[go: up one dir, main page]

JP2000135422A - Polysulfone-base medical separation membrane - Google Patents

Polysulfone-base medical separation membrane

Info

Publication number
JP2000135422A
JP2000135422A JP10311681A JP31168198A JP2000135422A JP 2000135422 A JP2000135422 A JP 2000135422A JP 10311681 A JP10311681 A JP 10311681A JP 31168198 A JP31168198 A JP 31168198A JP 2000135422 A JP2000135422 A JP 2000135422A
Authority
JP
Japan
Prior art keywords
membrane
polysulfone
nmol
content
endotoxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10311681A
Other languages
Japanese (ja)
Inventor
Masakazu Yamada
雅一 山田
Hajime Yoshida
一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP10311681A priority Critical patent/JP2000135422A/en
Publication of JP2000135422A publication Critical patent/JP2000135422A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polysulfone-base medical separation membrane excellent in endotoxin adsorptivity even after radioactive-ray irradiation and capable of maintaining its effect even after storage over a long period of time. SOLUTION: The medical separation membrane is a radioactive-ray irradiated membrane consisting of a polysulfone polymer and polyvinylpyrrolidone. The membrane shows excellent endotoxin adsorptivity when the carboxyl group content of the membrane is adjusted to >=800 and <1,600 nmol/g and can maintain its effect over a long period of time when the peroxide content is suppressed to <=200 nmol/g because the deterioration of the adsorptivity due to a change with the lapse of time is not caused. The membrane is appropriately utilized in fields related to blood purification.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、血液浄化関連分野
で使用される医療用分離膜に関するもので、特に血液透
析や血液濾過透析といった体外循環による治療、および
透析液を清浄化する目的で使用されるエンドトキシンカ
ットフィルターとして利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical separation membrane used in the field of blood purification, and more particularly to treatment by extracorporeal circulation such as hemodialysis or hemofiltration, and purification of dialysate. It can be used as an endotoxin cut filter.

【0002】[0002]

【従来の技術】近年、膜分離技術が数多く実用化されて
おり、液体や気体の混合物から目的物を分離したり、不
純物を除去するために様々な選択分離膜が利用されてい
る。選択分離膜の素材としては一般に有機系高分子が汎
用されており、例えば天然高分子としてセルロース、合
成高分子としてはポリアクリロニトリル、ポリアミド、
ポリイミド、ポリオレフィン、ポリシロキサン、ポリス
ルホン、ポリメタクリレート等が挙げられる。中でもポ
リスルホン系高分子は工業用分離膜として幅広く利用さ
れているが、その理由は放射線、加熱、および酸・アル
カリ等の化学薬品に対して優れた耐性を示すためであ
る。また、生体適合性や安全性にも優れることから、最
近では医療用分離膜の素材としても注目され、需要が増
加している。
2. Description of the Related Art In recent years, many membrane separation techniques have been put to practical use, and various selective separation membranes have been used to separate a target substance from a liquid or gas mixture or remove impurities. Organic polymers are generally used as the material of the selective separation membrane, for example, cellulose as a natural polymer, polyacrylonitrile, polyamide as a synthetic polymer,
Examples include polyimide, polyolefin, polysiloxane, polysulfone, and polymethacrylate. Among them, polysulfone-based polymers are widely used as industrial separation membranes because they exhibit excellent resistance to radiation, heating, and chemicals such as acids and alkalis. In addition, because of their excellent biocompatibility and safety, they have recently attracted attention as materials for medical separation membranes, and demand has been increasing.

【0003】ところが、ポリスルホン系高分子は撥水性
が高い素材であるため、そのままでは十分な濾過性能が
確保できなかったり、血液との親和性が悪くて血栓形成
に至ることがあった。そこで、相溶性の高い親水性高分
子であるポリビニルピロリドンやポリエチレングリコー
ル等を若干量添加した原液から製膜することで、膜を親
水化する工夫が成されてきたが、一方では親水性高分子
が膜から溶出するという問題もあった。この欠点を改良
する試みは数多く開示されており、例えば、特公平8−
32297では膜をポリカルボン酸やポリフェノール等
の多価酸で処理して親水性高分子との不溶性コンプレッ
クスを形成させたり、特開昭62−38205ではラジ
カル発生試薬で処理して親水性高分子を架橋不溶化する
方法が知られているが、これらの化学的手段では試薬類
を膜から完全に除去するのが困難であった。
However, since the polysulfone-based polymer is a material having high water repellency, sufficient filtration performance cannot be ensured as it is, or thrombus formation may occur due to poor affinity with blood. Therefore, some attempts have been made to make the membrane hydrophilic by forming a membrane from a stock solution containing a small amount of highly compatible hydrophilic polymers such as polyvinylpyrrolidone and polyethylene glycol. Was also eluted from the membrane. Many attempts to remedy this drawback have been disclosed.
In 32297, the membrane is treated with a polyacid such as polycarboxylic acid or polyphenol to form an insoluble complex with the hydrophilic polymer. In JP-A-62-38205, the membrane is treated with a radical generating reagent to convert the hydrophilic polymer. Although methods for cross-linking and insolubilizing are known, it has been difficult to completely remove reagents from the membrane by these chemical means.

【0004】一方、物理的な手段として、特開平9−1
03664では膜を乾燥状態で熱処理することで、親水
性高分子を不溶化して膜に固定している。特開平4−3
00636では含水状態で膜に放射線を照射すること
で、親水性高分子を架橋によって不溶化させ、膜からの
溶出性を改善している。本発明のような血液浄化膜の場
合、分離性能を高めるために膜は多孔質構造をとること
が望ましいが、その構造ゆえの熱収縮が起こりやすく、
上記の高温度下の乾熱処理は不適当であった。これに対
して、放射線照射による不溶化処理は医療用分離膜に不
可欠な滅菌工程を兼ねることができるため、より合理的
な手段と考えられる。
On the other hand, Japanese Patent Application Laid-Open No.
In 03664, the hydrophilic polymer is insolubilized and fixed to the membrane by heat-treating the membrane in a dry state. JP-A-4-3
In No. 00636, the hydrophilic polymer is irradiated with radiation in a water-containing state to insolubilize the hydrophilic polymer by crosslinking, thereby improving the elution property from the film. In the case of a blood purification membrane as in the present invention, it is preferable that the membrane has a porous structure in order to enhance the separation performance, but heat shrinkage due to the structure easily occurs,
The above dry heat treatment at a high temperature was inappropriate. On the other hand, the insolubilization treatment by irradiation with radiation can be used as a sterilization step indispensable for a medical separation membrane, and is considered to be a more rational means.

【0005】ところで、透析液には菌体由来の生理活性
物質であるエンドトキシンが微量混入していることがあ
るが、通常はエンドトキシンカットフィルターと血液浄
化膜との併用により、エンドトキシンの血液中への移行
を阻止している。エンドトキシンは一定の分子量を有す
る構造単位の会合体であり、しかも、分子中に疎水性部
分や陰性の官能基を含むため、膜透過性は細孔径や吸着
能力によって左右される。膜には親水性高分子が含まれ
ているが、全含有量は微量でも相分離の結果として膜表
面に濃縮して存在するため、この影響は無視することが
できない。したがって、膜の親水化処理の結果、エンド
トキシンに対する吸着性が変化し、しかも、放射線照射
の結果、親水性高分子に生じる不安定な官能基の分解に
よって経時的に吸着性が変化するおそれがあった。
[0005] By the way, a small amount of endotoxin, which is a physiologically active substance derived from bacterial cells, may be mixed in a dialysate. Usually, endotoxin is introduced into blood by using an endotoxin cut filter and a blood purification membrane together. Blocking the transition. Endotoxin is an aggregate of structural units having a certain molecular weight, and further contains a hydrophobic portion and a negative functional group in the molecule, so that the membrane permeability is affected by the pore size and the adsorption capacity. Although the hydrophilic polymer is contained in the membrane, even if the total content is very small, it is concentrated on the membrane surface as a result of the phase separation, so that this influence cannot be ignored. Therefore, the adsorptivity to endotoxin changes as a result of the hydrophilic treatment of the membrane, and the adsorptivity may change over time due to the decomposition of unstable functional groups generated in the hydrophilic polymer as a result of irradiation. Was.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来の
技術における問題点のない、すなわち、放射線照射され
ていてもエンドトキシンの吸着性に優れ、しかも、長期
保管してもその効果が保持できるポリスルホン系医療用
分離膜を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has no problems in the above-mentioned prior art, that is, it has excellent endotoxin adsorption even when irradiated, and can maintain its effect even after long-term storage. An object of the present invention is to provide a polysulfone-based medical separation membrane.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討した結果、放射線照射された
膜において、膜中のカルボキシル基含有量と過酸化物含
有量とを一定範囲に制御すると、エンドトキシンの吸着
性に優れ、しかも、長期保管してもその効果が保持でき
ることを見出し、本発明を完成するに至ったのである。
すなわち、本発明のポリスルホン系医療用分離膜は、ポ
リスルホン系高分子とポリビニルピロリドンからなる放
射線照射された膜であって、該膜中のカルボキシル基含
有量が800nmol/g以上、1600nmol/g
未満であり、かつ過酸化物含有量が200nmol/g
以下であることを特徴とする。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, in a film irradiated with radiation, the carboxyl group content and the peroxide content in the film were kept constant. When the content is controlled within the above range, it has been found that the endotoxin-adsorbing property is excellent, and that the effect can be maintained even after long-term storage, thereby completing the present invention.
That is, the polysulfone-based medical separation membrane of the present invention is a radiation-irradiated membrane comprising a polysulfone-based polymer and polyvinylpyrrolidone, and has a carboxyl group content of 800 nmol / g or more and 1600 nmol / g.
And the peroxide content is less than 200 nmol / g
It is characterized by the following.

【0008】本発明の膜の第一の構成成分であるポリス
ルホン系高分子とは、下記に示す化学構造式(1)もし
くは(2)のユニットの繰り返し構造を有する芳香族ポ
リスルホン系高分子であり、芳香環上に官能基やアルキ
ル基が結合した、いわゆるポリスルホン誘導体も範疇に
含まれる。なお、式中のArはパラ二置換のフェニル基
を示す。これらポリスルホン系高分子の分子量は特に限
定しない。 −O−Ar−C(CH3 3 −Ar−O−Ar−SO3 −Ar− (1) −O−Ar−SO3 −Ar− (2)
The polysulfone polymer as the first component of the membrane of the present invention is an aromatic polysulfone polymer having a repeating structure of a unit represented by the following chemical structural formula (1) or (2). Also, so-called polysulfone derivatives in which a functional group or an alkyl group is bonded to an aromatic ring are included in the category. Ar in the formula represents a para-disubstituted phenyl group. The molecular weight of these polysulfone polymers is not particularly limited. -O-Ar-C (CH 3 ) 3 -Ar-O-Ar-SO 3 -Ar- (1) -O-Ar-SO 3 -Ar- (2)

【0009】第二の構成成分はポリビニルピロリドン
(以下、PVPという)であり、ビニルピロリドンを付
加重合して得られる直鎖状の水溶性高分子である。ま
た、単体に限らず、他のビニル系モノマーとの共重合体
であってもよく、例えば酢酸ビニルとの共重合体は、ポ
リスルホン系高分子との親和性や膜表面の親水性を制御
する目的で使用できる。これらは分子量別に市販品が入
手可能なので、それを利用してもかまわない。ただし、
いずれも分子量が大きい方が膜に残存して親水性を付与
させやすいため、重量平均分子量が少なくとも10万以
上のものを用いた方が望ましい。
The second component is polyvinylpyrrolidone (PVP), which is a linear water-soluble polymer obtained by addition polymerization of vinylpyrrolidone. The copolymer is not limited to a simple substance, and may be a copolymer with another vinyl monomer.For example, a copolymer with vinyl acetate controls the affinity with the polysulfone polymer and the hydrophilicity of the membrane surface. Can be used for purpose. Since these are commercially available according to molecular weight, they may be used. However,
In any case, the larger the molecular weight, the more it is likely to remain on the film and impart hydrophilicity. Therefore, it is desirable to use a material having a weight average molecular weight of at least 100,000 or more.

【0010】膜中のPVP含有率は、本発明を達成する
のに重要なパラメーターの一つである。第一に、膜の親
水化に密接に関係しており、該含有率が低すぎる場合、
高すぎる場合のいずれにおいても十分な濾過性能が達成
できない。前者では親水化効果が発揮されずに水系媒体
に濡れにくいこと、後者では含水時のPVPの膨潤によ
って凝集粒子表面のPVP濃縮層の厚みが増大し、細孔
が狭窄されることがそれらの原因と解釈される。第二に
は、後述する膜中のカルボキシル基含量、および過酸化
物含有量に関係する。ポリスルホン系高分子は放射線耐
性が大きいことから、膜中のPVPにこのような部分構
造が生成すると考えられる。したがって、所望のカルボ
キシル基含有量を得るには、PVP含有率を一定の範囲
に制御し、一方で過酸化物の観点からはPVP含有率は
低い方がよい。この両者を満足させるPVP含有率の好
ましい範囲は6.0〜11.0重量%であり、さらに好
ましくは7.5〜10.0重量%である。
[0010] The PVP content in the membrane is one of the important parameters for achieving the present invention. First, it is closely related to the hydrophilicity of the membrane, if the content is too low,
In any case where it is too high, sufficient filtration performance cannot be achieved. In the former case, the hydrophilizing effect is not exhibited, and it is difficult to wet the aqueous medium. In the latter case, the thickness of the PVP concentrated layer on the surface of the agglomerated particles increases due to the swelling of PVP when hydrated, and the pores are narrowed. Is interpreted as The second relates to the carboxyl group content and the peroxide content in the film described below. Since the polysulfone-based polymer has high radiation resistance, it is considered that such a partial structure is generated in PVP in the membrane. Therefore, in order to obtain a desired carboxyl group content, the PVP content should be controlled within a certain range, while the PVP content should be lower from the viewpoint of peroxide. The preferred range of the PVP content satisfying both is 6.0 to 11.0% by weight, and more preferably 7.5 to 10.0% by weight.

【0011】上記の医療用分離膜は、医療用具の滅菌に
汎用されているγ線に代表される放射線照射を受けるた
め、PVPが不溶化して膜から溶出し難くなっている一
方、照射に伴う変成も生じている。本発明者らは、変成
の指標としてカルボキシル基含有量、および過酸化物含
有量に着目し、前者が増加するとエンドトキシンに対す
る吸着性が高くなること、後者が長期保管中の吸着効果
の保持に重要であることを見出した。
[0011] The above-mentioned medical separation membrane receives radiation irradiation represented by γ-ray which is widely used for sterilization of medical devices, so that PVP is insolubilized and hardly eluted from the membrane. Metamorphosis has also occurred. The present inventors have focused on the carboxyl group content and the peroxide content as indices of denaturation, and that the former increases the adsorbability to endotoxin, and the latter is important for maintaining the adsorption effect during long-term storage. Was found.

【0012】ポリスルホン系高分子は放射線に対する耐
性が強いため、膜中のカルボキシル基は主にPVPのピ
ロリドン環の加水分解によって生成するものと考えられ
る。エンドトキシン吸着性に対するカルボキシル基の詳
細な作用は不明ではあるが、エンドトキシンがアミノ基
を有する化合物に強い親和性を示すことから、ピロリド
ン環のアミド結合の加水分解によって同時に生成する二
級アミノ基が、エンドトキシン中の酸性基と親和性を示
して吸着するものと推定される。したがって、カルボキ
シル基含有量が低すぎる場合には二級アミノ基含有量も
低く、その結果、エンドトキシンに対する吸着性が低下
する。反対に多すぎると酸性基過多となって血液凝固
系、特にキニン系の活性化によりブラジキニン生成に繋
がる可能性があり、医療用分離膜として好ましくない。
以上を満足するカルボキシル基の好ましい含有量は80
0nmol/g以上、1600nmol/g未満であ
る。
Since the polysulfone-based polymer has high resistance to radiation, it is considered that the carboxyl group in the film is mainly generated by hydrolysis of the pyrrolidone ring of PVP. Although the detailed action of the carboxyl group on endotoxin adsorption is unknown, since endotoxin shows strong affinity for compounds having an amino group, a secondary amino group simultaneously formed by hydrolysis of an amide bond of a pyrrolidone ring has It is presumed that it adsorbs with an affinity for the acidic group in endotoxin. Therefore, when the carboxyl group content is too low, the secondary amino group content is also low, and as a result, the adsorbability to endotoxin decreases. Conversely, if the amount is too large, there is a possibility that the acid group becomes excessive and the blood coagulation system, particularly the kinin system, is activated, leading to the production of bradykinin, which is not preferable as a medical separation membrane.
A preferable content of the carboxyl group satisfying the above is 80.
0 nmol / g or more and less than 1600 nmol / g.

【0013】膜中の過酸化物もカルボキシル基同様、照
射によってPVPの主鎖に生成し、その化学的不安定性
ゆえに長期保管中に分解を起こすものと考えられる。ま
た、製造原料の段階で既にPVPには過酸化物が含まれ
ており、そのまま膜中に取り込まれてくる場合もある。
この状態で照射されると、照射によって生成したラジカ
ルが引き金となって、分解が起こる。それらの結果、過
酸化物を起点とした分子切断によって低分子化したPV
Pが膜から脱離し、エンドドトキシンの吸着性が低下し
てくる。分解による影響を事実上なくすには、膜中の過
酸化物の含有量を200nmol/g以下に抑えること
が必要で、100nmol/g以下であればさらに好ま
しい。
It is considered that the peroxide in the film, like the carboxyl group, is formed in the main chain of PVP by irradiation, and decomposes during long-term storage due to its chemical instability. In addition, peroxide may already be contained in PVP at the stage of the production raw material, and may be taken into the film as it is.
When irradiation is performed in this state, the radicals generated by the irradiation trigger to cause decomposition. As a result, PV that has been reduced in molecular weight by molecular cleavage starting from peroxide
P is detached from the membrane, and the adsorbability of endotoxin decreases. In order to virtually eliminate the influence of the decomposition, it is necessary to suppress the peroxide content in the film to 200 nmol / g or less, and more preferably 100 nmol / g or less.

【0014】上記の膜の形状は、血液浄化関連用途とし
ての強度や実用性とを考慮すると、中空状であることが
好ましい。中空糸の構造は、内径が80〜400μmの
中空部、および厚みが35〜85μmの膜厚部からなる
が、内径がこれ以下に小さいと流体抵抗が高まり、操作
性が低下する。一方、必要以上に大きいと強度を維持す
るために膜厚を上げなければならず、物質移動効率を低
下させることになる。また、膜厚は薄すぎると強度が保
てず、取り扱い時の膜潰れの原因となり、厚すぎると膜
中の物質移動抵抗が大きくなって、透過性能が低下する
ので好ましくない。
The shape of the above-mentioned membrane is preferably hollow in consideration of the strength and practicality of blood purification-related applications. The structure of the hollow fiber is composed of a hollow part having an inner diameter of 80 to 400 μm and a film part having a thickness of 35 to 85 μm. If the inner diameter is smaller than this, the fluid resistance increases and the operability decreases. On the other hand, if it is larger than necessary, the film thickness must be increased to maintain the strength, and the mass transfer efficiency is reduced. On the other hand, if the film thickness is too small, the strength cannot be maintained and the film may be crushed at the time of handling. If the film thickness is too large, the mass transfer resistance in the film increases, and the permeation performance deteriorates.

【0015】さらに、本発明の膜を実使用する際には、
膜をハウジングに組み込んだ後、両端をポッティングし
て所定の膜面積を有する分離用モジュールに成形する。
該モジュールの形状は公知のものを利用すればよく、特
に限定しないが、それぞれのポッティング部に血液の導
入と排出のためのノズル付きヘッダーを有し、ハウジン
グの両端付近には透析液の導入と排出のためのノズルが
付いた構造であればよい。エンドトキシンカットフィル
ターとして使用する際も同様の構造でなんらさしつかえ
ない。ハウジングおよびポッティング材の材質も特に限
定はしない。
Furthermore, when the membrane of the present invention is actually used,
After assembling the membrane into the housing, both ends are potted to form a separation module having a predetermined membrane area.
The shape of the module may be a known one, and is not particularly limited.Each of the potting portions has a header with a nozzle for introducing and discharging blood, and a dialysis solution is introduced near both ends of the housing. Any structure having a nozzle for discharging may be used. When used as an endotoxin cut filter, there is no problem with the same structure. The materials of the housing and the potting material are not particularly limited.

【0016】該モジュール内の中空糸膜の充填密度は、
透析液の偏流れによる透析効率の低下、あるいはハウジ
ングへの挿入時の膜の破損が起こらない範囲であればよ
く、55〜80%が好ましい。また、膜面積とは中空糸
内面を均一な平面と仮定した時の総表面積であるが、
0.01〜2.5m2 の範囲が好ましい。これ以上に小
さいと、分離用モジュールとしての治療効果が発揮され
ず、反対に大きすぎると体外に持ち出される血液量が増
えるため、好ましくない。該モジュールはドライタイ
プ、あるいは該モジュール内に水性媒体を満たしたウェ
ットタイプのいずれでもかまわないが、後述するよう
に、膜が少なくとも100重量%以上の水性媒体を含ん
だ湿潤状態にあることが好ましい。
The packing density of the hollow fiber membrane in the module is:
It is sufficient that the dialysis efficiency is not reduced due to the uneven flow of the dialysate or the membrane is not damaged when inserted into the housing. The membrane area is the total surface area assuming that the inner surface of the hollow fiber is a uniform plane,
The range of 0.01 to 2.5 m 2 is preferred. If it is smaller than this, the therapeutic effect of the separation module is not exhibited, and if it is too large, the amount of blood taken out of the body increases, which is not preferable. The module may be either a dry type or a wet type in which an aqueous medium is filled in the module. As described later, the membrane is preferably in a wet state containing at least 100% by weight or more of an aqueous medium.

【0017】次に、前記特徴を有するポリスルホン系医
療用分離膜の実施様態について、詳細に説明する。製膜
原液はポリスルホン系高分子、PVPおよびこれらの共
通溶剤からなる。溶剤はN,N−ジメチルアセトアミ
ド、N,N−ジメチルホルムアミド、N−メチル−2−
ピロリドン、ジメチルスルホキシドが挙げられるが、こ
れらを単独あるいは任意の割合で混合して使用すること
ができる。さらに、凝固速度を制御する目的で添加剤と
して少量の水や塩類を加えてもかまわない。中空状に製
膜するには適切な粘度が必要であるが、そのために好ま
しい組成はポリスルホン系高分子が15〜18重量%、
PVPが5〜9重量%であり、残りが溶剤である。
Next, an embodiment of the polysulfone-based medical separation membrane having the above characteristics will be described in detail. The stock solution is composed of a polysulfone polymer, PVP, and a common solvent thereof. Solvents are N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-
Pyrrolidone and dimethyl sulfoxide can be mentioned, and these can be used alone or in a mixture at an arbitrary ratio. Further, a small amount of water or salt may be added as an additive for the purpose of controlling the solidification rate. In order to form a hollow film, an appropriate viscosity is required. For this purpose, a preferable composition is 15 to 18% by weight of a polysulfone-based polymer,
PVP is 5 to 9% by weight, the balance being solvent.

【0018】中空剤は中空糸状に製膜するために必要で
あるのみでなく、膜の透過性能を制御するうえで組成が
重要である。本発明でいう医療用分離膜に好適に使用で
きる透過性能を得るには、水と溶剤との混合液を用いる
ことが好ましく、溶剤はN,N−ジメチルアセトアミ
ド、N,N−ジメチルホルムアミド、N−メチル−2−
ピロリドン、ジメチルスルホキシドから選択される。中
空剤の好ましい組成は、溶剤が10〜60重量%であ
り、残りが水である。溶剤の割合がこれ以上高くなる
と、凝固までに中空形状を保持できずに糸切れ等の製造
トラブルの原因となる。反対に低くなると膜として十分
な透過性能が達成できない。より好ましい範囲は15〜
40重量%である。
The composition of the hollow agent is important not only for forming the film into a hollow fiber shape but also for controlling the permeability of the film. In order to obtain a permeability that can be suitably used for the medical separation membrane of the present invention, it is preferable to use a mixture of water and a solvent, and the solvent may be N, N-dimethylacetamide, N, N-dimethylformamide, N -Methyl-2-
It is selected from pyrrolidone and dimethyl sulfoxide. The preferred composition of the hollow agent is 10 to 60% by weight of a solvent and the rest is water. If the proportion of the solvent is higher than this, the hollow shape cannot be maintained until solidification, which causes a production trouble such as thread breakage. On the other hand, if it is lower, sufficient permeability cannot be achieved as a membrane. A more preferred range is 15 to
40% by weight.

【0019】上述の製膜原液と中空剤とを30〜60℃
に保温した二重紡糸口金から同時に吐出させ、空中走行
を経て凝固浴中に導入すると中空糸膜が形成される。凝
固浴は30〜60℃に保温した水を用いればよい。凝固
した中空糸膜をカセに巻き取り後、束をカットして切断
面上方から熱水を流し、残存している溶剤と余分のPV
Pを洗浄する。孔径保持剤として膜にグリセリン水溶液
を付着させ、70〜80℃で10時間以上乾燥処理を行
って乾燥膜を得る。このように制御された条件下で得ら
れた膜は、所望のPVP含有率が達成され、さらに、医
療用分離膜として適切な透過性能も備えている。
The above-mentioned stock solution and the hollow agent are mixed at 30 to 60 ° C.
Is discharged simultaneously from a double spinneret kept warm, and introduced into a coagulation bath through aerial traveling to form a hollow fiber membrane. The coagulation bath may use water kept at 30 to 60 ° C. After winding the solidified hollow fiber membrane into a scalpel, the bundle is cut and hot water is allowed to flow from above the cut surface to remove residual solvent and excess PV.
Wash P. A glycerin aqueous solution is adhered to the membrane as a pore diameter retaining agent, and a drying treatment is performed at 70 to 80 ° C. for 10 hours or more to obtain a dried membrane. The membrane obtained under such controlled conditions achieves the desired PVP content and also has adequate permeation performance as a medical separation membrane.

【0020】次に、PVPの不溶化、および膜の滅菌を
目的として放射線が照射される。照射に際しては、公知
の方法でモジュール化した後に照射することが好ましい
が、PVPを不溶化させるには、膜は水性媒体を含浸し
た湿潤状態にあることが望ましく、少なくとも100重
量%以上の含水率で照射されることが好ましい。もちろ
ん、該モジュール内が水性媒体で満たされた、いわゆる
ウェット状態で照射されてもかまわない。ここでいう含
水率とは、湿潤状態の膜に含まれる水性媒体の占める重
量パーセントと定義される。また、水性媒体の組成は、
γ線の照射効率を著しく妨げないものであれば特に限定
されず、蒸留水、pHを制御した酸・アルカリ水溶液、
および緩衝液から選択される。放射線照射に際して線源
の種類は特に限定しないが、医療用具の照射滅菌に汎用
されるのはコバルト60によるγ線である。他にもX線
や電子線も利用できるが、物質浸透性の点からγ線を使
用することが最も好ましい。連続して照射するか何回か
に分けて照射してもよく、総線量として20〜100K
Gy照射すればよい。以上の方法により、本発明のポリ
スルホン系医療用分離膜が得られる。
Next, radiation is applied for the purpose of insolubilizing PVP and sterilizing the membrane. In irradiation, it is preferable to irradiate after modularization by a known method, but in order to insolubilize PVP, the film is desirably in a wet state impregnated with an aqueous medium, and at a water content of at least 100% by weight or more. Irradiation is preferred. Of course, the irradiation may be performed in a so-called wet state in which the inside of the module is filled with an aqueous medium. The water content here is defined as the weight percentage of the aqueous medium contained in the wet membrane. Further, the composition of the aqueous medium is
There is no particular limitation as long as it does not significantly hinder the γ-ray irradiation efficiency, distilled water, pH-controlled acid / alkali aqueous solution,
And a buffer. There is no particular limitation on the type of radiation source when irradiating, but γ-rays using cobalt 60 are commonly used for irradiation sterilization of medical devices. In addition, X-rays and electron beams can be used, but it is most preferable to use γ-rays from the viewpoint of material permeability. Irradiation may be performed continuously or divided into several times, and a total dose of 20 to 100K
Gy irradiation may be performed. By the above method, the polysulfone-based medical separation membrane of the present invention can be obtained.

【0021】[0021]

【発明の実施の形態】以下、実施例により本発明をさら
に詳細に説明するが、本発明は、それに限定されるもの
ではない。なお、実施例で用いた諸数値は、以下の手順
によって測定したものである。 (膜中のカルボキシル基含有量の測定)水洗して凍結乾
燥させた膜を約1cmの長さに切断し、0.75g秤量
した。この膜を9−アンスリルジアゾメタン(フナコシ
社製)を0.01重量%含むメタノール溶液25ccに
浸漬して室温で1時間静置後、膜を濾別してメタノール
への浸漬、濾別を繰り返して残留試薬を洗浄除去した。
次に、1規定苛性ソーダ含有メタノール25ccに膜を
浸漬し、室温で2時間加水分解した。この上清液の蛍光
強度を励起波長365nm、放射波長412nmで測定
し、アントラセンメタノールを標準として膜中の含有量
を算出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. The various numerical values used in the examples were measured according to the following procedures. (Measurement of Carboxyl Group Content in Membrane) A membrane washed with water and freeze-dried was cut into a length of about 1 cm, and 0.75 g was weighed. This film was immersed in 25 cc of a methanol solution containing 0.01% by weight of 9-anthryldiazomethane (manufactured by Funakoshi Co., Ltd.), allowed to stand at room temperature for 1 hour, and then the film was separated by filtration. The reagent was washed off.
Next, the membrane was immersed in 25 cc of methanol containing 1N caustic soda and hydrolyzed at room temperature for 2 hours. The fluorescence intensity of the supernatant was measured at an excitation wavelength of 365 nm and an emission wavelength of 412 nm, and the content in the membrane was calculated using anthracene methanol as a standard.

【0022】(膜中の過酸化物含有量の測定)水洗して
凍結乾燥させた膜を約5cmの長さに切断し、0.3g
秤量した。この膜をガラス試験管に充填し、発色試液4
ccを加えて遮光下、37℃で8時間反応させた。発色
試液は市販の過酸化物測定キット(デタミナーLPO:
共和メディックス社製)に付属している発色剤を専用溶
解液で溶解したものを利用した。反応終了後、膜を濾別
して濾液の吸光度を波長675nmで測定し、クメンハ
イドロパーオキサイトを標準として膜中の含有量を算出
した。
(Measurement of Peroxide Content in Membrane) A membrane washed with water and freeze-dried was cut into a length of about 5 cm, and 0.3 g
Weighed. This film is filled in a glass test tube, and a color reagent solution 4
The reaction mixture was reacted at 37 ° C. for 8 hours under light shielding. The color reagent is a commercially available peroxide measurement kit (Determiner LPO:
A solution prepared by dissolving the color former attached to Kyowa Medix Co., Ltd.) with a special solution was used. After the completion of the reaction, the membrane was separated by filtration, the absorbance of the filtrate was measured at a wavelength of 675 nm, and the content in the membrane was calculated using cumene hydroperoxide as a standard.

【0023】(膜中のPVP含有率の測定)水洗して凍
結乾燥させた膜を一定重量秤量し、元素分析計を用いて
測定した総窒素量からPVP含有率を算出した。
(Measurement of PVP Content in Membrane) A membrane washed with water and freeze-dried was weighed to a constant weight, and the PVP content was calculated from the total nitrogen content measured using an elemental analyzer.

【0024】(膜のエンドトキシン吸着試験)水洗して
凍結乾燥させた膜0.1gを滅菌したガラス試験管に入
れ、精製エンドトキシン(大腸菌026:B6由来、フ
ナコシ社製)を100EU/リットル含む透析液5cc
を加え、37℃で1時間振とうした。透析液はAKソリ
タ・DL(清水製薬社製)のA液1容と、B液の26倍
希釈液34容を混合して使用した。試験液中のエンドト
キシン濃度は、市販の比色法キット(エンドスペシーE
S−50:生化学工業社製)を用いて測定し、下記の式
(3)から残存率を算出した。 残存率(%)=(C1/C0)×100 (3) C0:添加前の透析液中のエンドトキシン濃度 C1:添加1時間後の透析液中のエンドトキシン濃度
(Endotoxin adsorption test on membrane) 0.1 g of membrane washed and freeze-dried was placed in a sterilized glass test tube, and a dialysate containing 100 EU / liter of purified endotoxin (derived from Escherichia coli 026: B6, manufactured by Funakoshi) was used. 5cc
Was added and shaken at 37 ° C. for 1 hour. The dialysate used was a mixture of 1 volume of A solution of AK Solita DL (manufactured by Shimizu Pharmaceutical Co., Ltd.) and 34 volumes of a 26-fold diluted solution of B solution. The endotoxin concentration in the test solution was determined using a commercially available colorimetric kit (Endospecy E
S-50: manufactured by Seikagaku Corporation), and the residual ratio was calculated from the following equation (3). Residual rate (%) = (C1 / C0) × 100 (3) C0: Endotoxin concentration in dialysate before addition C1: Endotoxin concentration in dialysate 1 hour after addition

【0025】(膜によるブラジキニン生成試験)水洗し
て凍結乾燥させた中空糸膜250本から、膜面積0.0
3m2 の小型モジュールを作成した。該モジュールの中
空部にACD添加ヒト血漿を吸い上げて37℃で20分
間静置した後、遠心分離して血漿を回収した。血漿中の
ブラジキニン濃度は市販のEIAキット(マーキットM
ブラジキニン:大日本製薬社製)を用いて測定し、モジ
ュール充填前に対する充填後の増加率で評価した。
(Test for Bradykinin Production by Membrane) From 250 hollow fiber membranes washed and freeze-dried, a membrane area of 0.0
A small module of 3 m 2 was made. ACD-added human plasma was sucked into the hollow portion of the module, allowed to stand at 37 ° C. for 20 minutes, and then centrifuged to collect the plasma. The concentration of bradykinin in plasma was measured using a commercially available EIA kit (Merkit M
Bradykinin: manufactured by Dainippon Pharmaceutical Co., Ltd.), and evaluated by the rate of increase after filling the module before filling the module.

【0026】[0026]

【実施例1】ポリスルホン(アモコ社製:P−170
0)17部とPVP(BASF社製:K90、重量平均
分子量36万)7部をN,N−ジメチルアセトアミド
(以下、DMACという)76部に添加し、50℃で撹
拌溶解して製膜原液を得た。中空剤はDMAC15部と
水85部の混合液を用いた。この製膜原液と中空剤とを
45℃に保温した二重紡糸口金から吐出させ、凝固浴を
経てカセに巻き取った。束を熱水洗浄した後、20重量
%のグリセリン水溶液を付着させて70℃で10時間乾
燥した。この膜中のPVP含有率は8.7重量%であっ
た。次に、乾燥膜を1.5m2 のモジュールに成形し、
注射用蒸留水を充填してγ線を75KGy照射したとこ
ろ、膜中のカルボキシル基含有量は1384nmol/
g、過酸化物含有量は128nmol/gであった。こ
の膜を浸漬して1時間振とう後のエンドトキシン濃度は
検出限界以下(9EU/リットル)であり、吸着性に優
れていた。同様に作成したモジュールの60℃、2週間
保管後のエンドトキシン残存率も検出限界以下であっ
た。また、ブラジキニンの増加率は1.2と低かった。
Example 1 Polysulfone (P-170 manufactured by Amoco)
0) 17 parts and 7 parts of PVP (manufactured by BASF: K90, weight average molecular weight: 360,000) were added to 76 parts of N, N-dimethylacetamide (hereinafter, referred to as DMAC), and the mixture was stirred and dissolved at 50 ° C. to form a stock solution. I got As the hollow agent, a mixed solution of 15 parts of DMAC and 85 parts of water was used. This film forming stock solution and the hollow agent were discharged from a double spinneret kept at 45 ° C., and wound around a scab through a coagulation bath. After the bundle was washed with hot water, a 20% by weight aqueous glycerin solution was applied thereto and dried at 70 ° C. for 10 hours. The PVP content in this film was 8.7% by weight. Next, the dried film was molded into a 1.5 m 2 module,
When filled with distilled water for injection and irradiated with γ-rays at 75 KGy, the carboxyl group content in the film was 1384 nmol /
g, peroxide content was 128 nmol / g. After the membrane was immersed and shaken for one hour, the endotoxin concentration was below the detection limit (9 EU / liter), indicating excellent adsorption. The residual endotoxin ratio of the module prepared in the same manner after storage at 60 ° C. for 2 weeks was below the detection limit. The increase rate of bradykinin was as low as 1.2.

【0027】[0027]

【実施例2】実施例1で得られた乾燥膜を1.5m2
モジュールに成形後、pHを7.8に調整した0.1m
ol/リットルの燐酸緩衝液を充填してγ線を55KG
y照射したところ、膜中のカルボキシル基含有量は92
3nmol/g、過酸化物含有量は98nmol/gで
あった。この膜のエンドトキシン残存率は検出限界以下
で、同様に作成したモジュールの60℃、2週間保管後
も同様であった。
Example 2 The dry film obtained in Example 1 was molded into a module of 1.5 m 2 , and the pH was adjusted to 7.8 and adjusted to 0.1 m.
ol / liter of a phosphate buffer and 55 gamma rays
After irradiation with y, the carboxyl group content in the film was 92
3 nmol / g and the peroxide content was 98 nmol / g. The endotoxin residual rate of this membrane was below the detection limit, and was the same after storage of the similarly prepared module at 60 ° C. for 2 weeks.

【0028】[0028]

【実施例3】ポリスルホン(アモコ社製:P−170
0)18部とPVP(BASF社製:K90、重量平均
分子量36万)4部をDMAC78部に添加し、50℃
で攪拌溶解して製膜原液を得た。中空剤はDMAC15
部と水85部の混合液を用いた。この製膜原液と中空剤
を30℃に保温した二重紡糸口金から吐出させ、凝固浴
を経てカセに巻き取った。束を熱水洗浄した後、50重
量%のグリセリン水溶液を付着させて、70℃で12時
間乾燥した。この膜におけるPVP含有量は6.7重量
%であった。次に、乾燥膜を1.5m2 のモジュールに
成形し、注射用蒸留水を充填してγ線を50KGy照射
したところ、膜中のカルボキシル基含有量は825nm
ol/g、過酸化物含有量は78nmol/gであっ
た。この膜のエンドトキシン残存率は検出限界(9EU
/リットル)以下であった。同様に作成したモジュール
の60℃、2週間後の残存率も検出限界以下であり、エ
ンドトキシンの吸着製を保持していた。
Example 3 Polysulfone (P-170 manufactured by Amoco)
0) 18 parts and 4 parts of PVP (manufactured by BASF: K90, weight average molecular weight 360,000) were added to 78 parts of DMAC, and the mixture was heated at 50 ° C.
Was dissolved by stirring to obtain a film forming stock solution. Hollowing agent is DMAC15
And a mixture of 85 parts of water and 85 parts of water. The film forming stock solution and the hollow agent were discharged from a double spinneret kept at 30 ° C., and wound around a scab through a coagulation bath. After the bundle was washed with hot water, a 50% by weight aqueous glycerin solution was applied thereto, and dried at 70 ° C. for 12 hours. The PVP content in this membrane was 6.7% by weight. Next, the dried film was formed into a 1.5 m 2 module, filled with distilled water for injection, and irradiated with 50 KGy of γ-ray. The carboxyl group content in the film was 825 nm.
ol / g and the peroxide content was 78 nmol / g. The endotoxin residual rate of this membrane was lower than the detection limit (9 EU).
/ Liter). The residual rate of the module prepared in the same manner at 60 ° C. for 2 weeks was below the detection limit, and the module retained endotoxin adsorption.

【0029】[0029]

【比較例1】ポリスルホン(アモコ社製:P−170
0)18部とPVP(BASF社製:K90、重量平均
分子量36万)3部をDMAC79部に添加、50℃で
撹拌溶解して製膜原液を得た。中空剤はDMAC25部
と水75部の混合液を用いた。この製膜原液と中空剤を
40℃に保温した二重紡糸口金から吐出させ、凝固浴を
経てカセに巻き取った。束を熱水洗浄した後、50重量
%のグリセリン水溶液を付着させて70℃で12時間乾
燥した。この膜中のPVP含有率は5.3重量%であっ
た。次に、乾燥膜を1.5m2 のモジュールに成形し、
注射用蒸留水を充填してγ線を50KGy照射したとこ
ろ、膜中のカルボキシル基含有量は672nmol/
g、過酸化物含有量は94nmol/gであった。この
膜のエンドトキシン残存率は26.5%であり、吸着性
が不十分であった。
Comparative Example 1 Polysulfone (P-170 manufactured by Amoco)
0) 18 parts and 3 parts of PVP (manufactured by BASF: K90, weight average molecular weight: 360,000) were added to 79 parts of DMAC, and stirred and dissolved at 50 ° C. to obtain a stock solution for film formation. As the hollow agent, a mixed solution of 25 parts of DMAC and 75 parts of water was used. The film forming stock solution and the hollow agent were discharged from a double spinneret kept at 40 ° C., and wound around a scab through a coagulation bath. After the bundle was washed with hot water, a 50% by weight aqueous glycerin solution was adhered and dried at 70 ° C. for 12 hours. The PVP content in this film was 5.3% by weight. Next, the dried film was molded into a 1.5 m 2 module,
Filled with distilled water for injection and irradiated with 50 KGy of γ-ray, the carboxyl group content in the film was 672 nmol /
g, peroxide content was 94 nmol / g. The endotoxin residual ratio of this membrane was 26.5%, and the adsorptivity was insufficient.

【0030】[0030]

【比較例2】実施例1で得られた乾燥膜を1.5m2
モジュールに成形後、γ線を30KGy照射したとこ
ろ、膜中のカルボキシル基含有量は1154nmol/
g、過酸化物含有量は402nmol/gであった。こ
の膜のエンドトキシン残存率は検出限界以下であった
が、同様に作成したモジュールの60℃、2週間保管後
のエンドトキシン残存率は21.3%であり、吸着性が
低下していた。
Comparative Example 2 After the dried film obtained in Example 1 was molded into a 1.5 m 2 module and irradiated with γ-rays at 30 KGy, the carboxyl group content in the film was 1154 nmol /
g, peroxide content was 402 nmol / g. Although the residual ratio of endotoxin of this membrane was below the detection limit, the residual ratio of endotoxin after storage for 2 weeks at 60 ° C. of the module prepared in the same manner was 21.3%, and the adsorptivity was reduced.

【0031】[0031]

【比較例3】ポリスルホン(アモコ社製:P−170
0)16部とPVP(BASF社製:K90、重量平均
分子量36万)9.5部をDMAC74.5部に添加
し、50℃で撹拌溶解して製膜原液を得た。中空剤はD
MAC15部と水85部の混合液を用いた。この製膜原
液と中空剤を60℃に保温した二重紡糸口金から吐出さ
せ、凝固浴を経てカセに巻き取った。束を熱水洗浄した
後、20重量%のグリセリン水溶液を付着させて70℃
で10時間乾燥した。この膜におけるPVP含有率は1
3.6重量%であった。この膜を1.5m2 のモジュー
ルに成形後、注射用蒸留水を充填してγ線を75KGy
照射したところ、膜中のカルボキシル基含有量は184
1nmol/g、過酸化物含有量は188nmol/g
であった。膜によるブラジキニン増加率は4.6と増大
していた。
Comparative Example 3 Polysulfone (P-170 manufactured by Amoco)
0) 16 parts and 9.5 parts of PVP (manufactured by BASF: K90, weight average molecular weight: 360,000) were added to 74.5 parts of DMAC, and the mixture was stirred and dissolved at 50 ° C. to obtain a stock solution for film formation. The hollow agent is D
A mixed solution of 15 parts of MAC and 85 parts of water was used. This film forming stock solution and the hollow agent were discharged from a double spinneret kept at 60 ° C., and wound around a cassette through a coagulation bath. After washing the bundle with hot water, a 20% by weight aqueous glycerin solution was adhered to
For 10 hours. The PVP content in this membrane is 1
It was 3.6% by weight. After forming this membrane into a 1.5 m 2 module, it was filled with distilled water for injection and gamma rays were irradiated at 75 KGy.
Upon irradiation, the carboxyl group content in the film was 184
1 nmol / g, peroxide content 188 nmol / g
Met. The rate of increase in bradykinin by the membrane was increased to 4.6.

【0032】[0032]

【発明の効果】本発明のポリスルホン系医療用分離膜
は、放射線照射されていてもエンドトキシンの吸着性に
優れ、しかも、長期保管してもその効果が保持できるた
め、血液浄化の分野に好適に利用できる。
Industrial Applicability The polysulfone medical separation membrane of the present invention has excellent endotoxin adsorption even when irradiated, and can maintain its effect even when stored for a long period of time. Therefore, it is suitable for the field of blood purification. Available.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C077 AA05 BB01 BB02 BB03 KK04 KK13 LL05 LL23 MM09 NN20 PP15 PP18 PP28 4D006 GA13 HA02 JA02B MA01 MA31 MA33 MB14 MB20 MC32 MC40X MC62X MC75X MC78X MC83 MC88 MC89 MC90 NA05 NA10 NA13 NA18 NA32 NA64 PA01 PB09 PB54 PC41 PC44 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C077 AA05 BB01 BB02 BB03 KK04 KK13 LL05 LL23 MM09 NN20 PP15 PP18 PP28 4D006 GA13 HA02 JA02B MA01 MA31 MA33 MB14 MB20 MC32 MC40X MC62X MC75X MC78X MC83 MC88 MC89 NA90 NA05 NA05 PA01 PB09 PB54 PC41 PC44

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリスルホン系高分子とポリビニルピロ
リドンからなる放射線照射された膜であって、該膜中の
カルボキシル基含有量が800nmol/g以上、16
00nmol/g未満であり、かつ過酸化物含有量が2
00nmol/g以下であることを特徴とするポリスル
ホン系医療用分離膜。
1. A radiation-irradiated membrane comprising a polysulfone-based polymer and polyvinylpyrrolidone, wherein the membrane has a carboxyl group content of 800 nmol / g or more,
Less than 00 nmol / g and a peroxide content of 2
A polysulfone-based medical separation membrane having a molecular weight of 00 nmol / g or less.
【請求項2】 膜中のポリビニルピロリドン含有率が
6.0〜11.0重量%であることを特徴とする請求項
1に記載のポリスルホン系医療用分離膜。
2. The polysulfone-based medical separation membrane according to claim 1, wherein the content of polyvinylpyrrolidone in the membrane is 6.0 to 11.0% by weight.
【請求項3】 ポリスルホン系高分子とポリビニルピロ
リドンからなる分離膜を膜面積が0.01〜2.5m2
になるように組み込んだ分離用モジュールであって、該
モジュールに放射線を照射することにより、分離膜中の
カルボキシル基含有量を800nmol/g以上、16
00nmol/g未満で、かつ過酸化物含有量が200
nmol/g以下としたことを特徴とする分離用モジュ
ール。
3. A separation membrane comprising a polysulfone polymer and polyvinylpyrrolidone having a membrane area of 0.01 to 2.5 m 2.
A separation module incorporated so that the carboxyl group content in the separation membrane is at least 800 nmol / g by irradiating the module with radiation.
Less than 100 nmol / g and a peroxide content of 200
A separation module characterized by having a concentration of not more than nmol / g.
JP10311681A 1998-11-02 1998-11-02 Polysulfone-base medical separation membrane Withdrawn JP2000135422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311681A JP2000135422A (en) 1998-11-02 1998-11-02 Polysulfone-base medical separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311681A JP2000135422A (en) 1998-11-02 1998-11-02 Polysulfone-base medical separation membrane

Publications (1)

Publication Number Publication Date
JP2000135422A true JP2000135422A (en) 2000-05-16

Family

ID=18020197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311681A Withdrawn JP2000135422A (en) 1998-11-02 1998-11-02 Polysulfone-base medical separation membrane

Country Status (1)

Country Link
JP (1) JP2000135422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095936A (en) * 2000-09-26 2002-04-02 Nippon Rensui Co Ltd Reverse osmosis membrane cleaning method
FR2842122A1 (en) * 2002-07-10 2004-01-16 Maco Pharma Sa SELECTIVE DELEUCOCYTATION UNIT FOR A PLATELET PRODUCT

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095936A (en) * 2000-09-26 2002-04-02 Nippon Rensui Co Ltd Reverse osmosis membrane cleaning method
FR2842122A1 (en) * 2002-07-10 2004-01-16 Maco Pharma Sa SELECTIVE DELEUCOCYTATION UNIT FOR A PLATELET PRODUCT
EP1382361A1 (en) * 2002-07-10 2004-01-21 Maco Pharma Unit for the selective removal of leucocytes from a platelet product
US7140497B2 (en) 2002-07-10 2006-11-28 Macopharma Selective deleukocytation unit for a platelet product

Similar Documents

Publication Publication Date Title
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
KR100231908B1 (en) Selectively transmissive polysulfonic hollow fiber membrane and method of manufacture thereof
JP4059543B2 (en) Medical device for extracorporeal treatment of blood or plasma and method for manufacturing the device
EP1439212B1 (en) Hydrophilic material and process for producing the same
JPS5924732A (en) Hydrophilized porous membrane and its manufacturing method
JP3928910B2 (en) Polysulfone blood treatment module
JP5011722B2 (en) Method for producing medical separation membrane and method for producing medical separation membrane module using the medical separation membrane
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
JPS59211459A (en) Pasturization of blood treating device
JP2006291193A (en) Reformed substrate and manufacturing method thereof
JP2004305840A (en) Method for preserving hollow fiber membrane
JP5320941B2 (en) Method for producing membrane for biocomponent contact application
JP2000135421A (en) Polysulfone-base blood purifying membrane
JP3640737B2 (en) Polysulfone-based permselective hollow fiber membrane
JP3432240B2 (en) Sterilized dialyzer
EP0672424A1 (en) Method of sterilizing a blood dialyzer having semipermeable polymeric membranes by gamma-ray irradiation
JPH04338223A (en) Treatment method for permselective membrane
JP4010523B2 (en) Irradiation sterilization method of blood processing device and irradiation-sterilized blood processing device
JP2000135422A (en) Polysulfone-base medical separation membrane
JP3933300B2 (en) Polysulfone selective separation membrane
JP2003290638A (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
JP4129393B2 (en) Extracorporeal treatment apparatus for blood or plasma containing wet semipermeable membrane and method for producing the same
JP4678063B2 (en) Hollow fiber membrane module
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane
JP2779257B2 (en) Blood processing equipment sterilization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070718