[go: up one dir, main page]

JP2000264935A - Fire-resistant resin and fire-resistant resin composition containing the same - Google Patents

Fire-resistant resin and fire-resistant resin composition containing the same

Info

Publication number
JP2000264935A
JP2000264935A JP6944899A JP6944899A JP2000264935A JP 2000264935 A JP2000264935 A JP 2000264935A JP 6944899 A JP6944899 A JP 6944899A JP 6944899 A JP6944899 A JP 6944899A JP 2000264935 A JP2000264935 A JP 2000264935A
Authority
JP
Japan
Prior art keywords
acrylonitrile
polyorganosiloxane
copolymer
vinyl
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6944899A
Other languages
Japanese (ja)
Other versions
JP3685640B2 (en
Inventor
Nobuo Miyatake
信雄 宮武
Kazunori Takigawa
和徳 瀧川
Daisuke Nakamori
大介 中森
Shigeki Hamaguchi
茂樹 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP06944899A priority Critical patent/JP3685640B2/en
Publication of JP2000264935A publication Critical patent/JP2000264935A/en
Application granted granted Critical
Publication of JP3685640B2 publication Critical patent/JP3685640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject resin having low environmental load without generating any harmful gas at the burning by using a graft copolymer obtained by graft polymerizing a vinyl-based monomer in the presence of a polyorganosiloxane-based particle having a specific rang of average particle diameter. SOLUTION: This fire-resistant resin is composed of a polyorganosiloxane- based graft copolymer obtained by graft polymerizing (B) a vinyl-based monomer (e.g. an aromatic vinyl-based monomer, a vinyl cyanide-based monomer, a halogenated vinyl-based monomer, a (meth)acrylate-based monomer, a carboxylic group-containing vinyl-based monomer, or the like) in the presence of (A) a polyorganosiloxane-based particle having 0.008-0.2 μm, preferably 0.01-0.1 μm average particle diameter (e.g. the one obtained by polymerizing a polyorganosiloxane-forming component comprising organosiloxane and/or a bifunctional or more than trifunctional silane compound, or the like), and preferably is composed of 5-99 pts.wt. of the component A and 95-1 pts.wt. of the component B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、難燃性樹脂及びそ
れを含有する難燃性樹脂組成物に関する。
TECHNICAL FIELD The present invention relates to a flame-retardant resin and a flame-retardant resin composition containing the same.

【0002】[0002]

【従来の技術】熱可塑性樹脂は、電気・電子部品、OA
機器、家庭用品あるいは建築材料として広く用いられて
いる。しかし、熱可塑性樹脂は、一般に燃えやすいとい
う欠点があり、種々の難燃剤の添加により改善が試みら
れている。たとえば、有機ハロゲン系化合物や有機リン
系化合物の添加が従来広く行なわれている。しかし、有
機ハロゲン系化合物や有機リン系化合物の多くは毒性の
面で問題があり、特に有機ハロゲン系化合物は、燃焼時
に腐食性ガスを発生するという問題があった。
2. Description of the Related Art Thermoplastic resins are used for electric and electronic parts, OA.
Widely used as equipment, household goods or building materials. However, thermoplastic resins generally have the drawback of being easily flammable, and improvements have been attempted by adding various flame retardants. For example, addition of an organic halogen compound or an organic phosphorus compound has hitherto been widely performed. However, many of the organic halogen compounds and the organic phosphorus compounds have a problem in terms of toxicity, and in particular, the organic halogen compounds have a problem that they generate corrosive gas during combustion.

【0003】これらの問題を解決すべく、ポリオルガノ
シロキサン系化合物(シリコーンともいう)の添加によ
り難燃性を発現させる検討が行なわれている。たとえ
ば、特開昭54−36365号公報には、モノオルガノ
ポリシロキサンからなるシリコーン樹脂を非シリコーン
ポリマーに混錬することで難燃性樹脂がえられることが
記載されている。
In order to solve these problems, studies have been made to develop flame retardancy by adding a polyorganosiloxane compound (also referred to as silicone). For example, JP-A-54-36365 describes that a flame-retardant resin can be obtained by kneading a silicone resin composed of a monoorganopolysiloxane with a non-silicone polymer.

【0004】特公平3−48947号公報には、シリコ
ーン樹脂と第IIA族金属塩の混合物が熱可塑性樹脂に難
燃性を付与すると記載されている。
JP-B-3-48947 describes that a mixture of a silicone resin and a Group IIA metal salt imparts flame retardancy to a thermoplastic resin.

【0005】特開平8−113712号公報には、ポリ
オルガノシロキサン100重量部とシリカ充填剤10〜
150重量部とを混合することによって調製したシリコ
ーン樹脂を熱可塑性樹脂に分散させることで難燃性樹脂
組成物をうる方法が記載されている。
JP-A-8-113712 discloses that 100 parts by weight of a polyorganosiloxane and a silica filler 10 to 10 parts by weight are used.
A method of obtaining a flame-retardant resin composition by dispersing a silicone resin prepared by mixing 150 parts by weight with a thermoplastic resin is described.

【0006】特開平10−139964号公報には、重
量平均分子量が1万以上27万以下の溶剤に可溶なシリ
コーン樹脂を芳香環を含有する非シリコーン樹脂に添加
することで難燃性樹脂組成物がえられることが記載され
ている。
JP-A-10-139964 discloses a flame-retardant resin composition obtained by adding a silicone resin soluble in a solvent having a weight-average molecular weight of 10,000 to 270,000 to a non-silicone resin containing an aromatic ring. It states that a product is obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記公
報記載のシリコーン樹脂は、難燃性の付与がある程度認
められるが、添加しすぎると樹脂組成物の耐衝撃性を悪
化させるので難燃性と耐衝撃性のバランスがとれた難燃
性樹脂組成物をうることが困難であった。
However, the silicone resin described in the above-mentioned publication has some degree of flame retardancy, but if added too much, the impact resistance of the resin composition is deteriorated. It was difficult to obtain a flame-retardant resin composition having a good balance of impact properties.

【0008】本発明の主旨とするところは、燃焼時に有
害なガスを発生させない低環境負荷の難燃樹脂の提供で
あり、また該難燃樹脂を熱可塑性樹脂に配合することに
より耐衝撃性に優れ、燃焼時に有害なガスを発生させな
い低環境負荷の難燃性樹脂組成物を提供することであ
る。
[0008] The gist of the present invention is to provide a flame-retardant resin with low environmental load that does not generate harmful gas during combustion, and to improve the impact resistance by blending the flame-retardant resin with a thermoplastic resin. An object of the present invention is to provide a flame-retardant resin composition which is excellent and does not generate harmful gas during combustion and has a low environmental load.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
について鋭意検討を重ねた結果、特定の平均粒子径を有
するポリオルガノシロキサン系粒子存在下でビニル系単
量体を重合してえられるポリオルガノシロキサン系グラ
フト共重合体が難燃樹脂として使用できること、および
該難燃樹脂を熱可塑性樹脂に配合することで耐衝撃性に
優れた難燃性樹脂組成物がえられることを見出し本発明
を完成するに至った。
Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors have found that vinyl monomers can be polymerized in the presence of polyorganosiloxane particles having a specific average particle diameter. It is found that the polyorganosiloxane-based graft copolymer obtained can be used as a flame-retardant resin, and that a flame-retardant resin composition having excellent impact resistance can be obtained by blending the flame-retardant resin with a thermoplastic resin. The invention has been completed.

【0010】すなわち、本発明は、平均粒子径が0.0
08〜0.2μmのポリオルガノシロキサン系粒子
(A)存在下にビニル系単量体(B)をグラフト重合し
てえられるポリオルガノシロキサン系グラフト共重合体
からなる難燃性樹脂(請求項1)、ポリオルガノシロキ
サン系粒子(A)5〜99部(重量部、以下同様)に対
してビニル系単量体(B)95〜1部を合計量が100
部となるようにグラフト重合させることによりえられる
請求項1記載の難燃性樹脂(請求項2)、ビニル系単量
体(B)が芳香族ビニル系単量体、シアン化ビニル系単
量体、ハロゲン化ビニル系単量体、(メタ)アクリル酸
エステル系単量体およびカルボキシル基含有ビニル系単
量体よりなる群から選ばれた少なくとも1種である請求
項1または2記載の難燃性樹脂(請求項3)、熱可塑性
樹脂1〜99部に対して請求項1、2または3記載の難
燃性樹脂1〜99部を合計量が100部となるように配
合してなる難燃性樹脂組成物(請求項4)、熱可塑性樹
脂が、アクリロニトリル−スチレン共重合体、アクリロ
ニトリル−ブタジエンゴム−スチレン共重合体(ABS
樹脂)、アクリロニトリル−ブタジエンゴム−α−メチ
ルスチレン共重合体、スチレン−ブタジエンゴム−アク
リロニトリル−N−フェニルマレイミド共重合体、アク
リロニトリル−アクリルゴム−スチレン共重合体(AA
S樹脂)、アクリロニトリル−アクリルゴム−α−メチ
ルスチレン共重合体、スチレン−アクリルゴム−アクリ
ロニトリル−N−フェニルマレイミド共重合体、アクリ
ロニトリル−アクリル/シリコーン複合ゴム−スチレン
共重合体、アクリロニトリル−アクリル/シリコーン複
合ゴム−α−メチルスチレン共重合体、スチレン−アク
リル/シリコーン複合ゴム−アクリロニトリル−N−フ
ェニルマレイミド共重合体、アクリロニトリル−エチレ
ンプロピレンゴム−スチレン共重合体(AES樹脂)、
ポリカーボネート、ポリエステル、ポリ塩化ビニル、ポ
リプロピレン、ポリフェニレンエーテル、ポリスチレ
ン、ポリメタクリル酸メチル、メタクリル酸メチル−ス
チレン共重合体およびポリアミドからなる群からえられ
ばれたすくなくとも1種の熱可塑性樹脂である請求項4
記載の難燃性樹脂組成物(請求項5)に関する。
That is, according to the present invention, the average particle diameter is 0.0
Flame-retardant resin comprising a polyorganosiloxane-based graft copolymer obtained by graft-polymerizing a vinyl-based monomer (B) in the presence of polyorganosiloxane-based particles (A) having a thickness of from 08 to 0.2 µm (claim 1). ), 5 to 99 parts (parts by weight, the same applies hereinafter) of the polyorganosiloxane particles (A) and 95 to 1 part of the vinyl monomer (B) in a total amount of 100 parts.
The flame-retardant resin according to claim 1, which is obtained by graft polymerization so as to be a part, wherein the vinyl monomer (B) is an aromatic vinyl monomer and a vinyl cyanide monomer. 3. The flame retardant according to claim 1, wherein the flame retardant is at least one member selected from the group consisting of a monomer, a vinyl halide monomer, a (meth) acrylate monomer and a carboxyl group-containing vinyl monomer. 1 to 99 parts of the thermoplastic resin (Claim 3) and 1 to 99 parts of the thermoplastic resin, and 1 to 99 parts of the flame retardant resin according to claim 1, 2 or 3 so that the total amount is 100 parts. The flammable resin composition (Claim 4) and the thermoplastic resin are acrylonitrile-styrene copolymer, acrylonitrile-butadiene rubber-styrene copolymer (ABS
Resin), acrylonitrile-butadiene rubber-α-methylstyrene copolymer, styrene-butadiene rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-acryl rubber-styrene copolymer (AA)
S resin), acrylonitrile-acryl rubber-α-methylstyrene copolymer, styrene-acryl rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-acryl / silicone composite rubber-styrene copolymer, acrylonitrile-acryl / silicone Composite rubber-α-methylstyrene copolymer, styrene-acryl / silicone composite rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin),
5. A thermoplastic resin selected from the group consisting of polycarbonate, polyester, polyvinyl chloride, polypropylene, polyphenylene ether, polystyrene, polymethyl methacrylate, methyl methacrylate-styrene copolymer and polyamide.
The present invention relates to the flame-retardant resin composition described in claim 5.

【0011】[0011]

【発明の実施の形態】本発明の難燃性樹脂は、平均粒子
径が0.008〜0.2μmのポリオルガノシロキサン
系粒子(A)存在下でビニル系単量体(B)を重合して
えられるポリオルガノシロキサン系グラフト共重合体か
らなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The flame retardant resin of the present invention is obtained by polymerizing a vinyl monomer (B) in the presence of polyorganosiloxane particles (A) having an average particle diameter of 0.008 to 0.2 μm. The polyorganosiloxane-based graft copolymer obtained is obtained.

【0012】前記ポリオルガノシロキサン系粒子は、光
散乱法または電子顕微鏡観察から求められる平均粒子径
が0.008〜0.2μmであり、好ましくは0.01
〜0.1μmである。該平均粒子径が0.008μm未
満のものをうることは困難な傾向にあり、0.2μmを
こえるばあいには、難燃性が悪くなる傾向にある。
The polyorganosiloxane-based particles have an average particle size of from 0.008 to 0.2 μm, preferably from 0.01 to 0.2 μm, as determined by light scattering or electron microscopic observation.
0.10.1 μm. It tends to be difficult to obtain particles having an average particle diameter of less than 0.008 μm, and if it exceeds 0.2 μm, the flame retardancy tends to deteriorate.

【0013】前記ポリオルガノシロキサン系粒子は、た
とえば、オルガノシロキサンおよび(または)2官能シ
ラン化合物、3官能以上のシラン化合物およびビニル系
重合性基含有シラン化合物よりなるポリオルガノシロキ
サン形成成分を重合することによりうることができる。
The polyorganosiloxane-based particles are obtained by polymerizing a polyorganosiloxane-forming component composed of, for example, an organosiloxane and / or a bifunctional silane compound, a trifunctional or higher silane compound, and a vinyl polymerizable group-containing silane compound. Can be obtained by

【0014】前記オルガノシロキサンおよび(または)
2官能シラン化合物は、ポリオルガノシロキサン鎖の主
骨格を構成する成分であり、オルガノシロキサンの具体
例としては、たとえばヘキサメチルシクロトリシロキサ
ン、オクタメチルシクロテトラシロキサン、デカメチル
シクロペンタシロキサン、ドデカメチルシクロヘキサシ
ロキサン、トリメチルトリフェニルシクロシロキサンな
どの環状シロキサン、直鎖状オルガノシロキサンオリゴ
マーなど、2官能シラン化合物の具体例としては、ジエ
トキシジメチルシラン、ジメトキシジメチルシラン、ジ
フェニルジメトキシシラン、ジフェニルジエトキシシラ
ン、3−クロロプロピルメチルジメトキシシラン、3−
グリシドキシプロピルメチルジメトキシシラン、ヘプタ
デカフルオロデシルメチルジメトキシシラン、トリフル
オロプロピルメチルジメトキシシラン、オクタデシルメ
チルジメトキシシランなどがあげられる。これらのなか
では、経済性および難燃性が良好という点からオクタメ
チルシクロテトラシロキサンまたは2種以上の環状シロ
キサンからなる混合物を30〜99%(重量%、以下同
様)、さらには50〜99%を含み、残りの成分として
はジフェニルジメトキシシラン、ジフェニルジエトキシ
シランなどが1〜70%、さらには1〜50%を含むも
のが好ましく用いられる。
The above-mentioned organosiloxane and / or
The bifunctional silane compound is a component constituting the main skeleton of the polyorganosiloxane chain. Specific examples of the organosiloxane include, for example, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexene. Specific examples of bifunctional silane compounds such as cyclic siloxanes such as sasiloxane and trimethyltriphenylcyclosiloxane, and linear organosiloxane oligomers include diethoxydimethylsilane, dimethoxydimethylsilane, diphenyldimethoxysilane, diphenyldiethoxysilane, -Chloropropylmethyldimethoxysilane, 3-
Glycidoxypropylmethyldimethoxysilane, heptadecafluorodecylmethyldimethoxysilane, trifluoropropylmethyldimethoxysilane, octadecylmethyldimethoxysilane and the like can be mentioned. Of these, octamethylcyclotetrasiloxane or a mixture of two or more cyclic siloxanes is used in an amount of 30 to 99% (% by weight, hereinafter the same), and more preferably 50 to 99%, in terms of economy and flame retardancy. And the remaining components are preferably those containing 1 to 70%, more preferably 1 to 50%, of diphenyldimethoxysilane, diphenyldiethoxysilane and the like.

【0015】前記3官能以上のシラン化合物は、前記オ
ルガノシロキサン、2官能シラン化合物と共重合するこ
とによりポリオルガノシロキサンに架橋構造を導入して
ゴム弾性を付与するための成分、すなわちポリオルガノ
シロキサンの架橋剤として用いられる。具体例として
は、テトラエトキシシラン、メチルトリエトキシシラ
ン、メチルトリメトキシシラン、エチルトリエトキシシ
ラン、3−グリシドキシプロピルトリメトキシシラン、
ヘプタデカフルオロデシルトリメトキシシラン、トリフ
ルオロプロピルトリメトキシシラン、オクタデシルトリ
メトキシシランなどの4官能、3官能のアルコキシシラ
ン化合物などがあげられる。これらのなかではテトラエ
トキシシラン、メチルトリエトキシシラン、メチルトリ
メトキシシランが架橋効率の高さの点から好ましく用い
られる。
The trifunctional or higher functional silane compound is a component for imparting rubber elasticity by introducing a crosslinked structure into the polyorganosiloxane by copolymerizing with the organosiloxane and the bifunctional silane compound, that is, the polyorganosiloxane. Used as a crosslinking agent. Specific examples include tetraethoxysilane, methyltriethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane,
Examples thereof include tetrafunctional and trifunctional alkoxysilane compounds such as heptadecafluorodecyltrimethoxysilane, trifluoropropyltrimethoxysilane, and octadecyltrimethoxysilane. Of these, tetraethoxysilane, methyltriethoxysilane, and methyltrimethoxysilane are preferably used from the viewpoint of high crosslinking efficiency.

【0016】前記ビニル系重合性基含有シラン化合物
は、前記オルガノシロキサン、2官能シラン化合物、3
官能以上のシラン化合物などと共重合し、共重合体の側
鎖または末端にビニル系重合性基を導入するための成分
であり、このビニル系重合性基は後述するビニル系単量
体(B)から形成されるビニル系(共)重合体と化学結
合する際のグラフト活性点として作用する。さらには、
ラジカル重合開始剤によってグラフト活性点間をラジカ
ル反応させて架橋結合を形成させることができ架橋剤と
しても使用できる成分でもある。このときのラジカル重
合開始剤は後述のグラフト重合において使用されうるも
のと同じものが使用できる。なお、ラジカル反応によっ
て架橋させたばあいでも、一部はグラフト活性点として
残るのでグラフトは可能である。
The vinyl-based polymerizable group-containing silane compound includes the organosiloxane, the bifunctional silane compound,
It is a component for copolymerizing with a silane compound or the like having higher functionality to introduce a vinyl polymerizable group into a side chain or a terminal of the copolymer. The vinyl polymerizable group is a vinyl monomer (B ) Acts as a graft active site when chemically bonding with a vinyl (co) polymer formed from the polymer. Moreover,
It is also a component that can form a cross-link by a radical reaction between the graft active points by a radical polymerization initiator and can be used as a cross-linking agent. At this time, the same radical polymerization initiator that can be used in the later-described graft polymerization can be used. Even when cross-linked by a radical reaction, grafting is possible because a part remains as a graft active site.

【0017】前記ビニル系重合性基含有シラン化合物の
具体例としては、たとえば、一般式(I):
Specific examples of the silane compound having a vinyl polymerizable group include, for example, a compound represented by the following general formula (I):

【0018】[0018]

【化1】 (式中、R1は水素原子、メチル基、R2は炭素数1〜6
の1価の炭化水素基、Xは炭素数1〜6のアルコキシ
基、aは0、1または2、pは1〜6の数を示す)で表
わされるシラン化合物、一般式(II):
Embedded image (Wherein, R 1 is a hydrogen atom, a methyl group, and R 2 is a C 1-6
X is an alkoxy group having 1 to 6 carbon atoms, a is 0, 1 or 2, and p is a number of 1 to 6), a silane compound represented by the general formula (II):

【0019】[0019]

【化2】 (式中、R2、X、a、pは一般式(I)と同じ)で表
わされるシラン化合物、一般式(III):
Embedded image (Wherein R 2 , X, a, and p are the same as those in the general formula (I)), and a general formula (III):

【0020】[0020]

【化3】 (式中、R2、X、a、pは一般式(I)と同じ)で表
わされるシラン化合物、一般式(IV):
Embedded image (Wherein R 2 , X, a, and p are the same as those in the general formula (I)), and a silane compound represented by the general formula (IV):

【0021】[0021]

【化4】 (式中、R2、X、a、pは一般式(I)と同じ、R3
炭素数1〜6の2価の炭化水素基を示す)で表わされる
シラン化合物、一般式(V):
Embedded image (Wherein R 2 , X, a, and p are the same as in the general formula (I), and R 3 is a divalent hydrocarbon group having 1 to 6 carbon atoms), a silane compound represented by the general formula (V) :

【0022】[0022]

【化5】 (式中、R2、X、a、pは一般式(I)と同じ、R4
炭素数1〜18の2価の炭化水素基を示す)で表わされ
るシラン化合物などがあげられる。
Embedded image (Wherein R 2 , X, a, and p are the same as those in the general formula (I), and R 4 is a divalent hydrocarbon group having 1 to 18 carbon atoms).

【0023】一般式(I)〜(V)のR2の具体例とし
ては、たとえばメチル基、エチル基、プロピル基などの
アルキル基、フェニル基などがあげられ、また、Xの具
体例としては、たとえばメトキシ基、エトキシ基、プロ
ポキシ基、ブトキシ基などの炭素数1〜6のアルコキシ
基などがあげられる。また、一般式(IV)のR3の具体
例としては、メチレン基、エチレン基、プロピレン基、
ブチレン基などがあげられ、一般式(V)のR4の具体
例としては、メチレン基、エチレン基、プロピレン基、
ブチレン基などがあげられる。
Specific examples of R 2 in the general formulas (I) to (V) include, for example, an alkyl group such as a methyl group, an ethyl group and a propyl group, and a phenyl group. Examples thereof include an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group and a butoxy group. Specific examples of R 3 in the general formula (IV) include a methylene group, an ethylene group, a propylene group,
Examples of R 4 in the general formula (V) include a methylene group, an ethylene group, a propylene group, and a butylene group.
Butylene groups and the like.

【0024】一般式(I)で表わされるシラン化合物の
具体例としては、たとえばβ−メタクリロイルオキシエ
チルジメトキシメチルシラン、γ−メタクリロイルオキ
シプロピルジメトキシメチルシラン、γ−メタクリロイ
ルオキシプロピルトリメトキシシラン、γ−メタクリロ
イルオキシプロピルジメチルメトキシシラン、γ−メタ
クリロイルオキシプロピルトリエトキシシラン、γ−メ
タクリロイルオキシプロピルジエトキシメチルシラン、
γ−メタクリロイルオキシプロピルトリプロポキシシラ
ン、γ−メタクリロイルオキシプロピルジプロポキシメ
チルシラン、γ−アクリロイルオキシプロピルジメチル
メトキシシラン、γ−アクリロイルオキシプロピルトリ
メトキシシランなどが、一般式(II)ので表わされるシ
ラン化合物の具体例としては、p−ビニルフェニルジメ
トキシメチルシラン、p−ビニルフェニルトリメトキシ
シラン、p−ビニルフェニルトリエトキシシラン、p−
ビニルフェニルジエトキシメチルシランなどが、一般式
(III)で表わされるシラン化合物の具体例としては、
たとえばビニルメチルジメトキシシラン、ビニルメチル
ジエトキシシラン、ビニルトリメトキシシラン、ビニル
トリエトキシシランなどが、一般式(IV)で表わされる
シラン化合物の具体例としては、アリルメチルジメトキ
シシラン、アリルメチルジエトキシシラン、アリルトリ
メトキシシラン、アリルトリエトキシシランなどが、一
般式(V)で表わされるシラン化合物の具体例として
は、メルカプトプロピルトリメトキシシラン、メルカプ
トプロピルジメトキシメチルシランなどがあげられる。
これらのなかでは一般式(I)、一般式(II)、一般式
(V)で表わされるシラン化合物が経済性の点から好ま
しく用いられる。
Specific examples of the silane compound represented by the general formula (I) include, for example, β-methacryloyloxyethyldimethoxymethylsilane, γ-methacryloyloxypropyldimethoxymethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyl Oxypropyldimethylmethoxysilane, γ-methacryloyloxypropyltriethoxysilane, γ-methacryloyloxypropyldiethoxymethylsilane,
γ-methacryloyloxypropyltripropoxysilane, γ-methacryloyloxypropyldipropoxymethylsilane, γ-acryloyloxypropyldimethylmethoxysilane, γ-acryloyloxypropyltrimethoxysilane, etc. are silane compounds represented by the general formula (II). Specific examples include p-vinylphenyldimethoxymethylsilane, p-vinylphenyltrimethoxysilane, p-vinylphenyltriethoxysilane,
Specific examples of the silane compound represented by the general formula (III) include vinylphenyldiethoxymethylsilane and the like.
Specific examples of the silane compound represented by the general formula (IV) include, for example, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane. Allylmethyldimethoxysilane, allylmethyldiethoxysilane Specific examples of the silane compound represented by general formula (V) include allyltrimethoxysilane, allyltriethoxysilane, and the like include mercaptopropyltrimethoxysilane, mercaptopropyldimethoxymethylsilane, and the like.
Among them, the silane compounds represented by the general formulas (I), (II) and (V) are preferably used from the viewpoint of economy.

【0025】なお、前記ビニル系重合性基含有シラン化
合物がトリアルコキシシラン型であるばあいには、架橋
剤としても作用する。
When the vinyl-based polymerizable group-containing silane compound is of the trialkoxysilane type, it also functions as a crosslinking agent.

【0026】前記オルガノシロキサン、2官能シラン化
合物、3官能以上のシラン化合物、およびビニル系重合
性基含有シラン化合物の重合時の使用割合は、通常、オ
ルガノシロキサンおよび/または2官能シラン化合物
(オルガノシロキサンと2官能シラン化合物との割合
は、通常重量比で100/0〜0/100、さらには9
8/2〜40/60)50〜100%、さらには60〜
98%、3官能以上のシラン化合物0〜50%、さらに
は1〜39%、ビニル系重合性基含有シラン化合物0〜
40%、さらには1〜30%であるのが好ましい。
The proportion of the organosiloxane, the bifunctional silane compound, the trifunctional or higher silane compound, and the vinyl-based polymerizable group-containing silane compound used in the polymerization is usually the ratio of the organosiloxane and / or the bifunctional silane compound (organosiloxane). And the bifunctional silane compound is usually in a weight ratio of 100/0 to 0/100, more preferably 9/0 to 0/100.
8/2 to 40/60) 50 to 100%, and even 60 to
98%, trifunctional or higher silane compound 0 to 50%, further 1 to 39%, vinyl type polymerizable group-containing silane compound 0 to 0%
It is preferably 40%, more preferably 1 to 30%.

【0027】前記オルガノシロキサンおよび2官能シラ
ン化合物の使用割合が50%未満のばあいには、樹脂が
脆くなる傾向がある。また、3官能以上のシラン化合物
およびビニル系重合性基含有シラン化合物は任意成分で
あるが、使用割合が多すぎるばあい、えられる樹脂が脆
くなる傾向がある。
When the use ratio of the organosiloxane and the bifunctional silane compound is less than 50%, the resin tends to become brittle. Further, a silane compound having three or more functional groups and a silane compound having a vinyl polymerizable group are optional components. However, if the use ratio is too large, the obtained resin tends to become brittle.

【0028】前記ポリオルガノシロキサン系粒子は、た
とえば、前記オルガノシロキサンおよび(または)2官
能シラン化合物、3官能以上のシラン化合物および要す
ればビニル系重合性基含有シラン化合物からなるポリオ
ルガノシロキサン形成成分を乳化重合することにより製
造することが好ましい。
The polyorganosiloxane-based particles include, for example, a polyorganosiloxane-forming component comprising the organosiloxane and / or a bifunctional silane compound, a trifunctional or higher silane compound, and optionally a vinyl-based polymerizable group-containing silane compound. Is preferably produced by emulsion polymerization.

【0029】前記乳化重合は、たとえば、前記ポリオル
ガノシロキサン形成成分、水および乳化剤を機械的剪断
により乳化してえられた、数μm以上の乳化液滴からな
るエマルジョンの1〜50%を先に酸性状態で加熱して
乳化重合し、つづいて、えられたポリオルガノシロキサ
ン存在下で残りのエマルジョンを追加して重合すること
が好ましい。
In the emulsion polymerization, for example, 1 to 50% of an emulsion composed of emulsified droplets of several μm or more obtained by emulsifying the polyorganosiloxane-forming component, water and an emulsifier by mechanical shearing is first used. It is preferable to carry out emulsion polymerization by heating in an acidic state, and then to carry out polymerization by adding the remaining emulsion in the presence of the obtained polyorganosiloxane.

【0030】かかる方法でえられるポリオルガノシロキ
サン系粒子の平均粒子径は、乳化剤の量により0.00
8〜0.2μmの範囲で制御可能である。該ポリオルガ
ノシロキサン系粒子の粒子径分布の変動係数(100×
標準偏差/平均粒子径(%))は、樹脂の成形体表面外
観が良好という点で、好ましくは10〜100%、さら
には好ましくは20〜60%に制御するのが望ましい。
The average particle size of the polyorganosiloxane-based particles obtained by such a method is 0.00 0.00% depending on the amount of the emulsifier.
It can be controlled in the range of 8 to 0.2 μm. Coefficient of variation of the particle size distribution of the polyorganosiloxane-based particles (100 ×
The standard deviation / average particle size (%)) is preferably controlled to 10 to 100%, more preferably 20 to 60%, from the viewpoint that the surface appearance of the resin molded article is good.

【0031】なお、数μm以上のエマルジョン滴は、ホ
モミキサーなど高速撹拌機を使用することにより調製で
きる。
Incidentally, emulsion droplets of several μm or more can be prepared by using a high-speed stirrer such as a homomixer.

【0032】前記乳化重合では、酸性状態下で乳化能を
失わない乳化剤が用いられる。具体例としては、アルキ
ルベンゼンスルホン酸、アルキルベンゼンスルホン酸ナ
トリウム、アルキルスルホン酸、アルキルスルホン酸ナ
トリウム、(ジ)アルキルスルホコハク酸ナトリウム、
ポリオキシエチレンノニルフェニルエーテルスルホン酸
ナトリウム、アルキル硫酸ナトリウムなどがあげられ
る。これらは単独で用いてもよく2種以上を組み合わせ
て用いてもよい。これらのなかで、アルキルベンゼンス
ルホン酸、アルキルベンゼンスルホン酸ナトリウム、ア
ルキルスルホン酸、アルキルスルホン酸ナトリウム、
(ジ)アルキルスルホコハク酸ナトリウムがエマルジョ
ンの乳化安定性が比較的高いことから好ましい。さら
に、アルキルベンゼンスルホン酸およびアルキルスルホ
ン酸はポリオルガノシロキサン形成成分の重合触媒とし
ても作用するので特に好ましい。
In the emulsion polymerization, an emulsifier that does not lose emulsifying ability under an acidic condition is used. Specific examples include alkylbenzenesulfonic acid, sodium alkylbenzenesulfonic acid, alkylsulfonic acid, sodium alkylsulfonic acid, sodium (di) alkylsulfosuccinate,
Examples thereof include sodium polyoxyethylene nonyl phenyl ether sulfonate and sodium alkyl sulfate. These may be used alone or in combination of two or more. Among these, alkyl benzene sulfonic acid, sodium alkyl benzene sulfonate, alkyl sulfonic acid, sodium alkyl sulfonate,
Sodium (di) alkyl sulfosuccinate is preferred because the emulsion has a relatively high emulsion stability. Further, alkylbenzene sulfonic acid and alkyl sulfonic acid are particularly preferred because they also act as polymerization catalysts for the polyorganosiloxane-forming component.

【0033】酸性状態は、系に硫酸や塩酸などの無機酸
やアルキルベンゼンスルホン酸、アルキルスルホン酸、
トリフルオロ酢酸などの有機酸を添加することでえら
れ、pHは生産設備を腐食させないことや適度な重合速
度がえられるという点で1〜3に調整することが好まし
く、さらに1.2〜2.5に調整することがより好まし
い。
The acidic state may be determined by adding inorganic acids such as sulfuric acid and hydrochloric acid, alkylbenzenesulfonic acid, alkylsulfonic acid,
It is preferably obtained by adding an organic acid such as trifluoroacetic acid, and the pH is preferably adjusted to 1 to 3 from the viewpoint that the production equipment is not corroded and an appropriate polymerization rate can be obtained. It is more preferable to adjust to 0.5.

【0034】重合のための加熱は適度な重合速度がえら
れるという点で60〜120℃が好ましく、70〜10
0℃がより好ましい。
The heating for the polymerization is preferably from 60 to 120 ° C. from the viewpoint that an appropriate polymerization rate can be obtained, and from 70 to 10 ° C.
0 ° C. is more preferred.

【0035】なお、酸性状態下ではポリオルガノシロキ
サンの骨格を形成しているSi−O−Si結合は切断と
生成の平衡状態にあり、この平衡は温度によって変化す
るので、ポリオルガノシロキサン鎖の安定化のために、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムな
どのアルカリ水溶液の添加により中和することが好まし
い。さらには、該平衡は、低温になるほど生成側によ
り、高分子量または高架橋度のものが生成しやすくなる
ので、高分子量または高架橋度のものをうるためには、
ポリオルガノシロキサン形成成分の重合を60℃以上で
行ったあと室温以下に冷却して5〜100時間程度保持
してから中和することが好ましい。
In an acidic condition, the Si—O—Si bond forming the skeleton of the polyorganosiloxane is in an equilibrium state of cleavage and formation, and this equilibrium changes with temperature. For
The neutralization is preferably performed by adding an aqueous alkali solution such as sodium hydroxide, potassium hydroxide and sodium carbonate. Furthermore, since the equilibrium is more likely to produce a high molecular weight or a high degree of cross-linking due to the generation side as the temperature decreases, in order to obtain a high molecular weight or a high degree of cross-linking,
The polymerization of the polyorganosiloxane-forming component is preferably carried out at 60 ° C. or higher, cooled to room temperature or lower and maintained for about 5 to 100 hours before neutralization.

【0036】かくして、えられるポリオルガノシロキサ
ン系粒子は、たとえば、オルガノシロキサンおよび(ま
たは)2官能シラン化合物、3官能以上のシラン化合物
から形成されたばあい、それらは通常ランダムに共重合
して架橋された網目構造を有している。また、ビニル系
重合性基含有シラン化合物を共重合したばあい、ビニル
系重合性基を有した架橋構造を有したものとなる。さら
に、後述するグラフト重合時に用いられるようなラジカ
ル重合開始剤によってビニル系重合性基間をラジカル反
応により架橋させたばあい、ビニル系重合性基間が化学
結合した架橋構造を有し、かつ一部未反応のビニル系重
合性基が残存したものとなる。該ポリオルガノシロキサ
ン系粒子のトルエン不溶分量(該粒子0.5gをトルエ
ン80mlに室温で24時間浸漬したばあいのトルエン
不溶分量)は、難燃効果の点から、20〜95%が好ま
しく、さらには30〜95%がより好ましい。
Thus, when the obtained polyorganosiloxane-based particles are formed from, for example, an organosiloxane and / or a bifunctional silane compound or a trifunctional or higher silane compound, they are usually copolymerized at random and crosslinked. It has a mesh structure. When a silane compound containing a vinyl polymerizable group is copolymerized, a silane compound having a vinyl polymerizable group has a crosslinked structure. Further, when the vinyl-based polymerizable groups are cross-linked by a radical reaction with a radical polymerization initiator used at the time of the graft polymerization described later, the vinyl-based polymerizable groups have a cross-linked structure in which they are chemically bonded, and Part of the unreacted vinyl polymerizable group remains. The amount of toluene-insoluble matter in the polyorganosiloxane-based particles (the amount of toluene-insoluble matter when 0.5 g of the particles is immersed in 80 ml of toluene at room temperature for 24 hours) is preferably 20 to 95% from the viewpoint of the flame retardant effect. 30-95% is more preferred.

【0037】前記プロセスでえられたポリオルガノシロ
キサン系粒子にビニル系単量体(B)をグラフト重合さ
せることによりポリオルガノシロキサン系グラフト共重
合体からなる難燃樹脂がえられる。
By graft-polymerizing the vinyl monomer (B) to the polyorganosiloxane particles obtained in the above process, a flame-retardant resin comprising a polyorganosiloxane graft copolymer can be obtained.

【0038】前記難燃樹脂は、前記ポリオルガノシロキ
サン系粒子にビニル系単量体(B)がグラフトした構造
のものであり、そのグラフト率は1〜500%、さらに
は5〜300%のものが、難燃性−耐衝撃性のバランス
が良好な点から好ましい。
The flame-retardant resin has a structure in which a vinyl-based monomer (B) is grafted to the polyorganosiloxane-based particles, and has a graft ratio of 1 to 500%, and more preferably 5 to 300%. However, it is preferable in terms of a good balance between flame retardancy and impact resistance.

【0039】前記ビニル系単量体(B)は、ポリオルガ
ノシロキサン系グラフト共重合体からなる難燃樹脂をう
るために使用される成分であるが、さらには該難燃樹脂
を熱可塑性樹脂に配合して難燃化を付与するばあいに、
難燃樹脂と熱可塑性樹脂との相溶性を確保して熱可塑性
樹脂に難燃樹脂を均一に分散させるために使用される成
分でもある。
The vinyl monomer (B) is a component used to obtain a flame-retardant resin comprising a polyorganosiloxane-based graft copolymer, and the flame-retardant resin is further converted into a thermoplastic resin. When adding flame retardancy by blending,
It is also a component used to ensure compatibility between the flame-retardant resin and the thermoplastic resin and to uniformly disperse the flame-retardant resin in the thermoplastic resin.

【0040】ビニル系単量体(B)の使用量は、前記ポ
リオルガノシロキサン系粒子5〜99部、さらに10〜
99部に対して合計量が100部になるように95〜1
部、さらには90〜1部であるのが好ましい。
The amount of the vinyl monomer (B) used is 5 to 99 parts of the polyorganosiloxane particles, and
95-1 so that the total amount becomes 100 parts for 99 parts
Parts, more preferably 90 to 1 part.

【0041】前記ビニル系単量体(B)の使用量が多す
ぎるばあいには、難燃性が十分発現しなくなり、少なす
ぎるばあいは、成形体表面外観または耐衝撃性が悪くな
る傾向にある。
If the amount of the vinyl monomer (B) is too large, the flame retardancy will not be sufficiently exhibited, and if the amount is too small, the surface appearance or impact resistance of the molded article tends to deteriorate. It is in.

【0042】前記ビニル系単量体(B)としては、たと
えばスチレン、α−メチルスチレン、パラメチルスチレ
ン、パラブチルスチレンなどの芳香族ビニル系単量体、
アクリロニトリル、メタクリロニトリルなどのシアン化
ビニル系単量体、塩化ビニル、塩化ビニリデン、フッ化
ビニリデンなどのハロゲン化ビニル系単量体、アクリル
酸メチル、アクリル酸エチル、アクリル酸プロピル、ア
クリル酸ブチル、アクリル酸−2−エチルヘキシル、ア
クリル酸グリシジル、アクリル酸ヒドロキシエチル、メ
タクリル酸メチル、メタクリル酸エチル、メタクリル酸
ブチル、メタクリル酸ラウリル、メタクリル酸グリシジ
ル、メタクリル酸ヒドロキシエチルなどの(メタ)アク
リル酸エステル系単量体、イタコン酸、(メタ)アクリ
ル酸、フマル酸、マレイン酸などのカルボキシル基含有
ビニル系単量体などがあげられる。これらは単独で用い
てもよく2種以上を組み合わせて用いてもよい。
Examples of the vinyl monomer (B) include aromatic vinyl monomers such as styrene, α-methylstyrene, paramethylstyrene, and parabutylstyrene.
Acrylonitrile, vinyl cyanide monomers such as methacrylonitrile, vinyl chloride, vinylidene chloride, vinyl halide monomers such as vinylidene fluoride, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, (Meth) acrylic acid esters such as 2-ethylhexyl acrylate, glycidyl acrylate, hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, lauryl methacrylate, glycidyl methacrylate, and hydroxyethyl methacrylate And carboxyl group-containing vinyl monomers such as isomers, itaconic acid, (meth) acrylic acid, fumaric acid, and maleic acid. These may be used alone or in combination of two or more.

【0043】前記グラフト重合は、通常のシード乳化重
合が適用でき、ポリオルガノシロキサン系粒子(A)の
エマルジョン中で前記ビニル系単量体(B)のラジカル
重合を行なえばよい。また、ビニル系単量体(B)は、
1段で重合させてもよく2段以上で重合させてもよい。
For the graft polymerization, ordinary seed emulsion polymerization can be applied, and the radical polymerization of the vinyl monomer (B) may be performed in an emulsion of the polyorganosiloxane particles (A). Further, the vinyl monomer (B) is
The polymerization may be carried out in one stage or in two or more stages.

【0044】前記ラジカル重合としては、ラジカル重合
開始剤を熱分解することにより反応を進行させる方法で
も、また、還元剤を使用するレドックス系での反応など
とくに限定なく行なうことができる。
The radical polymerization can be carried out by a method in which the reaction proceeds by thermally decomposing a radical polymerization initiator, or in a redox system using a reducing agent without any particular limitation.

【0045】前記ラジカル重合開始剤としてはクメンハ
イドロパーオキサイド、t−ブチルハイドロパーオキサ
イド、ベンゾイルパーオキサイド、t−ブチルパーオキ
シイソプロピルカーボネート、ジ−t−ブチルパーオキ
サイド、t−ブチルパーオキシラウレート、ラウロイル
パーオキサイドなどの有機過酸化物、過硫酸カリウム、
過硫酸アンモニウムなどの無機過酸化物、2,2’−ア
ゾビスイソブチロニトリル、2,2’−アゾビス−2,
4−ジメチルバレロニトリルなどのアゾ化合物などがあ
げられる。こられのなでは、有機過酸化物または無機過
酸化物が高い反応性を有するという点から好ましく使用
される。
Examples of the radical polymerization initiator include cumene hydroperoxide, t-butyl hydroperoxide, benzoyl peroxide, t-butylperoxyisopropyl carbonate, di-t-butyl peroxide, t-butylperoxylaurate, Organic peroxides such as lauroyl peroxide, potassium persulfate,
Inorganic peroxides such as ammonium persulfate, 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,
Examples include azo compounds such as 4-dimethylvaleronitrile. Among these, organic peroxides or inorganic peroxides are preferably used because they have high reactivity.

【0046】また、前記レドックス系で使用される還元
剤としては硫酸第一鉄/グルコース/ピロリン酸ナトリ
ウム、硫酸第一鉄/デキストロース/ピロリン酸ナトリ
ウム、または硫酸第一鉄/ナトリウムホルムアルデヒド
スルホキシレート/エチレンジエアミン酢酸塩などの混
合物などがあげられる。
As the reducing agent used in the redox system, ferrous sulfate / glucose / sodium pyrophosphate, ferrous sulfate / dextrose / sodium pyrophosphate, or ferrous sulfate / sodium formaldehyde sulfoxylate / A mixture of ethylenediamine acetate and the like can be mentioned.

【0047】前記ラジカル重合開始剤の使用量は、用い
られるポリオルガノシロキサン成分100部に対して、
通常、0.005〜20部、さらには0.01〜10部
であり、とくには0.03〜5部であるのが好ましい。
前記ラジカル重合開始剤の量が0.005部未満のばあ
いには反応速度が低く、生産効率がわるくなる傾向があ
り、20部をこえると反応中の発熱が大きくなり生産が
難しくなる傾向がある。
The amount of the radical polymerization initiator used is based on 100 parts of the polyorganosiloxane component used.
Usually, it is 0.005 to 20 parts, more preferably 0.01 to 10 parts, and particularly preferably 0.03 to 5 parts.
When the amount of the radical polymerization initiator is less than 0.005 parts, the reaction rate tends to be low and the production efficiency tends to be poor. When the amount exceeds 20 parts, the heat generation during the reaction tends to increase and the production tends to be difficult. is there.

【0048】また、ラジカル重合の際に要すれば連鎖移
動剤も使用できる。該連鎖移動剤は通常の乳化重合で用
いられているものであればよく、とくに限定はされな
い。
Further, a chain transfer agent can be used if necessary at the time of radical polymerization. The chain transfer agent is not particularly limited as long as it is one used in ordinary emulsion polymerization.

【0049】前記連鎖移動剤の具体例としては、t−ド
デシルメルカプタン、n−オクチルメルカプタン、n−
テトラデシルメルカプタン、n−ヘキシルメルカプタン
などがあげられる。
Specific examples of the chain transfer agent include t-dodecyl mercaptan, n-octyl mercaptan, and n-octyl mercaptan.
Examples include tetradecyl mercaptan and n-hexyl mercaptan.

【0050】連鎖移動剤は任意成分であるが、使用する
ばあいの使用量は、ビニル系単量体(B)100部に対
して0.01〜5部であることが好ましい。前記連鎖移
動剤の量が0.01部未満のばあいには用いた効果がえ
られず、5部をこえると重合速度が遅くなり生産効率が
低くなる傾向がある。
The chain transfer agent is an optional component. When used, the amount of the chain transfer agent is preferably 0.01 to 5 parts based on 100 parts of the vinyl monomer (B). When the amount of the chain transfer agent is less than 0.01 part, the effect obtained is not obtained. When the amount exceeds 5 parts, the polymerization rate tends to be slow and the production efficiency tends to be low.

【0051】また、重合時の反応温度は、通常30〜1
20℃であるのが好ましい。
The reaction temperature during the polymerization is usually 30 to 1
Preferably it is 20 ° C.

【0052】前記重合では、ポリオルガノシロキサン系
粒子(A)がビニル系重合性基を含有するばあいにはビ
ニル系単量体(B)がラジカル重合開始剤によって重合
する際に、ポリオルガノシロキサン系粒子(A)のビニ
ル系重合性基と反応することにより、グラフトが形成さ
れる。ポリオルガノシロキサン系粒子(A)にビニル重
合性基が存在しないばあい、特定のラジカル開始剤、た
とえばt−ブチルパーオキシラウレートなどを用いれ
ば、ケイ素原子に結合したメチル基などの有機基から水
素を引く抜き、生成したラジカルによってビニル系単量
体(B)が重合しグラフトが形成される。
In the above polymerization, when the polyorganosiloxane-based particles (A) contain a vinyl-based polymerizable group, the polyorganosiloxane-based particles (B) are polymerized by a radical polymerization initiator. The graft is formed by reacting with the vinyl polymerizable group of the system particles (A). When a vinyl polymerizable group is not present in the polyorganosiloxane-based particles (A), a specific radical initiator such as t-butylperoxylaurate can be used to convert an organic group such as a methyl group bonded to a silicon atom. Withdrawing hydrogen, the vinyl-based monomer (B) is polymerized by the generated radical to form a graft.

【0053】また、ビニル系単量体(B)のうちの0.
1〜30%、好ましくは0.5〜20%をビニル系重合
性基含有シラン化合物を用いて重合し、pH5以下の酸
性状態下で再分配反応させてもグラフトが生成する。こ
れは、酸性状態ではポリオルガノシロキサンの主骨格の
Si−O−Si結合は、切断と生成の平衡状態にあるの
で、この平衡状態でビニル系単量体とビニル系重合性基
含有シラン化合物を共重合すると、重合によって生成中
あるいは生成したビニル系共重合体の側鎖のシランがポ
リオルガノシロキサン鎖と反応してグラフトが生成する
のである。該ビニル系重合性基含有シラン化合物は、ポ
リオルガノシロキサン系粒子(A)の製造時に必要あれ
ば使用されるものと同じものでよく、該ビニル系重合性
基含有シラン化合物の量が0.1%未満のばあいには、
ビニル系単量体(B)のグラフトする割合が低下し、3
0%をこえるばあいには、エマルジョンの安定性が低く
なる傾向にある。
Further, 0.1% of the vinyl monomer (B) is used.
Even when 1 to 30%, preferably 0.5 to 20% is polymerized using a vinyl-based polymerizable group-containing silane compound, and a redistribution reaction is performed under an acidic condition of pH 5 or less, a graft is formed. This is because the Si-O-Si bond of the main skeleton of the polyorganosiloxane is in an equilibrium state of cleavage and formation in an acidic state, and in this equilibrium state, the vinyl-based monomer and the vinyl-based polymerizable group-containing silane compound are separated. Upon copolymerization, the silane in the side chain of the vinyl copolymer being produced or produced by the polymerization reacts with the polyorganosiloxane chain to produce a graft. The vinyl-based polymerizable group-containing silane compound may be the same as that used if necessary at the time of producing the polyorganosiloxane-based particles (A), and the amount of the vinyl-based polymerizable group-containing silane compound is 0.1%. If the percentage is less than
The rate of grafting of the vinyl monomer (B) decreases, and 3
If it exceeds 0%, the stability of the emulsion tends to decrease.

【0054】なお、ポリオルガノシロキサン系粒子の存
在下でのビニル系単量体(B)の重合では、グラフト共
重合体の枝にあたる部分(ここでは、ビニル系単量体
(B)の重合体)が幹成分(ここではポリオルガノシロ
キサン系粒子(A))にグラフトせずに枝成分だけで単
独に重合してえられるいわゆるフリーポリマーも副生
し、グラフト共重合体とフリーポリマーの混合物として
えられるが、本発明においてはこの両者を併せてグラフ
ト共重合体という。
In the polymerization of the vinyl monomer (B) in the presence of the polyorganosiloxane particles, a portion corresponding to a branch of the graft copolymer (here, a polymer of the vinyl monomer (B)) is used. ) Does not graft onto the trunk component (here, polyorganosiloxane-based particles (A)), but also produces a so-called free polymer, which is obtained by polymerizing solely with the branch component alone, as a mixture of the graft copolymer and the free polymer. In the present invention, both are collectively referred to as a graft copolymer.

【0055】乳化重合によってえられたグラフト共重合
体からなる難燃樹脂は、エマルジョンからポリマーを分
離して使用してもよく、エマルジョンのまま使用しても
よい。ポリマーを分離する方法としては、通常の方法、
たとえばエマルジョンに塩化カルシウム、塩化マグネシ
ウム、硫酸マグネシウムなどの金属塩を添加することに
よりエマルジョンを凝固、分離、水洗、脱水し、乾燥す
る方法があげられる。また、スプレー乾燥法も使用でき
る。
The flame-retardant resin comprising the graft copolymer obtained by emulsion polymerization may be used by separating the polymer from the emulsion or may be used as it is. As a method for separating the polymer, a usual method,
For example, there is a method in which a metal salt such as calcium chloride, magnesium chloride, and magnesium sulfate is added to the emulsion to coagulate, separate, wash, dehydrate, and dry the emulsion. Also, a spray drying method can be used.

【0056】このようにしてえられるグラフト共重合体
からなる難燃樹脂は、それ自体、難燃性を有した樹脂
(ポリマーを分離したものまたはエマルジョンのままの
もの)であり、また各種の熱可塑性樹脂に配合され、耐
衝撃性に優れた難燃性樹脂組成物を与える。
The flame-retardant resin comprising the graft copolymer obtained in this manner is a resin having flame retardancy itself (a polymer separated or as an emulsion), and various heat-resistant resins. A flame-retardant resin composition which is blended with a plastic resin and has excellent impact resistance.

【0057】前記熱可塑性樹脂の好ましい具体例として
は、アクリロニトリル−スチレン共重合体、アクリロニ
トリル−ブタジエンゴム−スチレン共重合体(ABS樹
脂)、アクリロニトリル−ブタジエンゴム−α−メチル
スチレン共重合体、スチレン−ブタジエンゴム−アクリ
ロニトリル−N−フェニルマレイミド共重合体、アクリ
ロニトリル−アクリルゴム−スチレン共重合体(AAS
樹脂)、アクリロニトリル−アクリルゴム−α−メチル
スチレン共重合体、スチレン−アクリルゴム−アクリロ
ニトリル−N−フェニルマレイミド共重合体、アクリロ
ニトリル−アクリル/シリコーン複合ゴム−スチレン共
重合体、アクリロニトリル−アクリル/シリコーン複合
ゴム−α−メチルスチレン共重合体、スチレン−アクリ
ル/シリコーン複合ゴム−アクリロニトリル−N−フェ
ニルマレイミド共重合体、アクリロニトリル−エチレン
プロピレンゴム−スチレン共重合体(AES樹脂)、ポ
リカーボネート、ポリエチレンテレフタレートやポリブ
チレンテレフタレートなどのポリエステル、ポリ塩化ビ
ニル、ポリプロピレン、ポリフェニレンエーテル、ポリ
スチレン、ポリメタクリル酸メチル、メタクリル酸メチ
ル−スチレン共重合体およびポリアミドなども用いるこ
とができる。これらは単独で使用してもよく、2種以上
を併用してもよい。
Preferred specific examples of the thermoplastic resin include acrylonitrile-styrene copolymer, acrylonitrile-butadiene rubber-styrene copolymer (ABS resin), acrylonitrile-butadiene rubber-α-methylstyrene copolymer, styrene- Butadiene rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-acryl rubber-styrene copolymer (AAS)
Resin), acrylonitrile-acryl rubber-α-methylstyrene copolymer, styrene-acryl rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-acryl / silicone composite rubber-styrene copolymer, acrylonitrile-acryl / silicone composite Rubber-α-methylstyrene copolymer, styrene-acryl / silicone composite rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin), polycarbonate, polyethylene terephthalate and polybutylene Polyester such as terephthalate, polyvinyl chloride, polypropylene, polyphenylene ether, polystyrene, polymethyl methacrylate, methyl methacrylate-styrene copolymer Body and polyamide can also be used. These may be used alone or in combination of two or more.

【0058】これらのなかで、耐衝撃性−難燃性バラン
スが特に良好な点から、アクリロニトリル−ブタジエン
ゴム−スチレン共重合体(ABS樹脂)、アクリロニト
リル−ブタジエンゴム−α−メチルスチレン共重合体、
スチレン−ブタジエンゴム−アクリロニトリル−N−フ
ェニルマレイミド共重合体、アクリロニトリル−アクリ
ルゴム−スチレン共重合体(AAS樹脂)、アクリロニ
トリル−アクリルゴム−α−メチルスチレン共重合体、
スチレン−アクリルゴム−アクリロニトリル−N−フェ
ニルマレイミド共重合体、アクリロニトリル−アクリル
/シリコーン複合ゴム−スチレン共重合体、アクリロニ
トリル−アクリル/シリコーン複合ゴム−α−メチルス
チレン共重合体、スチレン−アクリル/シリコーン複合
ゴム−アクリロニトリル−N−フェニルマレイミド共重
合体、アクリロニトリル−エチレンプロピレンゴム−ス
チレン共重合体(AES樹脂)、ポリカーボネート、ポ
リエチレンテレフタレートやポリブチレンテレフタレー
トなどのポリエステル、ポリ塩化ビニル、ポリスチレン
などがより好ましい。
Among them, acrylonitrile-butadiene rubber-styrene copolymer (ABS resin), acrylonitrile-butadiene rubber-α-methylstyrene copolymer,
Styrene-butadiene rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-acryl rubber-styrene copolymer (AAS resin), acrylonitrile-acryl rubber-α-methylstyrene copolymer,
Styrene-acrylic rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-acryl / silicone composite rubber-styrene copolymer, acrylonitrile-acryl / silicone composite rubber-α-methylstyrene copolymer, styrene-acryl / silicone composite Rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin), polycarbonate, polyester such as polyethylene terephthalate and polybutylene terephthalate, polyvinyl chloride, and polystyrene are more preferable.

【0059】熱可塑性樹脂に対する前記ポリオルガノシ
ロキサン系グラフト共重合体からなる難燃樹脂の添加量
としては、耐衝撃性−難燃性バランスが良好な点から好
ましくは、熱可塑性樹脂1〜99部、好ましくは1〜9
5部に対して難燃樹脂1〜99部、好ましく5〜99部
を合計量が100部となるように配合することが望まし
い。
The amount of the flame-retardant resin comprising the polyorganosiloxane-based graft copolymer added to the thermoplastic resin is preferably from 1 to 99 parts from the viewpoint of a good balance between impact resistance and flame retardancy. , Preferably 1 to 9
It is desirable to mix 1 to 99 parts, preferably 5 to 99 parts, of the flame retardant resin with 5 parts so that the total amount becomes 100 parts.

【0060】前記エマルジョンから分離されたポリオル
ガノシロキサン系グラフト共重合体からなる難燃樹脂の
粉体と熱可塑性樹脂との混合は、ヘンシェルミキサー、
リボンブレンダーなどで混合したのち、ロール、押出
機、ニーダーなどで熔融混練することにより行うことが
できる。
The mixing of the thermoplastic resin with the flame-retardant resin powder comprising the polyorganosiloxane-based graft copolymer separated from the emulsion was carried out by a Henschel mixer.
After mixing with a ribbon blender or the like, the mixture can be melt-kneaded with a roll, extruder, kneader or the like.

【0061】このとき、通常使用される配合剤、すなわ
ち可塑剤、安定剤、滑剤、紫外線吸収剤、酸化防止剤、
難燃剤、顔料、ガラス繊維、充填剤、高分子加工助剤、
高分子滑剤、耐衝撃性改良剤などを配合することができ
る。
At this time, the commonly used compounding agents, ie, plasticizer, stabilizer, lubricant, ultraviolet absorber, antioxidant,
Flame retardants, pigments, glass fibers, fillers, polymer processing aids,
A polymer lubricant, an impact resistance improver, and the like can be blended.

【0062】前記熱可塑性樹脂が乳化重合法で製造され
るばあいには、該熱可塑性樹脂のエマルジョンとポリオ
ルガノシロキサン系グラフト共重合体からなる難燃樹脂
のエマルジョンとをいずれもエマルジョンの状態でブレ
ンドしたのち、共凝固させることにより熱可塑性樹脂組
成物をうることも可能である。
When the thermoplastic resin is produced by an emulsion polymerization method, both an emulsion of the thermoplastic resin and an emulsion of a flame-retardant resin comprising a polyorganosiloxane-based graft copolymer are prepared in an emulsion state. After blending, it is also possible to obtain a thermoplastic resin composition by co-coagulation.

【0063】えられた熱可塑性樹脂組成物の成形法とし
ては、通常の熱可塑性樹脂組成物の成形に用いられる成
形法、すなわち、射出成形法、押出成形法、ブロー成形
法、カレンダー成形法などを適用することができる。
As the molding method of the obtained thermoplastic resin composition, molding methods used for molding ordinary thermoplastic resin compositions, that is, injection molding method, extrusion molding method, blow molding method, calender molding method, etc. Can be applied.

【0064】えられた成形品は耐衝撃性および難燃性に
優れたものとなる。
The obtained molded article has excellent impact resistance and flame retardancy.

【0065】[0065]

【実施例】本発明を実施例に基づき具体的に説明する
が、本発明はこれらのみに限定されない。
EXAMPLES The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

【0066】なお、以下の実施例および比較例における
測定および試験はつぎのように行った。 [重合転化率]エマルジョンを120℃の熱風乾燥器で
1時間乾燥して固形成分量を求めて、100×固形成分
量/仕込み単量体量(%)で算出した。 [トルエン不溶分量]エマルジョンから乾燥させてえら
れたポリオルガノシロキサン系粒子の固体0.5gを室
温にてトルエン80mlに24時間浸漬し、12000
rpmにて60分間遠心分離してポリオルガノシロキサ
ン系架橋粒子のトルエン不溶分の重量分率(%)を測定
した。 [グラフト率]グラフト共重合体1gを室温にてアセト
ン80mlに48時間浸漬し、12000rpmにて6
0分間遠心分離して求めたグラフト共重合体の不溶分量
(w)を求め、次式によりグラフト率を算出した。
The measurements and tests in the following Examples and Comparative Examples were performed as follows. [Polymerization conversion] The emulsion was dried in a hot air drier at 120 ° C. for 1 hour to determine the amount of solid components, and was calculated as 100 × the amount of solid components / the amount of charged monomers (%). [Toluene-insoluble content] A solid of 0.5 g of polyorganosiloxane-based particles obtained by drying from the emulsion was immersed in 80 ml of toluene at room temperature for 24 hours.
After centrifugation at 60 rpm for 60 minutes, the weight fraction (%) of the toluene-insoluble portion of the polyorganosiloxane-based crosslinked particles was measured. [Graft ratio] 1 g of the graft copolymer was immersed in 80 ml of acetone at room temperature for 48 hours, and then 6 g at 12000 rpm.
The insoluble content (w) of the graft copolymer was determined by centrifugation for 0 minutes, and the graft ratio was calculated by the following equation.

【0067】グラフト率(%)=100×{(w−1×
グラフト共重合体中のポリオルガノシロキサン成分分
率)/(1×グラフト共重合体中のポリオルガノシロキ
サン成分分率)} [平均粒子径]ポリオルガノシロキサン系粒子およびグ
ラフト共重合体の平均粒子径をエマルジョンの状態で測
定した。測定装置として、パシフィック・サイエンティ
フィック(PACIFIC SCIENTIFIC)社
製のNICOMP MODEL370粒子径アナライザ
ーを用いて、光散乱法により体積平均粒子径(μm)お
よび粒子径分布の変動係数(標準偏差/数平均粒子径
(%))を測定した。 [耐衝撃性]ASTM D−256に準じて、ノッチつ
き1/4インチバーまたはノッチつき1/8インチバー
を用いて23℃でのアイゾット試験により評価した。 [難燃性]UL94 V試験およびUL94 HB試験
により評価した。 [表面外観性]難燃性評価に用いる試験片を目視観察し
て次の基準で表面外観性を評価した。
Graft ratio (%) = 100 × {(w−1 ×
Polyorganosiloxane component fraction in graft copolymer) / (1 × polyorganosiloxane component fraction in graft copolymer)} [average particle diameter] average particle diameter of polyorganosiloxane-based particles and graft copolymer Was measured in an emulsion state. Using a NICOMP MODEL370 particle size analyzer manufactured by PACIFIC SCIENTIFIC as a measuring device, the volume average particle diameter (μm) and the coefficient of variation of the particle diameter distribution (standard deviation / number average particle) are measured by a light scattering method. (Diameter (%)) was measured. [Impact resistance] According to ASTM D-256, a notched 1/4 inch bar or a notched 1/8 inch bar was used to evaluate by an Izod test at 23 ° C. [Flame retardancy] Evaluated by UL94 V test and UL94 HB test. [Surface Appearance] The test pieces used for the evaluation of flame retardancy were visually observed, and the surface appearance was evaluated according to the following criteria.

【0068】 ○:表面外観性良好 △:表面にすじ状模様が見られる。:: good surface appearance △: streak pattern is observed on the surface

【0069】 ×:表面にすじ状模様、剥離が見られる。×: Streaky pattern and peeling are observed on the surface.

【0070】また、用いた原材料を以下にまとめて表
す。 PC:ポリカーボネート 出光石油化学(株)製タフロ
ンA−2200 AAS:実施例2で製造されたAAS樹脂 S−1:参考例1で製造されたポリオルガノシロキサン
系粒子 S−2:参考例2で製造されたポリオルガノシロキサン
系粒子 SG−1:実施例1で製造されたポリオルガノシロキサ
ン系グラフト共重合体 SG−2:実施例2で製造されたポリオルガノシロキサ
ン系グラフト共重合体 SG−3:実施例3で製造されたポリオルガノシロキサ
ン系グラフト共重合体 SG’−1:比較例1で製造されたポリオルガノシロキ
サン系グラフト共重合体 参考例1 ポリオルガノシロキサン系粒子(S−1)の
製造 次の成分からなる水溶液をホモミキサーにより1000
0rpmで5分間撹拌してエマルジョンを調製した。
The raw materials used are shown below. PC: polycarbonate Teflon A-2200 manufactured by Idemitsu Petrochemical Co., Ltd. AAS: AAS resin manufactured in Example 2 S-1: polyorganosiloxane-based particles manufactured in Reference Example 1 S-2: manufactured in Reference Example 2 Polyorganosiloxane-based particles SG-1: Polyorganosiloxane-based graft copolymer produced in Example 1 SG-2: Polyorganosiloxane-based graft copolymer produced in Example 2 SG-3: Implementation Polyorganosiloxane-based graft copolymer produced in Example 3 SG'-1: Polyorganosiloxane-based graft copolymer produced in Comparative Example 1 Reference Example 1 Production of polyorganosiloxane-based particles (S-1) Next The aqueous solution comprising the components of
The emulsion was prepared by stirring at 0 rpm for 5 minutes.

【0071】 成分 量(部) 純水 200 ドデシルベンゼンスルホン酸ナトリウム(SDBS) 2.5 オクタメチルシクロテトラシロキサン(D4) 20 このエマルションを撹拌機、還流冷却器、窒素吹込口、
単量体追加口、温度計を備えた5口フラスコに一括して
仕込んだ。系を撹拌しながら、90℃に約40分かけて
昇温後、ドデシルベンゼンスルホン酸(DBSA)を
2.0部添加し、90℃で3時間反応させ、ポリオルガ
ノシロキサンを含むエマルジョンを調製した。このとき
の重合転化率は84%であった。また、エマルジョン中
のポリオルガノシロキサンの平均粒子径は0.03μm
であった。エマルジョンのpHは2.0であった。
Component Amount (parts) Pure water 200 Sodium dodecylbenzenesulfonate (SDBS) 2.5 Octamethylcyclotetrasiloxane (D4) 20 This emulsion was stirred with a stirrer, a reflux condenser, a nitrogen inlet,
The mixture was charged all at once into a 5-neck flask equipped with a monomer addition port and a thermometer. After the temperature was raised to 90 ° C. over about 40 minutes while stirring the system, 2.0 parts of dodecylbenzenesulfonic acid (DBSA) was added and reacted at 90 ° C. for 3 hours to prepare an emulsion containing a polyorganosiloxane. . The polymerization conversion at this time was 84%. The average particle size of the polyorganosiloxane in the emulsion is 0.03 μm.
Met. The pH of the emulsion was 2.0.

【0072】別途、次の成分からなる混合物をホモミキ
サーにより10000rpmで5分間撹拌してポリオル
ガノシロキサン形成成分含有エマルジョンを調製した。
Separately, a mixture comprising the following components was stirred with a homomixer at 10,000 rpm for 5 minutes to prepare a polyorganosiloxane-forming component-containing emulsion.

【0073】 成分 量(部) 純水 70 SDBS 0.5 D4 55 γ―アクリロイルオキシ プロピルトリメトキシシラン(TSA) 5 前記ポリオルガノシロキサンを含むエマルジョンを撹拌
しながら、調製したポリオルガノシロキサン形成成分含
有エマルジョンを一括で添加した。添加1時間後にジフ
ェニルジメトキシシラン20部を2時間かけて滴下添加
し、さらに3時間反応を続けた。その後、25℃に冷却
して、20時間放置後、系のpHを水酸化ナトリウムで
8.2に戻して重合を終了し、ポリオルガノシロキサン
系粒子を含むエマルジョンをえた。重合転化率、ポリオ
ルガノシロキサン系架橋粒子のエマルジョンの平均粒子
径およびトルエン不溶分量を測定し、結果を表1に示
す。
Component Amount (parts) Pure water 70 SDBS 0.5 D455 5 γ-acryloyloxypropyltrimethoxysilane (TSA) 5 Emulsion containing polyorganosiloxane-forming component prepared while stirring the emulsion containing polyorganosiloxane Was added all at once. One hour after the addition, 20 parts of diphenyldimethoxysilane was added dropwise over 2 hours, and the reaction was continued for another 3 hours. Thereafter, the system was cooled to 25 ° C., left for 20 hours, and then the pH of the system was returned to 8.2 with sodium hydroxide to terminate the polymerization, thereby obtaining an emulsion containing polyorganosiloxane-based particles. The polymerization conversion, the average particle size of the emulsion of the crosslinked polyorganosiloxane particles, and the amount of toluene-insoluble matter were measured. The results are shown in Table 1.

【0074】参考例2 ポリオルガノシロキサン系粒子
(S−2)の製造 次の成分からなる水溶液をホモミキサーにより1000
0rpmで5分間撹拌してエマルジョンを調製した。
Reference Example 2 Production of polyorganosiloxane-based particles (S-2)
The emulsion was prepared by stirring at 0 rpm for 5 minutes.

【0075】 成分 量(部) 純水 200 DBSA 1 D4 75 TSA 5 さらに、このエマルジョンを圧力300kg/cm2
設定した高圧ホモジナイザーに2回通した。えられたエ
マルジョンを撹拌機、還流冷却器、窒素吹込口、単量体
追加口、温度計を備えた5口フラスコに仕込み、90℃
に約40分かけて昇温後、1時間反応させたのち、ジフ
ェニルジメトキシラン20部を2時間かけて滴下添加
し、さらに3時間反応させた。その後、25℃に冷却し
て20時間保持した後、系のpHを水酸化ナトリウムで
8.0に戻して重合を終了した。結果を表1に示す。
Component Amount (parts) Pure water 200 DBSA 1 D4 75 TSA 5 Further, this emulsion was passed twice through a high-pressure homogenizer set to a pressure of 300 kg / cm 2 . The obtained emulsion was charged into a 5-neck flask equipped with a stirrer, a reflux condenser, a nitrogen inlet, a monomer addition port, and a thermometer.
After raising the temperature over about 40 minutes, the mixture was reacted for 1 hour, 20 parts of diphenyldimethoxysilane was added dropwise over 2 hours, and the reaction was further performed for 3 hours. Then, after cooling to 25 ° C. and maintaining for 20 hours, the pH of the system was returned to 8.0 with sodium hydroxide to terminate the polymerization. Table 1 shows the results.

【0076】[0076]

【表1】 実施例1および比較例1 撹拌機、還流冷却器、窒素吹込口、単量体追加口および
温度計を備えた5口フラスコに、純水250部、ナトリ
ウムホルムアルデヒドスルホキシレート(SFS)0.
2部、エチレンジアミン4酢酸2ナトリウム(EDT
A)0.01部、硫酸第一鉄0.0025部および表2
に示されるポリオルガノシロキサン系粒子を仕込み、系
を撹拌しながら窒素気流下に60℃まで昇温させた。6
0℃到達後、表2に示される単量体とラジカル重合開始
剤の混合物を6時間かけて滴下添加したのち、60℃で
1時間撹拌を続けることによってグラフト共重合体のエ
マルジョンをえた。つづいて、エマルジョンに塩化カル
シウム2部を添加して、凝固したのち、脱水乾燥させて
ポリオルガノシロキサン系グラフト共重合体(SG−1
およびSG’−1)の粉体をえた。重合転化率、平均粒
子径、グラフト率を表2に示す。
[Table 1] Example 1 and Comparative Example 1 A five-necked flask equipped with a stirrer, a reflux condenser, a nitrogen inlet, a monomer addition port, and a thermometer was charged with 250 parts of pure water, sodium formaldehyde sulfoxylate (SFS) 0.1 part, and water.
2 parts, disodium ethylenediaminetetraacetate (EDT
A) 0.01 part, 0.0025 part of ferrous sulfate and Table 2
Was charged and heated to 60 ° C. under a nitrogen stream while stirring the system. 6
After reaching 0 ° C., a mixture of the monomer and the radical polymerization initiator shown in Table 2 was added dropwise over 6 hours, and then stirring was continued at 60 ° C. for 1 hour to obtain an emulsion of the graft copolymer. Subsequently, 2 parts of calcium chloride was added to the emulsion, coagulated, dehydrated and dried to obtain a polyorganosiloxane-based graft copolymer (SG-1).
And SG′-1) powder. Table 2 shows the polymerization conversion, average particle size, and graft ratio.

【0077】実施例1または比較例1でえられたグラフ
ト共重合体(SG−1またはSG’−1)の粉体100
部に対して、フェノール系安定剤(旭電化工業(株)
製、商品名AO−20)0.2部およびエチレンビスス
テアリルアマイド0.5部を配合し、単軸押出機(田端
機械(株)製 HW−40−28)で230℃に加熱し
て溶融混練し、ペレットを作成した。このペレットを用
いて、シリンダー温度230℃に設定した(株)ファナ
ック(FANUC)製のFAS100B射出成形機で1
/8インチ難燃性評価用試験片を作成した。えられた試
験片を用いて前記評価方法に従って評価した。
The powder 100 of the graft copolymer (SG-1 or SG'-1) obtained in Example 1 or Comparative Example 1
Phenolic stabilizer (Asahi Denka Kogyo Co., Ltd.)
AO-20) and 0.2 parts of ethylene bisstearyl amide were mixed and heated to 230 ° C by a single screw extruder (HW-40-28 manufactured by Tabata Machine Co., Ltd.) to melt. The mixture was kneaded to prepare a pellet. Using these pellets, a FAS100B injection molding machine manufactured by FANUC, set at a cylinder temperature of 230 ° C.,
A test piece for evaluating / 8 inch flame retardancy was prepared. Using the obtained test pieces, evaluation was performed according to the above evaluation method.

【0078】結果を表2に示す。Table 2 shows the results.

【0079】なお、表2の中のANはアクリロニトリ
ル、Stはスチレン(以上、単量体)、CHPはクメン
ハイドロパーオキサイド(ラジカル重合開始剤)をそれ
ぞれ示す。
In Table 2, AN represents acrylonitrile, St represents styrene (above, monomer), and CHP represents cumene hydroperoxide (radical polymerization initiator).

【0080】[0080]

【表2】 表2の難燃試験の結果より、本発明のグラフト共重合体
は難燃性を有することがわかり、難燃樹脂として効果的
であることがわかる。
[Table 2] From the results of the flame retardancy test in Table 2, it can be seen that the graft copolymer of the present invention has flame retardancy and is effective as a flame retardant resin.

【0081】実施例2 AAS(アクリロニトリル−アクリルゴム−スチレン共
重合体)樹脂の改良 (1)ポリオルガノシロキサン系グラフト共重合体(S
G−2)の製造 実施例1において、ポリオルガノシロキサン系粒子(S
−1)を70部に、Stを21部、ANを9部、CHP
を0.06にして、該グラフト単量体と該ラジカル重合
開始剤の混合成分の滴下を3時間にわたってした以外
は、実施例1と同様にしてポリオルガノシロキサン系グ
ラフト共重合体(SG−2)のラテックスを製造した。
重合転化率は99%、平均粒子径0.07μm、グラフ
ト率は35%であった。 (2)AAS樹脂エマルジョンの製造 撹拌機、還流冷却器、チッ素ガス吹込口、単量体追加口
および温度計を備えた5口フラスコに、次の成分を一括
して仕込んだ。
Example 2 Improvement of AAS (acrylonitrile-acryl rubber-styrene copolymer) resin (1) Polyorganosiloxane-based graft copolymer (S
Production of G-2) In Example 1, the polyorganosiloxane-based particles (S
-1) in 70 parts, St in 21 parts, AN in 9 parts, CHP
Was set to 0.06, and the mixed component of the graft monomer and the radical polymerization initiator was dropped over 3 hours, in the same manner as in Example 1 except that the polyorganosiloxane-based graft copolymer (SG-2) was used. ) Was prepared.
The polymerization conversion was 99%, the average particle diameter was 0.07 μm, and the graft ratio was 35%. (2) Production of AAS Resin Emulsion The following components were collectively charged into a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen gas inlet, monomer addition port, and thermometer.

【0082】 成分 量(部) 純水 200 ジオクチルスルホコハク酸ナトリウム 0.005 SFS 0.4 EDTA 0.01 硫酸第1鉄 0.0025 つぎに、系をチッ素ガス気流下で撹拌しながら45℃に
保ち、次の単量体混合物の15%を一括で仕込み、1時
間撹拌したのち、ジオクチルスルホコハク酸ナトリウム
を0.3部添加した。そののち、残りの単量体混合物を
4時間かけて滴下した。滴下終了後、1時間撹拌をつづ
けて重合を完了し、ポリアクリル酸ブチルゴムエマルジ
ョンをえた。
Component Amount (parts) Pure water 200 Dioctyl sodium sulfosuccinate 0.005 SFS 0.4 EDTA 0.01 Ferrous sulfate 0.0025 Next, the system was heated to 45 ° C. while stirring under a nitrogen gas stream. While keeping the same, 15% of the next monomer mixture was charged at once and stirred for 1 hour, and then 0.3 parts of sodium dioctylsulfosuccinate was added. Thereafter, the remaining monomer mixture was added dropwise over 4 hours. After completion of the dropwise addition, stirring was continued for 1 hour to complete the polymerization, and a polybutyl acrylate rubber emulsion was obtained.

【0083】 成分 量(部) アクリル酸ブチル 60 CHP 0.1 えられたエマルジョンの固形分含有率は23%であり、
平均粒子径は0.30μmであった。また、前記単量体
混合物の重合転化率は99%であった。
Component Amount (parts) Butyl acrylate 60 CHP 0.1 The solid content of the obtained emulsion was 23%,
The average particle size was 0.30 μm. The polymerization conversion of the monomer mixture was 99%.

【0084】つづいて、系を65℃に保ち、次の単量体
混合物を4時間かけて滴下した。追加後、2時間撹拌を
つづけて重合を完了し、ポリアクリル酸ブチルゴム系グ
ラフト共重合体のエマルジョンをえた。
Subsequently, the system was maintained at 65 ° C., and the following monomer mixture was added dropwise over 4 hours. After the addition, stirring was continued for 2 hours to complete the polymerization, and an emulsion of a poly (butyl acrylate) rubber-based graft copolymer was obtained.

【0085】 成分 量(部) St 28 AN 12 CHP 0.1 エマルジョンの固形分含有率は33%であり、前記単量
体混合物の重合転化率は99%であった。
Component Amount (Parts) The solid content of the St 28 AN 12 CHP 0.1 emulsion was 33%, and the polymerization conversion of the monomer mixture was 99%.

【0086】つづいて、別途、以下のようにしてAN−
St共重合体のエマルジョンを調製した。撹拌機、還流
冷却器、チッ素ガス吹込口、単量体追加口および温度計
を備えた5口フラスコに、次の成分を一括して仕込ん
だ。
Subsequently, separately, AN-
An emulsion of St copolymer was prepared. The following components were collectively charged into a 5-neck flask equipped with a stirrer, a reflux condenser, a nitrogen gas inlet, a monomer addition port, and a thermometer.

【0087】 成分 量(部) 純水 200 ジオクチルスルホコハク酸ナトリウム 1.0 SFS 0.4 EDTA 0.01 硫酸第1鉄 0.0025 つぎに、系をチッ素ガス気流下で撹拌しながら65℃に
保ち、次の単量体混合物を6時間かけて滴下した。ま
た、ジオクチルスルホコハク酸ナトリウムを重合1時間
目に0.5部、3時間目に0.5部添加した。滴下終了
後、1時間撹拌をつづけて重合を完了し、AN−St共
重合体エマルジョンをえた。
Component Amount (parts) Pure water 200 Dioctyl sodium sulfosuccinate 1.0 SFS 0.4 EDTA 0.01 Ferrous sulfate 0.0025 Next, the system was heated to 65 ° C. while stirring under a nitrogen gas stream. While keeping the same, the next monomer mixture was added dropwise over 6 hours. Also, 0.5 part of sodium dioctyl sulfosuccinate was added at the first hour of polymerization and 0.5 part at the third hour. After completion of the dropwise addition, stirring was continued for one hour to complete the polymerization, and an AN-St copolymer emulsion was obtained.

【0088】 成分 量(部) St 70 AN 30 CHP 0.2 えられたエマルジョンの固形分含有率は33%であり、
前記単量体混合物の重合転化率は99%であった。
Component Amount (parts) St 70 AN 30 CHP 0.2 The solid content of the obtained emulsion was 33%,
The polymerization conversion of the monomer mixture was 99%.

【0089】前記AN−St共重合体エマルジョンとグ
ラフト共重合体のエマルジョンとをポリアクリル酸ブチ
ルゴム量が固形分換算で20%になるように混合して、
AAS樹脂のエマルジョンをえた。 (3)AAS樹脂組成物の製造 えられたAAS樹脂エマルジョンと(1)でえられたポ
リオルガノシロキサン系グラフト共重合体(SG−2)
のエマルジョンとを、ポリオルガノシロキサンが固形分
換算で15%になるように混合してAAS樹脂組成物の
エマルジョンをえた。
The AN-St copolymer emulsion and the graft copolymer emulsion were mixed so that the amount of polybutyl acrylate rubber became 20% in terms of solid content,
An emulsion of AAS resin was obtained. (3) Production of AAS resin composition The AAS resin emulsion obtained and the polyorganosiloxane-based graft copolymer obtained in (1) (SG-2)
And an emulsion of the AAS resin composition was obtained by mixing so that the polyorganosiloxane became 15% in solid content conversion.

【0090】えられたAAS樹脂組成物のエマルジョン
を塩化カルシウム2部を用いて凝固したのち、脱水乾燥
してAAS樹脂組成物を調製した。
The obtained emulsion of the AAS resin composition was coagulated with 2 parts of calcium chloride, and then dehydrated and dried to prepare an AAS resin composition.

【0091】えられたAS樹脂組成物の樹脂粉体100
部に対して、フェノール系安定剤(旭電化工業(株)
製、商品名AO−20)0.2部およびエチレンビスス
テアリルアマイド0.5部を配合し、単軸押出機(田端
機械(株)製 HW−40−28)で240℃に加熱し
て溶融混練し、ペレットを作成した。このペレットを用
いて、シリンダー温度240℃に設定した(株)ファナ
ック(FANUC)製のFAS100B射出成形機で1
/4インチのアイゾット試験片および1/8インチ難燃
性評価用試験片を作成した。えられた試験片を用いて前
記評価方法に従って評価した。
Resin powder 100 of AS resin composition obtained
Phenolic stabilizer (Asahi Denka Kogyo Co., Ltd.)
AO-20) and 0.2 parts of ethylene bisstearyl amide were mixed and heated to 240 ° C. by a single screw extruder (HW-40-28 manufactured by Tabata Machine Co., Ltd.) to melt. The mixture was kneaded to prepare a pellet. Using these pellets, a FAS100B injection molding machine manufactured by FANUC, set at a cylinder temperature of 240 ° C.,
/ 4 inch Izod test pieces and 1/8 inch test pieces for flame retardancy evaluation were prepared. Using the obtained test pieces, evaluation was performed according to the above evaluation method.

【0092】結果を表3に示す。Table 3 shows the results.

【0093】比較例2 実施例2においてグラフト共重合体(SG−2)のエマ
ルジョンの代わりに、参考例1で製造したポリオルガノ
シロキサン系粒子(S−1)のエマルジョンを用いてポ
リオルガノシロキサンが固形分換算で15%になるよう
に混合してAAS樹脂組成物のエマルジョンをえた以外
は実施例2と同様にして評価した。
Comparative Example 2 In Example 2, instead of the emulsion of the graft copolymer (SG-2), the emulsion of the polyorganosiloxane-based particles (S-1) produced in Reference Example 1 was used. Evaluation was carried out in the same manner as in Example 2 except that an emulsion of the AAS resin composition was obtained by mixing so as to have a solid content of 15%.

【0094】結果を表3に示す。Table 3 shows the results.

【0095】比較例3 実施例2においてグラフト共重合体(SG−2)のエマ
ルジョンを用いない以外は実施例2と同様にして評価し
た。
Comparative Example 3 Evaluation was made in the same manner as in Example 2 except that the emulsion of the graft copolymer (SG-2) was not used.

【0096】結果を表3に示す。Table 3 shows the results.

【0097】[0097]

【表3】 表3の結果より、本発明のポリオルガノシロキサン系グ
ラフト共重合体(SG−2)をAAS樹脂に配合するこ
とで、耐衝撃性に優れた難燃性樹脂組成物がえられるこ
とがわかる。
[Table 3] From the results in Table 3, it can be seen that a flame-retardant resin composition having excellent impact resistance can be obtained by blending the polyorganosiloxane-based graft copolymer (SG-2) of the present invention with an AAS resin.

【0098】実施例3 ポリカーボネート樹脂の難燃化 (1)ポリオルガノシロキサン系グラフト共重合体(S
G−3)の製造 実施例1における、ポリオルガノシロキサン系粒子を9
2部に、グラフト単量体成分のStおよびANの代わり
にメタクリル酸メチルを8部用いて、かつCHPの代わ
りにt−ブチルハイドロパーオキサイド0.02部用い
て、該メタクリル酸メチルの添加を一括添加した以外
は、実施例1と同様にしてポリオルガノシロキサン系グ
ラフト共重合体(SG−3)の粉体をえた。重合転化率
は99%、平均粒子径0.06μm、グラフト率は8%
であった。 (2)ポリカーボネート(PC)樹脂組成物 PC樹脂の粉体100部に対して(1)でえられたポリ
オルガノシロキサン系グラフト共重合体(SG−3)の
粉体をポリオルガノシロキサンの含量が6%になるよう
に配合してPC組成物をえた。
Example 3 Flame Retardancy of Polycarbonate Resin (1) Polyorganosiloxane Graft Copolymer (S
Production of G-3) The polyorganosiloxane-based particles in Example 1 were replaced with 9
In two parts, using 8 parts of methyl methacrylate instead of the graft monomer components St and AN, and using 0.02 parts of t-butyl hydroperoxide instead of CHP, and adding the methyl methacrylate. A powder of a polyorganosiloxane-based graft copolymer (SG-3) was obtained in the same manner as in Example 1, except for adding all at once. The polymerization conversion rate is 99%, the average particle diameter is 0.06 μm, and the graft rate is 8%.
Met. (2) Polycarbonate (PC) resin composition The powder of the polyorganosiloxane-based graft copolymer (SG-3) obtained in (1) was mixed with the powder of the polyorganosiloxane in 100 parts of the powder of the PC resin. It was blended so as to be 6% to obtain a PC composition.

【0099】えられた配合物を2軸押出機(日本製鋼所
(株)製 TEX44SS)で280℃にて溶融混錬
し、ペレットを製造した。えられたペレットをシリンダ
ー温度270℃に設定した(株)ファナック(FANU
C)製のFAS100B射出成形機で1/8インチのア
イゾット試験片および1/12インチ難燃性評価用試験
片を作成した。えられた試験片を用いて前記評価方法に
従って評価した。
The obtained mixture was melt-kneaded at 280 ° C. with a twin screw extruder (TEX44SS manufactured by Nippon Steel Works, Ltd.) to produce pellets. The pellets obtained were set at a cylinder temperature of 270 ° C.
A 1/8 inch Izod test piece and a 1/12 inch flame retardancy evaluation test piece were prepared using an FAS100B injection molding machine manufactured by C). Using the obtained test pieces, evaluation was performed according to the above evaluation method.

【0100】結果を表4に示す。Table 4 shows the results.

【0101】比較例4 実施例3においてグラフト共重合体(SG−3)の代わ
りに、参考例1でえられたポリオルガノシロキサン系粒
子(S−1)のエマルジョンに塩化カルシウム2部を添
加して凝固、脱水、乾燥してえたポリオルガノシロキサ
ンゴム状物を用いて、ポリオルガノシロキサンの含量が
6%になるように配合してPC樹脂組成物をえた以外
は、実施例3と同様にして評価した。
Comparative Example 4 In place of the graft copolymer (SG-3) in Example 3, 2 parts of calcium chloride was added to the emulsion of polyorganosiloxane particles (S-1) obtained in Reference Example 1. The same procedure as in Example 3 was carried out except that a polyorganosiloxane rubber material obtained by coagulation, dehydration, and drying was used and the content of the polyorganosiloxane was blended so as to be 6% to obtain a PC resin composition. evaluated.

【0102】結果を表4に示す。Table 4 shows the results.

【0103】比較例5 実施例3においてグラフト共重合体(SG−3)を用い
ず、PC樹脂のみを用いて実施例3と同様にして評価し
た。
Comparative Example 5 Evaluation was made in the same manner as in Example 3 except that the graft copolymer (SG-3) was not used and only the PC resin was used.

【0104】結果を表4に示す。Table 4 shows the results.

【0105】[0105]

【表4】 表4から、本発明のグラフト共重合体とPC樹脂からな
る組成物は難燃性、表面外観および耐衝撃性のバランス
が優れることがわかる。
[Table 4] Table 4 shows that the composition comprising the graft copolymer and the PC resin of the present invention has an excellent balance of flame retardancy, surface appearance and impact resistance.

【0106】[0106]

【発明の効果】本発明により、燃焼時に有害なガスを発
生させない低環境負荷の難燃樹脂をうることができ、ま
た該難燃樹脂を熱可塑性樹脂に配合することにより耐衝
撃性に優れた難燃性樹脂組成物をうることができる。
According to the present invention, it is possible to obtain a flame-retardant resin of low environmental load which does not generate harmful gas during combustion, and has excellent impact resistance by blending the flame-retardant resin with a thermoplastic resin. A flame-retardant resin composition can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 25/12 C08L 25/12 25/16 25/16 27/06 27/06 33/12 33/12 51/08 51/08 67/00 67/00 69/00 69/00 71/12 71/12 77/00 77/00 Fターム(参考) 4J002 BB12X BC03X BC06X BC07X BC09X BD04X BG06X BN06X BN12X BN15X BN17W CF00X CG00X CH07X CL00X GC00 GL00 GQ00 4J011 KA02 KB19 PA99 PB06 PB29 PC02 PC06 SA76 SA79 SA85 4J026 AB44 BA05 BA06 BA10 BA11 BA27 BA34 BB03 DA04 DA07 DA15 DB04 DB08 DB12 DB14 DB15 DB16 EA04 FA03 GA01 GA09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C08L 25/12 C08L 25/12 25/16 25/16 27/06 27/06 33/12 33/12 51 / 08 51/08 67/00 67/00 69/00 69/00 71/12 71/12 77/00 77/00 F term (reference) 4J002 BB12X BC03X BC06X BC07X BC09X BD04X BG06X BN06X BN12X BN15X BN17W CF00X CG00X CH07X CL00X GC00 GL00 GQ00 4J011 KA02 KB19 PA99 PB06 PB29 PC02 PC06 SA76 SA79 SA85 4J026 AB44 BA05 BA06 BA10 BA11 BA27 BA34 BB03 DA04 DA07 DA15 DB04 DB08 DB12 DB14 DB15 DB16 EA04 FA03 GA01 GA09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が0.008〜0.2μmの
ポリオルガノシロキサン系粒子(A)存在下にビニル系
単量体(B)をグラフト重合してえられるポリオルガノ
シロキサン系グラフト共重合体からなる難燃性樹脂。
1. A polyorganosiloxane graft copolymer obtained by graft polymerization of a vinyl monomer (B) in the presence of polyorganosiloxane particles (A) having an average particle diameter of 0.008 to 0.2 μm. Flame-retardant resin made of united.
【請求項2】 ポリオルガノシロキサン系粒子(A)5
〜99重量部に対してビニル系単量体(B)95〜1重
量部を合計量が100重量部となるようにグラフト重合
させることによりえられる請求項1記載の難燃性樹脂。
2. Polyorganosiloxane particles (A) 5
The flame-retardant resin according to claim 1, which is obtained by graft-polymerizing 95 to 1 part by weight of a vinyl monomer (B) so that the total amount becomes 100 parts by weight with respect to 99 parts by weight.
【請求項3】 ビニル系単量体(B)が芳香族ビニル系
単量体、シアン化ビニル系単量体、ハロゲン化ビニル系
単量体、(メタ)アクリル酸エステル系単量体およびカ
ルボキシル基含有ビニル系単量体よりなる群から選ばれ
た少なくとも1種の単量体である請求項1または2記載
の難燃性樹脂。
3. The vinyl monomer (B) is an aromatic vinyl monomer, a vinyl cyanide monomer, a vinyl halide monomer, a (meth) acrylate monomer and a carboxyl monomer. 3. The flame-retardant resin according to claim 1, which is at least one monomer selected from the group consisting of group-containing vinyl monomers.
【請求項4】 熱可塑性樹脂1〜99重量部に対して請
求項1、2または3記載の難燃性樹脂1〜99重量部を
合計量が100重量部となるように配合してなる難燃性
樹脂組成物。
4. It is difficult to mix 1 to 99 parts by weight of the flame-retardant resin according to claim 1, 2 or 3 with respect to 1 to 99 parts by weight of the thermoplastic resin so that the total amount becomes 100 parts by weight. Flammable resin composition.
【請求項5】 熱可塑性樹脂が、アクリロニトリル−ス
チレン共重合体、アクリロニトリル−ブタジエンゴム−
スチレン共重合体(ABS樹脂)、アクリロニトリル−
ブタジエンゴム−α−メチルスチレン共重合体、スチレ
ン−ブタジエンゴム−アクリロニトリル−N−フェニル
マレイミド共重合体、アクリロニトリル−アクリルゴム
−スチレン共重合体(AAS樹脂)、アクリロニトリル
−アクリルゴム−α−メチルスチレン共重合体、スチレ
ン−アクリルゴム−アクリロニトリル−N−フェニルマ
レイミド共重合体、アクリロニトリル−アクリル/シリ
コーン複合ゴム−スチレン共重合体、アクリロニトリル
−アクリル/シリコーン複合ゴム−α−メチルスチレン
共重合体、スチレン−アクリル/シリコーン複合ゴム−
アクリロニトリル−N−フェニルマレイミド共重合体、
アクリロニトリル−エチレンプロピレンゴム−スチレン
共重合体(AES樹脂)、ポリカーボネート、ポリエス
テル、ポリ塩化ビニル、ポリプロピレン、ポリフェニレ
ンエーテル、ポリスチレン、ポリメタクリル酸メチル、
メタクリル酸メチル−スチレン共重合体およびポリアミ
ドからなる群からえらればれたすくなくとも1種の熱可
塑性樹脂である請求項4記載の難燃性樹脂組成物。
5. The thermoplastic resin is an acrylonitrile-styrene copolymer, acrylonitrile-butadiene rubber-
Styrene copolymer (ABS resin), acrylonitrile
Butadiene rubber-α-methylstyrene copolymer, styrene-butadiene rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-acryl rubber-styrene copolymer (AAS resin), acrylonitrile-acryl rubber-α-methylstyrene copolymer Polymer, styrene-acryl rubber-acrylonitrile-N-phenylmaleimide copolymer, acrylonitrile-acryl / silicone composite rubber-styrene copolymer, acrylonitrile-acryl / silicone composite rubber-α-methylstyrene copolymer, styrene-acryl / Silicone composite rubber
Acrylonitrile-N-phenylmaleimide copolymer,
Acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin), polycarbonate, polyester, polyvinyl chloride, polypropylene, polyphenylene ether, polystyrene, polymethyl methacrylate,
The flame-retardant resin composition according to claim 4, which is at least one kind of thermoplastic resin obtained from the group consisting of methyl methacrylate-styrene copolymer and polyamide.
JP06944899A 1999-03-16 1999-03-16 Flame retardant resin composition containing flame retardant resin Expired - Lifetime JP3685640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06944899A JP3685640B2 (en) 1999-03-16 1999-03-16 Flame retardant resin composition containing flame retardant resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06944899A JP3685640B2 (en) 1999-03-16 1999-03-16 Flame retardant resin composition containing flame retardant resin

Publications (2)

Publication Number Publication Date
JP2000264935A true JP2000264935A (en) 2000-09-26
JP3685640B2 JP3685640B2 (en) 2005-08-24

Family

ID=13402940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06944899A Expired - Lifetime JP3685640B2 (en) 1999-03-16 1999-03-16 Flame retardant resin composition containing flame retardant resin

Country Status (1)

Country Link
JP (1) JP3685640B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348453A (en) * 2001-05-29 2002-12-04 Kanegafuchi Chem Ind Co Ltd Flame retardant resin composition
JP2003012910A (en) * 2001-06-27 2003-01-15 Kanegafuchi Chem Ind Co Ltd Polycarbonate-based flame-retardant resin composition
WO2003004566A1 (en) * 2001-07-05 2003-01-16 Kaneka Corporation Flame-retardant thermoplastic resin composition
WO2003093365A1 (en) * 2002-04-30 2003-11-13 Kaneka Corporation Polyorganosiloxane-containing graft copolymer composition
KR100432710B1 (en) * 2004-02-06 2004-05-28 (주)비바코 High Flame Retardant Polyvinylchloride-acrylonitrile Fibe
WO2004111125A1 (en) * 2003-06-12 2004-12-23 Kaneka Corporation Rubber-modified styrene resin composition
US7067075B2 (en) 2002-04-26 2006-06-27 Kaneka Corporation Flame-retardant thermoplastic resin composition
EP1705213A1 (en) 2005-03-24 2006-09-27 Fuji Xerox Co., Ltd. Flame-retardant resin composition and flame-retardant resin molded item
WO2006120878A1 (en) * 2005-05-13 2006-11-16 Kaneka Corporation Polyorganosiloxane-containing graft copolymer and vinyl chloride resin compositions containing the copolymer
WO2007029732A1 (en) * 2005-09-06 2007-03-15 Kaneka Corporation Acrylic rubber composition, molded body, and automobile/electrical/electronic component
WO2007072761A1 (en) * 2005-12-21 2007-06-28 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition, molded article thereof, film, and sheet
EP1964888A1 (en) 2002-02-15 2008-09-03 Kaneka Corporation Graft copolymers and impact-resistant, flame-retardant resin compositions containing same
WO2008143356A1 (en) 2007-05-24 2008-11-27 Teijin Chemicals Ltd. Sliding resin composition and molded article thereof
JP2010235778A (en) * 2009-03-31 2010-10-21 Nippon Shokubai Co Ltd Organic inorganic composite fine particle and method for producing the same
JP2010280900A (en) * 2003-04-11 2010-12-16 Kaneka Corp Polyorganosiloxane-containing graft copolymer, resin composition containing the same and process for production of polyorganosiloxane emulsion
WO2011065232A1 (en) * 2009-11-27 2011-06-03 出光興産株式会社 Polycarbonate resin composition
US8044130B2 (en) 2005-02-24 2011-10-25 Fuji Xerox Co., Ltd. Surface-coated flame-retardant particle and method of producing the same, and flame-retardant resin composition and method of producing the same
JP2012172081A (en) * 2011-02-22 2012-09-10 Sekisui Chem Co Ltd Silicone resin polycondensate particle, and reaction product with polyvinyl chloride
WO2014027421A1 (en) * 2012-08-17 2014-02-20 積水化学工業株式会社 Reactant of silicon resin polycondensate particles and polyvinyl chloride, method for manufacturing said reactant, vinyl chloride resin composition, and method for manufacturing vinyl chloride resin composition

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348453A (en) * 2001-05-29 2002-12-04 Kanegafuchi Chem Ind Co Ltd Flame retardant resin composition
JP2003012910A (en) * 2001-06-27 2003-01-15 Kanegafuchi Chem Ind Co Ltd Polycarbonate-based flame-retardant resin composition
AU2002318625B2 (en) * 2001-07-05 2007-01-11 Kaneka Corporation Flame-retardant thermoplastic resin composition
WO2003004566A1 (en) * 2001-07-05 2003-01-16 Kaneka Corporation Flame-retardant thermoplastic resin composition
KR100851266B1 (en) * 2001-07-05 2008-08-08 카네카 코포레이션 Flame-retardant thermoplastic resin composition
US7615594B2 (en) 2002-02-15 2009-11-10 Kaneka Corporation Graft copolymers and impact-resistant flame-retardant resin compositions containing the same
EP1964888A1 (en) 2002-02-15 2008-09-03 Kaneka Corporation Graft copolymers and impact-resistant, flame-retardant resin compositions containing same
US7067075B2 (en) 2002-04-26 2006-06-27 Kaneka Corporation Flame-retardant thermoplastic resin composition
WO2003093365A1 (en) * 2002-04-30 2003-11-13 Kaneka Corporation Polyorganosiloxane-containing graft copolymer composition
JP2010280900A (en) * 2003-04-11 2010-12-16 Kaneka Corp Polyorganosiloxane-containing graft copolymer, resin composition containing the same and process for production of polyorganosiloxane emulsion
WO2004111125A1 (en) * 2003-06-12 2004-12-23 Kaneka Corporation Rubber-modified styrene resin composition
JP4553842B2 (en) * 2003-06-12 2010-09-29 株式会社カネカ Rubber-modified styrenic resin composition
JPWO2004111125A1 (en) * 2003-06-12 2006-07-27 株式会社カネカ Rubber-modified styrenic resin composition
US7705089B2 (en) 2003-06-12 2010-04-27 Kaneka Corporation Rubber-modified styrene resin composition
KR100432710B1 (en) * 2004-02-06 2004-05-28 (주)비바코 High Flame Retardant Polyvinylchloride-acrylonitrile Fibe
US8044130B2 (en) 2005-02-24 2011-10-25 Fuji Xerox Co., Ltd. Surface-coated flame-retardant particle and method of producing the same, and flame-retardant resin composition and method of producing the same
EP1705213A1 (en) 2005-03-24 2006-09-27 Fuji Xerox Co., Ltd. Flame-retardant resin composition and flame-retardant resin molded item
WO2006120878A1 (en) * 2005-05-13 2006-11-16 Kaneka Corporation Polyorganosiloxane-containing graft copolymer and vinyl chloride resin compositions containing the copolymer
WO2007029732A1 (en) * 2005-09-06 2007-03-15 Kaneka Corporation Acrylic rubber composition, molded body, and automobile/electrical/electronic component
DE112006003404T5 (en) 2005-12-21 2008-10-23 Idemitsu Kosan Co. Ltd. Polycarbonate resin composition, molding thereof, film and sheet
WO2007072761A1 (en) * 2005-12-21 2007-06-28 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition, molded article thereof, film, and sheet
WO2008143356A1 (en) 2007-05-24 2008-11-27 Teijin Chemicals Ltd. Sliding resin composition and molded article thereof
US8697796B2 (en) 2007-05-24 2014-04-15 Teijin Chemicals, Ltd. Slidable resin composition and molded article thereof
JP2010235778A (en) * 2009-03-31 2010-10-21 Nippon Shokubai Co Ltd Organic inorganic composite fine particle and method for producing the same
JP2011111561A (en) * 2009-11-27 2011-06-09 Idemitsu Kosan Co Ltd Polycarbonate resin composition
WO2011065232A1 (en) * 2009-11-27 2011-06-03 出光興産株式会社 Polycarbonate resin composition
JP2012172081A (en) * 2011-02-22 2012-09-10 Sekisui Chem Co Ltd Silicone resin polycondensate particle, and reaction product with polyvinyl chloride
WO2014027421A1 (en) * 2012-08-17 2014-02-20 積水化学工業株式会社 Reactant of silicon resin polycondensate particles and polyvinyl chloride, method for manufacturing said reactant, vinyl chloride resin composition, and method for manufacturing vinyl chloride resin composition
US20150240019A1 (en) * 2012-08-17 2015-08-27 Sekisui Chemical Co., Ltd. Reactant of silicon resin polycondensate particles and polyvinyl chloride, method for manufacturing said reactant, vinyl chloride resin composition, and method for manufacturing vinyl chloride resin composition
US9382368B2 (en) 2012-08-17 2016-07-05 Sekisui Chemical Co., Ltd. Reactant of silicon resin polycondensate particles and polyvinyl chloride, method for manufacturing said reactant, vinyl chloride resin composition, and method for manufacturing vinyl chloride resin composition
JPWO2014027421A1 (en) * 2012-08-17 2016-07-25 積水化学工業株式会社 Vinyl chloride resin composition and method for producing vinyl chloride resin composition

Also Published As

Publication number Publication date
JP3685640B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
CN100334123C (en) Graft copolymer and impact-resistant and flame-retardant resin composition containing it
JP3634964B2 (en) Graft copolymer particles and thermoplastic resin composition
JP2000264935A (en) Fire-resistant resin and fire-resistant resin composition containing the same
JP5546384B2 (en) Polyorganosiloxane-containing graft copolymer, resin composition containing the same, and method for producing polyorganosiloxane emulsion
KR100851266B1 (en) Flame-retardant thermoplastic resin composition
JP3884661B2 (en) Graft copolymer and flame retardant resin composition containing the same
CA2483647A1 (en) Polyorganosiloxane-containing graft copolymer composition
JPH11293115A (en) Silicone rubber-based particle-containing aqueous emulsion, and its production
JPWO2019168007A1 (en) Polyorganosiloxane-containing graft copolymer powder, a resin composition using the same, and a molded product comprising the same.
JP3942826B2 (en) Flame retardant for thermoplastic resin and flame retardant resin composition
JP5344791B2 (en) Graft copolymer, flame retardant comprising the copolymer, and resin composition containing the flame retardant
JP2003089749A (en) Flame-retardant polycarbonate resin composition
JP2003012910A (en) Polycarbonate-based flame-retardant resin composition
JP2000186105A (en) Composite rubber, composite rubber-containing graft polymer particle and thermoplastic resin composition
JP3914025B2 (en) Flame retardant resin composition
JP4664528B2 (en) Flame retardant resin composition
JP2002327177A (en) Flame retardant and flame retardant resin composition
JP5064026B2 (en) Graft copolymer and resin composition containing the same
JP3871962B2 (en) Graft copolymer and impact-resistant and flame-retardant resin composition containing the same
JP2000302941A (en) Impact-resistant resin composition
JP2001106863A (en) Graft copolymer composition
JP2000212231A (en) Silicone-modified acrylic rubber particle, silicone- modified acrylic rubber type graft copolymer particle, and thermoplastic resin composition
JP2005314587A (en) Graft copolymer, flame retardant consisting of copolymer and resin composition blended with flame retardant
JP2002294241A (en) Flame retardant and flame retardant resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term