[go: up one dir, main page]

JP2000284672A - Method and device for optical recording - Google Patents

Method and device for optical recording

Info

Publication number
JP2000284672A
JP2000284672A JP8764499A JP8764499A JP2000284672A JP 2000284672 A JP2000284672 A JP 2000284672A JP 8764499 A JP8764499 A JP 8764499A JP 8764499 A JP8764499 A JP 8764499A JP 2000284672 A JP2000284672 A JP 2000284672A
Authority
JP
Japan
Prior art keywords
light
intensity
optical recording
image
fourier transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8764499A
Other languages
Japanese (ja)
Other versions
JP4045390B2 (en
Inventor
Takehiro Niitsu
岳洋 新津
Katsunori Kono
克典 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP8764499A priority Critical patent/JP4045390B2/en
Publication of JP2000284672A publication Critical patent/JP2000284672A/en
Application granted granted Critical
Publication of JP4045390B2 publication Critical patent/JP4045390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Holo Graphy (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sufficient interference effect and excellently reproduce a data image of an object beam when recording a Fourier-transformed image of the object beam holding data information as a hologram. SOLUTION: A data image of an object beam is Fourier-transformed, and zero-order to, for instance, 5th order light components of the Fourier-converted image are transmitted through a light transparent part 21 of a shading body 20 to irradiate an optical recording medium therewith. The light transparent part 21 has a constant light transmittance in all the area. Parallel light of spatially constant intensity is transmitted through an intensity modulation filter 17 having such a spatial transmittance distribution as the transmittance is maximal at the center part and decreased as it goes down to the periphery, and the transmitted light is transmitted through the light transparent part 21 of the shading body 20, or directly emitted reference light onto the area of the optical recording medium irradiated with the zero-order to 5th order light of the Fourier transformed image and not through the light transparent part. Then, the center part where the reference light is at the maximum in the intensity is made to be superimposed on the zero-order light in which the Fourier-transformed image is at the maximum in the intensity. At the reproduction, reading light having the same wave front as the reference light in recording is irradiated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、データ情報をホ
ログラムとして記録する方法および装置に関する。
The present invention relates to a method and an apparatus for recording data information as a hologram.

【0002】[0002]

【従来の技術】次世代のコンピュータファイルメモリと
して、3次元的記録領域に由来する大容量性と2次元一
括記録再生方式に由来する高速性とを兼ね備えたホログ
ラムメモリが注目されている。
2. Description of the Related Art As a next-generation computer file memory, a hologram memory having both a large capacity derived from a three-dimensional recording area and a high speed derived from a two-dimensional batch recording / reproducing method has been receiving attention.

【0003】ホログラムメモリでは、同一体積内に多重
させて複数のデータページを記録することができ、かつ
各ページごとにデータを一括して読み出すことができ
る。アナログ画像ではなく、二値のデジタルデータ
「0,1」を「明、暗」としてデジタル画像化し、ホロ
グラムとして記録再生することによって、デジタルデー
タの記録再生も可能となる。最近では、このデジタルホ
ログラムメモリシステムの具体的な光学系や、体積多重
記録方式に基づくSN比やビット誤り率の評価、または
2次元符号化についての提案がなされ、光学系の収差の
影響など、より光学的な観点からの研究も進展してい
る。
[0003] In the hologram memory, a plurality of data pages can be recorded in a multiplexed manner in the same volume, and data can be collectively read for each page. Instead of an analog image, the binary digital data “0, 1” is converted into a digital image as “bright, dark” and recorded and reproduced as a hologram, so that digital data can be recorded and reproduced. Recently, specific optical systems of this digital hologram memory system, evaluation of SN ratio and bit error rate based on volume multiplex recording, or proposal of two-dimensional encoding have been proposed, and the influence of aberration of the optical system has been proposed. Research from a more optical point of view is also progressing.

【0004】図7に、文献「D.Psaltis,M.
Levene,A.Pu,G.Barbastathi
s and K.Curtis;Opt.Lett.2
0(1995)782」に示された、体積多重記録方式
の一例であるシフト多重記録方式を示す。
FIG. 7 shows a document “D. Psaltis, M .;
Levene, A .; Pu, G .; Barbastathi
s and K.S. Curtis; Opt. Lett. 2
0 (1995) 782 ", which is an example of the volume multiplex recording method.

【0005】この文献に示されたシフト多重記録方式で
は、ホログラム記録媒体91をディスク形状とし、空間
光変調器92を介して得られた物体光93を、レンズ9
4によってフーリエ変換して、ホログラム記録媒体91
に照射すると同時に、対物レンズ95を介して得られた
球面波の参照光96を、ホログラム記録媒体91に照射
して、ホログラム記録媒体91の回転によって同じ領域
に複数のホログラムを重ね書きする。例えば、ビーム径
を1.5mmφとすると、ホログラム記録媒体91を数
十μm移動させるだけで、ほぼ同じ領域に別のホログラ
ムを、クロストークを生じることなく記録することがで
きる。これは、参照光96が球面波であるため、ホログ
ラム記録媒体91の移動によって参照光96の角度が変
化したのと等価になることを利用したものである。
In the shift multiplex recording method disclosed in this document, a hologram recording medium 91 is formed in a disk shape, and an object beam 93 obtained through a spatial light modulator 92 is transmitted to a lens 9.
4 and the hologram recording medium 91
Simultaneously, the hologram recording medium 91 is irradiated with the reference light 96 of the spherical wave obtained through the objective lens 95, and a plurality of holograms are overwritten in the same region by the rotation of the hologram recording medium 91. For example, assuming that the beam diameter is 1.5 mmφ, another hologram can be recorded in almost the same area without crosstalk by moving the hologram recording medium 91 by several tens of μm. This utilizes the fact that the reference light 96 is a spherical wave, which is equivalent to the change in the angle of the reference light 96 due to the movement of the hologram recording medium 91.

【0006】この球面参照波シフト多重記録の移動距
離、すなわち互いのホログラムを独立に分離できる距離
δは、上記文献にも示されているように、 δspherical =δBragg +δNA ≒(λzo/(Ltanθs))+λ/(2NA)…(1) で表される。ここで、λは物体光の波長、zoは球面参
照波を形成する対物レンズと記録媒体との距離、Lは記
録媒体の膜厚、θsは物体光と球面参照波の交差角、N
Aは上記対物レンズの開口数である。
[0006] The moving distance of the spherical reference wave shift multiplex recording, that is, the distance δ at which the holograms can be separated independently from each other, is shown as δspherical = δBragg + δNA ≒ (λzo / (Ltan θs)) + Λ / (2NA) (1) Here, λ is the wavelength of the object light, zo is the distance between the objective lens forming the spherical reference wave and the recording medium, L is the film thickness of the recording medium, θs is the intersection angle between the object light and the spherical reference wave, N
A is the numerical aperture of the objective lens.

【0007】この式(1)から、記録媒体の膜厚Lが大
きいほど、シフト量δが小さくなって、多重度を増すこ
とができ、記録容量を増大させることができる。さら
に、シフト多重記録で、より効果的に記録容量の増大を
図るには、記録領域を微小化すればよい。微小領域に多
重記録することによって、より高密度の体積多重記録を
実現することができる。
From equation (1), as the film thickness L of the recording medium increases, the shift amount δ decreases, the degree of multiplexing can be increased, and the recording capacity can be increased. In order to more effectively increase the recording capacity in shift multiplex recording, the recording area may be reduced. By performing multiplex recording in a minute area, higher-density volume multiplex recording can be realized.

【0008】そのため、ホログラムメモリシステムで
は、物体光をレンズによってフーリエ変換して記録媒体
に照射する。物体光の画像が細かいピッチ(高い空間周
波数)を有する場合、このとき、記録媒体面での物体光
の広がりζは、 ζ=kλfωx …(2) で表される。kは比例定数、λは物体光の波長、fはフ
ーリエ変換用のレンズの焦点距離、ωxは物体光の空間
周波数である。したがって、フーリエ変換用のレンズと
して焦点距離fが小さいものを用いれば、記録領域の微
小化が可能である。
[0008] Therefore, in the hologram memory system, the object light is subjected to Fourier transform by a lens and is applied to a recording medium. When the image of the object light has a fine pitch (high spatial frequency), the spread 物体 of the object light on the recording medium surface at this time is expressed as follows: ζ = kλfωx (2) k is a proportionality constant, λ is the wavelength of the object light, f is the focal length of the Fourier transform lens, and ωx is the spatial frequency of the object light. Therefore, if a lens having a small focal length f is used as a Fourier transform lens, the recording area can be miniaturized.

【0009】さらに、記録媒体の前方にアパーチャーを
配して、フーリエ変換後の物体光の必要な空間周波数成
分のみを取り出して記録することによって、記録領域を
微小化することも考えられている。
Further, it has been considered that the recording area is miniaturized by arranging an aperture in front of the recording medium and extracting and recording only necessary spatial frequency components of the object light after Fourier transform.

【0010】ホログラムとして記録するデータ画像を、
例えば、図1のような画像とする。図中の白い部分がデ
ータ“1”を表し、黒い部分がデータ“0”を表すよう
にすることによって、二値の2次元デジタルデータをペ
ージごとに記録することができる。d×dの一画素の大
きさが、1ビットデータに対応する。
A data image to be recorded as a hologram is
For example, an image as shown in FIG. By making the white part in the figure represent data "1" and the black part representing data "0", binary two-dimensional digital data can be recorded for each page. The size of one pixel of d × d corresponds to 1-bit data.

【0011】このような画像の物体光を、レンズによっ
てフーリエ変換すると、変換後のフーリエ変換像は、図
2に示すように、0次光F0(ωx=0,ωy=0)を
中心に、x軸方向とy軸方向のそれぞれにつき、1次光
F1、2次光F2、3次光F3…が、プラス方向および
マイナス方向に対称に広がったものになるとともに、そ
の光強度は、図2で強度の強い成分ほど大きな点として
示し、かつ図3の曲線P1で示すように、0次光F0が
著しく強く、高次になるほど弱くなる。
When the object light of such an image is Fourier-transformed by a lens, the Fourier-transformed image after the conversion is, as shown in FIG. 2, centered on the zero-order light F0 (ωx = 0, ωy = 0). In each of the x-axis direction and the y-axis direction, the primary light F1, the secondary light F2, the tertiary light F3... are symmetrically spread in the plus direction and the minus direction, and the light intensity is shown in FIG. In FIG. 3, a component having a higher intensity indicates a larger point, and as shown by a curve P1 in FIG. 3, the 0th-order light F0 is significantly stronger, and the higher the order, the weaker it becomes.

【0012】[0012]

【発明が解決しようとする課題】ホログラムは、記録媒
体中で物体光と参照光を干渉させることによって形成す
るもので、物体光と参照光の強度が等しいほど、干渉効
果が大きく、再生時の回折効率が高くなる。逆に、物体
光と参照光の強度が極端に異なるときには、干渉効果が
小さいため、再生時の回折効率が低くなる。
A hologram is formed by causing an object beam and a reference beam to interfere in a recording medium. The more the intensity of the object beam and the reference beam is equal, the greater the interference effect, and Diffraction efficiency increases. Conversely, when the intensity of the object light and the intensity of the reference light are extremely different, the interference effect is small, and the diffraction efficiency at the time of reproduction is low.

【0013】そのため、図2および図3に示したように
各次の成分の強度が異なるフーリエ変換像をホログラム
として記録する場合には、各次の成分につき、均一で十
分な干渉効果が得られず、均一で十分な回折効率になら
ない。
Therefore, when a Fourier transform image having different intensities of the following components is recorded as a hologram as shown in FIGS. 2 and 3, a uniform and sufficient interference effect can be obtained for each of the following components. And the diffraction efficiency is not uniform and sufficient.

【0014】例えば、参照光を0次光F0と同じ強度に
した場合には、1次以降の成分、特に2次光F2、3次
光F3というような高次成分についての干渉効果が小さ
くなり、高次成分については回折効率が低下して、フー
リエ変換像は高次成分に輪郭情報を多く含んでいること
から、再生画像は、高次成分の再生が不十分な、輪郭が
ぼやけた画像になってしまう。
For example, when the intensity of the reference light is the same as that of the zero-order light F0, the interference effect with respect to the primary and subsequent components, especially the higher-order components such as the secondary light F2 and the tertiary light F3 is reduced. However, the diffraction efficiency of the higher-order components is reduced, and the Fourier transform image contains much contour information in the higher-order components. Therefore, the reproduced image is an image in which the reproduction of the higher-order components is insufficient and the outline is blurred. Become.

【0015】逆に、例えば、参照光を3次光F3と同じ
強度にした場合には、0次光F0、1次光F1というよ
うな低次成分についての干渉効果が小さくなり、低次成
分については回折効率が低下して、フーリエ変換像は低
次成分に光量情報を多く含んでいることから、再生画像
は、低次成分の再生が不十分な、光量が不足した画像に
なってしまう。
Conversely, for example, when the reference light has the same intensity as that of the third-order light F3, the interference effect on the low-order components such as the zero-order light F0 and the first-order light F1 is reduced, and the low-order components are reduced. For, the diffraction efficiency decreases, and the Fourier transform image contains much light amount information in the low-order components, so that the reproduced image is an image with insufficient reproduction of the low-order components and an insufficient light amount. .

【0016】そのため、一般には、図3の直線P2で示
すように、参照光を0次光F0と高次光との間の中間的
な強度にする。しかし、このようにしても、各次の成分
につき、均一で十分な干渉効果は得られず、均一で十分
な回折効率にならない。
Therefore, as shown by a straight line P2 in FIG. 3, the reference light is generally set to an intermediate intensity between the zero-order light F0 and the higher-order light. However, even in this case, a uniform and sufficient interference effect cannot be obtained for each of the following components, and a uniform and sufficient diffraction efficiency cannot be obtained.

【0017】そこで、この発明は、データ情報を保持す
る物体光のフーリエ変換像をホログラムとして記録する
場合に、フーリエ変換像の各次成分につき均一で十分な
干渉効果が得られて、物体光のデータ画像を良好に再生
することができるようにしたものである。
Therefore, according to the present invention, when a Fourier transform image of an object light holding data information is recorded as a hologram, a uniform and sufficient interference effect can be obtained for each of the four-dimensional components of the Fourier transform image, and the object light can be obtained. The data image can be reproduced well.

【0018】[0018]

【課題を解決するための手段】この発明の光記録方法で
は、データ情報を保持する物体光のフーリエ変換像と、
このフーリエ変換像の強度の強いところでは強度が強
く、強度の弱いところでは強度が弱い空間強度分布を有
する参照光とを、同時に光記録媒体に照射して、前記フ
ーリエ変換像をホログラムとして前記光記録媒体に記録
する。
According to an optical recording method of the present invention, a Fourier transform image of an object light holding data information is provided.
The optical recording medium is simultaneously irradiated with a reference light having a spatial intensity distribution where the intensity is high where the intensity of the Fourier transform image is high and the intensity where the intensity is low where the intensity is low. Record on a recording medium.

【0019】[0019]

【作用】上記の方法の、この発明の光記録方法では、フ
ーリエ変換像の強度の強い低次成分と干渉する参照光成
分は強度が強く、フーリエ変換像の強度の弱い高次成分
と干渉する参照光成分は強度が弱いので、フーリエ変換
像と参照光のいずれか一方の強度が弱い方が、他方の強
度が強い方に埋もれてしまうようなことがなく、フーリ
エ変換像の各次成分につき均一で十分な干渉効果が得ら
れて、物体光のデータ画像が良好に再生される。
According to the optical recording method of the present invention, the reference light component that interferes with the low-order component of the Fourier transform image having a high intensity interferes with the high-order component of the Fourier transform image that has a low intensity. Since the intensity of the reference light component is weak, one of the Fourier transform image and the reference light having the weaker intensity does not become buried in the other with the stronger intensity. A uniform and sufficient interference effect is obtained, and the data image of the object light is reproduced well.

【0020】[0020]

【発明の実施の形態】〔光記録方法の一例〕データを高
密度に記録するには、図1のようなデータ画像の一画素
の面積を小さくして、すなわちdの値を小さくして、1
ページ内に、より多くのビットデータを詰め込むことが
望ましい。これによって、高密度の記録に加えて、高速
の記録再生を実現することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [One Example of Optical Recording Method] In order to record data at a high density, the area of one pixel of a data image as shown in FIG. 1
It is desirable to pack more bit data in a page. Thus, high-speed recording and reproduction can be realized in addition to high-density recording.

【0021】しかし、データ画像のx,y軸方向の空間
周波数ωx,ωyは、1/dに比例するので、このよう
に一画素の面積を小さくすると、空間周波数ωx,ωy
が大きくなって、光記録媒体上で、物体光としてのデー
タ画像のフーリエ変換像が、式(2)に従って広がって
しまう。
However, since the spatial frequencies ωx and ωy in the x and y axis directions of the data image are proportional to 1 / d, if the area of one pixel is reduced in this manner, the spatial frequencies ωx and ωy
Becomes larger, and the Fourier transform image of the data image as the object light spreads on the optical recording medium according to the equation (2).

【0022】そこで、一部に光透過部を形成した遮光体
を光記録媒体の前方に配置し、データ画像のフーリエ変
換像を、その光透過部を透過させて光記録媒体に照射す
ることによって、光記録媒体上の記録領域を微小化する
ことが望ましい。
Therefore, a light-shielding member having a light-transmitting portion formed partially is disposed in front of the optical recording medium, and a Fourier-transformed image of a data image is irradiated on the optical recording medium through the light-transmitting portion. It is desirable to miniaturize the recording area on the optical recording medium.

【0023】記録する画像(物体光)は、アナログ画像
ではなく、二値のデータ画像であるので、フーリエ変換
像として、空間周波数ωx,ωyが無限大の成分まで記
録する必要はなく、3〜5次程度の高次成分まで記録す
れば十分である。
Since the image to be recorded (object light) is not an analog image but a binary data image, it is not necessary to record the components having spatial frequencies ωx and ωy of infinite as a Fourier transform image. It is sufficient to record up to the fifth order or higher order component.

【0024】そこで、以下に示す、この発明の光記録方
法の一例では、フーリエ変換像の0次光から5次光まで
の成分のみを、ホログラムとして光記録媒体に記録す
る。
Therefore, in an example of the optical recording method of the present invention described below, only the components from the 0th order light to the 5th order light of the Fourier transform image are recorded as a hologram on the optical recording medium.

【0025】図4は、この発明の光記録方法の一例を示
す。この方法では、同図(A)に示すような光透過部2
1を形成した遮光体20を光記録媒体の前方に配置し、
図2に示したようなフーリエ変換像の0次光から5次光
までの成分を、光透過部21を透過させて光記録媒体に
照射する。光透過部21は、その全域で光透過率を一定
とする。
FIG. 4 shows an example of the optical recording method of the present invention. In this method, the light transmitting portion 2 as shown in FIG.
1 is arranged in front of the optical recording medium,
The components from the 0th-order light to the 5th-order light of the Fourier transform image as shown in FIG. 2 are transmitted through the light transmitting section 21 and irradiated on the optical recording medium. The light transmitting section 21 has a constant light transmittance over the entire area.

【0026】一方、同図(B)に示すような、光透過部
21に相当する円内において、中心部で透過率が最大
で、周辺にいくに従って透過率が小さくなる空間透過率
分布を有する強度変調フィルタ17を、空間的に一定強
度の平行光の光路上に配置し、その一定強度の平行光
を、強度変調フィルタ17を透過させて、その透過した
光を、参照光として、光記録媒体の、フーリエ変換像の
0次光から5次光までの成分が照射される領域に照射す
る。
On the other hand, in a circle corresponding to the light transmitting portion 21 as shown in FIG. 2B, there is a spatial transmittance distribution in which the transmittance is maximum at the center and becomes smaller toward the periphery. The intensity modulation filter 17 is spatially arranged on the optical path of parallel light having a constant intensity. The parallel light having the constant intensity is transmitted through the intensity modulation filter 17, and the transmitted light is used as reference light for optical recording. The medium is irradiated with an area of the medium to which components from the 0th order light to the 5th order light of the Fourier transform image are irradiated.

【0027】この場合、強度変調フィルタ17を透過し
た参照光は、フーリエ変換像と同様に遮光体20の光透
過部21を透過させて光記録媒体に照射し、または光透
過部21を介することなく直接、光記録媒体に照射す
る。ただし、いずれの場合にも、光記録媒体上におい
て、参照光の強度が最大の中心部がフーリエ変換像の強
度が最大の0次光と重なり合うようにする。
In this case, the reference light transmitted through the intensity modulation filter 17 is transmitted through the light transmitting portion 21 of the light shield 20 to irradiate the optical recording medium similarly to the Fourier transform image, or is transmitted through the light transmitting portion 21. And directly irradiate the optical recording medium. However, in any case, on the optical recording medium, the central portion where the intensity of the reference light is the highest overlaps with the zero-order light where the intensity of the Fourier transform image is the highest.

【0028】これによれば、光記録媒体に照射される参
照光は、図4(C)の破線P3で示すように、実線P1
で示すフーリエ変換像の空間強度分布と同様の空間強度
分布を有するものとなり、すなわち、フーリエ変換像の
強度の強い成分に対しては強度が強く、フーリエ変換像
の強度の弱い成分に対しては強度が弱いものとなる。
According to this, the reference light radiated to the optical recording medium has a solid line P1 as shown by a broken line P3 in FIG.
Has a spatial intensity distribution similar to the spatial intensity distribution of the Fourier transform image, that is, the intensity is strong for the component with the strong intensity of the Fourier transform image, and is strong for the component with the weak intensity of the Fourier transform image. The strength becomes weak.

【0029】したがって、フーリエ変換像と参照光のい
ずれか一方の強度が弱い方が、他方の強度が強い方に埋
もれてしまうようなことがなく、フーリエ変換像の各次
成分につき均一で十分な干渉効果が得られて、物体光の
データ画像を良好に再生することができる。
Therefore, the lower intensity of one of the Fourier transform image and the reference light does not become buried in the higher intensity of the other, so that each of the four components of the Fourier transform image is uniform and sufficient. The interference effect can be obtained, and the data image of the object light can be favorably reproduced.

【0030】〔光記録装置の一例〕図5は、この発明の
光記録装置の一例を示し、光再生装置を兼ねる場合であ
る。
[Example of Optical Recording Apparatus] FIG. 5 shows an example of an optical recording apparatus according to the present invention, which also serves as an optical reproducing apparatus.

【0031】光源6からのコヒーレント光を、ビームス
プリッタ12で2つの光に分け、記録時にはシャッタ1
5を開けて、ビームスプリッタ12を透過した光を、レ
ンズ10a,10bで口径の広い平行光にして、空間光
変調器4に入射させる。
The coherent light from the light source 6 is divided into two lights by a beam splitter 12, and during recording, the shutter 1
5 is opened, the light transmitted through the beam splitter 12 is converted into parallel light having a large diameter by the lenses 10a and 10b, and is incident on the spatial light modulator 4.

【0032】図では省略したコンピュータによって、空
間光変調器4には、図1に示したような二値の2次元デ
ジタルデータ画像を表示する。これによって、空間光変
調器4を通過した光は、デジタルデータ画像の各画素の
値に応じて強度変調されて、デジタルデータ画像の情報
を有する物体光1となる。
A binary two-dimensional digital data image as shown in FIG. 1 is displayed on the spatial light modulator 4 by a computer not shown in FIG. Accordingly, the light that has passed through the spatial light modulator 4 is intensity-modulated in accordance with the value of each pixel of the digital data image, and becomes the object light 1 having information of the digital data image.

【0033】この物体光1を、レンズ7によってフーリ
エ変換し、その変換後の図2に示したようなフーリエ変
換像1fの0次光から5次光までの成分を、図4(A)
に示した遮光体20の光透過部21を透過させて、光記
録媒体5に照射する。
The object light 1 is Fourier-transformed by the lens 7, and the components from the 0th-order light to the 5th-order light of the Fourier-transformed image 1f as shown in FIG.
The light is transmitted through the light transmitting portion 21 of the light shield 20 shown in FIG.

【0034】同時に、ビームスプリッタ12で反射した
光を、ミラー13および14で反射させた後、図4
(B)に示した強度変調フィルタ17を透過させて、上
述したようにフーリエ変換像1fの空間強度分布に対応
する空間強度分布を有する参照光2を得、その参照光2
を、遮光体20の光透過部21を透過させて、光記録媒
体5のフーリエ変換像1fの0次光から5次光までの成
分が照射される領域に照射する。
At the same time, after the light reflected by the beam splitter 12 is reflected by the mirrors 13 and 14, FIG.
The reference light 2 having the spatial intensity distribution corresponding to the spatial intensity distribution of the Fourier transform image 1f is transmitted through the intensity modulation filter 17 shown in FIG.
Is transmitted through the light transmitting portion 21 of the light shield 20 to irradiate an area of the optical recording medium 5 where components from the 0th order light to the 5th order light of the Fourier transform image 1f are irradiated.

【0035】これによって、光記録媒体5中で、フーリ
エ変換像1fの0次光から5次光までの成分と、その空
間強度分布に対応する空間強度分布を有する参照光2と
が干渉して、光記録媒体5中にフーリエ変換ホログラム
が記録される。この場合、駆動手段40によって光記録
媒体5を所定のシフト方向に移動させて、ホログラムを
シフト多重記録する。
As a result, in the optical recording medium 5, the components from the 0th order light to the 5th order light of the Fourier transform image 1f interfere with the reference light 2 having the spatial intensity distribution corresponding to the spatial intensity distribution. Then, a Fourier transform hologram is recorded in the optical recording medium 5. In this case, the optical recording medium 5 is moved in a predetermined shift direction by the driving means 40, and the hologram is shift-multiplex-recorded.

【0036】再生時には、シャッタ15を閉じて物体光
1を遮断し、強度変調フィルタ17を透過させた、記録
時の参照光2と同じ光を読み出し光として、遮光体20
の光透過部21を透過させて、光記録媒体5のホログラ
ムが記録されている領域に照射する。照射された読み出
し光2は、ホログラムによって回折される。
At the time of reproduction, the shutter 15 is closed, the object light 1 is blocked, and the same light as the reference light 2 at the time of recording, which has been transmitted through the intensity modulation filter 17, is used as readout light.
The light is transmitted through the light transmitting portion 21 to irradiate an area of the optical recording medium 5 where the hologram is recorded. The irradiated reading light 2 is diffracted by the hologram.

【0037】その回折光3を、レンズ8によって逆フー
リエ変換して、CCDなどの光検出器9上に結像させ、
データ情報を読み取る。
The diffracted light 3 is subjected to inverse Fourier transform by a lens 8 to form an image on a photodetector 9 such as a CCD.
Read data information.

【0038】〔実験による検証〕上述した方法および装
置で、実際にデータ情報の記録再生を試みた。光記録媒
体5としては、ホログラムを記録できるものであれば、
どのようなものでもよいが、ここでは、図6に示す化学
式で表される、側鎖にシアノアゾベンゼンを有するポリ
エステルを用いた。この材料は、特願平10−3283
4号に詳細に記載されているように、側鎖のシアノアゾ
ベンゼンの光異性化による光誘起異方性によって、ホロ
グラムの記録、再生および消去が可能である。
[Verification by Experiment] The recording and reproduction of data information was actually attempted by the method and apparatus described above. If the optical recording medium 5 can record a hologram,
Although any material may be used, here, a polyester having cyanoazobenzene in a side chain represented by a chemical formula shown in FIG. 6 was used. This material is disclosed in Japanese Patent Application No. 10-3283.
As described in detail in No. 4, holograms can be recorded, reproduced, and erased by light-induced anisotropy caused by photoisomerization of side chain cyanoazobenzene.

【0039】光源6には、光記録媒体5としての、側鎖
にシアノアゾベンゼンを有するポリエステルに感度のあ
るアルゴンイオンレーザの発振線515nmを使用し
た。
As the light source 6, an oscillation line of an argon ion laser having a sensitivity of 515 nm for a polyester having cyanoazobenzene in a side chain was used as the optical recording medium 5.

【0040】空間光変調器4には、一画素の大きさが4
2μm×42μmで640×480画素のプロジェクタ
用液晶パネル1.3型を用いた。一画素を1ビットとし
て、図1のように二値化されたパターンをコンピュータ
で作成して、空間光変調器4に入力した。したがって、
物体光1のデータ画像は、d=42μmのピッチに対応
する空間周波数成分を有することになる。物体光1をフ
ーリエ変換するレンズ7としては、焦点距離fが55m
mのものを用いた。
The spatial light modulator 4 has a pixel size of 4
A liquid crystal panel 1.3 type for projectors having a size of 2 μm × 42 μm and 640 × 480 pixels was used. Using one pixel as one bit, a binarized pattern as shown in FIG. 1 was created by a computer and input to the spatial light modulator 4. Therefore,
The data image of the object light 1 has a spatial frequency component corresponding to a pitch of d = 42 μm. The focal length f of the lens 7 for performing the Fourier transform of the object light 1 is 55 m.
m.

【0041】強度変調フィルタ17としても、空間光変
調器4と同じ液晶パネルを用いた。あらかじめ、CCD
カメラで光記録媒体5上の位置でのフーリエ変換像の空
間強度分布を測定して、空間強度分布データを得た。
As the intensity modulation filter 17, the same liquid crystal panel as that of the spatial light modulator 4 was used. In advance, CCD
The spatial intensity distribution of the Fourier transform image at a position on the optical recording medium 5 was measured by a camera, and spatial intensity distribution data was obtained.

【0042】まず、比較のために、従来の方法でホログ
ラムを記録した。上記のあらかじめ得た空間強度分布デ
ータから、0次光、2次光および5次光の強度を検出
し、これらと同じ強度の参照光によってホログラムを記
録した。
First, a hologram was recorded by a conventional method for comparison. The intensities of the 0th-order light, the 2nd-order light, and the 5th-order light were detected from the previously obtained spatial intensity distribution data, and the hologram was recorded with reference light having the same intensity.

【0043】最初に、0次光と同じ強度の参照光を照射
してホログラムを記録した後、物体光を遮断して参照光
と同じ読み出し光を照射し、得られた回折光からデータ
画像を再生したところ、明度は高いが、輪郭がぼやけた
再生画像が得られた。次に、5次光と同じ強度の参照光
を照射してホログラムを記録した後、物体光を遮断して
参照光と同じ読み出し光を照射し、得られた回折光から
データ画像を再生したところ、輪郭ははっきりしている
が、明度の低い再生画像が得られた。これらの結果か
ら、参照光が0次光と同じ強度の場合には、高次成分が
十分に再生されず、逆に参照光が5次光と同じ強度の場
合には、低次成分が十分に再生されないことが確認され
た。
First, a hologram is recorded by irradiating a reference light having the same intensity as the 0th-order light, and thereafter, the object light is cut off, and the same readout light as the reference light is irradiated. Upon reproduction, a reproduced image with high brightness but with a blurred outline was obtained. Next, the hologram was recorded by irradiating the reference light having the same intensity as the fifth-order light, and then the object light was cut off, the same reading light as the reference light was irradiated, and the data image was reproduced from the obtained diffracted light. A reproduced image with a clear outline but low brightness was obtained. From these results, when the reference light has the same intensity as the 0th-order light, the high-order components are not sufficiently reproduced. Conversely, when the reference light has the same intensity as the 5th-order light, the low-order components are not sufficiently reproduced. Was not played back.

【0044】さらに、2次光と同じ強度の参照光を照射
してホログラムを記録した後、物体光を遮断して参照光
と同じ読み出し光を照射し、得られた回折光からデータ
画像を再生したところ、明度は落ちるものの、輪郭のぼ
やけが少し改善された。従来の方法は、このように再生
画像を確認しながら参照光の強度を変えて、最も好まし
い再生画像が得られる参照光の強度を選択するものであ
る。
Further, after the hologram is recorded by irradiating the reference light having the same intensity as the secondary light, the object light is cut off and the same reading light as the reference light is irradiated, and the data image is reproduced from the obtained diffracted light. As a result, although the brightness was reduced, the blurring of the outline was slightly improved. In the conventional method, the intensity of the reference light is changed while confirming the reproduced image, and the intensity of the reference light that provides the most preferable reproduced image is selected.

【0045】次に、この発明の方法でホログラムを記録
した。まず、上記のあらかじめ得た空間強度分布データ
をもとにコンピュータで強度変調データを作成して、強
度変調フィルタ17を形成する液晶パネルに表示した。
Next, a hologram was recorded by the method of the present invention. First, intensity modulation data was created by a computer based on the previously obtained spatial intensity distribution data, and displayed on a liquid crystal panel on which the intensity modulation filter 17 was formed.

【0046】次に、再び光記録媒体5上の位置にCCD
カメラを配置して、強度変調フィルタ17を透過した参
照光の空間強度分布を測定し、参照光の空間強度分布が
フーリエ変換像の空間強度分布と同じになるように強度
変調データを調整した。調整後、強度変調フィルタ17
を透過した参照光によってホログラムを記録した。その
後、物体光を遮断して参照光と同じ読み出し光を照射
し、得られた回折光からデータ画像を再生したところ、
明度が高く、かつ輪郭がはっきりした再生画像が得ら
れ、この発明の方法の効果が確認された。
Next, the CCD is again placed on the optical recording medium 5.
The camera was arranged, the spatial intensity distribution of the reference light transmitted through the intensity modulation filter 17 was measured, and the intensity modulation data was adjusted so that the spatial intensity distribution of the reference light became the same as the spatial intensity distribution of the Fourier transform image. After the adjustment, the intensity modulation filter 17
The hologram was recorded by the reference light transmitted through the hologram. After that, the object light was cut off and the same reading light as the reference light was irradiated, and a data image was reproduced from the obtained diffracted light.
A reproduced image with high brightness and a clear outline was obtained, and the effect of the method of the present invention was confirmed.

【0047】〔他の例〕物体光のデータ画像をレンズに
よってフーリエ変換する代わりに、データ情報からコン
ピュータによってフーリエ変換像のデータを得、それに
よって空間光変調器にフーリエ変換像を表示して、光記
録媒体にフーリエ変換像を照射するようにしてもよい。
[Other Examples] Instead of performing a Fourier transform on a data image of an object light with a lens, a computer obtains data of a Fourier transform image from the data information, thereby displaying the Fourier transform image on a spatial light modulator. An optical recording medium may be irradiated with a Fourier transform image.

【0048】[0048]

【発明の効果】上述したように、この発明によれば、フ
ーリエ変換像の各次成分につき均一で十分な干渉効果が
得られて、物体光のデータ画像を良好に再生することが
できる。
As described above, according to the present invention, a uniform and sufficient interference effect can be obtained for each order component of the Fourier transform image, and a data image of the object light can be reproduced well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】物体光の一例を示す図である。FIG. 1 is a diagram illustrating an example of an object beam.

【図2】フーリエ変換像の一例を示す図である。FIG. 2 is a diagram illustrating an example of a Fourier transform image.

【図3】フーリエ変換像の光強度分布を示す図である。FIG. 3 is a diagram showing a light intensity distribution of a Fourier transform image.

【図4】この発明の光記録方法の一例を示す図である。FIG. 4 is a diagram showing an example of the optical recording method of the present invention.

【図5】この発明の光記録装置の一例を示す図である。FIG. 5 is a diagram showing an example of the optical recording device of the present invention.

【図6】光記録媒体の材料の一例の化学式を示す図であ
る。
FIG. 6 is a diagram showing a chemical formula of an example of a material of an optical recording medium.

【図7】シフト多重記録方式を説明するための図であ
る。
FIG. 7 is a diagram for explaining a shift multiplex recording method.

【符号の説明】[Explanation of symbols]

1…物体光 1f…フーリエ変換像 2…参照光(読み出し光) 3…回折光 4…空間光変調器 5…光記録媒体 6…光源 7…フーリエ変換用レンズ 8…逆フーリエ変換用レンズ 9…光検出器 12…ビームスプリッタ 15…シャッタ 17…強度変調フィルタ 20…遮光体 21…光透過部 40…駆動手段 DESCRIPTION OF SYMBOLS 1 ... Object light 1f ... Fourier transform image 2 ... Reference light (reading light) 3 ... Diffracted light 4 ... Spatial light modulator 5 ... Optical recording medium 6 ... Light source 7 ... Fourier transform lens 8 ... Inverse Fourier transform lens 9 ... Photodetector 12 ... Beam splitter 15 ... Shutter 17 ... Intensity modulation filter 20 ... Light shield 21 ... Light transmitting part 40 ... Drive means

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2K008 AA04 BB04 EE01 FF07 FF21 HH26 5D090 AA01 BB16 BB18 CC01 DD03 DD05 FF42 FF50  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2K008 AA04 BB04 EE01 FF07 FF21 HH26 5D090 AA01 BB16 BB18 CC01 DD03 DD05 FF42 FF50

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】データ情報を保持する物体光のフーリエ変
換像と、このフーリエ変換像の強度の強いところでは強
度が強く、強度の弱いところでは強度が弱い空間強度分
布を有する参照光とを、同時に光記録媒体に照射して、
前記フーリエ変換像をホログラムとして前記光記録媒体
に記録する光記録方法。
1. A Fourier transform image of an object light holding data information, and a reference light having a spatial intensity distribution where the intensity of the Fourier transform image is high where the intensity is high and where the intensity is low where the intensity is low. Simultaneously irradiate the optical recording medium,
An optical recording method for recording the Fourier transform image as a hologram on the optical recording medium.
【請求項2】請求項1の光記録方法において、 前記参照光は、空間的に一定強度の平行光を、前記フー
リエ変換像の空間強度分布に応じた空間透過率分布を有
する強度変調フィルタを透過させることによって得るこ
とを特徴とする光記録方法。
2. The optical recording method according to claim 1, wherein the reference light is a parallel light having a spatially constant intensity and an intensity modulation filter having a spatial transmittance distribution according to the spatial intensity distribution of the Fourier transform image. An optical recording method characterized by being obtained by transmitting light.
【請求項3】請求項1または2の光記録方法において、 前記物体光は、前記データ情報に応じて強度が二値化さ
れた画像とすることを特徴とする光記録方法。
3. The optical recording method according to claim 1, wherein the object light is an image whose intensity is binarized according to the data information.
【請求項4】請求項1〜3のいずれかの光記録方法にお
いて、 前記物体光をレンズによってフーリエ変換して前記フー
リエ変換像を得ることを特徴とする光記録方法。
4. The optical recording method according to claim 1, wherein the object light is subjected to Fourier transform by a lens to obtain the Fourier transformed image.
【請求項5】請求項1〜4のいずれかの光記録方法にお
いて、 前記光記録媒体の前方に、一部に光透過部を形成した遮
光体を配置し、前記フーリエ変換像の0次から所定次ま
での成分を、前記光透過部を透過させて前記光記録媒体
に照射することを特徴とする光記録方法。
5. The optical recording method according to claim 1, further comprising: a light shielding member having a light transmitting part formed in front of the optical recording medium; An optical recording method comprising irradiating components up to a predetermined order to the optical recording medium through the light transmitting portion.
【請求項6】コヒーレント光を発する光源と、 データ情報に応じて前記光源からの光を変調して、その
波面により前記データ情報を保持する物体光を得る空間
光変調器と、 前記物体光をフーリエ変換して、そのフーリエ変換像を
光記録媒体に照射する結像光学系と、 前記光源からの光から参照光を得て、前記光記録媒体に
照射する参照光光学系と、 前記参照光を、前記フーリエ変換像の強度の強いところ
では強度が強く、強度の弱いところでは強度が弱い空間
強度分布を有するものとする強度変調フィルタと、 を備える光記録装置。
6. A light source that emits coherent light, a spatial light modulator that modulates light from the light source according to data information to obtain an object light holding the data information by its wavefront, An imaging optical system that performs Fourier transform and irradiates the Fourier transform image to an optical recording medium; a reference light optical system that obtains reference light from light from the light source and irradiates the optical recording medium; and the reference light. An intensity modulation filter that has a spatial intensity distribution in which the intensity is high where the intensity of the Fourier transform image is high, and the intensity is low where the intensity is low.
【請求項7】請求項6の光記録装置において、 前記空間光変調器は、前記物体光として、前記データ情
報に応じて強度が二値化された画像を生成することを特
徴とする光記録装置。
7. An optical recording apparatus according to claim 6, wherein said spatial light modulator generates, as said object light, an image whose intensity is binarized in accordance with said data information. apparatus.
【請求項8】データ情報を保持する物体光のフーリエ変
換像と、このフーリエ変換像の強度の強いところでは強
度が強く、強度の弱いところでは強度が弱い空間強度分
布を有する参照光とが、同時に照射されて、前記フーリ
エ変換像がホログラムとして記録された光記録媒体に、
前記参照光と同じ波面を有する読み出し光を照射して、
前記ホログラムを回折光として再生する光再生方法。
8. A Fourier transform image of an object beam holding data information, and a reference beam having a spatial intensity distribution where the intensity of the Fourier transform image is high where the intensity is high and low where the intensity is low. Simultaneously irradiated, the optical recording medium on which the Fourier transformed image is recorded as a hologram,
Irradiating read light having the same wavefront as the reference light,
A light reproducing method for reproducing the hologram as diffracted light.
【請求項9】請求項8の光再生方法において、 前記回折光を逆フーリエ変換して、前記データ情報を読
み取ることを特徴とする光再生方法。
9. The optical reproducing method according to claim 8, wherein the data information is read by performing an inverse Fourier transform of the diffracted light.
JP8764499A 1999-03-30 1999-03-30 Optical recording method, optical recording apparatus, and optical reproducing method Expired - Fee Related JP4045390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8764499A JP4045390B2 (en) 1999-03-30 1999-03-30 Optical recording method, optical recording apparatus, and optical reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8764499A JP4045390B2 (en) 1999-03-30 1999-03-30 Optical recording method, optical recording apparatus, and optical reproducing method

Publications (2)

Publication Number Publication Date
JP2000284672A true JP2000284672A (en) 2000-10-13
JP4045390B2 JP4045390B2 (en) 2008-02-13

Family

ID=13920701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8764499A Expired - Fee Related JP4045390B2 (en) 1999-03-30 1999-03-30 Optical recording method, optical recording apparatus, and optical reproducing method

Country Status (1)

Country Link
JP (1) JP4045390B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013707A1 (en) * 2002-08-05 2004-02-12 Pioneer Corporation Spatial optical modulator
JP2005037453A (en) * 2003-07-15 2005-02-10 Fuji Xerox Co Ltd Hologram recording method and hologram recording device
JP2007273068A (en) * 2006-03-10 2007-10-18 Sony Corp Hologram recording and reproducing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013707A1 (en) * 2002-08-05 2004-02-12 Pioneer Corporation Spatial optical modulator
US7324255B2 (en) 2002-08-05 2008-01-29 Pioneer Corporation Spatial optical modulator
CN100440077C (en) * 2002-08-05 2008-12-03 先锋株式会社 Spatial optical modulator
JP2005037453A (en) * 2003-07-15 2005-02-10 Fuji Xerox Co Ltd Hologram recording method and hologram recording device
US7307768B2 (en) 2003-07-15 2007-12-11 Fuji Xerox Co., Ltd. Hologram recording method and hologram recording apparatus
JP2007273068A (en) * 2006-03-10 2007-10-18 Sony Corp Hologram recording and reproducing apparatus
US8072660B2 (en) 2006-03-10 2011-12-06 Sony Corporation Hologram recording apparatus and hologram reconstruction apparatus

Also Published As

Publication number Publication date
JP4045390B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP3924549B2 (en) Hologram recording / reproducing method and apparatus
EP1551011A1 (en) Information recording method, reproducing method and recording/reproducig method utilizing holography
US7426168B2 (en) Hologram erasing method and hologram erasing apparatus
US7633660B2 (en) Hologram recording apparatus and method
JP3608603B2 (en) Optical recording method and optical recording apparatus
KR20060045492A (en) In-line speckle multi hologram writer and In-line speckle multi hologram recording method
JP4289921B2 (en) Holographic recording apparatus and reproducing apparatus
CN101826340B (en) Reproducing device and reproducing method
JP2006162928A (en) Hologram recording apparatus and hologram recording method
JP2000098862A (en) Optical recording method and optical recorder
US20050231775A1 (en) Hologram recording/reproducing method and hologram recording/reproducing device
US6707585B2 (en) Holographic recording and reproducing apparatus and holographic recording and reproducing method
US6301028B1 (en) Holographic memory and optical information recording and reproducing apparatus using the same
JP4007267B2 (en) Hologram recording method and hologram recording apparatus
JP4214329B2 (en) Optical recording method, optical recording apparatus, optical reading method, optical reading apparatus
JPH11237829A (en) Optical recording method, optical recording device, optical reading method, optical reading device
US7428206B2 (en) Holographic information recording apparatus
JP4045390B2 (en) Optical recording method, optical recording apparatus, and optical reproducing method
JP3700752B2 (en) Optical recording method and optical recording apparatus
EP1876591A2 (en) Hologram recording device, hologram reproducing device and hologram recording method not requiring positioning of a phase mask
JP2005352097A (en) Hologram recording method, hologram reproducing method, hologram recording apparatus, hologram reproducing apparatus, and hologram recording medium
JP2000105529A (en) Optical recording medium, optical recording method, and optical recording device
JP2000089649A (en) Method of optical recording and device therefor
JP2009009629A (en) Hologram recording device, hologram reproducing device, hologram recording method and hologram reproducing method
EP1502134B1 (en) Multichannel parallel recording and reading for hyper large bandpass photonics memory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees