JP2000247649A - Manufacturing method of synthetic quartz - Google Patents
Manufacturing method of synthetic quartzInfo
- Publication number
- JP2000247649A JP2000247649A JP5516699A JP5516699A JP2000247649A JP 2000247649 A JP2000247649 A JP 2000247649A JP 5516699 A JP5516699 A JP 5516699A JP 5516699 A JP5516699 A JP 5516699A JP 2000247649 A JP2000247649 A JP 2000247649A
- Authority
- JP
- Japan
- Prior art keywords
- synthetic quartz
- raw material
- purity
- impurities
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1415—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/02—Pure silica glass, e.g. pure fused quartz
- C03B2201/03—Impurity concentration specified
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、各種光学材料、光
ファイバ、半導体製造装置用治具等に使用される合成石
英の製造方法に係り、特に、VAD法等を用いて作製し
たガラス微粒子堆積体いわゆるスート堆積体を加熱炉に
て焼結し、透明ガラス化して光ファイバ用母材として好
適に利用される合成石英に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing synthetic quartz used for various optical materials, optical fibers, jigs for semiconductor production equipment, and the like, and more particularly, to a method for depositing glass fine particles produced by using a VAD method or the like. The present invention relates to a synthetic quartz which is obtained by sintering a so-called soot deposit in a heating furnace, turning it into a transparent glass, and suitably used as a base material for an optical fiber.
【0002】[0002]
【従来の技術】合成石英の製造方法としては、例えばM
CVD法、VAD法、OVD法等が挙げられる。VAD
法では、バーナで可燃性ガス(H2 、CH4 、C2
H6 等)と助燃性ガス(O2 等)からなるガスを燃焼
させた火炎中に、キャリアガスと共にガラス原料を投入
し、火炎加水分解反応あるいは酸化反応により生成した
ガラス微粒子を回転している出発ターゲット材に、これ
をバーナと相対的に移動させながら付着堆積させてスー
ト堆積体を形成する。次いで、このスート堆積体を加熱
炉で焼結し、透明ガラス化して光ファイバ用母材を得て
いる。2. Description of the Related Art As a method for producing synthetic quartz, for example, M
A CVD method, a VAD method, an OVD method, and the like can be given. VAD
According to the method, a combustible gas (H 2 , CH 4 , C 2
H 6 and the like, and a glass raw material is charged together with a carrier gas into a flame in which a gas composed of an auxiliary gas (such as O 2 ) is burned, and glass fine particles generated by a flame hydrolysis reaction or an oxidation reaction are rotated. The soot deposit is formed by adhering and depositing the starting target material while moving it relative to the burner. Next, the soot deposit is sintered in a heating furnace and is made vitrified to obtain a base material for an optical fiber.
【0003】また、MCVD法ではクラッドとなる石英
管内に原料ガスをキャリアガスと共に供給し、石英管内
部にガラス微粒子を堆積させ、透明ガラス化して光ファ
イバ用母材としている。このようにして製造された光フ
ァイバ用母材を加熱し、必要に応じ所定の径に縮径して
プリフォームとし、これを線引きして光ファイバを得て
いる。このとき、原料ガスを酸化や火炎加水分解反応系
内へ供給する方法として、キャリアガスでバブリングす
る方法や、ガラス原料を直接気化させた原料ガスを必要
に応じて他のガスと混合し、流量調節計を経て反応系へ
導く方法が知られている。In the MCVD method, a raw material gas is supplied together with a carrier gas into a quartz tube serving as a clad, glass fine particles are deposited inside the quartz tube, and the glass material is formed into a transparent glass to be used as a base material for an optical fiber. The optical fiber preform manufactured in this manner is heated, and if necessary, reduced in diameter to a predetermined diameter to form a preform, which is drawn to obtain an optical fiber. At this time, as a method of supplying the raw material gas into the oxidation or flame hydrolysis reaction system, a method of bubbling with a carrier gas, a method of mixing a raw material gas obtained by directly vaporizing a glass raw material with another gas as necessary, A method of leading a reaction system through a controller is known.
【0004】ガラス原料には通常SiCl4 等が使用
されている。例えば、SiCl4 にはこの誘導体であ
るSiCl4−n(OH)nやSiCl4−n On/2
が不純物として含まれている。これらの誘導体は沸点が
高く原料気化器で濃縮され、飛沫となってガス化された
SiCl4 と共に運ばれ、配管内や流量調整器内に付
着して残留し、開閉バルブの閉塞や流量調整器の制御性
を低下させる原因となっている。As a glass raw material, SiCl 4 or the like is usually used. For example, SiCl 4 includes SiCl 4-n (OH) n and SiCl 4- n On / 2, which are derivatives thereof.
Is contained as an impurity. These derivatives have a high boiling point, are concentrated in the raw material vaporizer, are transported together with the gasified SiCl 4 in the form of droplets, adhere to the pipes and flow rate regulators, remain, and close the on-off valves and flow rate regulators. Cause a decrease in controllability.
【0005】原料の純度が低い場合、キャリアガスでバ
ブリングを行うと、バブリングの飛沫に不純物が同伴さ
れて反応系内に達する。その結果、合成石英中に気泡や
微視的な結合欠陥が発生し、製造された合成石英の強度
が低下する。さらに、このような合成石英は、長手方向
や径方向での密度や屈折率の揺らぎが大きく、特性変動
の原因となっている。また、不純物の一部はバブリング
漕内に残留し、キャリアガスの噴出口を閉塞させ、製造
中止を招く。[0005] When the purity of the raw material is low, when bubbling is performed with a carrier gas, impurities are entrained in the bubbling droplets and reach the reaction system. As a result, bubbles and microscopic bonding defects occur in the synthetic quartz, and the strength of the manufactured synthetic quartz decreases. Furthermore, such synthetic quartz has large fluctuations in the density and refractive index in the longitudinal direction and the radial direction, causing fluctuations in characteristics. In addition, some of the impurities remain in the bubbling tank, block the carrier gas outlet, and cause the production to be stopped.
【0006】ガラス原料を直接気化させた場合は、Si
Cl4 の誘導体も共に気化され、反応系内に運ばれて
合成石英中に気泡を生じたり、微視的欠陥の原因とな
る。また、誘導体の一部は原料気化器内に残留するた
め、ガラス原料と気化器の伝熱係数が変化し、安定した
気化状態を維持できなくなる。さらに、原料の流量調整
器内にもこれらの誘導体が付着して流量制御に支障を生
じ、反応系への原料供給が不安定になる。その結果、製
造された合成石英はその長手方向や径方向での密度変
化、屈折率の揺らぎが強調される等の特性の変動が大き
くなる。When the glass material is directly vaporized, Si
The derivative of Cl 4 is also vaporized and carried into the reaction system to form bubbles in the synthetic quartz or cause microscopic defects. Further, since a part of the derivative remains in the raw material vaporizer, the heat transfer coefficient between the glass raw material and the vaporizer changes, and a stable vaporized state cannot be maintained. Further, these derivatives also adhere to the inside of the raw material flow regulator, which hinders flow control, and makes the supply of the raw material to the reaction system unstable. As a result, the manufactured synthetic quartz has large fluctuations in characteristics such as a change in density in a longitudinal direction and a radial direction, and a fluctuation in refractive index is emphasized.
【0007】[0007]
【発明が解決しようとする課題】このように合成石英
は、ガラス原料をバブリングあるいは直接気化させ、酸
化あるいは火炎加水分解反応させて製造される。従来、
使用されるガラス原料は、原料化合物の誘導体など不純
物の含有量が高いにもかかわらず、不純物に対する方策
は講じられていなかった。このため製造された合成石英
は不純物によって、特に物理的、光学的特性の低下を招
いていた。As described above, synthetic quartz is produced by bubbling or directly vaporizing a glass raw material and subjecting it to oxidation or flame hydrolysis. Conventionally,
Despite the fact that the glass raw materials used have a high content of impurities such as derivatives of the raw material compounds, no measures have been taken against the impurities. For this reason, the produced synthetic quartz has caused deterioration of the physical and optical characteristics particularly due to impurities.
【0008】その他にも、ガラス原料中には金属不純物
が含まれている。金属不純物は沸点が高いため、その大
半は反応系内へは送られないが、一部は反応系内へ送ら
れ、製造される合成石英の特性に悪影響を与える。この
金属不純物は全くないのが望ましいが、それは不可能で
ある。このため、定期的にドレンバルブを開放して液抜
きし、金属不純物を系外へ取り出している。[0008] In addition, glass impurities contain metal impurities. Most of the metal impurities are not sent into the reaction system because of their high boiling points, but some are sent into the reaction system, which adversely affects the properties of the synthetic quartz produced. Desirably, there is no such metal impurity, but that is not possible. For this reason, the drain valve is periodically opened to drain liquid, and metal impurities are taken out of the system.
【0009】ガラス原料中に金属不純物が多い場合は、
キャリアガスによるバブリングや直接気化により金属不
純物までもが反応系内に運ばれる。その結果、結合部に
金属を多量に含んだ合成石英が製造されることになる。
金属を僅かでも含んだ合成石英は、例えばバナジウムで
は750nm〜1,400nm付近に、コバルトは70
0nm〜800nm付近の波長域に吸収を生じる。その
結果、例えばこの合成石英を加工して得られる光ファイ
バの伝送損失の増加をもたらす。以上のように、ガラス
原料には不純物が全く含まれない方が良いが、これを実
現するには極めてコスト高となる。When the glass raw material contains a large amount of metal impurities,
Even metal impurities are carried into the reaction system by bubbling or direct vaporization by a carrier gas. As a result, synthetic quartz containing a large amount of metal in the joint is produced.
Synthetic quartz containing even a small amount of metal is, for example, around 750 nm to 1,400 nm for vanadium, and 70% for cobalt.
Absorption occurs in a wavelength range around 0 nm to 800 nm. As a result, for example, the transmission loss of an optical fiber obtained by processing the synthetic quartz is increased. As described above, it is better that the glass raw material does not contain any impurities, but it is extremely costly to realize this.
【0010】本発明の目的は、ガラス原料の精製コス
ト、合成石英の品質特性上、ガラス原料として許容しう
るガラス原料の純度および金属不純物量を規定すること
により、低コストで製造できる合成石英の製造方法を提
供することにある。An object of the present invention is to specify the purity of a glass raw material and the amount of metal impurities which are acceptable as a glass raw material in view of the cost of refining the glass raw material and the quality characteristics of the synthetic quartz, thereby making it possible to produce the synthetic quartz at a low cost. It is to provide a manufacturing method.
【0011】[0011]
【課題を解決するための手段】すなわち、本発明の合成
石英の製造方法は、酸化反応または火炎加水分解反応を
用いて合成石英を製造するに際し、酸化または火炎加水
分解させるガラス原料の純度を99.99%以上とする
ことを特徴としている。この結果、原料の純度が99.
99%以上と充分高いため、キャリアガス例えばArで
バブリングを行う場合に、バブリングの飛沫内に不純
物、例えばより沸点の高いSiCl4 の誘導体等が同
伴して供給されることはなく、不純物の極めて少ないガ
ラス原料で製造した合成石英には、気泡や微視的な結合
欠陥が認められず、高強度の合成石英が製造される。ま
た、バブリング漕内に不純物の残留がないため、キャリ
アガスの噴出口が閉塞されることもなく、連続して操業
を続けることができる。That is, according to the method for producing synthetic quartz of the present invention, when producing synthetic quartz using an oxidation reaction or a flame hydrolysis reaction, the purity of a glass raw material to be oxidized or flame-hydrolyzed is reduced to 99%. .99% or more. As a result, the purity of the raw material was 99.
When the bubbling is performed with a carrier gas such as Ar, an impurity such as a derivative of SiCl 4 having a higher boiling point is not supplied accompanying the bubbling droplets. Synthetic quartz manufactured from a small amount of glass raw material has no bubbles or microscopic bonding defects, and high-strength synthetic quartz is manufactured. Further, since there is no residual impurity in the bubbling tank, the operation can be continuously performed without blocking the ejection opening of the carrier gas.
【0012】ガラス原料を直接気化させた場合も不純物
が反応系内に到達しないため、高強度の合成石英が得ら
れる。また、原料気化器内に不純物が残留しないため、
ガラス原料と気化器の伝熱係数が変化せず、安定した気
化状態を充分長く継続でき反応系への原料供給を安定さ
せることができる。その結果、製造される合成石英は、
この長手方向、径方向のいずれにも密度変化や成長縞等
がなく、特性の経時的な変動が抑制される。[0012] Even when the glass raw material is directly vaporized, impurities do not reach the reaction system, so that high-strength synthetic quartz can be obtained. Also, since no impurities remain in the raw material vaporizer,
The heat transfer coefficient between the glass raw material and the vaporizer does not change, and a stable vaporized state can be maintained for a sufficiently long time, so that the raw material supply to the reaction system can be stabilized. As a result, the synthetic quartz produced is
There is no change in density or growth stripes in any of the longitudinal direction and the radial direction, and fluctuation of characteristics over time is suppressed.
【0013】ガラス原料中の金属不純物濃度は、500
ppm未満、好ましくは50ppb未満とするのが好ま
しい。このように管理されたガラス原料を使用すると、
キャリアガスによるバブリングや原料ガスの直接気化に
より、金属不純物が反応系内に運ばれることがない。ま
た、合成石英の製造中、ガラス原料を反応系内に供給す
る際に使用する原料気化器中の金属不純物濃度を定期的
に測定して所定の範囲に管理することが大切であり、金
属不純物濃度は500ppm未満、好ましくは50pp
b未満に維持するのが望ましい。その結果、製造した合
成石英は金属を含まないため、極めて純度の高いものと
なり、金属が持つ固有波長域の光学的吸収は存在しな
い。The metal impurity concentration in the glass raw material is 500
It is preferably less than ppm, preferably less than 50 ppb. When using glass materials controlled in this way,
No metal impurities are carried into the reaction system due to bubbling by the carrier gas or direct vaporization of the source gas. In addition, during the production of synthetic quartz, it is important to periodically measure the metal impurity concentration in the raw material vaporizer used when supplying the glass raw material into the reaction system and manage it within a predetermined range. The concentration is less than 500 ppm, preferably 50 pp
It is desirable to keep it below b. As a result, the produced synthetic quartz does not contain a metal, so that it has a very high purity, and there is no optical absorption in a specific wavelength range of the metal.
【0014】[0014]
【発明の実施の形態】以下、本発明に係わる実施形態を
具体的な例を挙げてさらに詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments according to the present invention will be described in more detail with specific examples.
【0015】(実施例1)VAD法を用い、バーナにO
2 ガス=10SLM、H2 ガス=7SLMを供給して
形成した火炎中に、純度=99.99%のSiCl4
=10g/分をAr=0.5SLMのバブリングにより
同伴させて供給し、ガラス微粒子を生成させ、回転して
いる出発材の先端にガラス微粒子を堆積させながら長手
方向に成長させ、外径100mm、長さ500mmのス
ート堆積体を作製した。このスート堆積体を加熱炉で透
明ガラス化した合成石英ロッド中に気泡は確認されなか
った。さらに、この合成石英ロッドを光ファイバ母材と
して縮径しプリフォームとした。これを加熱し、線引き
した際の光ファイバの破断は、プルーフレベル1%で1
00kmあたり1回であった。また、合成石英の製造を
1ロットあたり50時間、計100ロットの製造を行っ
たが、キャリアガスであるArの噴出口での閉塞は全く
なかった。(Embodiment 1) Oxygen was applied to the burner by using the VAD method.
In a flame formed by supplying 2 gas = 10 SLM and H 2 gas = 7 SLM, SiCl 4 having a purity of 99.99% was used.
= 10 g / min, accompanied by bubbling of Ar = 0.5 SLM, to generate glass fine particles, grow in the longitudinal direction while depositing the glass fine particles at the tip of the rotating starting material, and grow in the longitudinal direction. A soot deposit having a length of 500 mm was prepared. No bubbles were observed in the synthetic quartz rod obtained by converting this soot deposit into a vitrified transparent glass in a heating furnace. Further, the diameter of this synthetic quartz rod was reduced as an optical fiber preform to obtain a preform. When this is heated and drawn, breakage of the optical fiber is 1% at a proof level of 1%.
Once per 00 km. In addition, the production of synthetic quartz was performed for a total of 100 lots for 50 hours per lot, and there was no blockage at the Ar gas outlet as a carrier gas.
【0016】(実施例2)VAD法を用い、バーナにO
2 ガス=10SLM、H2 ガス=7SLMを供給して
形成した火炎中に、純度=99.99%のSiCl4
を気化装置により直接気化させ、10g/分となるよう
にマスフローコントローラ(以下、MFCという)にて
流量を調節しながら供給して、ガラス微粒子を生成し、
回転している出発材の先端にガラス微粒子を堆積させな
がら長手方向に成長させ、外径120mm、長さ700
mmのスート堆積体を作製した。このスート堆積体を加
熱炉で透明ガラス化した合成石英ロッド中に気泡は確認
されなかった。さらに、この合成石英ロッドを加工して
得たプリフォームを加熱、線引きした際の光ファイバの
破断は、プルーフレベル1%で100kmあたり0.9
回であった。また、合成石英の製造を1ロットあたり5
0時間、計100ロットの製造を行ったが、原料供給量
の変動による成長縞は確認されなかった。さらに、MF
Cの制御異常は発生せず安定した原料の供給が行えた。(Embodiment 2) Using a VAD method, the burner is
In a flame formed by supplying 2 gas = 10 SLM and H 2 gas = 7 SLM, SiCl 4 having a purity of 99.99% was used.
Is directly vaporized by a vaporizer, and supplied while adjusting the flow rate by a mass flow controller (hereinafter, referred to as MFC) so as to be 10 g / min to produce glass fine particles.
Glass particles are grown in the longitudinal direction while being deposited on the tip of the rotating starting material, and have an outer diameter of 120 mm and a length of 700 mm.
mm soot deposits were made. No bubbles were observed in the synthetic quartz rod obtained by converting this soot deposit into a vitrified transparent glass in a heating furnace. Further, when the preform obtained by processing the synthetic quartz rod was heated and drawn, the breakage of the optical fiber was 0.9% per 100 km at a proof level of 1%.
It was times. Also, the production of synthetic quartz is limited to 5 per lot.
In 100 hours, a total of 100 lots were manufactured, but no growth stripes due to fluctuations in the raw material supply amount were observed. Furthermore, MF
No control abnormality of C occurred, and stable supply of raw materials was performed.
【0017】(実施例3)VAD法を用い、バーナにO
2 ガス=10SLM、H2 ガス=7SLMを供給して
形成した火炎中に、純度=99.99%、金属不純物濃
度=400ppmのSiCl4 を気化装置により直接
気化させ、10g/分となるようにMFCにて流量を調
節しながら供給してガラス微粒子を生成し、回転してい
る出発材の先端にガラス微粒子を堆積させながら長手方
向に成長させ、外径120mm、長さ700mmのスー
ト堆積体を作製した。このスート堆積体を加熱炉で透明
ガラス化した合成石英ロッド中に気泡は確認されなかっ
た。さらに、この合成石英ロッドを加工して得たプリフ
ォームを加熱、線引きして得た光ファイバは、金属が持
つ固有波長域に光学的吸収がなく、長距離通信用の光フ
ァイバとして使用できた。(Embodiment 3) Oxygen is added to the burner by using the VAD method.
In a flame formed by supplying 2 gas = 10 SLM and H 2 gas = 7 SLM, SiCl 4 having a purity of 99.99% and a metal impurity concentration of 400 ppm is directly vaporized by a vaporizer so as to be 10 g / min. The glass fine particles are generated by supplying the MFC at a controlled flow rate, and are grown in the longitudinal direction while depositing the glass fine particles on the tip of the rotating starting material. A soot deposit having an outer diameter of 120 mm and a length of 700 mm is formed. Produced. No bubbles were observed in the synthetic quartz rod obtained by converting this soot deposit into a vitrified transparent glass in a heating furnace. Furthermore, the optical fiber obtained by heating and drawing the preform obtained by processing this synthetic quartz rod has no optical absorption in the intrinsic wavelength region of metal, and could be used as an optical fiber for long-distance communication. .
【0018】(比較例1)実施例1と同様の装置を用
い、バーナにO2 ガス=10SLM、H2 ガス=7S
LMを供給して形成した火炎中に、純度=98%のSi
Cl4 =10g/分をAr=0.5SLMのバブリン
グにより同伴させて供給し、ガラス微粒子を生成させ、
回転している出発材の先端にガラス微粒子を堆積させな
がら長手方向に成長させ、外径100mm、長さ500
mmのスート堆積体を作製した。このスート堆積体を加
熱炉で透明ガラス化した合成石英ロッド中には気泡が3
2個確認された。さらに、この合成石英ロッドを加工し
て得たプリフォームを加熱し、線引きした際の光ファイ
バの破断は、プルーフレベル1%で100kmあたり1
5回であった。また、合成石英の製造を1ロットあたり
50時間、計20ロットの製造を行ったが、キャリアガ
スであるArの噴出口が不純物で閉塞され、噴出口(噴
射管)を交換するため製造を中止せざるを得なくなっ
た。(Comparative Example 1) Using the same apparatus as in Example 1, O 2 gas = 10 SLM and H 2 gas = 7 S
In a flame formed by supplying LM, Si having a purity of 98%
Cl 4 = 10 g / min was supplied by bubbling with Ar = 0.5 SLM to generate glass fine particles,
Glass particles are grown in the longitudinal direction while being deposited on the tip of the rotating starting material, and have an outer diameter of 100 mm and a length of 500 mm.
mm soot deposits were made. In the synthetic quartz rod obtained by converting this soot deposit into a transparent vitrified glass in a heating furnace, three bubbles are present.
Two were confirmed. Further, when the preform obtained by processing the synthetic quartz rod is heated and drawn, the breakage of the optical fiber is 1% per 100 km at a proof level of 1%.
Five times. In addition, the production of synthetic quartz was performed for a total of 20 lots for 50 hours per lot, but the injection port of Ar as a carrier gas was blocked by impurities, and the production was stopped to replace the injection port (injection tube). I had to do it.
【0019】(比較例2)実施例2と同様の装置を用
い、バーナにO2 ガス=10SLM、H2 ガス=7S
LMを供給して形成した火炎中に、純度=98%のSi
Cl4 を気化装置により直接気化させて供給し、生成
したガラス微粒子を回転している出発材の先端にガラス
微粒子を堆積させながら長手方向に成長させ、外径12
0mm、長さ700mmのスート堆積体を作製した。こ
のスート堆積体を加熱炉で透明ガラス化したところ合成
石英ロッド中に気泡が40個確認された。さらに、この
合成石英ロッドを加工して得たプリフォームを加熱、線
引きした際の光ファイバの破断は、プルーフレベル1%
で100kmあたり18回であった。また、合成石英の
製造を1ロットあたり50時間、計18ロットの製造を
行ったところ、気化器の伝熱状態の変化によりSiCl
4 の供給量が変動し、MFC内に不純物の付着が確認
された。製造された合成石英には長手方向で屈折率の揺
らぎによる縞模様が約2mm間隔で認められた。(Comparative Example 2) Using the same apparatus as in Example 2, the burner was supplied with O 2 gas = 10 SLM and H 2 gas = 7 S
In a flame formed by supplying LM, Si having a purity of 98%
Cl 4 is directly vaporized and supplied by a vaporizer, and the generated fine glass particles are grown in the longitudinal direction while depositing the fine glass particles on the tip of the rotating starting material.
A soot deposit having a length of 0 mm and a length of 700 mm was prepared. When this soot deposit was vitrified in a heating furnace, 40 bubbles were confirmed in the synthetic quartz rod. Further, when the preform obtained by processing the synthetic quartz rod is heated and drawn, the breakage of the optical fiber is reduced to a proof level of 1%.
18 times per 100 km. In addition, when synthetic quartz was manufactured for a total of 18 lots for 50 hours per lot, a change in the heat transfer state of the vaporizer caused SiCl.
The supply amount of No. 4 fluctuated, and adhesion of impurities in the MFC was confirmed. In the manufactured synthetic quartz, striped patterns due to fluctuation of the refractive index were observed at intervals of about 2 mm in the longitudinal direction.
【0020】(比較例3)実施例3と同様の装置を用
い、バーナにO2 ガス=10SLM、H2 ガス=7S
LMを供給して形成した火炎中に、純度=98%、金属
不純物濃度=550ppmのSiCl4 10g/分を
気化装置により直接気化させて供給し、ガラス微粒子を
生成し、回転している出発材の先端にガラス微粒子を堆
積させながら長手方向に成長させ、外径120mm、長
さ700mmのスート堆積体を作製した。このスート堆
積体を加熱炉で透明ガラス化した合成石英ロッド中に気
泡が30個確認された。さらに、この合成石英ロッドを
加工して得たプリフォームを加熱、線引きして得た光フ
ァイバは、金属が持つ固有波長域の光学的吸収が1,3
00nm付近に存在し、実用的な光ファイバとして使用
することができなかった。(Comparative Example 3) Using the same apparatus as in Example 3, O 2 gas = 10 SLM and H 2 gas = 7S
10 g / min of SiCl 4 having a purity of 98% and a metal impurity concentration of 550 ppm are directly vaporized and supplied by a vaporizer into a flame formed by supplying the LM, thereby producing glass fine particles and rotating starting material. The glass particles were grown in the longitudinal direction while depositing glass microparticles on the tip of the soot to produce a soot deposit having an outer diameter of 120 mm and a length of 700 mm. Thirty bubbles were confirmed in the synthetic quartz rod in which the soot deposit was vitrified in a heating furnace. Further, an optical fiber obtained by heating and drawing a preform obtained by processing the synthetic quartz rod has an optical absorption in a specific wavelength range of a metal of 1,3.
It existed at around 00 nm and could not be used as a practical optical fiber.
【0021】[0021]
【発明の効果】本発明の合成石英の製造方法は上記構成
からなり、気泡や微視的な結合欠陥のない合成石英を製
造することができる。また、ガラス原料の純度および不
純物濃度を設定値以下に管理することにより、キャリア
ガスの噴出口(噴射管)は閉塞せず、さらに原料気化器
や流量調整器の安定操業が可能になる。また、ガラス原
料中の金属不純物濃度が500ppm未満であるため、
実質的に金属類は反応系内に混入しない。その結果、高
強度で、金属固有の光学的吸収損失のない合成石英を安
定して効率良く製造できる。さらに、気化器中の不純物
濃度を定期的に測定して管理することにより、製造の中
止もなくなり、安定して安価に製造することができる。The method for producing synthetic quartz of the present invention has the above-mentioned structure, and can produce synthetic quartz without bubbles and microscopic bonding defects. Further, by controlling the purity and the impurity concentration of the glass raw material to be equal to or lower than the set values, the injection port (injection pipe) of the carrier gas is not blocked, and the stable operation of the raw material vaporizer and the flow rate regulator can be performed. Further, since the metal impurity concentration in the glass raw material is less than 500 ppm,
Substantially no metals are mixed in the reaction system. As a result, synthetic quartz having high strength and no optical absorption loss inherent to metal can be stably and efficiently manufactured. Further, by periodically measuring and managing the impurity concentration in the vaporizer, the production is not stopped, and the production can be performed stably at low cost.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小出 弘行 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 津村 寛 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 (72)発明者 平沢 秀夫 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 Fターム(参考) 4G014 AH15 4G021 EA01 EA03 EB01 EB13 EB26 4G062 AA06 BB02 CC07 MM04 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Koide 2-3-1-1, Isobe, Annaka-shi, Gunma Prefecture Shin-Etsu Kagaku Kogyo Co., Ltd. Precision Functional Materials Laboratory (72) Inventor Hiroshi Tsumura Annaka-shi, Gunma 2-13-1, Isobe Shin-Etsu Chemical Industry Co., Ltd. Precision Functional Materials Research Laboratory (72) Inventor Hideo Hirasawa 2-13-1, Isobe, Annaka-shi, Gunma Prefecture Shin-Etsu Chemical Co., Ltd. Precision Functional Materials Research Laboratory F-term (Reference) 4G014 AH15 4G021 EA01 EA03 EB01 EB13 EB26 4G062 AA06 BB02 CC07 MM04
Claims (3)
て合成石英を製造するに際し、酸化または火炎加水分解
させるガラス原料の純度を99.99%以上とすること
を特徴とする合成石英の製造方法。1. A method for producing synthetic quartz, wherein the purity of a glass raw material to be oxidized or flame-hydrolyzed is 99.99% or more when producing synthetic quartz using an oxidation reaction or a flame hydrolysis reaction. .
ppm未満とする請求項1に記載の合成石英の製造方
法。2. The method according to claim 1, wherein the concentration of metal impurities in the glass raw material is 500.
The method for producing synthetic quartz according to claim 1, wherein the amount is less than ppm.
し、ガラス原料を気化させる原料気化器中の金属不純物
濃度を定期的に測定して500ppm未満に管理する請
求項2に記載の合成石英の製造方法。3. The synthetic quartz according to claim 2, wherein, when the glass raw material is supplied into the reaction system, the concentration of metal impurities in the raw material vaporizer for vaporizing the glass raw material is periodically measured and controlled to less than 500 ppm. Production method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5516699A JP2000247649A (en) | 1999-03-03 | 1999-03-03 | Manufacturing method of synthetic quartz |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5516699A JP2000247649A (en) | 1999-03-03 | 1999-03-03 | Manufacturing method of synthetic quartz |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2000247649A true JP2000247649A (en) | 2000-09-12 |
Family
ID=12991163
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5516699A Pending JP2000247649A (en) | 1999-03-03 | 1999-03-03 | Manufacturing method of synthetic quartz |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2000247649A (en) |
-
1999
- 1999-03-03 JP JP5516699A patent/JP2000247649A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9527764B2 (en) | Quartz glass manufacturing method using hydrogen obtained by vaporizing liquid hydrogen | |
| CN103987670A (en) | Method for producing synthetic quartz glass, and quartz glass for use as a sheath material for an optical fibre | |
| EP0231022B1 (en) | Apparatus for the production of porous preform of optical fiber | |
| WO1999002459A1 (en) | Germanium chloride and siloxane feedstock for forming silica glass and method | |
| EP1016635A1 (en) | Process for producing silica by decomposition of an organosilane | |
| US20060081004A1 (en) | Method for producing glass material | |
| JP2000247649A (en) | Manufacturing method of synthetic quartz | |
| CN111153590A (en) | A high-precision germanium tetrachloride bubbling device | |
| US5207813A (en) | Method for producing glass article | |
| JP2000034131A (en) | Apparatus and method for producing porous glass body | |
| JP3816268B2 (en) | Method for producing porous glass base material | |
| JP2517052B2 (en) | Graded Index Optical Fiber-Manufacturing Method of Base Material | |
| JP4277574B2 (en) | Gas material supply method and apparatus, and glass fine particle deposit body and glass material manufacturing method using the same | |
| JP3157693B2 (en) | Method for producing silica glass-based deposit | |
| JP2020128321A (en) | Method for manufacturing optical fiber porous glass preform | |
| JP4494741B2 (en) | Optical fiber preform manufacturing apparatus and optical fiber preform manufacturing method | |
| JPH05319849A (en) | Method for producing silica porous base material | |
| JPH0222137A (en) | Manufacturing method of synthetic quartz base material | |
| JP2001199730A (en) | Method and apparatus for producing porous glass base material | |
| JP3192571B2 (en) | Method for producing silica-based glass | |
| CN116288247A (en) | Intelligent regulation double-control system for inhibiting D4 polymerization to generate gel | |
| JPH0322257Y2 (en) | ||
| JPH0416418B2 (en) | ||
| JPH04228443A (en) | Burner for manufacturing optical fiber base material | |
| US20060185399A1 (en) | Apparatus for fabricating optical fiber preform through external vapor deposition process |