[go: up one dir, main page]

JP2000271631A - Extruded material and method for producing molded article - Google Patents

Extruded material and method for producing molded article

Info

Publication number
JP2000271631A
JP2000271631A JP8416099A JP8416099A JP2000271631A JP 2000271631 A JP2000271631 A JP 2000271631A JP 8416099 A JP8416099 A JP 8416099A JP 8416099 A JP8416099 A JP 8416099A JP 2000271631 A JP2000271631 A JP 2000271631A
Authority
JP
Japan
Prior art keywords
extruded
alloy
extruded material
extrusion
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8416099A
Other languages
Japanese (ja)
Inventor
Masataka Kawazoe
正孝 川添
Takashi Hashimoto
貴史 橋本
Jiyunichi Nagahora
純一 永洞
Pitan Christian
ピタン クリスティアン
Kenji Azuma
健司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP8416099A priority Critical patent/JP2000271631A/en
Publication of JP2000271631A publication Critical patent/JP2000271631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

(57)【要約】 【課題】 機械的特性に優れ、押出成形及び冷間加
工が行え、押出成形材さらには成形品を効率よく、かつ
成形不良が生じにくい押出成形材及び成形品の製造方法
を提供する。 【解決手段】 合金素材に220%以上の伸びに相当す
る塑性変形(歪)を与え、平均結晶粒径を10μm以
下、金属間化合物の平均粒子径を1μm以下に微細化
し、得られた材料を固相状態のまま押出成形を行う。塑
性変形の1つの手段は合金素材にその押出方向を途中で
内角180°未満の側方に変化させて剪断変形を与える
ことであり、他の手段は合金素材に対して圧力方向を変
化させ断面形状を変化させて加圧変形を与えることであ
る。
PROBLEM TO BE SOLVED: To provide an extruded material having excellent mechanical properties, capable of being subjected to extrusion molding and cold working, to efficiently produce an extruded material and a molded product, and to have less molding defects and a method for producing the molded product. I will provide a. SOLUTION: The alloy material is subjected to plastic deformation (strain) corresponding to elongation of 220% or more, the average crystal grain size is reduced to 10 μm or less, and the average particle size of the intermetallic compound is reduced to 1 μm or less. Extrusion molding is performed in the solid state. One means of plastic deformation is to change the direction of extrusion of the alloy material to the side with an interior angle of less than 180 ° on the way to give shear deformation, and the other means is to change the pressure direction with respect to the alloy material to change the cross section. This is to change the shape and apply pressure deformation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合金の押出成形材
並びに該押出成形材を用いて成形品を製造する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extruded material of an alloy and a method for producing a molded article using the extruded material.

【0002】[0002]

【従来の技術】一般に金属又は合金の延性は、高温にな
ればなる程大きくなり、成形加工し易くなる。しかしな
がら、金属又は合金が高温にさらされると、その機械的
特性(強度、硬度等)が低下するという問題がある。一
方、機械的特性(強度、硬度等)が低下しない温度は、
変形能が100%以下と小さくなり成形加工し難くな
る。また、例えばマグネシウム合金の場合、アルミニウ
ム合金に比べ更に軽量化が期待できるものとして注目さ
れているが、塑性加工性が悪く、アルミニウム合金のよ
うに押出成形が難しいとともに、冷間での加工が難しい
といった問題を有している。
2. Description of the Related Art Generally, the ductility of a metal or an alloy becomes higher as the temperature becomes higher, which facilitates forming. However, when a metal or an alloy is exposed to a high temperature, there is a problem that its mechanical properties (strength, hardness, etc.) are reduced. On the other hand, the temperature at which the mechanical properties (strength, hardness, etc.) do not decrease
Deformability is as small as 100% or less, and it is difficult to form. Also, for example, in the case of a magnesium alloy, it is attracting attention as a material that can be expected to be further reduced in weight compared to an aluminum alloy, but has poor plastic workability, is difficult to extrude like an aluminum alloy, and is difficult to cold work. There is such a problem.

【0003】一方、アルミニウム合金はJIS A 6
063合金に代表されるように押出成形が円滑に行える
材料もあれば、2000系あるいは7000系といった
押出成形及び冷間での加工が難しい材料も存在する。
On the other hand, aluminum alloy is JIS A6
There are materials which can be extruded smoothly, such as the 063 alloy, and materials which are difficult to be extruded and cold worked such as 2000 series or 7000 series.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述の問題
を解消すべくなされたものであり、機械的特性に優れ、
押出成形及び冷間加工が行え、押出成形材さらには成形
品を効率よく、かつ成形不良が生じにくい押出成形材及
び成形品の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has excellent mechanical properties.
An object of the present invention is to provide an extruded material and a method for manufacturing an extruded material and a molded product, which can perform extrusion molding and cold working, efficiently produce an extruded material, and a molded product, and hardly cause molding defects.

【0005】[0005]

【課題を解決するための手段】本発明は、合金素材に2
20%以上の伸びに相当する塑性変形(歪)を与え、平
均結晶粒径を10μm以下、金属間化合物の平均粒子径
を1μm以下に微細化し、得られた材料を固相状態のま
ま押出成形を行うことを特徴とする押出成形材の製造方
法である。
SUMMARY OF THE INVENTION The present invention relates to an alloy material having two components.
Plastic deformation (strain) equivalent to elongation of 20% or more is given, the average crystal grain size is reduced to 10 μm or less, the average particle size of the intermetallic compound is reduced to 1 μm or less, and the obtained material is extruded in a solid state. And a method for producing an extruded material.

【0006】本発明に適用される合金素材としては、M
g−Al−Zn系(AZ系)合金、Mg−Zn−Zr系
(ZK系)などのマグネシウム合金、Al−Mg−Si
系(6000系)合金、Al−Mg系(5000系)合
金、ジュラルミン、超ジュラルミンに代表される200
0系合金、Al−Zn−Mg−Cu系、Al−Zn−M
g系に代表される7000系合金などのアルミニウム合
金、亜鉛合金、チタン合金などが適用でき、特にMg合
金及びAl合金については有用であり、さらに、これら
のMg合金、Al合金にSc、Zr、Ti、Cr、M
n、Si、Caの少なくとも1種の元素を5wt%以下
の範囲で含んでいることが好ましい。
The alloy material applicable to the present invention is M
Magnesium alloys such as g-Al-Zn-based (AZ-based) alloys, Mg-Zn-Zr-based (ZK-based), Al-Mg-Si
200 (typically 6000 series) alloy, Al-Mg (5000 series) alloy, duralumin, super duralumin
0 system alloy, Al-Zn-Mg-Cu system, Al-Zn-M
Aluminum alloys such as 7000 series alloys represented by g series, zinc alloys, titanium alloys and the like can be applied, and particularly useful for Mg alloys and Al alloys. Further, Sc, Zr, Ti, Cr, M
It is preferable that at least one element of n, Si, and Ca is contained in a range of 5 wt% or less.

【0007】本発明においては、事前に熱間塑性加工を
行うことが、次工程の塑性変形、成形の際に割れ(クラ
ック)を生じさせることなく、また、合金素材の結晶粒
及び金属間化合物の大きさを微細化するためにも有用で
あり、その具体的な加工としては、押出、鍛造などが適
用でき、具体的な加工温度としては、Mg合金の場合2
00〜360℃、Al合金の場合350〜500℃で行
うことが好ましい。特に鋳造法にて作製された素材に対
しては、その鋳造組織を破壊する上で重要である。ま
た、熱間塑性加工を施すに際して事前に前記押出、鍛造
などの温度より高い温度で溶体化処理を施しても良い。
[0007] In the present invention, hot plastic working in advance is performed without causing plastic deformation and cracking at the time of forming in the next step, and the crystal grains and intermetallic compound of the alloy material are formed. It is also useful for miniaturizing the size of the alloy. Extrusion, forging, etc. can be applied as specific processing, and the specific processing temperature is 2 in the case of Mg alloy.
It is preferably performed at a temperature of from 00 to 360 ° C, and in the case of an Al alloy, from 350 to 500 ° C. In particular, it is important for a material produced by a casting method to destroy its casting structure. Further, when performing the hot plastic working, the solution treatment may be performed in advance at a temperature higher than the temperature of the extrusion, forging or the like.

【0008】さらに、本発明において、220%以上の
相当伸びに相当する歪量の大きな変形を加えるが、これ
らの具体的な方法としては、第1に合金素材に、その素
材の持つ断面積を変化させずに、その押出方向を途中で
内角180°未満の側方に変化させて剪断応力を与える
ことによって、220%以上の相当伸びに相当する大き
な歪を加え、ミクロ組織の平均結晶粒径を10μm以
下、金属間化合物の平均粒子径を1μm以下に微細化す
る請求項1記載の押出成形材の製造方法の手法であり、
第2に合金素材に、その素材に対して圧力方向を変化さ
せ断面形状を変化させて加圧変形を与えることによっ
て、220%以上の相当伸びに相当する大きな歪を加
え、ミクロ組織の平均結晶粒径を10μm以下、金属間
化合物の平均粒子径を1μm以下に微細化する請求項1
記載の押出成形材の製造方法の手法である。
Further, in the present invention, a large deformation with a strain amount corresponding to a considerable elongation of 220% or more is applied. As a specific method for these, first, the cross-sectional area of the alloy material is reduced. By changing the extrusion direction to the side with an inner angle of less than 180 ° in the middle without giving any change and applying a shear stress, a large strain corresponding to a considerable elongation of 220% or more is applied, and the average grain size of the microstructure is increased. Is 10 μm or less, the average particle diameter of the intermetallic compound is reduced to 1 μm or less is a method of the method of manufacturing an extruded material according to claim 1,
Second, the alloy material is subjected to pressure deformation by changing the pressure direction and changing the cross-sectional shape of the material, thereby applying a large strain corresponding to a considerable elongation of 220% or more, thereby obtaining an average crystal of microstructure. The particle size is reduced to 10 μm or less, and the average particle size of the intermetallic compound is reduced to 1 μm or less.
It is a technique of the manufacturing method of the extrusion-molded material described.

【0009】本発明の方法について詳しく説明すると、
まず、第1の手法は、側方押出法であって、生産性、経
済性等の点で最も好ましい。本発明による側方押出法
は、図1に示すように、内面で同一断面積を持つ2つの
押出しコンテナー、又はコンテナー1とダイ2を180
°未満の適当な角度(2ψ)で接合し、一方のコンテナ
ー1に合金素材Sを挿入し、ラム3によって次のコンテ
ナー又はダイ2に向けて押出しすることによって、材料
に側方方向の剪断変形を加える方法であり、好ましくは
この工程を複数回行う。この方法を合金素材に適用する
ことにより、非常に単純な工程で、しかも断面積を減少
させずに、結晶粒が1ミクロン以下に微細化され、しか
も従来の加工硬化による強度を上回る強化ができると同
時に、靭性を大きく改善できる。また、そのプロセス
は、鋳造組織、合金成分のマクロ、ミクロ的な偏析の破
壊、均質化にも効果を持っており、合金素材では一般に
行われている高温・長時間の均質化熱処理を省略するこ
ともできる。さらに、たとえダイ2において断面減少を
ともなっても、その効果は変わらない。
The method of the present invention will be described in detail.
First, the first method is a side extrusion method, which is most preferable in terms of productivity, economy, and the like. As shown in FIG. 1, the side extrusion method according to the present invention comprises two extruded containers having the same cross-sectional area on the inner surface, or a container 1 and a die 2 formed by 180.
Joining at an appropriate angle (2 °) of less than 1 °, inserting the alloy material S into one container 1 and extruding it towards the next container or die 2 by means of the ram 3, thereby laterally shearing the material. And preferably this step is performed a plurality of times. By applying this method to the alloy material, the crystal grains can be refined to 1 micron or less in a very simple process and without reducing the cross-sectional area, and can be strengthened more than the strength by conventional work hardening. At the same time, the toughness can be greatly improved. In addition, the process has the effect of destroying and homogenizing the casting structure, macro- and micro-segregation of alloy components, and omits the high-temperature and long-time homogenization heat treatment generally performed for alloy materials. You can also. Further, even if the cross section of the die 2 is reduced, the effect is not changed.

【0010】本発明の側方押出法で合金素材に加えられ
る剪断変形量は、2つのコンテナー又はコンテナーとダ
イの接合角度によって異なる。一般に、このような剪断
変形による押出し1回当たりの歪量Δεiは下記式
(1)で与えられる。
[0010] The amount of shear deformation applied to the alloy material by the side extrusion method of the present invention differs depending on the joining angle between the two containers or the container and the die. Generally, the amount of strain Δε i per extrusion by such shear deformation is given by the following equation (1).

【0011】[0011]

【数1】 (Equation 1)

【0012】(但し、△εiは歪量、ψは接合内角の1
/2、ERRは加工前後の面積比、A0は加工前の断面
積、Aは加工後の断面積、EARは加工前後の相当断面
減少率、EEは相当歪(伸びと同義)を表わす。) 即ち、2つのコンテナー又はコンテナーとダイの接合の
内角が直角(90°)の場合、1回の側方押出で歪量は
1.15(相当伸び:220%)、120°の場合、歪
量は0.67(相当伸び:95%)で与えられる。断面
積を同一のまま直角に側方押出しすることによって、圧
延による圧下率(断面減少率)69%に相当する加工を
加えることができる。
(However, △ ε i is the amount of strain, ψ is 1 of the internal joint angle.)
/ 2, ERR is the area ratio before and after processing, A 0 is the cross-sectional area before processing, A is the cross-sectional area after processing, EAR is the equivalent cross-sectional reduction rate before and after processing, and EE is the equivalent strain (synonymous with elongation). That is, when the inner angle of the joint between the two containers or the container and the die is a right angle (90 °), the amount of strain is 1.15 (equivalent elongation: 220%) in one side extrusion, and when 120 °, the strain is The amount is given at 0.67 (equivalent elongation: 95%). By extruding at right angles to the side while keeping the same cross-sectional area, a process equivalent to a rolling reduction (cross-sectional reduction) of 69% by rolling can be added.

【0013】上記プロセスを繰り返すことによって、材
料の断面積を変えずに材料中に無限に歪を蓄積すること
ができる。その繰り返しによって材料に与える積算歪量
εtは下記式(5)で与えられる。
By repeating the above process, infinite strain can be accumulated in the material without changing the cross-sectional area of the material. The cumulative strain amount ε t given to the material by the repetition is given by the following equation (5).

【0014】εt=△εi×N ……(5) (但し、εtは積算歪量、Nは押出回数を表わす。) この繰り返し回数(N)は、理論的には多いほどよい
が、実際には合金によってある回数でその効果に飽和状
態が見られる。一般の展伸用合金素材では、繰り返し数
4回(接合内角が直角の場合、積算歪量:4.6、相当
伸び:10000%)で十分な効果を得ることができ
る。圧延によっても無限に歪を蓄積することができる
が、その場合、断面積は無限に小さくなり、この点にお
いて側方押出法とは対照的である。
Ε t = △ ε i × N (5) (However, ε t represents the integrated strain amount, and N represents the number of extrusions.) The number of repetitions (N) is theoretically preferably as large as possible. Actually, the effect is saturated in a certain number of times depending on the alloy. In a general wrought alloy material, a sufficient effect can be obtained when the number of repetitions is four (when the joining angle is a right angle, the integrated strain amount is 4.6 and the equivalent elongation is 10000%). Infinite strains can also be accumulated by rolling, in which case the cross-sectional area becomes infinitely small, in contrast to the lateral extrusion method.

【0015】本発明による側方押出しは、できるだけ低
温で行うことが好ましい。しかしながら、合金の変形抵
抗は低温になるほど高く、変形能は低温ほど小さくなる
傾向がある。押出し用工具の強度の関係及び健全な押出
材を得るために、通常は合金によって異なる適切な温度
で行われる。一般的には、300℃以下、好ましくは合
金の再結晶温度以下、さらに好ましくは回復温度以下で
行われる。しかし、この再結晶温度、回復温度は、材料
に加えられる加工度によって変化する。押出温度は、押
出角度によっても異なり、角度が大きくなるほど低温で
可能となる。これは押出力(剪断変形に要するエネルギ
ー)が小さくなることと、材料の変形能による制約が緩
くなるからである。
The lateral extrusion according to the invention is preferably carried out at as low a temperature as possible. However, the deformation resistance of the alloy tends to be higher at lower temperatures, and the deformability tends to be lower at lower temperatures. In order to obtain the relationship between the strength of the extrusion tool and the sound extruded material, it is usually carried out at an appropriate temperature depending on the alloy. Generally, it is performed at a temperature of 300 ° C. or lower, preferably at a temperature lower than the recrystallization temperature of the alloy, more preferably at a temperature lower than the recovery temperature. However, the recrystallization temperature and the recovery temperature vary depending on the degree of processing applied to the material. The extrusion temperature varies depending on the extrusion angle, and the larger the angle, the lower the temperature. This is because the pushing force (energy required for the shearing deformation) is reduced and the constraint due to the deformability of the material is relaxed.

【0016】第2の手法は、図2に示すように、逐次圧
縮(押圧)方向を変えて鍛造を行う手法であって、例え
ばX軸方向両側から押圧し圧縮させることにより断面形
状を変化させ素材に変化を加え、次にY軸方向両側か
ら、さらにはZ軸方向両側からといったように逐次圧縮
変形を与える。この際素材の断面積は変化させない方が
より好ましい。この手法においても前述の側方押出法と
同様に220%あるいはそれ以上の相当伸びに相当する
歪量を与えることができるとともに、結晶粒及び金属間
化合物の微細化が行える。また、鍛造の際の温度も上述
の押出温度と同様に適用できる。
As shown in FIG. 2, the second method is a method of forging by successively changing the compression (pressing) direction. For example, the cross section is changed by pressing and compressing from both sides in the X-axis direction. A change is applied to the material, and then a compressive deformation is sequentially applied from both sides in the Y-axis direction, and further from both sides in the Z-axis direction. At this time, it is more preferable that the cross-sectional area of the material is not changed. Also in this method, a strain amount corresponding to a considerable elongation of 220% or more can be given as in the case of the above-mentioned side extrusion method, and the crystal grains and intermetallic compounds can be refined. The temperature at the time of forging can be applied in the same manner as the above-mentioned extrusion temperature.

【0017】これらの手法により、平均結晶粒径が10
μm以下、金属間化合物の平均粒子径を1μm以下とす
ることができ、このような合金素材は温度100〜35
0℃、歪速度10~5〜100s~1の成形加工条件で種々
の形状に成形できる。また、成形に際しては、150%
以上の伸びを示すことから、粒界すべりによる変形と粒
内(塑性)変形とにより材料が変形し、超塑性的な変形
が生じる。また、微細な金属間化合物が存在しているこ
とにより、成形の際に上記のように加熱を行っても、結
晶粒の粗大化が抑制され、機械的な特性の低下が生じに
くい。なお、超塑性的な成形及び機械的特性を考慮した
場合、平均結晶粒径は3μm以下であることが好まし
く、より好ましくは1μm以下である。
According to these techniques, the average crystal grain size is 10
μm or less, and the average particle diameter of the intermetallic compound can be 1 μm or less.
0 ° C., can be molded into various shapes by molding condition strain rate 10 ~ 5 ~10 0 s ~ 1 . When molding, 150%
Due to the above elongation, the material is deformed by deformation due to grain boundary sliding and intragranular (plastic) deformation, and superplastic deformation occurs. In addition, due to the presence of the fine intermetallic compound, even if heating is performed as described above during molding, coarsening of crystal grains is suppressed, and a decrease in mechanical properties hardly occurs. In consideration of superplastic forming and mechanical properties, the average crystal grain size is preferably 3 μm or less, more preferably 1 μm or less.

【0018】また本発明においては、前述の220%以
上の伸びに相当する塑性変形を与えた材料を固相状態の
まま押出成形を行うが、固相状態のまま成形することに
より、材料は熱的な影響を受けにくく、機械的な特性を
維持しやすくなり、さらに固相状態での押出成形を行う
ことによりコンテナ内の残留ガスが押出成形材にまき込
まれにくく、後方のダミーブロック及びダイスより円滑
にガス抜きされ、押出成形材に不良が発生しにくくな
る。また、材料の押出成形による変形は前述したように
超塑性的な変形となり、ダイスより押出成形材が成形さ
れる。
In the present invention, the material having undergone the plastic deformation corresponding to the elongation of 220% or more is extruded in the solid state. It is less susceptible to mechanical influences, it is easier to maintain mechanical properties, and by extruding in the solid state, the residual gas in the container is less likely to be mixed into the extruded material, and the rear dummy block and die Degassing is performed more smoothly, and defects are less likely to occur in the extruded material. Further, the deformation due to the extrusion molding of the material becomes a superplastic deformation as described above, and the extruded material is formed from the die.

【0019】以下、具体的な押出成形装置及び押出成形
方法を図3をもとに説明する。
Hereinafter, a specific extrusion molding apparatus and an extrusion molding method will be described with reference to FIG.

【0020】押出成形装置は、長手方向に連通する供給
部4が形成されたコンテナ5と供給部4の一端側に配さ
れ、成形される押出成形材Mの断面形状の開口が形成さ
れたダイ6と供給部4の他端側に配され、前記ダイ6に
向かって供給部4内を摺動する一方側にダミーブロック
7を備えたステム8とからなる。なお、図示されていな
いが、押出成形装置には、コンテナ内の温度をコントロ
ールするための加熱・冷却手段及び温度検知手段並びに
温度制御手段等が設けられている。押出成形は、供給部
内に押出材料Sを配し、他端側のステム8をダイ6に向
けて摺動させ、押出材料Sをダイ6に向けて押圧するこ
とによってダイ6に形成されている開口に合った断面形
状の押出成形材Mを作製する。この場合、ダイ6により
押出材料Sの断面積を減少させることによって、材料に
は歪が与えられ、押出成形材Mはさらに機械的特性の向
上が行える。具体的な押出成形条件としては温度100
〜450℃、歪速度10~5〜100s~1で行うことが好
ましい。
The extruder is provided with a container 5 provided with a supply section 4 communicating in the longitudinal direction, and a die provided with one end of the supply section 4 and having an opening having a cross-sectional shape of the extruded material M to be formed. 6 and a stem 8 provided on the other end side of the supply unit 4 and provided with a dummy block 7 on one side sliding in the supply unit 4 toward the die 6. Although not shown, the extrusion molding apparatus is provided with a heating / cooling unit for controlling the temperature in the container, a temperature detecting unit, a temperature controlling unit, and the like. Extrusion is formed on the die 6 by arranging the extruded material S in the supply unit, sliding the stem 8 on the other end side toward the die 6, and pressing the extruded material S toward the die 6. An extruded material M having a sectional shape that matches the opening is produced. In this case, by reducing the cross-sectional area of the extruded material S by the die 6, the material is distorted, and the extruded material M can be further improved in mechanical properties. Specific extrusion molding conditions are temperature 100
To 450 ° C., it is preferably performed at a strain rate 10 ~ 5 ~10 0 s ~ 1 .

【0021】また、このようにして得られた押出成形材
は、温度500℃以下、歪速度10~2〜100s~1の条
件で液圧・ガス圧ブロー成形、プレス成形、スピニン
グ、曲げ、絞り加工などの塑性加工が施せるとともに、
同条件で超塑性流動を利用した拡散接合を行うことがで
きる。
Further, extruded material obtained in this way, the temperature 500 ° C. or less, the liquid pressure-gas pressure blow molding under the condition of strain rate 10 ~ 2 ~10 0 s ~ 1 , press molding, spinning, bending , As well as plastic processing such as drawing
Diffusion bonding using superplastic flow can be performed under the same conditions.

【0022】本発明は、このような成形及び加工を行う
ことによって自動車用、建築材用などの形材及び部品、
家電製品のフレームなど多種多様の広い用途に提供でき
る。
According to the present invention, by performing such molding and processing, shapes and parts for automobiles, construction materials, etc.,
It can be used for a wide variety of applications such as home appliance frames.

【0023】[0023]

【発明の実施の形態】次に、実施例並びに比較例によっ
て本発明を具体的に説明する。
Now, the present invention will be described in detail with reference to Examples and Comparative Examples.

【0024】実施例1 適用合金として表1に示す組成範囲内のZK60合金を
選び、鋳造によって直径80mmの丸棒とし、得られた
丸棒を499℃で2時間熱処理後、水中で急冷し、その
後、熱間押出し(300℃、押出比10)によって直径
25mmの丸棒とし、供試材とした。比較材としては、
上記合金の熱間押出材(結晶粒径:25ミクロン)と鋳
造材を用いた。この供試材は直角(ψ=45°)に連結
した2つのコンテナー(何れも直径25mm)の一方に
挿入し、180℃で8回の側方押出しを行い、直径25
mmの処理材を得た。これによって、前述の式によれば
積算歪量(εt)9.4(相当伸び1000000%)
の加工を受けたマグネシウム合金材料が得られたことに
なる。
Example 1 A ZK60 alloy having a composition range shown in Table 1 was selected as an applicable alloy, and a round bar having a diameter of 80 mm was formed by casting. The obtained round bar was heat-treated at 499 ° C. for 2 hours, and then rapidly cooled in water. Thereafter, a round bar having a diameter of 25 mm was formed by hot extrusion (300 ° C., extrusion ratio 10) to obtain a test material. As a comparison material,
A hot extruded material (crystal grain size: 25 microns) of the above alloy and a cast material were used. This test material was inserted into one of two containers (both having a diameter of 25 mm) connected at a right angle (ψ = 45 °) and subjected to eight lateral extrusions at 180 ° C.
mm was obtained. Thus, according to the above equation, the integrated strain (ε t ) is 9.4 (equivalent elongation of 1,000,000%).
This means that a magnesium alloy material that has been processed is obtained.

【0025】180℃での側方押出し後の材料の透過電
子顕微鏡(TEM)像(倍率:3万倍)により組織観察
を行った結果、側方押出し後には結晶粒は0.5ミクロ
ン程度に微細化していることが分かった。
The structure of the material after the lateral extrusion at 180 ° C. was observed by a transmission electron microscope (TEM) image (magnification: 30,000 times). As a result, the crystal grains were reduced to about 0.5 μm after the lateral extrusion. It turned out that it was miniaturized.

【0026】このようにして作製した側方押出材から、
平行部長さ5mm、直径2.5mmの引張試験片を作製
し、温度300℃一定、歪速度1×10~3、1×10
~2、1×10~1s~1の各条件で引張試験を行った。その
結果を図4に示す。
From the laterally extruded material thus produced,
A tensile test piece having a parallel part length of 5 mm and a diameter of 2.5 mm was prepared at a constant temperature of 300 ° C., a strain rate of 1 × 10 to 3 and 1 × 10
It was ~ 2, 1 × tensile 10 under the conditions of ~ 1 s ~ 1 test. FIG. 4 shows the results.

【0027】図4から明らかなように、歪速度とともに
破断伸びは増加し、1×10~2s~1で最大の300%と
なり、それ以上では減少した。このように破断伸び20
0%以上の高い変形能を示すのは、前記微細組織がZr
等の析出物によって熱的に安定、かつ粒内塑性変形と粒
界滑りをともなうからである。
As is apparent from FIG. 4, the breaking elongation with a strain rate increases, next to the maximum 300% at 1 × 10 ~ 2 s ~ 1 , and decreased at higher. Thus, the breaking elongation 20
The high deformability of 0% or more is due to the fact that the microstructure is Zr.
This is because such precipitates are thermally stable and have intragranular plastic deformation and grain boundary slip.

【0028】上記材料を用いて押出実験を行った。押出
温度は300℃、押出比は50、押出速度は1mm/s
とした。
An extrusion experiment was performed using the above materials. Extrusion temperature 300 ° C, extrusion ratio 50, extrusion speed 1mm / s
And

【0029】これらの押出材から、平行部長さ15m
m、平行部幅3mm、平行部厚さ2mmの引張試験片を
作製し、室温、歪速度1×10~3s~1の条件で引張試験
を行った。この結果と押出面圧の比較を表2に示す。
From these extruded materials, a parallel part length of 15 m
m, a parallel part width of 3 mm, and a parallel part thickness of 2 mm were prepared, and a tensile test was performed at room temperature and at a strain rate of 1 × 10 to 3 s- 1 . Table 2 shows a comparison between the results and the extrusion surface pressure.

【0030】押出面圧はZK60合金の側方押出材を押
出成形した押出成形材(以下、側方押出材)で500M
Pa以下であるのに対して、同合金の熱間押出材(結晶
粒径:25ミクロン)と鋳造材を押出成形した押出成形
材(以下、熱間押出材、鋳造材)は1000MPa近く
であり、側方押出材の方が低面圧であった。
The extruded surface pressure is 500 M for an extruded material obtained by extruding a laterally extruded material of ZK60 alloy (hereinafter referred to as a laterally extruded material).
On the other hand, the hot-extruded material (crystal grain size: 25 microns) of the same alloy and an extruded material obtained by extruding a cast material (hereinafter, hot-extruded material, cast material) are close to 1000 MPa. The side extruded material had lower surface pressure.

【0031】降伏応力はZK60合金の側方押出材で3
70MPaであるのに対して、同合金の熱間押出材(結
晶粒径:25ミクロン)で300MPa、鋳造材で25
0MPaであり、側方押出材の方が優れていた。
The yield stress was 3 for the laterally extruded ZK60 alloy.
70 MPa, 300 MPa for a hot extruded material (crystal grain size: 25 microns) of the same alloy, 25 for a cast material
It was 0 MPa, and the laterally extruded material was superior.

【0032】以上のことから、0.5ミクロン程度に微
細化された材料を使用することによって、高強度な難加
工材を低面圧で押出せることがわかる。このことから、
薄肉化や押出高速度化が可能であることがわかる。
From the above, it can be seen that the use of a material that has been miniaturized to about 0.5 μm allows a high-strength difficult-to-process material to be extruded at a low surface pressure. From this,
It can be seen that thinning and high extrusion speed are possible.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】実施例2 適用合金としてAl−5Mg−0.5Sc−0.15Z
rを選び、鋳造によって直径80mmの丸棒とし、得ら
れた丸棒を425℃で16時間熱処理後、水中で急冷
し、その後、熱間押出し(450℃、押出比10)によ
って直径25mmの丸棒とし、供試材とした。比較材と
しては、上記合金の水焼き入れ材(結晶粒径:25ミク
ロン)と、実用合金のA6063合金とA2024合金
の水焼き入れ材を用いた。この供試材は直角(ψ=45
°)に連結した2つのコンテナー(何れも直径25m
m)の一方に挿入し、100℃で4回の側方押出しを行
い、直径25mmの処理材を得た。これによって、前述
の式によれば積算歪量(εt)4.6(相当伸び100
00%)の加工を受けたアルミニウム合金材料が得られ
たことになる。
Example 2 Al-5Mg-0.5Sc-0.15Z as applicable alloy
r was selected and cast into a round bar having a diameter of 80 mm. The obtained round bar was heat-treated at 425 ° C. for 16 hours, quenched in water, and then hot-extruded (450 ° C., extrusion ratio 10) to form a round bar having a diameter of 25 mm. Bars were used as test materials. As comparative materials, a water-quenched material of the above alloy (crystal grain size: 25 μm) and a water-quenched material of a practical alloy A6063 alloy and A2024 alloy were used. This test material has a right angle (ψ = 45
°) connected to two containers (both 25m in diameter)
m) and subjected to four side extrusions at 100 ° C. to obtain a treated material having a diameter of 25 mm. Thus, according to the above equation, the integrated strain (ε t ) is 4.6 (equivalent elongation of 100).
(00%).

【0036】100℃での側方押出し後の材料の透過電
子顕微鏡(TEM)像(倍率:3万倍)により組織観察
を行った結果、側方押出し後には結晶粒は0.5ミクロ
ン程度に微細化していることが分かった。
The structure of the material after the lateral extrusion at 100 ° C. was observed by a transmission electron microscope (TEM) image (magnification: 30,000 times). As a result, the crystal grains were reduced to about 0.5 μm after the lateral extrusion. It turned out that it was miniaturized.

【0037】このようにして作製した側方押出材から、
平行部長さ5mm、直径2.5mmの引張試験片を作製
し、温度400℃一定、歪速度1×10~2、1×10
~1、1×100s~1の各条件で引張試験を行った。その
結果を図5に示す。
From the laterally extruded material thus produced,
A tensile test piece having a parallel part length of 5 mm and a diameter of 2.5 mm was prepared at a constant temperature of 400 ° C., a strain rate of 1 × 10 to 2 and 1 × 10
Tensile tests were performed under the conditions of ~ 1 and 1 × 10 0 s ~ 1 . The result is shown in FIG.

【0038】図5から明らかなように、破断伸びは歪速
度とともに単調に減少している。しかし、測定した歪速
度の範囲では800%以上の破断伸びを示している。こ
のように破断伸び200%以上の高い変形能を示すの
は、前記組織がAl3ScとAl3Zrの微細な析出物に
よって熱的に安定、かつ粒内塑性変形と粒界滑りをとも
なうからである。
As apparent from FIG. 5, the elongation at break monotonically decreases with the strain rate. However, it shows a breaking elongation of 800% or more in the range of the measured strain rate. The high deformability of elongation at break of 200% or more is because the structure is thermally stable due to fine precipitates of Al 3 Sc and Al 3 Zr, and is accompanied by intragranular plastic deformation and grain boundary slip. It is.

【0039】上記材料を用いて押出実験を行った。押出
温度は400℃、押出比は50、押出速度は1mm/s
とした。
Extrusion experiments were performed using the above materials. The extrusion temperature is 400 ° C, the extrusion ratio is 50, and the extrusion speed is 1 mm / s
And

【0040】これらの押出材から、平行部長さ15m
m、平行部幅3mm、平行部厚さ2mmの引張試験片を
作製し、室温、歪速度1×10~3s~1の条件で引張試験
を行った。この結果と押出面圧の比較を表3に示す。
From these extruded materials, the parallel part length was 15 m.
m, a parallel part width of 3 mm, and a parallel part thickness of 2 mm were prepared, and a tensile test was performed at room temperature and at a strain rate of 1 × 10 to 3 s- 1 . Table 3 shows a comparison between the results and the extrusion surface pressure.

【0041】Al−5Mg−0.5Sc−0.15Zr
とA2024合金の水焼き入れ材を押出成形した押出成
形材(以下、水焼き入れ材)は面圧が1000MPa近
くであった。Al−5Mg−0.5Sc−0.15Zr
の側方押出材を押出成形した押出成形材(以下、側方押
出材)の面圧はA6069合金の水焼き入れ材より高か
ったが、同合金の水焼き入れ材より低かった。
Al-5Mg-0.5Sc-0.15Zr
An extruded material (hereinafter referred to as a water-quenched material) obtained by extrusion-molding a water-quenched material of A2024 alloy had a surface pressure of about 1000 MPa. Al-5Mg-0.5Sc-0.15Zr
The surface pressure of the extruded material (hereinafter referred to as “side extruded material”) obtained by extruding the side extruded material was higher than the water-quenched material of the A6069 alloy, but lower than the water-quenched material of the same alloy.

【0042】降伏応力はAl−5Mg−0.5Sc−
0.15Zrの側方押出材で400MPaであるのに対
して、押出面圧の低いA6063合金の水焼き入れ材は
150MPa、押出面圧の高いAl−5Mg−0.5S
c−0.15ZrとA2024合金の水焼き入れ材は2
00〜350MPaであり、側方押出材の方が優れてい
る。
The yield stress is Al-5Mg-0.5Sc-
While the side extruded material of 0.15Zr is 400MPa, the water quenched material of the A6063 alloy having a low extruded surface pressure is 150MPa, and the Al-5Mg-0.5S having a high extruded surface pressure is 150MPa.
c-0.15Zr and water hardened material of A2024 alloy are 2
It is 00 to 350 MPa, and the laterally extruded material is superior.

【0043】以上のことから、0.5ミクロン程度に微
細化された材料を使用することによって、高強度な難加
工材を低面圧で押出せることがわかる。このことから、
薄肉化や押出高速度化が可能であることがわかる。
From the above, it can be seen that the use of a material which has been miniaturized to about 0.5 μm allows a high-strength difficult-to-process material to be extruded at a low surface pressure. From this,
It can be seen that thinning and high extrusion speed are possible.

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【発明の効果】本発明によれば、機械的特性に優れ、押
出成形及び冷間加工が行え、押出成形材さらには成形品
と、効率よくかつ成形不良が生じにくい製品が得られ、
自動車用、建築材用などの形材及び部品、家電製品のフ
レームなど多種多様の用途に提供できる。
According to the present invention, it is possible to obtain an extruded material and a molded product, which are excellent in mechanical properties, can be subjected to extrusion molding and cold working, and are efficiently and less likely to have molding defects.
It can be used for a wide variety of applications such as shapes and parts for automobiles and building materials, and frames for home appliances.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において、合金素材に塑性変形を与える
方法の説明図である。
FIG. 1 is an explanatory diagram of a method of giving plastic deformation to an alloy material in the present invention.

【図2】本発明において、合金素材に塑性変形を与える
他の方法の説明図である。
FIG. 2 is an explanatory view of another method of giving plastic deformation to an alloy material in the present invention.

【図3】本発明において合金素材を押出成形するための
装置の説明図である。
FIG. 3 is an explanatory view of an apparatus for extruding an alloy material in the present invention.

【図4】実施例1による側方押出材の引張試験結果を示
すグラフである。
FIG. 4 is a graph showing a tensile test result of a laterally extruded material according to Example 1.

【図5】実施例2による側方押出材の引張試験結果を示
すグラフである。
FIG. 5 is a graph showing the results of a tensile test of a laterally extruded material according to Example 2.

【符号の説明】[Explanation of symbols]

1 コンテナー 2 ダイ 3 ラム S 合金素材 4 供給部 5 コンテナ 6 ダイ 7 ダミーブロック 8 ステム M 押出成形材 DESCRIPTION OF SYMBOLS 1 Container 2 Die 3 Ram S alloy material 4 Supply part 5 Container 6 Die 7 Dummy block 8 Stem M Extruded material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 612 C22F 1/00 612 630 630K 631 631A 694 694B 694A (72)発明者 永洞 純一 宮城県仙台市泉区将監11丁目12−12 (72)発明者 クリスティアン ピタン 宮城県黒川郡富谷町鷹乃森4−24−5 (72)発明者 東 健司 大阪府富田林市寺池台3−4−9 Fターム(参考) 4E029 AA06 AA07 4E087 AA10 BA03 BA04 BA24 CA21 CA22 CA27 CB01 CB03 CB04 CB11 CB12 DB12 DB15 DB23 EC01 EC11 EC17 EC37 EC46 EC54 GA02 GA07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme court ゛ (Reference) C22F 1/00 612 C22F 1/00 612 630 630K 631 631A 694 694B 694A (72) Inventor Junichi Nagato Sendai, Miyagi (12) Inventor Christian Pitan 4-24-5 Takanomori, Tomiya-cho, Kurokawa-gun, Miyagi Prefecture (72) Inventor Kenji Higashi 3-4-9 Teraikedai, Tondabayashi-shi, Osaka F-term (Reference) 4E029 AA06 AA07 4E087 AA10 BA03 BA04 BA24 CA21 CA22 CA27 CB01 CB03 CB04 CB11 CB12 DB12 DB15 DB23 EC01 EC11 EC17 EC37 EC46 EC54 GA02 GA07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 合金素材に220%以上の伸びに相当す
る塑性変形(歪)を与え、平均結晶粒径を10μm以
下、金属間化合物の平均粒子径を1μm以下に微細化
し、得られた材料を固相状態のまま押出成形を行うこと
を特徴とする押出成形材の製造方法。
1. A material obtained by subjecting an alloy material to plastic deformation (strain) equivalent to elongation of 220% or more, and reducing the average crystal grain size to 10 μm or less and the average particle size of the intermetallic compound to 1 μm or less. Extruded in a solid state.
【請求項2】 合金素材は鋳造材に熱間塑性加工を施し
たものである請求項1記載の押出成形材の製造方法。
2. The method according to claim 1, wherein the alloy material is obtained by subjecting a cast material to hot plastic working.
【請求項3】 合金素材にその押出方向を途中で内角1
80°未満の側方に変化させて剪断変形を与えることに
よって、220%以上の伸びに相当する大きな歪を与
え、ミクロ組織を微細化する請求項1記載の押出成形材
の製造方法。
3. The alloy material is extruded in the direction of the middle with an inner angle of 1 mm.
The method for producing an extruded material according to claim 1, wherein a large strain corresponding to an elongation of 220% or more is given by applying a shearing deformation by changing the side to less than 80 ° to refine the microstructure.
【請求項4】 合金素材に、その素材に対して圧力方向
を変化させ断面形状を変化させて、加圧変形を与えるこ
とによって、220%以上の伸びに相当する大きな歪を
与え、ミクロ組織を微細化する請求項1記載の押出成形
材の製造方法。
4. A large strain corresponding to elongation of 220% or more is given to the alloy material by applying pressure deformation by changing the pressure direction and changing the cross-sectional shape of the material to change the microstructure. The method for producing an extruded material according to claim 1, wherein the extruded material is miniaturized.
【請求項5】 押出成形の際にも歪を与えて成形する請
求項1記載の押出成形材の製造方法。
5. The method for producing an extruded material according to claim 1, wherein the extruded material is formed by giving a strain during the extrusion.
【請求項6】 押出成形を温度100〜450℃、歪速
度10~5〜100s~1の成形条件で行う請求項1記載の
押出成形材の製造方法。
6. The method of claim 1 extruded material according performing extrusion temperature 100 to 450 ° C., in the molding conditions of strain rate 10 ~ 5 ~10 0 s ~ 1 .
【請求項7】 請求項1により得られる押出成形材にさ
らに塑性加工又は/及び接合を行うことを特徴とする成
形品の製造方法。
7. A method for producing a molded product, wherein the extruded material obtained according to claim 1 is further subjected to plastic working and / or joining.
【請求項8】 塑性加工又は/及び接合を固相状態のま
ま温度500℃以下、歪速度10~2〜100s~1の条件
で行う請求項7記載の製造方法。
8. A plastic working and / or temperature remains 500 ° C. of solid state bonding following process according to claim 7, wherein under the condition of strain rate 10 ~ 2 ~10 0 s ~ 1 .
JP8416099A 1999-03-26 1999-03-26 Extruded material and method for producing molded article Pending JP2000271631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8416099A JP2000271631A (en) 1999-03-26 1999-03-26 Extruded material and method for producing molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8416099A JP2000271631A (en) 1999-03-26 1999-03-26 Extruded material and method for producing molded article

Publications (1)

Publication Number Publication Date
JP2000271631A true JP2000271631A (en) 2000-10-03

Family

ID=13822757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8416099A Pending JP2000271631A (en) 1999-03-26 1999-03-26 Extruded material and method for producing molded article

Country Status (1)

Country Link
JP (1) JP2000271631A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224135A (en) * 2005-02-17 2006-08-31 Tama Tlo Kk Plastic processing device and plastic processing method
JP2009275274A (en) * 2008-05-16 2009-11-26 National Institute Of Advanced Industrial & Technology Magnesium alloy and method for producing the same
WO2010047045A1 (en) * 2008-10-22 2010-04-29 住友電気工業株式会社 Formed product of magnesium alloy and magnesium alloy sheet
JP2011099140A (en) * 2009-11-05 2011-05-19 National Institute Of Advanced Industrial Science & Technology Magnesium alloy and method for producing the same
CN103447334A (en) * 2013-02-01 2013-12-18 深圳信息职业技术学院 Continuous reciprocating type equal channel corner extrusion device and method
JP2015104734A (en) * 2013-11-28 2015-06-08 アイシン軽金属株式会社 Roll bending apparatus for extruded shape material
JP2015147980A (en) * 2014-02-07 2015-08-20 本田技研工業株式会社 Al ALLOY CASTING AND METHOD FOR PRODUCING THE SAME
JP2019536894A (en) * 2016-09-30 2019-12-19 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. High strength aluminum alloy backing plate and manufacturing method
JP2020501021A (en) * 2016-12-02 2020-01-16 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. ECAE materials for high strength aluminum alloys
CN112996934A (en) * 2018-10-25 2021-06-18 霍尼韦尔国际公司 ECAE treatment for high strength and high hardness aluminum alloys

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224135A (en) * 2005-02-17 2006-08-31 Tama Tlo Kk Plastic processing device and plastic processing method
JP2009275274A (en) * 2008-05-16 2009-11-26 National Institute Of Advanced Industrial & Technology Magnesium alloy and method for producing the same
WO2010047045A1 (en) * 2008-10-22 2010-04-29 住友電気工業株式会社 Formed product of magnesium alloy and magnesium alloy sheet
JPWO2010047045A1 (en) * 2008-10-22 2012-03-15 住友電気工業株式会社 Magnesium alloy compact and magnesium alloy sheet
JP2011099140A (en) * 2009-11-05 2011-05-19 National Institute Of Advanced Industrial Science & Technology Magnesium alloy and method for producing the same
CN103447334A (en) * 2013-02-01 2013-12-18 深圳信息职业技术学院 Continuous reciprocating type equal channel corner extrusion device and method
JP2015104734A (en) * 2013-11-28 2015-06-08 アイシン軽金属株式会社 Roll bending apparatus for extruded shape material
US10287662B2 (en) 2014-02-07 2019-05-14 Honda Motor Co., Ltd. Aluminum alloy cast product and method for producing the same
JP2015147980A (en) * 2014-02-07 2015-08-20 本田技研工業株式会社 Al ALLOY CASTING AND METHOD FOR PRODUCING THE SAME
JP2019536894A (en) * 2016-09-30 2019-12-19 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. High strength aluminum alloy backing plate and manufacturing method
JP2022163183A (en) * 2016-09-30 2022-10-25 ハネウェル・インターナショナル・インコーポレーテッド High strength aluminum alloy backing plate and production method
JP7411741B2 (en) 2016-09-30 2024-01-11 ハネウェル・インターナショナル・インコーポレーテッド High strength aluminum alloy backing plate and manufacturing method
JP2020501021A (en) * 2016-12-02 2020-01-16 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. ECAE materials for high strength aluminum alloys
JP2020501016A (en) * 2016-12-02 2020-01-16 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. ECAE material for high strength aluminum alloy
US11421311B2 (en) 2016-12-02 2022-08-23 Honeywell International Inc. ECAE materials for high strength aluminum alloys
CN112996934A (en) * 2018-10-25 2021-06-18 霍尼韦尔国际公司 ECAE treatment for high strength and high hardness aluminum alloys
US11649535B2 (en) 2018-10-25 2023-05-16 Honeywell International Inc. ECAE processing for high strength and high hardness aluminum alloys
US12252770B2 (en) 2018-10-25 2025-03-18 Honeywell International Inc ECAE processing for high strength and high hardness aluminum alloys

Similar Documents

Publication Publication Date Title
EP2324137B1 (en) Process for forming aluminium alloy sheet components
CN101406906B (en) Method for preparing magnesium alloy section bar by continuous corner shearing and squeezing shaping and mold
CN106605004B (en) High strength products extruded from 6xxx aluminum alloys having excellent impact properties
JP3654466B2 (en) Aluminum alloy extrusion process and high strength and toughness aluminum alloy material obtained thereby
US4721537A (en) Method of producing a fine grain aluminum alloy using three axes deformation
JP3353013B2 (en) Aluminum-manganese-titanium aluminum alloy having high extrusion formability and high corrosion resistance and method for producing the same
CN101278067B (en) Method of press quenching aluminum alloy 6020
US5032189A (en) Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
JP2003096549A (en) Alloy excellent in mechanical properties and impact ductility and method for producing the same
Eftekhari et al. Hot tensile deformation behavior of Mg-Zn-Al magnesium alloy tubes processed by severe plastic deformation
CN116083764A (en) Method for producing heat treatable aluminium alloys with improved mechanical properties
CN110066951B (en) Ultrahigh-plasticity magnesium alloy and preparation method of wrought material thereof
US20210023596A1 (en) Functionally Graded Coatings and Claddings
Peng et al. Novel continuous forging extrusion in a one-step extrusion process for bulk ultrafine magnesium alloy
JPH06501982A (en) Ultra-high strength aluminum alloy member with ductility
JP2000271631A (en) Extruded material and method for producing molded article
US7077755B2 (en) Method of preparing ultra-fine grain metallic articles and metallic articles prepared thereby
US5154780A (en) Metallurgical products improved by deformation processing and method thereof
JP2000271693A (en) Manufacturing method of magnesium alloy material
US6299706B1 (en) Process for improving the extrudability of high-strength aluminum alloys
JP2000271695A (en) Manufacturing method of molded products
JPH07180011A (en) Method for manufacturing α + β type titanium alloy extruded material
JPH10258334A (en) Manufacturing method of aluminum alloy molded product
Hu et al. Researches on a novel severe plastic deformation method combining direct extrusion and shearings for AZ61 magnesium alloy based on numerical simulation and experiments
JP3097476B2 (en) Hot plastic working method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Effective date: 20041227

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20050121

Free format text: JAPANESE INTERMEDIATE CODE: A02