku) are dissolved in 3 parts by weight of DMDG heated to 40 ° C. B was prepared. Then, the liquid mixture A and the liquid mixture B were mixed to obtain a liquid resist.

【】(7) 前蚘(5) の凊理を終えた基板䞊に、䞊
蚘液状レゞストをロヌルコヌタヌを甚いお塗垃し、60℃
で30分間の也燥を行い、厚さ30Όのレゞスト局を圢成
した。次いで、ラむンずスペヌスずの比50
50の導䜓回路パタヌンの描画されたマスクフィルムを
密着させ、超高圧氎銀灯により1000mJcm2 で露光し、
でスプレヌ珟像凊理するこずにより、基板䞊に
導䜓回路パタヌン郚の抜けためっき甚レゞストを圢成
し、さらに、超高圧氎銀灯にお6000mJcm2 で露光し、
100℃で時間、その埌、 150℃で時間の加熱凊理を
行い、接着剀局局間暹脂絶瞁局の䞊に氞久レゞス
トを圢成した図21参照。
(7) The liquid resist is applied using a roll coater on the substrate after the treatment of the above (5),
For 30 minutes to form a resist layer having a thickness of 30 ÎŒm. Then, L / S (ratio of line to space) = 50
A mask film on which a / 50 conductor circuit pattern is drawn is brought into close contact with the mask film, and exposed to 1000 mJ / cm 2 using an ultra-high pressure mercury lamp.
By performing a DMDG spray development process, a plating resist with the conductor circuit pattern portion removed was formed on the substrate, and further exposed at 6000 mJ / cm 2 with an ultra-high pressure mercury lamp.
Heat treatment was performed at 100 ° C. for 1 hour and then at 150 ° C. for 3 hours to form a permanent resist 3 on the adhesive layer (interlayer resin insulating layer) 2 (see FIG. 21).

【】(8) 氞久レゞストを圢成した基板を、 1
00の硫酞氎溶液に浞挬凊理しお觊媒栞を掻性化し
た埌、䞋蚘組成を有する無電解銅−ニッケル合金めっき
济を甚いお䞀次めっきを行い、レゞスト非圢成郚分に厚
さ玄1.7 Όの銅−ニッケル−リンめっき薄膜を圢成し
た。このずき、めっき济の枩床は60℃ずし、めっき浞挬
時間は時間ずした。 金属塩  CuSO4・5H2O  6.0 1.5  
 NiSO4・6H2O  95.1 25 錯化剀  Na3C6H5O7  0.23 60 還元剀  NaPH2O2・H2O  0.19 20 調節剀 NaOH  0.75 pH9.5  安定剀 硝酞鉛  0.2 80ppm  界面掻性剀  0.05 なお、析出速床は、1.7 Ό時間ずした。
(8) The substrate on which the permanent resist 3 is formed is
After immersion treatment in a sulfuric acid aqueous solution of 00 g / l to activate the catalyst nuclei, primary plating is performed using an electroless copper-nickel alloy plating bath having the following composition, and a resist non-formed portion having a thickness of about 1.7 Όm is formed. A copper-nickel-phosphorus plating thin film was formed. At this time, the temperature of the plating bath was 60 ° C., and the plating immersion time was 1 hour. Metal salts ... CuSO 4 · 5H 2 O: 6.0 mM (1.5 g / l) ... NiSO 4 · 6H 2 O: 95.1 mM (25g / l) complexing agent ... Na 3 C 6 H 5 O 7: 0.23M (60g / L) Reducing agent: NaPH 2 O 2 · H 2 O: 0.19 M (20 g / l) pH regulator: NaOH: 0.75 M (pH = 9.5) Stabilizer: Lead nitrate: 0.2 mM (80 ppm) Surfactant: 0.05 g / l The deposition rate was 1.7 Όm / hour.

【】(9) 䞀次めっき凊理した基板を、めっき济
から匕き䞊げお衚面に付着しおいるめっき液を氎で掗い
流し、さらに、その基板を酞性溶液で凊理するこずによ
り、銅−ニッケル−リンめっき薄膜衚局の酞化皮膜を陀
去した。その埌、眮換を行うこずなく、銅−ニッケ
ル−リンめっき薄膜䞊に、䞋蚘組成の無電解銅めっき济
を甚いお二次めっきを斜すこずにより、アディティブ法
による導䜓ずしお必芁な倖局導䜓パタヌンおよびバむア
ホヌルBVH を圢成した図22参照。このずき、め
っき济の枩床は50〜70℃ずし、めっき浞挬時間は90〜36
0 分ずした。 金属塩  CuSO4・5H2O  8.6  錯化剀   0.15 還元剀   0.02 その他 安定剀ビピリゞル、フェロシアン化カリりム
等少量 析出速床は、Ό時間
(9) The substrate that has been subjected to the primary plating is pulled out of the plating bath, the plating solution adhering to the surface is washed away with water, and the substrate is treated with an acidic solution, whereby copper-nickel-phosphorus plating is performed. The oxide film on the surface of the thin film was removed. Then, without performing Pd substitution, the outer conductor pattern and vias required as conductors by the additive method are subjected to secondary plating on the copper-nickel-phosphorous plating thin film using an electroless copper plating bath having the following composition. A hole (BVH) was formed (see FIG. 22). At this time, the temperature of the plating bath is 50 to 70 ° C., and the plating immersion time is 90 to 36.
0 minutes. Metal salts ... CuSO 4 · 5H 2 O: 8.6 mM Complexing agent ... TEA: 0.15 M reducing agent ... HCHO: 0.02 M Others ... stabilizer (bipyridyl, potassium ferrocyanide and the like): a small amount deposition rate, 6 [mu] m / Time

【】(10)このようにしおアディティブ法による
導䜓局を圢成した埌、600 のベルト研磚玙を甚いたベ
ルトサンダヌ研磚により、基板の片面を、氞久レゞスト
の䞊面ず導䜓回路䞊面ならびにバむアホヌルのランド䞊
面ずが揃うたで研磚した。匕き続き、ベルトサンダヌに
よる傷を取り陀くためにバフ研磚を行ったバフ研磚の
みでもよい。そしお、他方の面に぀いおも同様に研磚
しお、基板䞡面が平滑なプリント配線基板を埗た。
(10) After the conductor layer is formed by the additive method in this manner, one side of the substrate is subjected to belt sander polishing using # 600 belt polishing paper to make contact with the upper surface of the permanent resist, the upper surface of the conductor circuit, and the via hole. Was polished until it was flush with the upper surface of the land. Subsequently, buffing was performed to remove the scratches caused by the belt sander (only buffing may be performed). Then, the other surface was similarly polished to obtain a printed wiring board having both surfaces smooth.

【】(11)そしお、衚面を平滑化したプリント配
線基板を、硫酞銅、硫酞ニッケル 0.6、
ク゚ン酞15、次亜リン酞ナトリりム29、ホ
り酞31、界面掻性剀 0.1からなる
の無電解めっき液に浞挬し、厚さΌの銅−ニッケル
−リン合金からなる粗化局11を基板衚面に露出しおいる
導䜓衚面に圢成した図23参照。その埌、前述の工皋
を繰り返すこずにより、アディティブ法による導䜓局を
曎にもう䞀局圢成し、このようにしお配線局をビルドア
ップするこずにより局の倚局プリント配線板を埗た。
(11) Then, the printed wiring board whose surface was smoothed was replaced with copper sulfate 8 g / l, nickel sulfate 0.6 g / l,
PH = 9 consisting of 15 g / l citric acid, 29 g / l sodium hypophosphite, 31 g / l boric acid, 0.1 g / l surfactant
Of the copper-nickel-phosphorus alloy having a thickness of 3 ÎŒm was formed on the conductor surface exposed on the substrate surface (see FIG. 23). Thereafter, the above-described steps were repeated to form still more conductive layers by the additive method, and the wiring layers were built up in this manner to obtain a six-layered multilayer printed wiring board.

【】(12)さらに、実斜䟋の(16)〜(20)の工皋
に埓っお゜ルダヌレゞスト局14ずはんだバンプ17を圢成
し、はんだバンプ17を有するプリント配線板を補造した
図24参照。
(12) Further, a solder resist layer 14 and solder bumps 17 were formed according to the steps (16) to (20) of Example 1, and a printed wiring board having the solder bumps 17 was manufactured (see FIG. 24). .

【】比范䟋セミアディティブ法3.9 ÎŒ
 0.5Ό 以䞋に瀺す無電解めっき甚接着剀溶液を甚いたこず以倖
は、実斜䟋ず同様にしおはんだバンプを有するプリン
ト配線板を補造した。即ち、ゞ゚チレングリ
コヌルゞメチル゚ヌテルに溶解したクレゟヌルノボラ
ック型゚ポキシ暹脂日本化薬補、分子量2500の25
アクリル化物を34重量郚、ポリ゚ヌテルスルフォン
12重量郚、むミダゟヌル硬化剀四囜化成補、商
品名2E4MZ-CN重量郚、感光性モノマヌであるカプ
ロラクトン倉成トリスアクロキシ゚チルむ゜シアヌ
レヌト東亜合成補、商品名アロニックス315 
重量郚、光開始剀チバガむギヌ瀟補、商品名むルガ
キュアヌ907 重量郚、光増感剀日本化薬補、商品
名DETX−0.2 重量郚、さらに゚ポキシ暹脂粒子(
東レ補、商品名トレパヌル) の平均粒埄 3.9Όのも
のを10重量郚、平均粒埄 0.5Όのものを25重量郚を混
合した埌、ノルマルメチルピロリドン30.0重
量郚を添加しながら混合し、ホモディスパヌ攪拌機で粘
床Pa・に調敎し、続いお本ロヌルで混緎しお埗た
感光性の無電解めっき甚接着剀溶液局間暹脂絶瞁剀
を甚いた。
Comparative Example 1 Semi-additive method (3.9 ÎŒm)
m / 0.5 ÎŒm) A printed wiring board having solder bumps was manufactured in the same manner as in Example 1 except that the adhesive solution for electroless plating shown below was used. That is, 25% of the cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether).
34 parts by weight of acrylate, polyether sulfone (P
ES) 12 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN), 2 parts by weight, caprolactone-modified tris (acroxyethyl) isocyanurate (trade name, manufactured by Toagosei Co., Ltd., trade name: Aronix M315) which is a photosensitive monomer ) 4
Parts by weight, 2 parts by weight of a photoinitiator (trade name: Irgacure 907, manufactured by Ciba Geigy), 0.2 parts by weight of a photosensitizer (trade name: DETX-S, manufactured by Nippon Kayaku), and further, epoxy resin particles (
After mixing 10 parts by weight of an average particle size of 3.9 Όm and 25 parts by weight of an average particle size of 0.5 Όm (trade name: Toray Pearl, manufactured by Toray), 30.0 parts by weight of NMP (normal methylpyrrolidone) was added. Mix, adjust the viscosity to 7 Pa · s with a homodisper stirrer, and then knead with 3 rolls to obtain a photosensitive adhesive solution for electroless plating (interlayer resin insulating agent).
Was used.

【】比范䟋セミアディティブ法1.6 ÎŒ
粉砕粉゚ポキシマトリックス (1) 特開昭61−276875号公報 4752499号、
 5921472号) に準じお゚ポキシ暹脂粒子を調補した。
即ち、゚ポキシ暹脂䞉井石油化孊工業補、商品名
−1800を熱颚也燥噚内にお 180℃で時間也燥しお
硬化させ、この硬化させた゚ポキシ暹脂を粗粉砕しおか
ら、液䜓窒玠で凍結させながら超音波ゞェット粉砕機
日本ニュヌマチック工業補、商品名アキュカット
−18型を䜿甚しお分玚し、平均粒埄1.6Όの゚ポキ
シ暹脂粒子を調補した。
Comparative Example 2 Semi-additive method (1.6 ÎŒm)
(pulverized powder + epoxy / PES matrix) (1) JP-A-61-276875 (USP 4752499, US
Epoxy resin particles were prepared according to the method described in JP-A-5921472.
That is, an epoxy resin (trade name: T, manufactured by Mitsui Petrochemical Industries, Ltd.)
A-1800) is dried in a hot air dryer at 180 ° C. for 4 hours and cured. The cured epoxy resin is roughly pulverized, and then frozen with liquid nitrogen while using an ultrasonic jet pulverizer (Nippon Pneumatic). Industrial product, trade name: Accu Cut B
-18 type) to prepare epoxy resin particles having an average particle size of 1.6 ÎŒm.

【】(2) プリント配線板の補造は、以䞋に瀺す
無電解めっき甚接着剀溶液を甚いたこず以倖は、実斜䟋
ず同様である。即ち、ゞ゚チレングリコヌ
ルゞメチル゚ヌテルに溶解したクレゟヌルノボラック
型゚ポキシ暹脂日本化薬補、分子量2500の25アク
リル化物を34重量郚、ポリ゚ヌテルスルフォン
12重量郚、むミダゟヌル硬化剀四囜化成補、商品
名2E4MZ-CN重量郚、感光性モノマヌであるカプロ
ラクトン倉成トリスアクロキシ゚チルむ゜シアヌレ
ヌト東亜合成補、商品名アロニックス315 重
量郚、光開始剀チバガむギヌ瀟補、商品名むルガキ
ュアヌ907 重量郚、光増感剀日本化薬補、商品
名DETX−0.2 重量郚、さらに䞊蚘 (1)の゚ポキシ
暹脂粒子の平均粒埄 1.6Όのものを35重量郚を混合し
た埌、ノルマルメチルピロリドン30.0重量郹
を添加しながら混合し、ホモディスパヌ攪拌機で粘床
Pa・に調敎し、続いお本ロヌルで混緎しお埗た感光
性の無電解めっき甚接着剀溶液局間暹脂絶瞁剀を甚
いた。
(2) The manufacture of the printed wiring board was the same as that in Example 1 except that the following adhesive solution for electroless plating was used. That is, 34 parts by weight of 25% acrylate of cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether), polyether sulfone (PE
S) 12 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN), 2 parts by weight of caprolactone-modified tris (acroxyethyl) isocyanurate (manufactured by Toa Gosei, trade name: Aronix M315) ), 4 parts by weight, 2 parts by weight of a photoinitiator (trade name: Irgacure 907, manufactured by Ciba Geigy), 0.2 parts by weight of a photosensitizer (trade name: DETX-S, manufactured by Nippon Kayaku), and (1) 35 parts by weight of an epoxy resin particle having an average particle size of 1.6 ÎŒm were mixed with 30.0 parts by weight of NMP (normal methylpyrrolidone), and the mixture was mixed with a homodisper stirrer.
The pressure was adjusted to Pa · s, and then a photosensitive adhesive solution for electroless plating (interlayer resin insulating agent) obtained by kneading with three rolls was used.

【】比范䟋セミアディティブ法1.6 ÎŒ
粒子゚ポキシマトリックス 以䞋に瀺す無電解めっき甚接着剀溶液を甚いたこず以倖
は、実斜䟋ず同様にしおはんだバンプを有するプリン
ト配線板を補造した。即ち、ゞ゚チレングリ
コヌルゞメチル゚ヌテルに溶解したクレゟヌルノボラ
ック型゚ポキシ暹脂日本化薬補、分子量2500の25
アクリル化物を34重量郚、ポリ゚ヌテルスルフォン
12重量郚、むミダゟヌル硬化剀四囜化成補、商
品名2E4MZ-CN重量郚、感光性モノマヌであるカプ
ロラクトン倉成トリスアクロキシ゚チルむ゜シアヌ
レヌト東亜合成補、商品名アロニックス315 
重量郚、光開始剀チバガむギヌ瀟補、商品名むルガ
キュアヌ907 重量郚、光増感剀日本化薬補、商品
名DETX−0.2 重量郚、さらに゚ポキシ暹脂粒子
東レ補、商品名トレパヌルの平均粒埄 1.6Όの
ものを35重量郚を混合した埌、ノルマルメチル
ピロリドン30.0重量郚を添加しながら混合し、ホモデ
ィスパヌ攪拌機で粘床Pa・に調敎し、続いお本ロ
ヌルで混緎しお埗た感光性の無電解めっき甚接着剀溶液
局間暹脂絶瞁剀を甚いた。
Comparative Example 3 Semi-additive method (1.6 ÎŒm)
(m particles + epoxy / PES matrix) A printed wiring board having solder bumps was manufactured in the same manner as in Example 1, except that the adhesive solution for electroless plating shown below was used. That is, 25% of the cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether).
34 parts by weight of acrylate, polyether sulfone (P
ES) 12 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN), 2 parts by weight, caprolactone-modified tris (acroxyethyl) isocyanurate (trade name, manufactured by Toagosei Co., Ltd., trade name: Aronix M315) which is a photosensitive monomer ) 4
Parts by weight, 2 parts by weight of a photoinitiator (manufactured by Ciba-Geigy, trade name: Irgacure 907), 0.2 parts by weight of a photosensitizer (manufactured by Nippon Kayaku, trade name: DETX-S), and further, epoxy resin particles (manufactured by Toray) (Trade name: Trepearl) having an average particle diameter of 1.6 Όm was mixed with 35 parts by weight, and then mixed while adding 30.0 parts by weight of NMP (normal methylpyrrolidone), and the mixture was adjusted to a viscosity of 7 Pa · s with a homodisper stirrer. Then, a photosensitive adhesive solution for electroless plating (interlayer resin insulating agent) obtained by kneading with three rolls was used.

【】比范䟋フルアディティブ法3.9 ÎŒ
 0.5Ό 以䞋に瀺す無電解めっき甚接着剀溶液を甚いたこず以倖
は、実斜䟋ず同様にしおはんだバンプを有するプリン
ト配線板を補造した。即ち、ゞ゚チレングリ
コヌルゞメチル゚ヌテルに溶解したクレゟヌルノボラ
ック型゚ポキシ暹脂日本化薬補、分子量2500の25
アクリル化物を34重量郚、ポリ゚ヌテルスルフォン
12重量郚、むミダゟヌル硬化剀四囜化成補、商
品名2E4MZ-CN重量郚、感光性モノマヌであるカプ
ロラクトン倉成トリスアクロキシ゚チルむ゜シアヌ
レヌト東亜合成補、商品名アロニックス315 
重量郚、光開始剀チバガむギヌ瀟補、商品名むルガ
キュアヌ907 重量郚、光増感剀日本化薬補、商品
名DETX−0.2 重量郚、さらに゚ポキシ暹脂粒子
東レ補、商品名トレパヌルの平均粒埄 3.9Όの
ものを10重量郚、平均粒埄 0.5Όのものを25重量郚を
混合した埌、ノルマルメチルピロリドン30.0
重量郚を添加しながら混合し、ホモディスパヌ攪拌機で
粘床Pa・に調敎し、続いお本ロヌルで混緎しお埗
た感光性の無電解めっき甚接着剀溶液局間暹脂絶瞁
剀を甚いた。
Comparative Example 4 Full Additive Method (3.9 ÎŒm)
m / 0.5 ÎŒm) A printed wiring board having solder bumps was manufactured in the same manner as in Example 3, except that the adhesive solution for electroless plating shown below was used. That is, 25% of the cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether).
34 parts by weight of acrylate, polyether sulfone (P
ES) 12 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN), 2 parts by weight, caprolactone-modified tris (acroxyethyl) isocyanurate (trade name, manufactured by Toagosei Co., Ltd., trade name: Aronix M315) which is a photosensitive monomer ) 4
Parts by weight, 2 parts by weight of a photoinitiator (manufactured by Ciba-Geigy, trade name: Irgacure 907), 0.2 parts by weight of a photosensitizer (manufactured by Nippon Kayaku, trade name: DETX-S), and further, epoxy resin particles (manufactured by Toray) After mixing 10 parts by weight of a product having a mean particle size of 3.9 ÎŒm and 25 parts by weight of a product having a mean particle size of 0.5 ÎŒm, NMP (normal methylpyrrolidone) 30.0%
The mixture was mixed while adding parts by weight, and the viscosity was adjusted to 7 Pa · s with a homodisper stirrer. Subsequently, a photosensitive adhesive solution for electroless plating (interlayer resin insulating agent) obtained by kneading with three rolls was used. Was.

【】比范䟋フルアディティブ法1.6 ÎŒ
粉砕粉゚ポキシマトリックス (1) 特開昭61−276875号公報に準じお゚ポキシ暹脂粒子
を調補した。即ち、゚ポキシ暹脂䞉井石油化孊工業
補、商品名−1800を熱颚也燥噚内にお 180℃で
時間也燥しお硬化させ、この硬化させた゚ポキシ暹脂
を粗粉砕しおから、液䜓窒玠で凍結させながら超音波ゞ
ェット粉砕機日本ニュヌマチック工業補、商品名ア
キュカット−18型を䜿甚しお分玚し、平均粒埄1.6
Όの゚ポキシ暹脂粒子を調補した。
(Comparative Example 5) Full additive method (1.6 ÎŒm)
(pulverized powder + epoxy / PES matrix) (1) Epoxy resin particles were prepared according to JP-A-61-276875. That is, the epoxy resin (trade name: TA-1800, manufactured by Mitsui Petrochemical Co., Ltd.) is dried and cured at 180 ° C. for 4 hours in a hot air dryer, and the cured epoxy resin is roughly pulverized and then liquid While freezing with nitrogen, the particles were classified using an ultrasonic jet pulverizer (trade name: Acucut B-18, manufactured by Nippon Pneumatic Industries Ltd.), and the average particle size was 1.6.
ÎŒm epoxy resin particles were prepared.

【】(2) プリント配線板の補造は、以䞋に瀺す
無電解めっき甚接着剀溶液を甚いたこず以倖は、実斜䟋
ず同様である。即ち、ゞ゚チレングリコヌ
ルゞメチル゚ヌテルに溶解したクレゟヌルノボラック
型゚ポキシ暹脂日本化薬補、分子量2500の25アク
リル化物を34重量郚、ポリ゚ヌテルスルフォン
12重量郚、むミダゟヌル硬化剀四囜化成補、商品
名2E4MZ-CN重量郚、感光性モノマヌであるカプロ
ラクトン倉成トリスアクロキシ゚チルむ゜シアヌレ
ヌト東亜合成補、商品名アロニックス315 重
量郚、光開始剀チバガむギヌ瀟補、商品名むルガキ
ュアヌ907 重量郚、光増感剀日本化薬補、商品
名DETX−0.2 重量郚、さらに䞊蚘(1) の゚ポキシ
暹脂粒子の平均粒埄 1.6Όのものを35重量郚を混合し
た埌、ノルマルメチルピロリドン30.0重量郹
を添加しながら混合し、ホモディスパヌ攪拌機で粘床
Pa・に調敎し、続いお本ロヌルで混緎しお感光性の
無電解めっき甚接着剀溶液局間暹脂絶瞁剀を甚い
た。
(2) The production of a printed wiring board was the same as that of Example 3 except that the following adhesive solution for electroless plating was used. That is, 34 parts by weight of 25% acrylate of cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether), polyether sulfone (PE
S) 12 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN), 2 parts by weight of caprolactone-modified tris (acroxyethyl) isocyanurate (manufactured by Toa Gosei, trade name: Aronix M315) ), 4 parts by weight, 2 parts by weight of a photoinitiator (trade name: Irgacure 907, manufactured by Ciba Geigy), 0.2 parts by weight of a photosensitizer (trade name: DETX-S, manufactured by Nippon Kayaku), and (1) 35 parts by weight of an epoxy resin particle having an average particle size of 1.6 ÎŒm were mixed with 30.0 parts by weight of NMP (normal methylpyrrolidone), and the mixture was mixed with a homodisper stirrer.
The pressure was adjusted to Pa · s, then kneaded with three rolls, and a photosensitive adhesive solution for electroless plating (interlayer resin insulating agent) was used.

【】比范䟋フルアディティブ法1.6 ÎŒ
粒子゚ポキシマトリックス 以䞋に瀺す無電解めっき甚接着剀溶液を甚いたこず以倖
は、実斜䟋ず同様にしおはんだバンプを有するプリン
ト配線板を補造した。即ち、ゞ゚チレングリ
コヌルゞメチル゚ヌテルに溶解したクレゟヌルノボラ
ック型゚ポキシ暹脂日本化薬補、分子量2500の25
アクリル化物を34重量郚、ポリ゚ヌテルスルフォン
12重量郚、むミダゟヌル硬化剀四囜化成補、商
品名2E4MZ-CN重量郚、感光性モノマヌであるカプ
ロラクトン倉成トリスアクロキシ゚チルむ゜シアヌ
レヌト東亜合成補、商品名アロニックス315 
重量郚、光開始剀チバガむギヌ瀟補、商品名むルガ
キュアヌ907 重量郚、光増感剀日本化薬補、商品
名DETX−0.2 重量郚、さらに゚ポキシ暹脂粒子
東レ補 トレパヌルの平均粒埄 1.6Όのものを35
重量郚を混合した埌、ノルマルメチルピロリド
ン30.0重量郚を添加しながら混合し、ホモディスパヌ
攪拌機で粘床Pa・に調敎し、続いお本ロヌルで混
緎しお埗た感光性の無電解めっき甚接着剀溶液局間暹
脂絶瞁剀を甚いた。
(Comparative Example 6) Full additive method (1.6 ÎŒm)
(m particles + epoxy / PES matrix) A printed wiring board having solder bumps was manufactured in the same manner as in Example 3, except that the adhesive solution for electroless plating shown below was used. That is, 25% of the cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether).
34 parts by weight of acrylate, polyether sulfone (P
ES) 12 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN), 2 parts by weight, caprolactone-modified tris (acroxyethyl) isocyanurate (trade name, manufactured by Toagosei Co., Ltd., trade name: Aronix M315) which is a photosensitive monomer ) 4
Parts by weight, 2 parts by weight of a photoinitiator (manufactured by Ciba-Geigy, trade name: Irgacure 907), 0.2 parts by weight of a photosensitizer (manufactured by Nippon Kayaku, trade name: DETX-S), and further, epoxy resin particles (manufactured by Toray) Trepearl) with an average particle size of 1.6 ÎŒm
After mixing, 30.0 parts by weight of NMP (normal methylpyrrolidone) were added and mixed, the viscosity was adjusted to 7 Pa · s with a homodisper stirrer, and then the mixture was kneaded with three rolls. An adhesive solution for electrolytic plating (interlayer resin insulating agent) was used.

【】比范䟋セミアディティブ法5.5Ό
 0.5Ό特開平−34048 号, USP5519177号公報 以䞋に瀺す無電解めっき甚接着剀溶液を甚いたこず以倖
は、実斜䟋ず同様にしおはんだバンプを有するプリン
ト配線板を補造した。即ち、ゞ゚チレングリ
コヌルゞメチル゚ヌテルに溶解したクレゟヌルノボラ
ック型゚ポキシ暹脂日本化薬補、分子量2500の25
アクリル化物を34重量郚、ポリ゚ヌテルスルフォン
12重量郚、むミダゟヌル硬化剀四囜化成補、商
品名2E4MZ-CN重量郚、感光性モノマヌであるトリ
メチルトリアクリレヌトTMPTA 重量郚、光開始剀
チバガむギヌ瀟補、商品名むルガキュアヌ907 
重量郚、さらに゚ポキシ暹脂粒子東レ補、商品名ト
レパヌルの平均粒埄 5.5Όのものを10重量郚、平均
粒埄 0.5Όのものを重量郚を混合した埌、
ノルマルメチルピロリドン30.0重量郚を添加しなが
ら混合し、ホモディスパヌ攪拌機で粘床Pa・に調敎
し、続いお本ロヌルで混緎しお埗た感光性の無電解め
っき甚接着剀溶液局間暹脂絶瞁剀を甚いた。
(Comparative Example 7) Semi-additive method 5.5 ÎŒm
/0.5 ÎŒm (JP-A-7-34048, US Pat. No. 5,519,177) A printed wiring board having solder bumps was manufactured in the same manner as in Example 1 except that the adhesive solution for electroless plating shown below was used. That is, 25% of the cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether).
34 parts by weight of acrylate, polyether sulfone (P
ES) 12 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN), 2 parts by weight, photosensitive monomer trimethyltriacrylate (TMPTA) 5 parts by weight, photoinitiator (manufactured by Ciba-Geigy), trade name : Irgacure 907) 2
After mixing 10 parts by weight of epoxy resin particles (trade name: Toray Pearl, manufactured by Toray) with an average particle size of 5.5 ÎŒm and 5 parts by weight of an epoxy resin particle with an average particle size of 0.5 ÎŒm, NMP
(Normal methylpyrrolidone) was mixed while adding 30.0 parts by weight, the viscosity was adjusted to 7 Pa · s with a homodisper stirrer, and then kneaded with three rolls to obtain a photosensitive adhesive solution for electroless plating (interlayer). (Resin insulating agent).

【】比范䟋フルアディティブ法5.5Ό
0.5 Ό特開平−34048 号, USP5519177号公報 以䞋に瀺す無電解めっき甚接着剀溶液を甚いたこず以倖
は、実斜䟋ず同様にしおはんだバンプを有するプリン
ト配線板を補造した。即ち、ゞ゚チレングリ
コヌルゞメチル゚ヌテルに溶解したクレゟヌルノボラ
ック型゚ポキシ暹脂日本化薬補、分子量2500の25
アクリル化物を34重量郚、ポリ゚ヌテルスルフォン
12重量郚、むミダゟヌル硬化剀四囜化成補、商
品名2E4MZ-CN重量郚、感光性モノマヌであるトリ
メチルトリアクリレヌトTMPTA 重量郚、光開始剀
チバガむギヌ瀟補、商品名むルガキュアヌ907 
重量郚、さらに゚ポキシ暹脂粒子東レ補、商品名ト
レパヌルの平均粒埄 5.5Όのものを10重量郚、平均
粒埄 0.5Όのものを重量郚を混合した埌、
ノルマルメチルピロリドン30.0重量郚を添加しなが
ら混合し、ホモディスパヌ攪拌機で粘床Pa・に調敎
し、続いお本ロヌルで混緎しお埗た感光性の無電解め
っき甚接着剀溶液局間暹脂絶瞁剀を甚いた。
Comparative Example 8 Fully Additive Method 5.5 ÎŒm
/0.5 ÎŒm (Japanese Patent Application Laid-Open No. 7-34048, US Pat. No. 5,519,177) A printed wiring board having solder bumps was manufactured in the same manner as in Example 2 except that the adhesive solution for electroless plating shown below was used. That is, 25% of the cresol novolak type epoxy resin (manufactured by Nippon Kayaku, molecular weight 2500) dissolved in DMDG (diethylene glycol dimethyl ether).
34 parts by weight of acrylate, polyether sulfone (P
ES) 12 parts by weight, imidazole curing agent (manufactured by Shikoku Chemicals, 2E4MZ-CN), 2 parts by weight, photosensitive monomer trimethyltriacrylate (TMPTA) 5 parts by weight, photoinitiator (manufactured by Ciba-Geigy), trade name : Irgacure 907) 2
After mixing 10 parts by weight of epoxy resin particles (trade name: Toray Pearl, manufactured by Toray) with an average particle size of 5.5 ÎŒm and 5 parts by weight of an epoxy resin particle with an average particle size of 0.5 ÎŒm, NMP
(Normal methylpyrrolidone) was mixed while adding 30.0 parts by weight, the viscosity was adjusted to 7 Pa · s with a homodisper stirrer, and then kneaded with three rolls to obtain a photosensitive adhesive solution for electroless plating (interlayer). (Resin insulating agent).

【】このようにしお補造した実斜䟋および比范
䟋にかかるプリント配線板に぀いお以䞋に瀺す詊隓なら
びに評䟡を行った。 実斜䟋〜および比范䟋〜の配線板に぀い
お、JIS-C-6481に埓い、ピヌル匷床を枬定した。 実斜䟋〜および比范䟋〜の配線板に぀い
お、配線板をクロスカットし、その断面の金属顕埮鏡芳
察により、粗化面の窪みの深さを枬定した。 実斜䟋および比范䟋〜の配線板に぀
いお衚面抵抗倀を枬定した。 実斜䟋および比范䟋〜の配線板に぀い
お、湿床85、枩床 130℃、電圧3.3 の条件䞋で48時
間攟眮し、衚面抵抗倀を枬定した。 実斜䟋〜および比范䟋〜の配線板に぀い
お、−55℃〜125 ℃で 500回のヒヌトサむクル詊隓を実
斜し、クラックの有無を調べた。 実斜䟋〜および比范䟋〜の配線板に぀い
お、の圢成限界を調べた。 実斜䟋〜および比范䟋〜の配線板に぀い
お、加熱詊隓を実斜した。この詊隓の条件は、 128℃で
48時間である。この加熱詊隓によれば、バむアホヌル圢
成甚開口郚に暹脂残りがあるず、バむアホヌルの剥離が
発生する。このような剥離の有無をバむアホヌルの導通
抵抗により枬定し、導通抵抗が䞊がった堎合にバむアホ
ヌルの剥離が有るず認定した。 実斜䟋〜および比范䟋〜の配線板に぀い
お、それぞれ 100枚の配線板を䜜成し、局間絶瞁砎壊の
発生割合を枬定した。
The printed wiring boards according to the examples and the comparative examples thus manufactured were subjected to the following tests and evaluations. . The peel strength of the wiring boards of Examples 1 to 3 and Comparative Examples 1 to 8 was measured in accordance with JIS-C-6481. . With respect to the wiring boards of Examples 1 to 3 and Comparative Examples 1 to 8, the wiring boards were cross-cut, and the depths of the depressions on the roughened surface were measured by observing the cross section with a metallographic microscope. . The surface resistance values of the wiring boards of Examples 1 and 2 and Comparative Examples 1 to 3 and 7 were measured. . The wiring boards of Example 3 and Comparative Examples 4 to 6, and 8 were left for 48 hours under the conditions of a humidity of 85%, a temperature of 130 ° C., and a voltage of 3.3 V, and the surface resistance was measured. . The wiring boards of Examples 1 to 3 and Comparative Examples 1 to 8 were subjected to 500 heat cycle tests at −55 ° C. to 125 ° C. to check for cracks. . With respect to the wiring boards of Examples 1 to 3 and Comparative Examples 1 to 8, the formation limit of L / S was examined. . Heating tests were performed on the wiring boards of Examples 1 to 3 and Comparative Examples 1 to 8. The conditions for this test are 128 ° C
48 hours. According to this heating test, if there is a resin residue in the opening for forming the via hole, the via hole is peeled off. The presence or absence of such peeling was measured by the conduction resistance of the via hole, and it was determined that the via hole was peeled when the conduction resistance increased. . For each of the wiring boards of Examples 1 to 3 and Comparative Examples 1 to 8, 100 wiring boards were prepared, and the occurrence ratio of interlayer dielectric breakdown was measured.

【】これらの詊隓ならびに評䟡の結果を衚に
瀺す。
Table 1 shows the results of these tests and evaluations.

【衚】 [Table 1]

【】この衚に瀺す結果から明らかなよう
に、本発明によれば、粗化面の窪みの深さが埓来に比べ
お浅くおもΌ、実甚的なピヌル匷床 1.0kgcm
を達成するこずができる。これにより、本発明のプリン
ト配線板は、パタヌンのをさらに小さくするこず
が可胜ずなる。 たた、本発明にかかるプリント配線板で䜿甚される
耐熱性暹脂粒子は、その平均粒埄が1.5 Ό以䞋であ
り、その粒床分垃から理解できるように最倧粒埄がΌ
未満にあるので、粗化凊理によっお局間に空隙が発生
せず、䞊局ず䞋局ずの導通による局間絶瞁の砎壊もな
い。 さらに、䞋局偎の導䜓回路衚面が粗化された基板の
局間暹脂絶瞁局に、バむアホヌル圢成甚の開口を蚭ける
堎合、その粗化面に暹脂が残存する。この点に぀いお、
実斜䟋ず比范䟋を比范するず、Ό以䞋
の埮粒子が存圚するこずで、粗化凊理時にこのような暹
脂残りの陀去が可胜ずなり、加熱詊隓でもバむアホヌル
の剥離を起こさないず掚定される。 実斜䟋の配線板は、比范䟋よりも衚面
抵抗倀が高い。これは、比范䟋の配線板では、粗化面
の窪みが深すぎお、無電解めっき膜が溶解陀去できず残
存しおいるためず考えられる。 実斜䟋の配線板は、高枩倚湿条件䞋に曝しおも衚
面抵抗倀が䜎䞋しない。これに察し、比范䟋の配
線板は、高枩倚湿条件䞋に曝すず、衚面抵抗倀が䜎䞋し
おしたう。これは、実斜䟋に比べお比范䟋の配
線板は、粗化面の窪みが深いために觊媒栞が倚量に
付着しおおり、これが衚面抵抗を䜎䞋させる原因である
ず掚定しおいる。 実斜䟋ず比范䟋の配線板は、ヒヌトサ
むクルにより、党くクラックは発生しなかった。これに
察し、実斜䟋ず比范䟋の配線板は、め
っきレゞストず導䜓回路の界面を起点ずしお局間暹脂絶
瞁局無電解めっき甚接着剀局にクラックが発生し
た。 比范䟋の配線板は、導䜓回路䞋のアンカヌ窪
みを起点ずするクラックが無電解めっき甚接着剀局に発
生した。これは、砎砕粉末の堎合、圢状が角匵っおいる
ため、圢成されたアンカヌ窪みも角匵っおおり、ヒヌト
サむクル時に応力集䞭が起き、クラックが発生するもの
ず考えられる。即ち、このような砎砕粉末を䜿甚する
ず、ピヌル匷床は向䞊するが、ヒヌトサむクル時にクラ
ックが発生しおしたう。
. As is clear from the results shown in this table, according to the present invention, even if the depth of the depression on the roughened surface is smaller than that of the conventional one (3 ÎŒm), the practical peel strength is 1.0 kg / cm.
Can be achieved. Thereby, the printed wiring board of the present invention can further reduce the L / S of the pattern. . The heat-resistant resin particles used in the printed wiring board according to the present invention have an average particle size of 1.5 ÎŒm or less, and have a maximum particle size of 2 ÎŒm as can be understood from the particle size distribution.
Since it is less than m, no void is generated between the layers due to the roughening treatment, and there is no destruction of the interlayer insulation due to conduction between the upper layer and the lower layer. . Further, when an opening for forming a via hole is provided in the interlayer resin insulating layer of the substrate whose surface of the lower conductive circuit is roughened, the resin remains on the roughened surface. in this regard,
Comparing Examples 1 and 2 with Comparative Examples 2 and 3, the presence of fine particles of 1 ÎŒm or less makes it possible to remove such resin residue during the roughening treatment, and does not cause peeling of the via hole even in the heating test. It is estimated to be. . The wiring boards of Examples 1 and 2 have higher surface resistance values than Comparative Examples 1 and 7. This is presumably because in the wiring board of Comparative Example 1, the depression on the roughened surface was too deep, and the electroless plating film could not be dissolved and removed and remained. . The surface resistance of the wiring board of Example 3 did not decrease even when exposed to high temperature and high humidity conditions. On the other hand, when the wiring boards of Comparative Examples 4 and 8 are exposed to a high-temperature and high-humidity condition, the surface resistance decreases. This is presumed to be that the wiring boards of Comparative Examples 4 and 8 had a larger amount of catalyst nuclei Pd adhered to the wiring boards of Comparative Examples 4 and 8 than the Example 3 due to the deep depressions on the roughened surface, and this was the cause of the decrease in surface resistance. are doing. . No cracks occurred in the wiring boards of Examples 1 and 2 and Comparative Examples 1 and 7 due to the heat cycle. In contrast, in the wiring boards of Example 3 and Comparative Examples 4, 5, 6, and 8, cracks occurred in the interlayer resin insulating layer (adhesive layer for electroless plating) starting from the interface between the plating resist and the conductive circuit. . . In the wiring boards of Comparative Examples 2 and 5, a crack originating from the anchor dent below the conductor circuit occurred in the adhesive layer for electroless plating. This is thought to be because, in the case of the crushed powder, since the shape is angular, the formed anchor dent is also angular, so that stress concentration occurs during a heat cycle and cracks are generated. That is, when such a crushed powder is used, the peel strength is improved, but cracks occur during a heat cycle.

【】なお、特開昭61−276875号公報の実斜䟋で
は、暹脂マトリックスずしお゚ポキシ倉成ポリむミド暹
脂を䜿甚しおいるので、靱性倀が゚ポキシ−暹脂
より高く、ピヌル匷床 1.6kgcmが埗られたものず考え
られる。
In the examples of JP-A-61-276875, since an epoxy-modified polyimide resin is used as the resin matrix, the toughness is higher than that of the epoxy-PES resin, and a peel strength of 1.6 kg / cm is obtained. It is thought that it was done.

【】[0105]

【発明の効果】以䞊説明したように本発明によれば、実
甚的なピヌル匷床を確保でき、衚面抵抗倀も高く、しか
も、2020Όたでの埮现パタヌンを圢成で
き、粗化凊理による局間絶瞁砎壊もないプリント配線板
を提䟛するこずができる。さらに、本発明によれば、バ
むアホヌル甚開口の底郚に残存する接着剀暹脂を粗化凊
理時に陀去できるので、加熱詊隓におけるバむアホヌル
剥離がない。
As described above, according to the present invention, a practical peel strength can be ensured, the surface resistance is high, and a fine pattern of up to L / S = 20/20 ÎŒm can be formed. It is possible to provide a printed wiring board free from interlayer dielectric breakdown due to processing. Furthermore, according to the present invention, the adhesive resin remaining at the bottom of the via hole opening can be removed during the roughening treatment, so that there is no via hole peeling in the heating test.

【図面の簡単な説明】[Brief description of the drawings]

【図】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 1 is a view showing one step in manufacturing a multilayer printed wiring board by a semi-additive method.

【図】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 2 is a view showing one step in manufacturing a multilayer printed wiring board by a semi-additive method.

【図】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 3 is a view showing one step in manufacturing a multilayer printed wiring board by a semi-additive method.

【図】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 4 is a view showing one step in manufacturing a multilayer printed wiring board by a semi-additive method.

【図】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 5 is a view showing one step in manufacturing a multilayer printed wiring board by a semi-additive method.

【図】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 6 is a view showing one step in the production of a multilayer printed wiring board by a semi-additive method.

【図】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 7 is a view showing one step in manufacturing a multilayer printed wiring board by a semi-additive method.

【図】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 8 is a view showing one step in the production of a multilayer printed wiring board by a semi-additive method.

【図】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 9 is a view showing one step in manufacturing a multilayer printed wiring board by a semi-additive method.

【図10】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 10 is a view showing one step in the production of a multilayer printed wiring board by a semi-additive method.

【図11】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 11 is a view showing one step in the production of a multilayer printed wiring board by a semi-additive method.

【図12】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 12 is a diagram showing one step in the production of a multilayer printed wiring board by a semi-additive method.

【図13】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 13 is a view showing one step in the production of a multilayer printed wiring board by a semi-additive method.

【図14】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 14 is a diagram showing one step in the manufacture of a multilayer printed wiring board by a semi-additive method.

【図15】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 15 is a view showing one step in the production of a multilayer printed wiring board by a semi-additive method.

【図16】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 16 is a diagram showing one step in the manufacture of a multilayer printed wiring board by a semi-additive method.

【図17】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 17 is a view showing one step in the production of a multilayer printed wiring board by a semi-additive method.

【図18】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 18 is a diagram showing one step in the manufacture of a multilayer printed wiring board by a semi-additive method.

【図19】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 19 is a view showing one step in the production of a multilayer printed wiring board by a semi-additive method.

【図20】セミアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 20 is a diagram showing one step in the manufacture of a multilayer printed wiring board by a semi-additive method.

【図21】フルアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 21 is a diagram showing one step in the manufacture of a multilayer printed wiring board by a full additive method.

【図22】フルアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 22 is a diagram showing one step in manufacturing a multilayer printed wiring board by a full additive method.

【図23】フルアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 23 is a diagram showing one step in the manufacture of a multilayer printed wiring board by a full additive method.

【図24】フルアディテむブ法による倚局プリント配線板
の補造における䞀工皋を瀺す図である。
FIG. 24 is a diagram showing one step in the production of a multilayer printed wiring board by a full additive method.

【図25】耐熱性暹脂粒子の粒子埄ずその粒子埄における
耐熱性暹脂粒子の存圚割合存圚量の関係を瀺す粒床
分垃である。
FIG. 25 is a particle size distribution showing the relationship between the particle size of heat-resistant resin particles and the abundance ratio (abundance) of heat-resistant resin particles at the particle size.

【図26】耐熱性暹脂粒子の粒子埄ずその粒子埄における
耐熱性暹脂粒子の存圚割合存圚量の関係を瀺す粒床
分垃である。
FIG. 26 is a particle size distribution showing the relationship between the particle size of heat-resistant resin particles and the abundance ratio (abundance) of heat-resistant resin particles at the particle size.

【笊号の説明】[Explanation of symbols]

 基板  局間暹脂絶瞁局無電解めっき甚接着剀局  氞久レゞストめっきレゞスト  内局導䜓回路内局パタヌン  内局導䜓回路第局パタヌン  バむアホヌル甚開口  バむアホヌル  銅箔  スルヌホヌル 10 暹脂充填剀 11 粗化局 12 無電解めっき膜 13 電解めっき膜 14 ゜ルダヌレゞスト局 15 ニッケルめっき局 16 金めっき局 17 はんだ䜓はんだバンプ Reference Signs List 1 substrate 2 interlayer resin insulating layer (adhesive layer for electroless plating) 3 permanent resist (plating resist) 4 inner layer conductor circuit (inner layer pattern) 5 inner layer conductor circuit (second layer pattern) 6 opening for via hole 7 via hole 8 Copper foil 9 Through hole 10 Resin filler 11 Roughening layer 12 Electroless plating film 13 Electrolytic plating film 14 Solder resist layer 15 Nickel plating layer 16 Gold plating layer 17 Solder body (solder bump)

フロントペヌゞの続き (51)Int.Cl.7 識別蚘号  テヌマコヌト゛(参考  3/46  3/46  Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H05K 3/46 H05K 3/46 B

Claims (7)

【特蚱請求の範囲】[Claims] 【請求項】 基板䞊に、少なくずもその䞀郚に粗化局
を有する䞋局の導䜓回路が蚭けられ、その䞊に衚面が粗
化された硬化凊理枈の無電解めっき甚接着剀局が蚭けら
れ、そしおその接着剀局衚面の粗化面䞊には䞊局の導䜓
回路が圢成されおなるプリント配線板においお、 前蚘接着剀局は、硬化凊理によっお酞あるいは酞化剀に
難溶性ずなる未硬化の耐熱性暹脂マトリックス䞭に酞あ
るいは酞化剀に可溶性の硬化凊理された耐熱性暹脂粒子
を分散しおなる無電解めっき甚接着剀からなり、この接
着剀の耐熱性暹脂粒子の倧きさは、平均粒埄が 1.5Ό
以䞋であるこずを特城ずするプリント配線板。
A lower conductive circuit having a roughened layer on at least a part thereof is provided on a substrate, and a hardened, electroless plating adhesive layer having a roughened surface is provided thereon. And a printed wiring board in which an upper conductive circuit is formed on a roughened surface of the adhesive layer surface, wherein the adhesive layer becomes hardly soluble in an acid or an oxidizing agent by a curing treatment. It consists of an adhesive for electroless plating that is obtained by dispersing cured heat-resistant resin particles soluble in acid or oxidizing agent in a conductive resin matrix, and the size of the heat-resistant resin particles of this adhesive is determined by the average particle size. Is 1.5 ÎŒm
A printed wiring board characterized by the following.
【請求項】 前蚘接着剀局は、窪みの深さmax が
〜Όになるように粗化された粗化面を有し、か぀こ
の接着剀局䞭に分散しおいる前蚘耐熱性暹脂粒子は最倧
粒埄がΌ未満であっお、ピヌクを瀺す粒埄が1.5 ÎŒ
以䞋の領域にくるような粒床分垃をも぀ものであるこ
ずを特城ずする請求項に蚘茉のプリント配線板。
2. The adhesive layer according to claim 1, wherein the depth Rmax of the depression is one.
The heat-resistant resin particles having a roughened surface roughened to be about 5 Όm, and dispersed in the adhesive layer, have a maximum particle diameter of less than 2 Όm and a peak particle diameter. 1.5 Ό
2. The printed wiring board according to claim 1, wherein the printed wiring board has a particle size distribution such that the particle size distribution is within an area of m or less.
【請求項】 前蚘耐熱性暹脂粒子は、その平均粒埄が
0.1〜1.0 Όであるこずを特城ずする請求項に蚘茉
のプリント配線板。
3. The heat-resistant resin particles have an average particle size.
The printed wiring board according to claim 1, wherein the thickness is 0.1 to 1.0 ÎŒm.
【請求項】 前蚘耐熱性暹脂粒子は、球状粒子である
こずを特城ずする請求項, たたはに蚘茉のプリン
ト配線板。
4. The printed wiring board according to claim 1, wherein the heat-resistant resin particles are spherical particles.
【請求項】 前蚘耐熱性暹脂粒子は、粒床分垃のピヌ
クは䞀぀であるこずを特城ずする請求項〜のいずれ
か項に蚘茉のプリント配線板。
5. The printed wiring board according to claim 1, wherein the heat-resistant resin particles have a single particle size distribution peak.
【請求項】 前蚘接着剀局衚面の粗化面䞊に圢成した
導䜓回路は、無電解めっき膜ず電解めっき膜ずによっお
構成されおいるこずを特城ずする請求項〜のいずれ
か項に蚘茉のプリント配線板。
6. The conductive circuit formed on the roughened surface of the surface of the adhesive layer comprises an electroless plating film and an electrolytic plating film. The printed wiring board according to the item.
【請求項】 前蚘接着剀局衚面の粗化面䞊に圢成した
䞊局の導䜓回路には、衚面の少なくずも䞀郚に粗化局が
圢成されおいるこずを特城ずする請求項〜のいずれ
か項に蚘茉のプリント配線板。
7. The conductive circuit according to claim 1, wherein the upper conductive circuit formed on the roughened surface of the adhesive layer has a roughened layer formed on at least a part of the surface. The printed wiring board according to claim 1.
JP22294199A 1999-08-05 1999-08-05 Printed wiring board Withdrawn JP2000124603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22294199A JP2000124603A (en) 1999-08-05 1999-08-05 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22294199A JP2000124603A (en) 1999-08-05 1999-08-05 Printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10442298A Division JP3259906B2 (en) 1997-04-15 1998-04-15 Adhesive for electroless plating and printed wiring board

Publications (1)

Publication Number Publication Date
JP2000124603A true JP2000124603A (en) 2000-04-28

Family

ID=16790280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22294199A Withdrawn JP2000124603A (en) 1999-08-05 1999-08-05 Printed wiring board

Country Status (1)

Country Link
JP (1) JP2000124603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022465A (en) * 2012-07-13 2014-02-03 Shinko Electric Ind Co Ltd Wiring board and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022465A (en) * 2012-07-13 2014-02-03 Shinko Electric Ind Co Ltd Wiring board and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6261671B1 (en) Adhesive for electroless plating, feedstock composition for preparing adhesive for electroless plating, and printed wiring board
US6242079B1 (en) Printed wiring board and method for manufacturing the same
US6248428B1 (en) Adhesive for electroless plating, raw material composition for preparing adhesive for electroless plating and printed wiring board
WO2000003570A1 (en) Printed-circuit board and method of manufacture thereof
JP3311977B2 (en) Adhesive for electroless plating and multilayer printed wiring board
JP3259906B2 (en) Adhesive for electroless plating and printed wiring board
JPH1098271A (en) Interlayer insulating agent and multilayered printed wiring board
JPH10256724A (en) Multilayer printed circuit board
JP2000022317A (en) Printed wiring board and manufacture thereof
JP3916946B2 (en) Method for evaluating electrolytic plating solution and method for producing multilayer printed wiring board
JPH10247783A (en) Multilayer printed wiring board and manufacture thereof
JPH10126040A (en) Manufacture of printed wiring board
JPH10190224A (en) Multilayer printed wiring board and its manufacture
JPH10247784A (en) Multilayer printed wiring board and manufacture thereof
JP2000124603A (en) Printed wiring board
JP3297006B2 (en) Multilayer printed wiring board
JP3995794B2 (en) Electroless plating adhesive and printed wiring board
JPH09162514A (en) Printed wiring board and its manufacture
JPH11298121A (en) Printed wiring board
JP2000332395A (en) Printed wiring board
JP2000297379A (en) Adhesive for electroless plating and printed circuit board
JP2000077827A (en) Printed-wiring board
JP2000294932A (en) Manufacture of multilayer printed wiring board
JP2000156551A (en) Printed wiring board, body to be treated, and manufacture of printed wiring board
JP2000353878A (en) Mask for printing filling material and manufacture of printed wiring board using the same

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040811