JP2000251925A - Sealed alkaline zinc storage battery - Google Patents
Sealed alkaline zinc storage batteryInfo
- Publication number
- JP2000251925A JP2000251925A JP11050882A JP5088299A JP2000251925A JP 2000251925 A JP2000251925 A JP 2000251925A JP 11050882 A JP11050882 A JP 11050882A JP 5088299 A JP5088299 A JP 5088299A JP 2000251925 A JP2000251925 A JP 2000251925A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- positive electrode
- storage battery
- alkaline electrolyte
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011701 zinc Substances 0.000 title claims abstract description 51
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 49
- 238000003860 storage Methods 0.000 title claims abstract description 43
- 239000003792 electrolyte Substances 0.000 claims abstract description 56
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 34
- 239000011572 manganese Substances 0.000 claims abstract description 34
- OSOVKCSKTAIGGF-UHFFFAOYSA-N [Ni].OOO Chemical compound [Ni].OOO OSOVKCSKTAIGGF-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910000483 nickel oxide hydroxide Inorganic materials 0.000 claims abstract description 28
- 239000006104 solid solution Substances 0.000 claims abstract description 25
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 57
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 54
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 36
- 239000011787 zinc oxide Substances 0.000 claims description 18
- 239000011149 active material Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 238000010248 power generation Methods 0.000 claims 1
- 239000007774 positive electrode material Substances 0.000 abstract description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 13
- 239000001301 oxygen Substances 0.000 abstract description 13
- 229910052760 oxygen Inorganic materials 0.000 abstract description 13
- 239000000243 solution Substances 0.000 abstract description 5
- 229920002978 Vinylon Polymers 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 abstract description 2
- 229910006279 γ-NiOOH Inorganic materials 0.000 abstract description 2
- 239000007864 aqueous solution Substances 0.000 description 22
- 229940099596 manganese sulfate Drugs 0.000 description 16
- 239000011702 manganese sulphate Substances 0.000 description 16
- 235000007079 manganese sulphate Nutrition 0.000 description 16
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 16
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229910001868 water Inorganic materials 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 230000014759 maintenance of location Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 5
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- IPCXNCATNBAPKW-UHFFFAOYSA-N zinc;hydrate Chemical compound O.[Zn] IPCXNCATNBAPKW-UHFFFAOYSA-N 0.000 description 3
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 2
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、γ型オキシ水酸化
ニッケルを活物質とする正極と、亜鉛を活物質とする負
極と、水酸化カリウムを含有するアルカリ電解液と、セ
パレータと、負極集電体とからなる発電要素体が電池缶
内容積の75%以上を占める密閉型アルカリ亜鉛蓄電池
に係わり、詳しくは、高温充電特性、耐漏液性及び充放
電サイクル特性が良い密閉型アルカリ亜鉛蓄電池を提供
することを目的とした、γ型オキシ水酸化ニッケル及び
アルカリ電解液の改良に関する。ここに、放電スタート
の電池とは、予め充電することなく初回の放電を行うこ
とが可能な電池をいう。The present invention relates to a positive electrode using gamma-type nickel oxyhydroxide as an active material, a negative electrode using zinc as an active material, an alkaline electrolyte containing potassium hydroxide, a separator, and a negative electrode assembly. The present invention relates to a sealed alkaline zinc storage battery in which a power generating element composed of an electric body occupies 75% or more of the internal volume of a battery can. The present invention relates to an improvement in γ-type nickel oxyhydroxide and an alkaline electrolyte for the purpose of providing. Here, the discharge-started battery refers to a battery that can be discharged for the first time without being charged in advance.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来、
密閉型アルカリ亜鉛電池(一次電池及び二次電池)で
は、保存中の負極側での水素ガスの発生(Zn+4OH
- ⇒Zn(OH)4 2- +2e- ;2H2 O+2e- ⇒H
2 +2OH- )を抑制するために、アルカリ電解液とし
て、酸化亜鉛を飽和量(室温での飽和量:6.5重量
%)溶かした水酸化カリウム水溶液が使用されている。
特に、アルカリ電解液として、亜鉛濃度が3重量%以下
の水酸化カリウム水溶液を使用することにより、保存中
の水素ガスの発生のみならず、放電後の水素ガスの発生
をも抑制することができることが、最近報告されている
(特開平10−40926号公報参照)。2. Description of the Related Art
In sealed alkaline zinc batteries (primary and secondary batteries), generation of hydrogen gas on the negative electrode side during storage (Zn + 4OH)
- ⇒Zn (OH) 4 2- + 2e -; 2H 2 O + 2e - ⇒H
In order to suppress 2 + 2OH − ), an aqueous potassium hydroxide solution in which zinc oxide is dissolved in a saturated amount (saturation amount at room temperature: 6.5% by weight) is used as an alkaline electrolyte.
In particular, by using an aqueous solution of potassium hydroxide having a zinc concentration of 3% by weight or less as an alkaline electrolyte, not only generation of hydrogen gas during storage but also generation of hydrogen gas after discharge can be suppressed. Has recently been reported (see Japanese Patent Application Laid-Open No. 10-40926).
【0003】しかし、水酸化カリウム水溶液への酸化亜
鉛の添加は、負極の特性向上をもたらすものの、正極の
特性向上をもたらすものではない。そして、上記のアル
カリ電解液を、二次電池(密閉型アルカリ亜鉛蓄電池)
に使用した場合は、40°C以上の高温で充電すると、
正極の酸素過電圧が低下し、充電時に正極側で水の電気
分解(4OH- ⇒O2 +2H2 O+4e- )により酸素
ガスが発生するという問題があった。[0003] However, the addition of zinc oxide to an aqueous potassium hydroxide solution improves the characteristics of the negative electrode, but does not improve the characteristics of the positive electrode. Then, the above alkaline electrolyte is used in a secondary battery (sealed alkaline zinc storage battery).
When used at 40 ° C or higher,
There was a problem that the oxygen overvoltage of the positive electrode was reduced, and oxygen gas was generated by electrolysis of water (4OH − ⇒O 2 + 2H 2 O + 4e − ) on the positive electrode side during charging.
【0004】本発明は、上記の問題を解決するべくなさ
れたものであって、正極の酸素過電圧が大きいため高温
充電特性及び充放電サイクル特性が良い密閉型アルカリ
亜鉛蓄電池を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a sealed alkaline zinc storage battery having good high-temperature charge characteristics and charge / discharge cycle characteristics due to a large oxygen overvoltage of the positive electrode. I do.
【0005】[0005]
【課題を解決するための手段】本発明に係る密閉型アル
カリ亜鉛蓄電池(本発明電池)は、γ型オキシ水酸化ニ
ッケルを活物質とする正極と、亜鉛を活物質とする負極
と、水酸化カリウムを含有するアルカリ電解液と、セパ
レータと、負極集電体とからなる発電要素体が電池缶内
容積の75%以上を占める密閉型アルカリ亜鉛蓄電池で
あって、前記γ型オキシ水酸化ニッケルに、マンガン
が、ニッケルとマンガンとの総量に基づいて、5〜50
原子%固溶しており、且つ前記アルカリ電解液が、リチ
ウムイオンを、0.05〜0.5重量%含有している。SUMMARY OF THE INVENTION A sealed alkaline zinc storage battery (battery of the present invention) according to the present invention comprises a positive electrode using γ-type nickel oxyhydroxide as an active material, a negative electrode using zinc as an active material, and a hydroxide. A sealed alkaline zinc storage battery in which a power generating element body comprising a potassium-containing alkaline electrolyte, a separator, and a negative electrode current collector occupies 75% or more of the internal volume of the battery can. , Manganese is 5 to 50 based on the total amount of nickel and manganese.
Atomic% solid solution, and the alkaline electrolyte contains 0.05 to 0.5% by weight of lithium ions.
【0006】本発明のアルカリ電解液は、リチウムイオ
ンを0.05〜0.5重量%含有している。リチウムイ
オンは正極の酸素過電圧を増大させる。アルカリ電解液
に添加するリチウムイオン原料としては、水酸化リチウ
ム、炭酸リチウムが例示される。アルカリ電解液のリチ
ウムイオン含有量が0.05〜0.5重量%に規制され
るのは、0.05重量%未満の場合は、正極の酸素過電
圧を充分に増大させることができないために、高温充電
特性の良い密閉型アルカリ亜鉛蓄電池を得ることができ
なくなり、一方、アルカリ電解液のリチウムイオン含有
量が0.5重量%を超えた場合は、アルカリ電解液のイ
オン伝導性が低下して、放電容量が減少するからであ
る。[0006] The alkaline electrolyte of the present invention contains 0.05 to 0.5% by weight of lithium ions. Lithium ions increase the oxygen overvoltage of the positive electrode. Examples of the lithium ion raw material to be added to the alkaline electrolyte include lithium hydroxide and lithium carbonate. The reason why the lithium ion content of the alkaline electrolyte is restricted to 0.05 to 0.5% by weight is that if the content is less than 0.05% by weight, the oxygen overvoltage of the positive electrode cannot be sufficiently increased. A sealed alkaline zinc storage battery having good high-temperature charging characteristics cannot be obtained. On the other hand, when the lithium ion content of the alkaline electrolyte exceeds 0.5% by weight, the ionic conductivity of the alkaline electrolyte decreases. This is because the discharge capacity decreases.
【0007】アルカリ電解液には、水酸化ナトリウムを
添加することが好ましい。水酸化ナトリウムは正極の酸
素過電圧を増大させる。但し、アルカリ電解液が水酸化
ナトリウムを5重量%より多く含有すると、アルカリ電
解液のイオン伝導性が低下して、電池容量が減少する。
また、アルカリ電解液に、酸化亜鉛を添加してもよい。
酸化亜鉛は、負極における水素ガスの発生(自己放電)
を抑制して、電池内圧の上昇乃至アルカリ電解液の漏出
を抑制する。アルカリ電解液の好適な酸化亜鉛含有量
は、2.0〜6.5重量%である。It is preferable to add sodium hydroxide to the alkaline electrolyte. Sodium hydroxide increases the oxygen overpotential of the positive electrode. However, when the alkaline electrolyte contains more than 5% by weight of sodium hydroxide, the ionic conductivity of the alkaline electrolyte decreases, and the battery capacity decreases.
Further, zinc oxide may be added to the alkaline electrolyte.
Zinc oxide generates hydrogen gas at the negative electrode (self-discharge)
To suppress the rise in the internal pressure of the battery or the leakage of the alkaline electrolyte. The preferred zinc oxide content of the alkaline electrolyte is from 2.0 to 6.5% by weight.
【0008】アルカリ電解液としては、水酸化カリウム
濃度が35〜45重量%のものが好ましい。水酸化カリ
ウム濃度が35重量%未満の場合は亜鉛が放電時に不働
態化して放電容量が減少し、一方水酸化カリウム濃度が
45重量%を越えた場合は、亜鉛の溶解度が増大してデ
ンドライトが生成し易くなる。The alkaline electrolyte preferably has a potassium hydroxide concentration of 35 to 45% by weight. When the concentration of potassium hydroxide is less than 35% by weight, zinc is passivated at the time of discharge and the discharge capacity decreases. On the other hand, when the concentration of potassium hydroxide exceeds 45% by weight, the solubility of zinc increases and dendrites are formed. Easy to generate.
【0009】本発明の正極活物質は、マンガンが、ニッ
ケルとマンガンとの総量に基づいて、5〜50原子%固
溶したγ型オキシ水酸化ニッケル(γ−NiOOH)で
ある。マンガンを固溶させることにより、正極の酸素過
電圧が増大する。マンガン固溶率が5〜50原子%に規
制されるのは、マンガン固溶率が5原子%未満の場合
は、正極の酸素過電圧を充分に増大させることができな
いために、高温充電特性の良い密閉型アルカリ亜鉛蓄電
池を得ることができなくなり、一方、マンガン固溶率が
50原子%を越えた場合は、正極活物質であるγ型オキ
シ水酸化ニッケルの充填量が減少して、電池容量が減少
するからである。マンガンが固溶したγ型オキシ水酸化
ニッケルは、マンガンが固溶した水酸化ニッケルを次亜
塩素酸ナトリウム等の酸化剤にて酸化することにより得
ることができる。マンガンが固溶した水酸化ニッケル
は、マンガン塩とニッケル塩とを含む水溶液に、アルカ
リを添加してpHを9〜12に調整した後、所定時間混
合することにより(アルカリ共沈法)、作製することが
できる。The positive electrode active material of the present invention is γ-type nickel oxyhydroxide (γ-NiOOH) in which manganese forms a solid solution of 5 to 50 atomic% based on the total amount of nickel and manganese. The solid solution of manganese increases the oxygen overvoltage of the positive electrode. The reason why the manganese solid solution rate is regulated to 5 to 50 atomic% is that when the manganese solid solution rate is less than 5 atomic%, the oxygen overvoltage of the positive electrode cannot be sufficiently increased, so that the high-temperature charging characteristics are good. When the sealed alkaline zinc storage battery cannot be obtained, but the manganese solid solution rate exceeds 50 atomic%, the filling amount of the γ-type nickel oxyhydroxide, which is the positive electrode active material, decreases, and the battery capacity decreases. It is because it decreases. The γ-type nickel oxyhydroxide in which manganese is dissolved can be obtained by oxidizing nickel hydroxide in which manganese is dissolved with an oxidizing agent such as sodium hypochlorite. Nickel hydroxide in which manganese is dissolved is prepared by adding an alkali to an aqueous solution containing a manganese salt and a nickel salt to adjust the pH to 9 to 12, and then mixing for a predetermined time (alkali coprecipitation method). can do.
【0010】本発明の正極活物質として、マンガンの外
に、亜鉛、コバルト、ビスマス、アルミニウム及び希土
類元素よりなる群から選ばれた少なくとも1種の元素が
固溶したγ型オキシ水酸化ニッケルを使用してもよい。
これらの元素をさらに固溶させることにより、正極の酸
素過電圧を一層高めることができる。As the positive electrode active material of the present invention, γ-type nickel oxyhydroxide in which at least one element selected from the group consisting of zinc, cobalt, bismuth, aluminum and a rare earth element is used as a solid solution in addition to manganese is used. May be.
By further dissolving these elements, the oxygen overvoltage of the positive electrode can be further increased.
【0011】[0011]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に限定されるもので
はなく、その要旨を変更しない範囲において、適宜変更
して実施することが可能なものである。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately modified within the scope of the gist of the present invention. Is possible.
【0012】(実験1)本発明電池及び比較電池を作製
し、各電池の電池特性を調べた。(Experiment 1) A battery of the present invention and a comparative battery were manufactured, and the battery characteristics of each battery were examined.
【0013】(実施例1) 〔アルカリ電解液の調製〕水酸化カリウム(純度85重
量%)441gと、水酸化ナトリウム25gと、水酸化
リチウム1水和物12gと、酸化亜鉛30gとを、水4
92gに溶かして、水酸化カリウムを37.5重量%、
水酸化ナトリウムを2.5重量%、酸化亜鉛を3重量
%、リチウムイオンを0.2重量%含有するアルカリ電
解液を調製した。(Example 1) [Preparation of alkaline electrolyte] 441 g of potassium hydroxide (purity: 85% by weight), 25 g of sodium hydroxide, 12 g of lithium hydroxide monohydrate and 30 g of zinc oxide were mixed with water. 4
Dissolved in 92 g of potassium hydroxide, 37.5% by weight,
An alkaline electrolyte containing 2.5% by weight of sodium hydroxide, 3% by weight of zinc oxide, and 0.2% by weight of lithium ion was prepared.
【0014】〔負極の作製〕亜鉛99.85重量%、イ
ンジウム0.10重量%及びビスマス0.05重量%か
らなる亜鉛合金粉末(粒径:20〜200メッシュ)6
5gと、酸化亜鉛13gと、増粘剤としてのポリアクリ
ル酸(日本純薬社製、商品コード「ジュンロンPW15
0」)1gと、上記のアルカリ電解液34gとを混合し
て、ゲル状の亜鉛を活物質とする負極を作製した。[Preparation of Negative Electrode] Zinc alloy powder (particle size: 20 to 200 mesh) composed of 99.85% by weight of zinc, 0.10% by weight of indium and 0.05% by weight of bismuth 6
5 g, zinc oxide 13 g, and polyacrylic acid as a thickener (manufactured by Nippon Pure Chemical Co., Ltd., product code "Junron PW15
0 ") 1 g and the above-mentioned alkaline electrolyte solution 34 g were mixed to prepare a negative electrode containing gelled zinc as an active material.
【0015】〔正極の作製〕硫酸ニッケルの0.1モル
/リットル水溶液100mlと、硫酸マンガンの2.6
7×10-2モル/リットル水溶液100mlと、5重量
%アンモニア水溶液100mlとを、水槽内の水に同時
に注ぎ、撹拌しながら20重量%水酸化ナトリウム水溶
液を滴下してpHメータにて液のpHを11±0.3に
調整し、水槽内の液を35°Cに保持して1時間混合
し、水槽内に生成した沈殿物をろ別し、水洗し、室温
(約25°C)で真空乾燥して、マンガンが固溶した水
酸化ニッケルを得た。マンガン固溶率を原子吸光分析に
より求めたところ、20原子%であった。[Preparation of Positive Electrode] 100 ml of a 0.1 mol / l aqueous solution of nickel sulfate and 2.6 ml of manganese sulfate were used.
100 ml of a 7 × 10 −2 mol / l aqueous solution and 100 ml of a 5% by weight aqueous ammonia solution are simultaneously poured into water in a water tank, and a 20% by weight aqueous sodium hydroxide solution is dropped with stirring, and the pH of the solution is measured with a pH meter. Was adjusted to 11 ± 0.3, the liquid in the water tank was maintained at 35 ° C., and mixed for 1 hour. The precipitate formed in the water tank was filtered off, washed with water, and then at room temperature (about 25 ° C.). Vacuum drying was performed to obtain nickel hydroxide in which manganese was dissolved. The manganese solid solubility was determined by atomic absorption spectroscopy to be 20 atomic%.
【0016】次いで、水酸化ナトリウムの10モル/リ
ットル水溶液500mlと、酸化剤としての10重量%
次亜塩素酸ナトリウム水溶液1600mlとを、撹拌混
合し、60°Cに加熱保持して、酸化処理液を調製し、
この酸化処理液に、マンガンを固溶した上記の水酸化ニ
ッケル100gを投入し、1時間撹拌混合した後、ろ別
し、水洗し、60°Cで乾燥して、正極活物質としての
マンガンが固溶したγ型オキシ水酸化ニッケルを得た。
このγ型オキシ水酸化ニッケルのマンガン固溶率を原子
吸光分析により求めたところ、酸化処理前のマンガンを
固溶した水酸化ニッケルと同じく、20原子%であっ
た。Then, 500 ml of a 10 mol / l aqueous solution of sodium hydroxide and 10% by weight as an oxidizing agent
1600 ml of an aqueous solution of sodium hypochlorite was stirred and mixed, heated and maintained at 60 ° C. to prepare an oxidized solution,
100 g of the above-mentioned nickel hydroxide in which manganese was solid-dissolved was added to this oxidation treatment liquid, and the mixture was stirred and mixed for 1 hour, filtered, washed with water, and dried at 60 ° C. A solid solution γ-type nickel oxyhydroxide was obtained.
The manganese solid solution rate of this γ-type nickel oxyhydroxide was determined by atomic absorption spectroscopy. As a result, it was 20 atom%, as in the case of manganese solid solution nickel hydroxide before oxidation treatment.
【0017】次いで、マンガンが固溶した上記のγ型オ
キシ水酸化ニッケル90gと、黒鉛粉末5gと、30重
量%水酸化カリウム水溶液5gとを、らいかい機にて3
0分間混合し、加圧成型して、外径13.3mm、内径
9mm、高さ13.7mmの円筒状の成形体を作製し
た。なお、電池の作製においては、この円筒状の成形体
を3個直列に接合して、1個の正極として使用した。Next, 90 g of the above-mentioned γ-type nickel oxyhydroxide in which manganese was dissolved, 5 g of graphite powder, and 5 g of a 30% by weight aqueous solution of potassium hydroxide were mixed with a grinder to obtain 3 g.
The mixture was mixed for 0 minutes and molded under pressure to produce a cylindrical molded body having an outer diameter of 13.3 mm, an inner diameter of 9 mm, and a height of 13.7 mm. In the production of the battery, three cylindrical molded bodies were joined in series and used as one positive electrode.
【0018】[密閉型アルカリ亜鉛蓄電池の作製]上記
の正極及び負極を用いて、通称「インサイドアウト型」
と呼ばれている構造を有する、AAサイズの密閉型アル
カリ亜鉛蓄電池A1(本発明電池)を作製した。ここ
に、インサイドアウト型電池とは、筒状の正極の筒内
に、セパレータを介して、負極を配した構造の電池をい
い、この種の電池では、電池缶が正極側、電池蓋が負極
側になる。セパレータには、上記のアルカリ電解液を
1.64g注入した。なお、電池容量が正極容量により
規制されるようにするために、正極の重量を5.8g
(理論容量1500mAh)、負極の重量を5.6g
(理論容量3000mAh)として、正極と負極の容量
比を1:2とした。また、正極と、負極と、アルカリ電
解液と、セパレータと、負極集電棒とからなる発電要素
体の電池缶内容積(絶縁パッキングの内側部分の体積)
に占める体積比率を80%とした。なお、以下の電池も
全て、正極と負極の容量比を1:2とし、発電要素体の
電池缶内容積に占める体積比率を80%とした。[Production of Sealed Alkaline Zinc Storage Battery] Using the above positive electrode and negative electrode, a so-called “inside-out type” is used.
AA-size sealed alkaline zinc storage battery A1 (battery of the present invention) having a structure called “AA size” was produced. Here, the inside-out type battery refers to a battery having a structure in which a negative electrode is disposed inside a cylindrical positive electrode via a separator, and in this type of battery, a battery can has a positive electrode side, and a battery lid has a negative electrode. Be on the side. 1.64 g of the above alkaline electrolyte was injected into the separator. The weight of the positive electrode was 5.8 g so that the battery capacity was regulated by the positive electrode capacity.
(Theoretical capacity: 1500 mAh), and the weight of the negative electrode was 5.6 g.
(Theoretical capacity: 3000 mAh), the capacity ratio between the positive electrode and the negative electrode was set to 1: 2. In addition, the volume inside the battery can of the power generating element body including the positive electrode, the negative electrode, the alkaline electrolyte, the separator, and the negative electrode current collector rod (the volume of the inner part of the insulating packing)
Was set to 80% by volume. In all of the following batteries, the capacity ratio between the positive electrode and the negative electrode was set to 1: 2, and the volume ratio of the power generating element to the internal volume of the battery can was set to 80%.
【0019】図1は、作製した密閉型アルカリ亜鉛蓄電
池を模式的に示す断面図であり、図示の密閉型アルカリ
亜鉛蓄電池A1は、有底円筒状の電池缶(正極外部端
子)1、電池蓋(負極外部端子)2、絶縁パッキング
3、真鍮製の負極集電棒4、円筒状の正極(ニッケル
極)5、ビニロンを主材とする円筒状のセパレータフィ
ルム6、ゲル状の負極(亜鉛極)7などからなる。FIG. 1 is a cross-sectional view schematically showing a sealed alkaline zinc storage battery thus produced. The illustrated sealed alkaline zinc storage battery A1 has a cylindrical battery can (a positive electrode external terminal) 1 with a bottom, and a battery cover. (Negative electrode external terminal) 2, insulating packing 3, negative electrode current collector rod 4 made of brass, cylindrical positive electrode (nickel electrode) 5, cylindrical separator film 6 mainly composed of vinylon, gel negative electrode (zinc electrode) 7 etc.
【0020】電池缶1には、円筒の外周面を電池缶1の
内周面に当接させて正極5が収納されており、正極5の
内周面には、外周面を当接させて円筒状のセパレータフ
ィルム6が圧接されており、セパレータフィルム6の内
側には、ゲル状の負極7が充填されている。負極7の円
形断面の中央部には、電池缶1と電池蓋2とを電気的に
絶縁する絶縁パッキング3により一端を支持された負極
集電棒4が挿入されている。電池缶1の開口部は、電池
蓋2により閉蓋されている。電池の密閉は、電池缶1の
開口部に絶縁パッキング3を嵌めこみ、その上に電池蓋
2を載置した後、電池缶の開口端を内側にかしめること
によりなされている。The positive electrode 5 is housed in the battery can 1 with the outer peripheral surface of the cylinder abutting on the inner peripheral surface of the battery can 1, and the outer peripheral surface is brought into contact with the inner peripheral surface of the positive electrode 5. A cylindrical separator film 6 is pressed against the inside, and the inside of the separator film 6 is filled with a gelled negative electrode 7. At the center of the circular cross section of the negative electrode 7, a negative electrode current collector rod 4 whose one end is supported by an insulating packing 3 that electrically insulates the battery can 1 from the battery lid 2 is inserted. The opening of the battery can 1 is closed by a battery cover 2. The battery is hermetically sealed by fitting an insulating packing 3 into the opening of the battery can 1, placing the battery lid 2 thereon, and caulking the opening end of the battery can inward.
【0021】(実施例2)正極の作製において、硫酸マ
ンガンの2.67×10-2モル/リットル水溶液に代え
て、硫酸マンガンの5.63×10-3モル/リットル水
溶液を用いたこと以外は実施例1と同様にして、密閉型
アルカリ亜鉛蓄電池A2(本発明電池)を作製した。正
極活物質として使用したγ型オキシ水酸化ニッケルのマ
ンガン固溶率は、5原子%であった。(Example 2) Except for using a 5.63 × 10 −3 mol / L aqueous solution of manganese sulfate instead of the 2.67 × 10 −2 mol / L aqueous solution of manganese sulfate in the preparation of the positive electrode. In the same manner as in Example 1, a sealed alkaline zinc storage battery A2 (battery of the present invention) was produced. The manganese solid solution ratio of γ-type nickel oxyhydroxide used as the positive electrode active material was 5 atomic%.
【0022】(実施例3)正極の作製において、硫酸マ
ンガンの2.67×10-2モル/リットル水溶液に代え
て、硫酸マンガンの1.19×10-2モル/リットル水
溶液を用いたこと以外は実施例1と同様にして、密閉型
アルカリ亜鉛蓄電池A3(本発明電池)を作製した。正
極活物質として使用したγ型オキシ水酸化ニッケルのマ
ンガン固溶率は、10原子%であった。(Example 3) Except for using a 1.19 × 10 -2 mol / L aqueous solution of manganese sulfate instead of the 2.67 × 10 -2 mol / L aqueous solution of manganese sulfate in producing the positive electrode. In the same manner as in Example 1, a sealed alkaline zinc storage battery A3 (battery of the present invention) was produced. The manganese solid solution rate of γ-type nickel oxyhydroxide used as the positive electrode active material was 10 atomic%.
【0023】(実施例4)正極の作製において、硫酸マ
ンガンの2.67×10-2モル/リットル水溶液に代え
て、硫酸マンガンの4.58×10-2モル/リットル水
溶液を用いたこと以外は実施例1と同様にして、密閉型
アルカリ亜鉛蓄電池A4(本発明電池)を作製した。正
極活物質として使用したγ型オキシ水酸化ニッケルのマ
ンガン固溶率は、30原子%であった。(Example 4) Except for using a 4.58 × 10 -2 mol / L aqueous solution of manganese sulfate instead of the 2.67 × 10 -2 mol / L aqueous solution of manganese sulfate in the preparation of the positive electrode In the same manner as in Example 1, a sealed alkaline zinc storage battery A4 (battery of the present invention) was produced. The manganese solid solution rate of γ-type nickel oxyhydroxide used as the positive electrode active material was 30 atomic%.
【0024】(実施例5)正極の作製において、硫酸マ
ンガンの2.67×10-2モル/リットル水溶液に代え
て、硫酸マンガンの7.13×10-2モル/リットル水
溶液を用いたこと以外は実施例1と同様にして、密閉型
アルカリ亜鉛蓄電池A5(本発明電池)を作製した。正
極活物質として使用したγ型オキシ水酸化ニッケルのマ
ンガン固溶率は、40原子%であった。(Example 5) Except for using a 7.13 × 10 -2 mol / L aqueous solution of manganese sulfate instead of the 2.67 × 10 -2 mol / L aqueous solution of manganese sulfate in producing the positive electrode In the same manner as in Example 1, a sealed alkaline zinc storage battery A5 (battery of the present invention) was produced. The manganese solid solution rate of the γ-type nickel oxyhydroxide used as the positive electrode active material was 40 atomic%.
【0025】(実施例6)正極の作製において、硫酸マ
ンガンの2.67×10-2モル/リットル水溶液に代え
て、硫酸マンガンの0.11モル/リットル水溶液を用
いたこと以外は実施例1と同様にして、密閉型アルカリ
亜鉛蓄電池A6(本発明電池)を作製した。正極活物質
として使用したγ型オキシ水酸化ニッケルのマンガン固
溶率は、50原子%であった。Example 6 A positive electrode was prepared in the same manner as in Example 1 except that an aqueous solution of manganese sulfate of 0.11 mol / liter was used instead of the aqueous solution of manganese sulfate of 2.67 × 10 -2 mol / liter. In the same manner as in the above, a sealed alkaline zinc storage battery A6 (battery of the present invention) was produced. The manganese solid solution ratio of the γ-type nickel oxyhydroxide used as the positive electrode active material was 50 atomic%.
【0026】(比較例1)正極の作製において、硫酸マ
ンガンの2.67×10-2モル/リットル水溶液に代え
て、硫酸マンガンの3.31×10-3モル/リットル水
溶液を用いたこと以外は実施例1と同様にして、密閉型
アルカリ亜鉛蓄電池X1(比較電池)を作製した。正極
活物質として使用したγ型オキシ水酸化ニッケルのマン
ガン固溶率は、3原子%であった。Comparative Example 1 Except for using a 3.31 × 10 −3 mol / L aqueous solution of manganese sulfate instead of the 2.67 × 10 −2 mol / L aqueous solution of manganese sulfate in producing a positive electrode. In the same manner as in Example 1, a sealed alkaline zinc storage battery X1 (comparative battery) was produced. The manganese solid solution rate of γ-type nickel oxyhydroxide used as the positive electrode active material was 3 atomic%.
【0027】(比較例2)正極の作製において、硫酸マ
ンガンの2.67×10-2モル/リットル水溶液に代え
て、硫酸マンガンの0.13モル/リットル水溶液を用
いたこと以外は実施例1と同様にして、密閉型アルカリ
亜鉛蓄電池X2(比較電池)を作製した。正極活物質と
して使用したγ型オキシ水酸化ニッケルのマンガン固溶
率は、55原子%であった。Comparative Example 2 The procedure of Example 1 was repeated, except that a 0.13 mol / L aqueous solution of manganese sulfate was used in place of the 2.67 × 10 -2 mol / L aqueous solution of manganese sulfate. In the same manner as in the above, a sealed alkaline zinc storage battery X2 (comparative battery) was produced. The manganese solid solution ratio of the γ-type nickel oxyhydroxide used as the positive electrode active material was 55 atomic%.
【0028】(比較例3)アルカリ電解液として、酸化
亜鉛3重量%、水酸化カリウム40重量%を水に溶かし
た水溶液を用いたこと以外は実施例1と同様にして、密
閉型アルカリ亜鉛蓄電池X3(比較電池)を作製した。Comparative Example 3 A sealed alkaline zinc storage battery was produced in the same manner as in Example 1, except that an aqueous solution in which 3% by weight of zinc oxide and 40% by weight of potassium hydroxide were dissolved in water was used as the alkaline electrolyte. X3 (comparative battery) was produced.
【0029】本発明電池A1〜A6及び比較電池X1〜
X3について、正極活物質の作製に使用した硫酸マンガ
ン水溶液の濃度、及び、正極活物質として使用したγ型
オキシ水酸化ニッケルのマンガン固溶率を、表1に示
す。Batteries A1 to A6 of the present invention and Comparative Batteries X1 to X1
For X3, Table 1 shows the concentration of the aqueous manganese sulfate solution used for producing the positive electrode active material, and the manganese solid solubility of γ-type nickel oxyhydroxide used as the positive electrode active material.
【0030】[0030]
【表1】 [Table 1]
【0031】〔各電池の保存特性〕各電池を45°Cで
30日間保存した後、水中で分解し、電池内に発生した
水素ガスを捕集して、保存中の水素ガスの発生量(cm
3 )を求めた。結果を表2に示す。水素ガスの発生量が
少ない電池ほど、保存特性が良いことを示す。[Storage Characteristics of Each Battery] After each battery was stored at 45 ° C. for 30 days, it was decomposed in water, the hydrogen gas generated in the battery was collected, and the amount of hydrogen gas generated during storage ( cm
3 ) Asked. Table 2 shows the results. A battery with a smaller amount of generated hydrogen gas has better storage characteristics.
【0032】〔各電池の1サイクル目の放電容量、10
サイクル目の容量維持率及び10サイクル目の漏液電池
数〕各電池10個について、25°Cにて、100mA
で1Vまで放電した後、100mAで1.95Vまで充
電する充放電を10サイクル行い、1サイクル目の放電
容量、10サイクル目の容量維持率及び10サイクル目
の漏液電池数を調べた。結果を表2に示す。表2中の1
サイクル目の放電容量は、本発明電池A1の放電容量を
100とした指数である。また、10サイクル目の容量
維持率は、各電池の1サイクル目の放電容量に対する1
0サイクル目の放電容量の比率(%)であり、且つ電解
液が漏出しなかった電池についての容量維持率の平均値
である。また、表2中の漏液電池数の欄に示した分数の
分子が、漏液電池数を示す。表2内の電池符号の下の括
弧内の数字は、マンガン固溶率(原子%)を示す。[The discharge capacity of the first cycle of each battery, 10
Capacity maintenance rate at cycle and number of leaked batteries at cycle 10] 100 mA at 25 ° C. for 10 batteries
After charging to 1 V at 100 mA, charging and discharging at 100 mA to 1.95 V were performed for 10 cycles, and the discharge capacity at the first cycle, the capacity retention rate at the tenth cycle, and the number of leaked batteries at the tenth cycle were examined. Table 2 shows the results. 1 in Table 2
The discharge capacity at the cycle is an index with the discharge capacity of the battery A1 of the present invention being 100. Further, the capacity retention rate at the 10th cycle is 1% of the discharge capacity at the 1st cycle of each battery.
It is the ratio (%) of the discharge capacity at the 0th cycle, and is the average value of the capacity retention rates of the batteries from which the electrolyte did not leak. Further, the numerator of the fraction shown in the column of the number of leaked batteries in Table 2 indicates the number of leaked batteries. The number in parentheses below the battery code in Table 2 indicates the manganese solid solution rate (atomic%).
【0033】〔各電池の高温充電特性〕充放電を10サ
イクル行った上記の各電池(それぞれ10個)を、45
°Cにて100mAで1.95Vまで充電した後、25
°Cにて100mAで1.0Vまで放電して、10サイ
クル目の放電容量C10に対する11サイクル目の放電
容量C11の比率P(%)〔(C10/C11)×10
0〕を求め、各電池の高温充電特性を調べた。結果を表
2に示す。この比率Pが大きい電池ほど、高温充電特性
が良いことを示す。[High Temperature Charging Characteristics of Each Battery] Each of the above-mentioned batteries (each 10 batteries) having been subjected to 10 charge / discharge cycles was subjected to 45
After charging to 1.95 V at 100 mA at ° C, 25
The battery was discharged at 100 ° C. to 1.0 V at 100 ° C., and the ratio P (%) of the discharge capacity C11 at the eleventh cycle to the discharge capacity C10 at the tenth cycle [(C10 / C11) × 10
0], and the high-temperature charging characteristics of each battery were examined. Table 2 shows the results. The higher the ratio P, the better the high-temperature charging characteristics.
【0034】[0034]
【表2】 [Table 2]
【0035】表2に示すように、正極活物質としてマン
ガン固溶率が5〜50原子%のγ型オキシ水酸化ニッケ
ルを使用した本発明電池A1〜A6は、1サイクル目及
び10サイクル目の放電容量が大きく、また10サイク
ル目の漏液電池数が0(零)であった。これに対して、
正極活物質としてマンガン固溶率が3原子%のγ型オキ
シ水酸化ニッケルを使用した比較電池X1は、正極の酸
素過電圧が充分に大きくないために、充電時に酸素ガス
が発生し、10サイクル目に10個の電池のうちの1個
に漏液が発生した。正極活物質としてマンガン固溶率が
55原子%のγ型オキシ水酸化ニッケルを使用した比較
電池X2は、γ型オキシ水酸化ニッケルの充填量が減少
したために、電池容量が減少した。これらの結果から、
マンガン固溶率が5〜50原子%のγ型オキシ水酸化ニ
ッケルを使用する必要があることが分かる。アルカリ電
解液として水酸化ナトリウムも水酸化リチウムも添加し
なかった水酸化カリウム水溶液を使用した比較電池X3
は、正極の酸素過電圧が小さいために、充電時に酸素ガ
スが発生し、10サイクル目に10個の電池のうちの2
個に漏液が発生した。また、この比較電池Yは、比率P
が80%と小さいことから分かるように、高温充電特性
が良くなかった。As shown in Table 2, the batteries A1 to A6 of the present invention using γ-type nickel oxyhydroxide having a manganese solid solution rate of 5 to 50 atomic% as the positive electrode active material were subjected to the first and tenth cycles. The discharge capacity was large, and the number of leaked batteries at the 10th cycle was 0 (zero). On the contrary,
In the comparative battery X1 using γ-type nickel oxyhydroxide having a manganese solid solution rate of 3 atomic% as the positive electrode active material, oxygen gas was generated during charging because the oxygen overvoltage of the positive electrode was not sufficiently large. In one of the 10 batteries, liquid leakage occurred. Comparative battery X2 using γ-type nickel oxyhydroxide having a manganese solid solution rate of 55 atomic% as the positive electrode active material had a reduced battery capacity due to a decrease in the filling amount of γ-type nickel oxyhydroxide. From these results,
It is understood that it is necessary to use γ-type nickel oxyhydroxide having a manganese solid solution rate of 5 to 50 atomic%. Comparative battery X3 using an aqueous potassium hydroxide solution to which neither sodium hydroxide nor lithium hydroxide was added as an alkaline electrolyte.
Indicates that oxygen gas is generated at the time of charging because the oxygen overvoltage of the positive electrode is small, and two out of ten batteries in the tenth cycle
Liquid leakage occurred in the individual. The comparative battery Y has a ratio P
Is as small as 80%, the high-temperature charging characteristics were not good.
【0036】(実験2)アルカリ電解液のリチウムイオ
ン濃度と電池特性との関係を調べた。(Experiment 2) The relationship between the lithium ion concentration of the alkaline electrolyte and the battery characteristics was examined.
【0037】アルカリ電解液の調製において、水酸化リ
チウム1水和物の配合量を、それぞれ1.8g、3.0
g、6.0g、30.2g及び42.3gとしたこと以
外は実施例1におけるアルカリ電解液の調製方法と同様
にして、アルカリ電解液のリチウムイオン濃度が、順
に、0.03重量%、0.05重量%、0.1重量%、
0.5重量%及び0.7重量%である5種のアルカリ電
解液を調製した。次いで、リチウムイオン濃度が0.2
重量%のアルカリ電解液に代えて、上記の各アルカリ電
解液を使用したこと以外は実施例1と同様にして、密閉
型アルカリ亜鉛蓄電池B1〜B5を各10個作製し、実
験1で行ったものと同じ充放電サイクル試験を行って、
各電池の10サイクル目の容量維持率(%)、10サイ
クル目の漏液電池数、10サイクル目の放電容量C10
に対する11サイクル目の放電容量C11の比率P
(%)及び保存中の水素ガスの発生量(cm3 )を調べ
た。結果を表4に示す。表4には、本発明電池A1の結
果も示してある。なお、10サイクル目の容量維持率の
欄の括弧内の数字は、本発明電池A1の1サイクル目の
放電容量に対する各電池の10サイクル目の放電容量の
比率である。In preparing the alkaline electrolyte, the amount of lithium hydroxide monohydrate was adjusted to 1.8 g and 3.0 g, respectively.
g, 6.0 g, 30.2 g and 42.3 g, in the same manner as in the preparation method of the alkaline electrolyte in Example 1, the lithium ion concentration of the alkaline electrolyte was 0.03% by weight, 0.05% by weight, 0.1% by weight,
Five types of alkaline electrolytes were prepared at 0.5% by weight and 0.7% by weight. Next, when the lithium ion concentration is 0.2
Ten sealed alkaline zinc storage batteries B1 to B5 were prepared in the same manner as in Example 1 except that the above-mentioned respective alkaline electrolytes were used instead of the alkali electrolyte of weight%. Do the same charge and discharge cycle test as
Capacity retention rate (%) at the 10th cycle of each battery, number of leaked batteries at the 10th cycle, discharge capacity C10 at the 10th cycle
Ratio P of the discharge capacity C11 at the 11th cycle with respect to
(%) And the amount of generated hydrogen gas (cm 3 ) during storage. Table 4 shows the results. Table 4 also shows the results of the battery A1 of the present invention. The number in parentheses in the column of the capacity retention ratio at the 10th cycle is the ratio of the discharge capacity at the 10th cycle of each battery to the discharge capacity at the 1st cycle of the battery A1 of the present invention.
【0038】[0038]
【表3】 [Table 3]
【0039】[0039]
【表4】 [Table 4]
【0040】表4に示すように、リチウムイオン濃度が
0.05〜0.5重量%のアルカリ電解液を使用した電
池A1及びB2〜B4の耐漏液性及び高温充電特性が良
いことが分かる。これに対して、アルカリ電解液のリチ
ウムイオン濃度が0.03重量%と低い電池B1は、正
極の酸素過電圧を充分に増大させることができなかった
ために、充電時に酸素ガスが発生し、10サイクル目に
10個の電池のうちの1個に漏液が発生した。また、電
池B1は、比率Pが82%と小さいことから分かるよう
に、高温充電特性が良くなかった。アルカリ電解液のリ
チウムイオン濃度が0.7重量%と高い電池B5は、リ
チウムイオン濃度が高過ぎてイオン伝導性が低下したた
めに、電池容量が減少した。これらの結果から、リチウ
ムイオン濃度が0.05〜0.5重量%のアルカリ電解
液を使用する必要があることが分かる。As shown in Table 4, it can be seen that the batteries A1 and B2 to B4 using the alkaline electrolyte having a lithium ion concentration of 0.05 to 0.5% by weight have good leakage resistance and high-temperature charging characteristics. On the other hand, in the battery B1 in which the lithium ion concentration of the alkaline electrolyte was as low as 0.03% by weight, the oxygen overvoltage of the positive electrode could not be sufficiently increased, so that oxygen gas was generated at the time of charging, and 10 cycles. Liquid leakage occurred in one of the ten batteries in the eye. The battery B1 did not have good high-temperature charging characteristics, as can be seen from the fact that the ratio P was as small as 82%. In the battery B5 in which the lithium ion concentration of the alkaline electrolyte was as high as 0.7% by weight, the lithium ion concentration was too high and the ionic conductivity was lowered, so that the battery capacity was reduced. These results show that it is necessary to use an alkaline electrolyte having a lithium ion concentration of 0.05 to 0.5% by weight.
【0041】(実験3)アルカリ電解液の水酸化カリウ
ム濃度と電池特性との関係を調べた。(Experiment 3) The relationship between the potassium hydroxide concentration of the alkaline electrolyte and the battery characteristics was examined.
【0042】アルカリ電解液の調製において、水酸化カ
リウム、水酸化リチウム、酸化亜鉛及び水を表5に示す
各量使用したこと以外は実施例1と同様にして、密閉型
アルカリ亜鉛蓄電池C1〜C7を各10個作製し、実験
1で行ったものと同じ充放電サイクル試験を行って、各
電池の10サイクル目の容量維持率(%)、10サイク
ル目の漏液電池数、10サイクル目の放電容量C10に
対する11サイクル目の放電容量C11の比率P(%)
及び保存中の水素ガスの発生量(cm3 )を調べた。結
果を表6に示す。表6には、本発明電池A1の結果も示
してある。表6中の容量維持率は、各電池の1サイクル
目の放電容量に対する10サイクル目の放電容量の比率
である。In the preparation of the alkaline electrolyte, the same procedure as in Example 1 was repeated except that potassium hydroxide, lithium hydroxide, zinc oxide and water were used as shown in Table 5, respectively. Were manufactured, and the same charge / discharge cycle test as that performed in Experiment 1 was performed, and the capacity maintenance ratio (%) of each battery at the 10th cycle, the number of leaked batteries at the 10th cycle, and the number of batteries at the 10th cycle Ratio P (%) of discharge capacity C11 at the 11th cycle to discharge capacity C10
The amount of hydrogen gas generated during storage (cm 3 ) was examined. Table 6 shows the results. Table 6 also shows the results of the battery A1 of the present invention. The capacity retention ratio in Table 6 is a ratio of the discharge capacity at the tenth cycle to the discharge capacity at the first cycle of each battery.
【0043】[0043]
【表5】 [Table 5]
【0044】[0044]
【表6】 [Table 6]
【0045】表6に示すように、水酸化カリウム濃度が
35〜45重量%の電池A1及びC2〜C6は、充放電
サイクル特性が良く、耐漏液性及び高温充電特性に優れ
ていることが分かる。これに対して、電池C1は、負極
の亜鉛が不働態化したために、10サイクル目の容量維
持率が低い。電池C7は、負極の亜鉛のデンドライトシ
ョートが発生したために、10サイクル目の容量維持率
が低い。これらの結果から、水酸化カリウム濃度が35
〜45重量%のアルカリ電解液を使用することが好まし
いことが分かる。As shown in Table 6, it is understood that the batteries A1 and C2 to C6 having a potassium hydroxide concentration of 35 to 45% by weight have good charge / discharge cycle characteristics, and excellent liquid leakage resistance and high-temperature charge characteristics. . On the other hand, in the battery C1, the capacity maintenance ratio at the tenth cycle is low because zinc of the negative electrode was passivated. Battery C7 has a low capacity retention ratio at the tenth cycle due to dendrite short-circuiting of the negative electrode zinc. From these results, potassium hydroxide concentration of 35
It can be seen that it is preferable to use an alkaline electrolyte of up to 45% by weight.
【0046】(実験4)アルカリ電解液に水酸化ナトリ
ウムを添加する場合の水酸化ナトリウム濃度と電池特性
との関係を調べた。(Experiment 4) The relationship between the concentration of sodium hydroxide and the battery characteristics when sodium hydroxide was added to the alkaline electrolyte was examined.
【0047】アルカリ電解液の調製において、水酸化カ
リウム、水酸化ナトリウム、水酸化リチウム、酸化亜鉛
及び水を表7に示す各量使用したこと以外は実施例1と
同様にして、密閉型アルカリ亜鉛蓄電池D1〜D4を各
10個作製し、実験1で行ったものと同じ充放電サイク
ル試験を行って、各電池の10サイクル目の容量維持率
(%)、10サイクル目の漏液電池数、10サイクル目
の放電容量C10に対する11サイクル目の放電容量C
11の比率P(%)及び保存中の水素ガスの発生量(c
m3 )を調べた。結果を表8に示す。表8には、本発明
電池A1の結果も示してある。表8中の容量維持率は、
各電池の1サイクル目の放電容量に対する10サイクル
目の放電容量の比率である。In the preparation of the alkaline electrolyte, the sealed alkaline zinc was prepared in the same manner as in Example 1 except that potassium hydroxide, sodium hydroxide, lithium hydroxide, zinc oxide and water were used in the amounts shown in Table 7. Ten storage batteries D1 to D4 were manufactured, and the same charge / discharge cycle test as that performed in Experiment 1 was performed. The capacity maintenance ratio (%) of each battery at the tenth cycle, the number of leaked batteries at the tenth cycle, Discharge capacity C at eleventh cycle with respect to discharge capacity C10 at tenth cycle
11 and the amount of hydrogen gas generated during storage (c)
m 3 ) was determined. Table 8 shows the results. Table 8 also shows the results of the battery A1 of the present invention. The capacity retention rate in Table 8 is
This is the ratio of the discharge capacity at the tenth cycle to the discharge capacity at the first cycle of each battery.
【0048】[0048]
【表7】 [Table 7]
【0049】[0049]
【表8】 [Table 8]
【0050】表8に示すように、アルカリ電解液に水酸
化ナトリウムを含有せしめた電池A1及びD2〜D4
は、アルカリ電解液に水酸化ナトリウムを含有せしめな
かった電池D1に比べて、正極の酸素過電圧が増大した
ため、比率Pが大きく、高温充電特性が良いことが分か
る。但し、水酸化ナトリウム濃度が7重量%の電池D4
は、水酸化ナトリウム濃度が5重量%以下の電池A1及
びD2,D3に比べて、アルカリ電解液のイオン伝導性
が良くないために、10サイクル目の容量維持率が極め
て小さい。これらの結果から、アルカリ電解液に水酸化
ナトリウムを添加する場合の水酸化ナトリウム濃度とし
ては、5重量%以下が好ましいことが分かる。As shown in Table 8, batteries A1 and D2 to D4 containing sodium hydroxide in the alkaline electrolyte were used.
It can be seen that the ratio P was large and the high-temperature charging characteristics were good because the oxygen overvoltage of the positive electrode was increased compared to the battery D1 in which sodium hydroxide was not contained in the alkaline electrolyte. However, a battery D4 having a sodium hydroxide concentration of 7% by weight was used.
Has a very low capacity retention ratio at the tenth cycle because the ionic conductivity of the alkaline electrolyte is not as good as that of batteries A1, D2, and D3 having a sodium hydroxide concentration of 5% by weight or less. These results indicate that the concentration of sodium hydroxide when adding sodium hydroxide to the alkaline electrolyte is preferably 5% by weight or less.
【0051】(実験5)アルカリ電解液に酸化亜鉛を添
加する場合の酸化亜鉛濃度と電池特性との関係を調べ
た。(Experiment 5) The relationship between the zinc oxide concentration and the battery characteristics when zinc oxide was added to the alkaline electrolyte was examined.
【0052】アルカリ電解液の調製において、水酸化カ
リウム、水酸化ナトリウム、水酸化リチウム、酸化亜鉛
及び水を表9に示す各量使用したこと以外は実施例1と
同様にして、密閉型アルカリ亜鉛蓄電池E1〜E4を各
10個作製し、実験1のものと同じ充放電サイクル試験
を行って、各電池の10サイクル目の容量維持率
(%)、10サイクル目の漏液電池数、10サイクル目
の放電容量C10に対する11サイクル目の放電容量C
11の比率P(%)及び保存中の水素ガスの発生量(c
m3 )を調べた。結果を表10に示す。表10には、本
発明電池A1の結果も示してある。表10中の容量維持
率は、各電池の1サイクル目の放電容量に対する10サ
イクル目の放電容量の比率である。In the preparation of the alkaline electrolyte, a sealed alkaline zinc oxide was prepared in the same manner as in Example 1 except that potassium hydroxide, sodium hydroxide, lithium hydroxide, zinc oxide and water were used in the amounts shown in Table 9. Ten storage batteries E1 to E4 were manufactured, and the same charge / discharge cycle test as that of Experiment 1 was performed. The capacity maintenance ratio (%) of each battery at the tenth cycle, the number of leaked batteries at the tenth cycle, and ten cycles Discharge capacity C at 11th cycle with respect to discharge capacity C10 at eye
11 and the amount of hydrogen gas generated during storage (c)
m 3 ) was determined. Table 10 shows the results. Table 10 also shows the results of the battery A1 of the present invention. The capacity retention ratio in Table 10 is a ratio of the discharge capacity at the tenth cycle to the discharge capacity at the first cycle of each battery.
【0053】[0053]
【表9】 [Table 9]
【0054】[0054]
【表10】 [Table 10]
【0055】表10より、アルカリ電解液の酸化亜鉛濃
度が2〜6.5重量%の電池E2、A、E3、E4が諸
特性に優れていることが分かる。電池E1で漏液電池数
が多いのは酸化亜鉛の添加量が少ないために負極で水素
ガスが多量に発生したためである。Table 10 shows that the batteries E2, A, E3, and E4 in which the concentration of zinc oxide in the alkaline electrolyte was 2 to 6.5% by weight were excellent in various characteristics. The reason why the number of leaked batteries in the battery E1 is large is that a large amount of hydrogen gas is generated in the negative electrode because the amount of zinc oxide added is small.
【0056】[0056]
【発明の効果】高温充電特性、耐漏液性及び充放電サイ
クル特性が良い密閉型アルカリ亜鉛蓄電池が提供され
る。According to the present invention, there is provided a sealed alkaline zinc storage battery having excellent high-temperature charge characteristics, liquid leakage resistance and charge / discharge cycle characteristics.
【図1】実施例で作製した密閉型アルカリ亜鉛蓄電池の
断面図である。FIG. 1 is a sectional view of a sealed alkaline zinc storage battery manufactured in an example.
【符号の説明】 A1 密閉型アルカリ亜鉛蓄電池 1 電池缶 2 電池蓋 3 絶縁パッキング 4 負極集電棒 5 正極(ニッケル極) 6 セパレータフィルム 7 負極(亜鉛極)[Description of Signs] A1 sealed alkaline zinc storage battery 1 battery can 2 battery lid 3 insulating packing 4 negative electrode current collector rod 5 positive electrode (nickel electrode) 6 separator film 7 negative electrode (zinc electrode)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 伊藤 靖彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H003 AA04 BB04 BB14 BD00 BD04 5H016 EE01 EE05 HH00 HH01 5H028 AA06 AA07 EE01 EE05 FF03 FF04 HH00 HH01 HH02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mamoru Kimoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yasuhiko Ito 2-chome Keihanhondori, Moriguchi-shi, Osaka 5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H003 AA04 BB04 BB14 BD00 BD04 5H016 EE01 EE05 HH00 HH01 5H028 AA06 AA07 EE01 EE05 FF03 FF04 HH00 HH01 HH02
Claims (5)
正極と、亜鉛を活物質とする負極と、水酸化カリウムを
含有するアルカリ電解液と、セパレータと、負極集電体
とからなる発電要素体が電池缶内容積の75%以上を占
める密閉型アルカリ亜鉛蓄電池において、前記γ型オキ
シ水酸化ニッケルに、マンガンが、ニッケルとマンガン
との総量に基づいて、5〜50原子%固溶しており、且
つ前記アルカリ電解液が、リチウムイオンを、0.05
〜0.5重量%含有していることを特徴とする密閉型ア
ルカリ亜鉛蓄電池。1. A power generation system comprising: a positive electrode using gamma-type nickel oxyhydroxide as an active material; a negative electrode using zinc as an active material; an alkaline electrolyte containing potassium hydroxide; a separator; and a negative electrode current collector. In a sealed alkaline zinc storage battery in which the element body occupies 75% or more of the internal volume of the battery can, 5 to 50 atomic% of manganese forms a solid solution with the γ-type nickel oxyhydroxide based on the total amount of nickel and manganese. And the alkaline electrolyte has a lithium ion content of 0.05%.
A sealed alkaline zinc storage battery characterized by containing 0.5% by weight.
を5重量%を越えない量含有している請求項1記載の密
閉型アルカリ亜鉛蓄電池。2. The sealed alkaline zinc storage battery according to claim 1, wherein said alkaline electrolyte contains sodium hydroxide in an amount not exceeding 5% by weight.
〜6.5重量%含有している請求項1記載の密閉型アル
カリ亜鉛蓄電池。3. The method according to claim 2, wherein the alkaline electrolyte contains zinc oxide of 2.0%.
The sealed alkaline zinc storage battery according to claim 1, wherein the content of the alkaline zinc storage battery is in the range of about 6.5% by weight.
が35〜45重量%である請求項1記載の密閉型アルカ
リ亜鉛蓄電池。4. The sealed alkaline zinc storage battery according to claim 1, wherein the alkaline electrolyte has a potassium hydroxide concentration of 35 to 45% by weight.
らに、亜鉛、コバルト、ビスマス、アルミニウム及び希
土類元素よりなる群から選ばれた少なくとも1種の元素
が固溶している請求項1記載の密閉型アルカリ亜鉛蓄電
池。5. The method according to claim 1, wherein at least one element selected from the group consisting of zinc, cobalt, bismuth, aluminum and rare earth elements is further dissolved in said γ-type nickel oxyhydroxide. Sealed alkaline zinc storage battery.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11050882A JP2000251925A (en) | 1999-02-26 | 1999-02-26 | Sealed alkaline zinc storage battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11050882A JP2000251925A (en) | 1999-02-26 | 1999-02-26 | Sealed alkaline zinc storage battery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2000251925A true JP2000251925A (en) | 2000-09-14 |
Family
ID=12871113
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11050882A Pending JP2000251925A (en) | 1999-02-26 | 1999-02-26 | Sealed alkaline zinc storage battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2000251925A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005537624A (en) * | 2002-08-28 | 2005-12-08 | ザ ジレット カンパニー | Alkaline battery comprising a positive electrode of nickel oxyhydroxide and a negative electrode of zinc |
| WO2012114407A1 (en) * | 2011-02-22 | 2012-08-30 | パナソニック株式会社 | Alkali secondary battery |
| CN119601710A (en) * | 2023-09-08 | 2025-03-11 | 中国科学院大连化学物理研究所 | A method for recovering electrolyte of alkaline zinc-iron flow battery |
-
1999
- 1999-02-26 JP JP11050882A patent/JP2000251925A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005537624A (en) * | 2002-08-28 | 2005-12-08 | ザ ジレット カンパニー | Alkaline battery comprising a positive electrode of nickel oxyhydroxide and a negative electrode of zinc |
| WO2012114407A1 (en) * | 2011-02-22 | 2012-08-30 | パナソニック株式会社 | Alkali secondary battery |
| CN119601710A (en) * | 2023-09-08 | 2025-03-11 | 中国科学院大连化学物理研究所 | A method for recovering electrolyte of alkaline zinc-iron flow battery |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6265105B1 (en) | Sealed, alkaline-zinc storage battery | |
| KR900702588A (en) | Rechargeable alkaline manganese dioxide-zinc cell with improved measuring capacity | |
| JP3239076B2 (en) | Sealed alkaline storage battery | |
| JP2000067910A (en) | Sealed alkaline zing storage battery | |
| JPH11167933A (en) | Sealed alkaline zinc storage battery | |
| JP3568408B2 (en) | Positive electrode active material for alkaline secondary batteries and alkaline secondary batteries | |
| KR20000069898A (en) | Alkaline storage battery and method for charging battery | |
| JP4243449B2 (en) | Alkaline primary battery | |
| JP2000251925A (en) | Sealed alkaline zinc storage battery | |
| JP4253172B2 (en) | Sealed nickel zinc primary battery | |
| JP2000133259A (en) | Sealed alkaline storage battery | |
| JP3663071B2 (en) | Sealed alkaline zinc storage battery | |
| JP3653410B2 (en) | Sealed alkaline zinc storage battery | |
| JPH09115543A (en) | Alkaline storage battery | |
| JPH11345613A (en) | Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery using the same and alkaline storage battery | |
| JP3540606B2 (en) | Sealed alkaline storage battery | |
| JP2000251924A (en) | Sealed alkaline zinc storage battery | |
| JP3663072B2 (en) | Sealed alkaline zinc storage battery | |
| JP3902351B2 (en) | Sealed alkaline storage battery | |
| JP3433035B2 (en) | Sealed alkaline storage battery | |
| JP2001093569A (en) | Sealed alkaline storage battery | |
| JPH1167199A (en) | Tightly sealed type alkaline storage battery | |
| JP2006313678A (en) | Alkaline primary battery and manufacturing method thereof | |
| JP2001093525A (en) | Sealed alkaline battery | |
| JP2000106184A (en) | Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040524 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041214 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050412 |