[go: up one dir, main page]

JP2000287375A - Charging circuit for secondary battery - Google Patents

Charging circuit for secondary battery

Info

Publication number
JP2000287375A
JP2000287375A JP11085241A JP8524199A JP2000287375A JP 2000287375 A JP2000287375 A JP 2000287375A JP 11085241 A JP11085241 A JP 11085241A JP 8524199 A JP8524199 A JP 8524199A JP 2000287375 A JP2000287375 A JP 2000287375A
Authority
JP
Japan
Prior art keywords
charging
circuit
current
voltage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11085241A
Other languages
Japanese (ja)
Inventor
Shoji Furukawa
昭二 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11085241A priority Critical patent/JP2000287375A/en
Publication of JP2000287375A publication Critical patent/JP2000287375A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the heat generation of a secondary-battery charging circuit by inserting a circuit changing impedance in response to the control signal of a charging control circuit conducting an output in response to the magnitude of a chargung current and/or battery voltage to a resonance circuit. SOLUTION: In a charging circuit for a PHS telephone 1, power supplied to a resonance circuit is reduced and constant-current charging is conducted because a charging-current detector 13 detects a charging current and a constant-voltage constant-current control circuit 15 increases the resistance value of a field-effect transistor Q1 when the charging current intends to exceed a fixed value. When the battery voltage of a non-aqueous electrolytie secondary battery 11 intends to exceed a fixed value, power supplied to the resonance circuit is decreased and constant-voltage charging is conducted because a battery-voltage detector 12 detects the battery voltage and the constant-voltage constant-current control circuit 15 increases the resistance value of the field- effect transistor Q1. When the non-aqueous electrolytic secondary battery 11 is brought to the state of full charging and the charging current is made smaller than the fixed value, a full-charging detector 14 detects full charging, a switching element 16 is interrupted and charging is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充電器にセットす
るだけで無接点により携帯電話やPHS電話機等の二次
電池を充電することができる二次電池の充電回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery charging circuit which can charge a secondary battery such as a portable telephone or a PHS telephone without contact by simply setting it in a charger.

【0002】[0002]

【従来の技術】最近のPHS(Personal Handyphone Sy
stem)電話機等では、高周波電磁誘導を用いることによ
り、充電器との間で接点を接触させることなく電話機等
に内蔵された二次電池を充電することができる無接点充
電システムが採用されている。
2. Description of the Related Art Recent PHS (Personal Handyphone Sy)
stem) In a telephone or the like, a non-contact charging system that can charge a secondary battery built in the telephone or the like by using high-frequency electromagnetic induction without contacting a contact with a charger is adopted. .

【0003】従来のPHS電話機の無接点充電システム
の構成例を図3に示す。PHS電話機1は、充電器2の
載置台の上に載置するだけで、内蔵された非水電解質二
次電池11が無接点により充電されるようになってい
る。充電器2は、商用電源等の交流電源を整流平滑回路
21で一旦直流に変換した後に、発振回路22でスイッ
チングを行い、送り側コイルL2と共振コンデンサC3か
らなる共振回路に供給することにより、高周波電力を作
り出すようになっている。また、この送り側コイルL2
は、充電器2のプラスチックケース板を介して載置台の
すぐ下側に配置されている。
FIG. 3 shows a configuration example of a conventional contactless charging system for a PHS telephone. The PHS telephone 1 is configured such that the built-in non-aqueous electrolyte secondary battery 11 is charged by a non-contact simply by being mounted on the mounting table of the charger 2. The charger 2 converts an AC power supply such as a commercial power supply into a direct current by the rectifying and smoothing circuit 21 and then performs switching by the oscillation circuit 22 to supply the switching power to the resonance circuit including the transmission side coil L2 and the resonance capacitor C3. It is designed to produce high frequency power. Also, this feed side coil L2
Is disposed immediately below the mounting table via the plastic case plate of the charger 2.

【0004】PHS電話機1の充電回路には、受け側コ
イルL1と共振コンデンサC1とで構成される共振回路が
設けられている。また、PHS電話機1を上記充電器2
の載置台に載置すると、この受け側コイルL1が充電器
2の送り側コイルL2に接近して配置されるようになっ
ている。そして、この送り側コイルL2から高周波電磁
誘導によって受け側コイルL1に高周波電力が供給され
ると、整流ダイオードD1と平滑コンデンサC2を介して
これを直流に変換し、ドロッパ回路を構成するシリーズ
パストランジスタQ2により定電圧定電流電源として非
水電解質二次電池11を充電するようになっている。
[0004] The charging circuit of the PHS telephone 1 is provided with a resonance circuit composed of a receiving coil L1 and a resonance capacitor C1. Also, the PHS telephone 1 is connected to the charger 2
The receiving side coil L1 is arranged close to the sending side coil L2 of the charger 2 when placed on the mounting table. When high-frequency power is supplied from the sending-side coil L2 to the receiving-side coil L1 by high-frequency electromagnetic induction, the high-frequency power is converted to direct current through a rectifying diode D1 and a smoothing capacitor C2, and a series pass transistor constituting a dropper circuit The non-aqueous electrolyte secondary battery 11 is charged as a constant voltage and constant current power supply by Q2.

【0005】上記ドロッパ回路は、電池電圧検出回路1
2と充電電流検出回路13と満充電検出回路14とに基
づいて定電圧定電流制御回路17がシリーズパストラン
ジスタQ2を制御することにより、非水電解質二次電池
11に定電圧定電流電源を供給するものである。電池電
圧検出回路12は、非水電解質二次電池11の端子電圧
から電池電圧を検出し、充電電流検出回路13は、低抵
抗の検流器RCの端子電圧から充電電流を検出し、満充
電検出回路14は、この充電電流検出回路13が検出し
た充電電流に基づいて充電の完了を検出するようになっ
ている。定電圧定電流制御回路17は、電池電圧検出回
路12が検出した電池電圧が所定値を超えると、シリー
ズパストランジスタQ2のベース電流を制限して出力電
圧を低下させると共に、充電電流検出回路13が検出し
た充電電流が所定値を超えた場合にも、シリーズパスト
ランジスタQ2のベース電流を制限して出力電圧を低下
させ、非水電解質二次電池11の内部抵抗に応じて流れ
る充電電流を制限する。また、この充電電流検出回路1
3が検出した充電電流が所定値より低下すると、満充電
検出回路14が充電の完了を検出し、シリーズパストラ
ンジスタQ2のベース電流を遮断して、このシリーズパ
ストランジスタQ2をOFFにすることにより充電を停
止させる。なお、図3の回路におけるダイオードD2
は、充電電流の逆流を防止するためのものである。
The dropper circuit includes a battery voltage detection circuit 1
A constant-voltage / constant-current power supply is supplied to the nonaqueous electrolyte secondary battery 11 by the constant-voltage / constant-current control circuit 17 controlling the series pass transistor Q2 based on the charge current detection circuit 13 and the full charge detection circuit 14. Is what you do. The battery voltage detection circuit 12 detects the battery voltage from the terminal voltage of the non-aqueous electrolyte secondary battery 11, and the charging current detection circuit 13 detects the charging current from the terminal voltage of the low-resistance current detector RC to fully charge the battery. The detection circuit 14 detects completion of charging based on the charging current detected by the charging current detection circuit 13. When the battery voltage detected by the battery voltage detection circuit 12 exceeds a predetermined value, the constant voltage / constant current control circuit 17 limits the base current of the series pass transistor Q2 to lower the output voltage, and the charging current detection circuit 13 Even when the detected charging current exceeds a predetermined value, the output current is reduced by limiting the base current of the series pass transistor Q2, and the charging current flowing according to the internal resistance of the nonaqueous electrolyte secondary battery 11 is limited. . Also, this charging current detection circuit 1
When the charge current detected by the third pass transistor falls below a predetermined value, the full charge detection circuit detects the completion of the charge, cuts off the base current of the series pass transistor Q2, and turns off the series pass transistor Q2 to charge the battery. To stop. The diode D2 in the circuit of FIG.
Is for preventing the backflow of the charging current.

【0006】上記構成のPHS電話機1の充電回路は、
図4に示すような定電圧定電流充電を行う。即ち、充電
の初期には充電電流検出回路13によって充電電流が例
えば100mAに制限されて定電流充電が行われる。非
水電解質二次電池11は、この定電流充電の間に、充電
の進行に伴って電池電圧が上昇する。そして、この非水
電解質二次電池11の電池電圧が例えば4.1Vに達す
ると、電池電圧検出回路12によって電池電圧の上昇が
制限されて定電圧充電に移行し、満充電が近づくに伴っ
て充電電流が低下する。また、この充電電流が所定値よ
り低下すると、満充電検出回路14によって充電電流が
遮断されて充電が完了する。
[0006] The charging circuit of the PHS telephone 1 having the above configuration is as follows.
The constant voltage and constant current charging as shown in FIG. 4 is performed. That is, at the beginning of charging, the charging current is limited to, for example, 100 mA by the charging current detection circuit 13 and constant current charging is performed. During the constant-current charging, the battery voltage of the nonaqueous electrolyte secondary battery 11 increases as the charging proceeds. When the battery voltage of the non-aqueous electrolyte secondary battery 11 reaches, for example, 4.1 V, the battery voltage detection circuit 12 limits the rise of the battery voltage and shifts to constant-voltage charging. The charging current decreases. When the charging current falls below a predetermined value, the charging current is cut off by the full charge detection circuit 14 and charging is completed.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記PHS
電話機1は、充電器2の載置台に載置する状態によって
送り側コイルL2と受け側コイルL1との間のギャップが
必ずしも一定しないので、充電器2側では、このギャッ
プが大きい場合にもPHS電話機1の充電回路に十分な
電力が供給できるように、ある程度余裕を持った設定が
なされている。しかし、通常は、PHS電話機1が正常
に載置されることが多く、この場合には、送り側コイル
L2と受け側コイルL1との間のギャップが小さくなるの
で、充電回路が余分な電力の供給を受けるようになる。
そして、このように余分な電力が供給されると、ドロッ
パ回路のシリーズパストランジスタQ2に供給される電
圧と非水電解質二次電池11の電池電圧との電位差が大
きくなり、この電位差と充電電流との積による電力を熱
として消費することになる。
However, the above PHS
In the telephone 1, the gap between the sending coil L2 and the receiving coil L1 is not always constant depending on the state of being mounted on the mounting table of the charger 2. Therefore, even if the gap is large, the PHS The setting is made with some allowance so that sufficient power can be supplied to the charging circuit of the telephone 1. However, usually, the PHS telephone 1 is often placed normally, and in this case, the gap between the sending coil L2 and the receiving coil L1 becomes small, so that the charging circuit requires extra power. You will be supplied.
When such extra power is supplied, the potential difference between the voltage supplied to the series pass transistor Q2 of the dropper circuit and the battery voltage of the nonaqueous electrolyte secondary battery 11 increases, and this potential difference and the charging current Is consumed as heat.

【0008】このため、従来のドロッパ回路を用いた無
接点充電システムの充電回路では、シリーズパストラン
ジスタQ2での発熱が大きくなるので、特にPHS電話
機1等のように実装密度の高い小型の機器では、放熱対
策が困難になるという問題が生じていた。
For this reason, in the conventional charging circuit of the contactless charging system using the dropper circuit, the heat generated by the series pass transistor Q2 is increased. Therefore, particularly in a small device having a high mounting density such as the PHS telephone 1, etc. However, there has been a problem that it is difficult to take measures against heat radiation.

【0009】本発明は、かかる事情に対処するためにな
されたものであり、共振回路のインピーダンスを変化さ
せて充電電流や電圧を制御することにより、発熱の小さ
い二次電池の充電回路を提供することを目的としてい
る。
The present invention has been made to address such circumstances, and provides a charging circuit for a secondary battery that generates less heat by changing the impedance of a resonance circuit to control charging current and voltage. It is intended to be.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、電磁
誘導による電力を受け取る受け側コイルと共振コンデン
サとで構成される共振回路の電力を整流して二次電池に
供給する二次電池の充電回路において、二次電池の充電
電流及び/又は電池電圧を検出し、これら充電電流及び
/又は電池電圧の大きさに応じて制御信号を出力する充
電制御回路を設けると共に、この充電制御回路が出力す
る制御信号に応じてインピーダンスを変化させる可変イ
ンピーダンス回路を共振回路に挿入したことを特徴とす
る。
According to a first aspect of the present invention, there is provided a secondary battery for rectifying and supplying power to a secondary battery by rectifying power in a resonance circuit including a receiving coil for receiving power by electromagnetic induction and a resonance capacitor. And a charge control circuit for detecting a charge current and / or a battery voltage of the secondary battery and outputting a control signal in accordance with the magnitude of the charge current and / or the battery voltage. A variable impedance circuit that changes the impedance according to the control signal output by the control circuit is inserted in the resonance circuit.

【0011】請求項1の発明によれば、充電制御回路に
よって可変インピーダンス回路のインピーダンスを変化
させるので、受け側の共振回路の共振特性を示すQを変
化させたり共振周波数(共振点)にずれを生じさせるこ
とができ、この共振回路が受け取る電力を制御して、定
電圧や定電流による充電制御が可能になる。しかも、こ
の受け側の共振回路では、不要な電力を受け取らないよ
うにするので、ドロッパ回路を用いた場合のようなロス
がなくなり、充電回路の発熱を低減することができる。
According to the first aspect of the present invention, the impedance of the variable impedance circuit is changed by the charge control circuit, so that Q indicating the resonance characteristic of the resonance circuit on the receiving side is changed or the resonance frequency (resonance point) is shifted. By controlling the power received by the resonance circuit, charging control with a constant voltage or a constant current becomes possible. In addition, since the receiving-side resonance circuit does not receive unnecessary power, loss such as when a dropper circuit is used is eliminated, and heat generation of the charging circuit can be reduced.

【0012】請求項2の発明は、前記充電制御回路が、
二次電池の充電電流と電池電圧とを検出し、充電電流が
所定値を超えた場合、及び、電池電圧が所定値を超えた
場合に、可変インピーダンス回路のインピーダンスを変
化させる制御信号を出力するものであることを特徴とす
る。
[0012] According to a second aspect of the present invention, the charge control circuit comprises:
Detects the charging current and battery voltage of the secondary battery, and outputs a control signal that changes the impedance of the variable impedance circuit when the charging current exceeds a predetermined value and when the battery voltage exceeds a predetermined value. Characterized in that:

【0013】請求項2の発明によれば、二次電池の充電
電流と電池電圧を制御できるので、非水電解質二次電池
の充電に適した定電圧定電流充電を行うことができる。
According to the second aspect of the present invention, since the charging current and the battery voltage of the secondary battery can be controlled, it is possible to perform constant voltage and constant current charging suitable for charging the non-aqueous electrolyte secondary battery.

【0014】請求項3の発明は、前記可変インピーダン
ス回路が、共振コンデンサに直列に挿入されたMOS型
電界効果トランジスタであることを特徴とする。
According to a third aspect of the present invention, the variable impedance circuit is a MOS type field effect transistor inserted in series with a resonance capacitor.

【0015】請求項3の発明によれば、可変インピーダ
ンス回路にMOS型電界効果トランジスタ(MOS−F
ET)を用いるので、単一の素子で双方向のインピーダ
ンスの制御が可能となり、回路を単純化することができ
る。
According to the third aspect of the present invention, the MOS type field effect transistor (MOS-F
Since ET) is used, bidirectional impedance can be controlled by a single element, and the circuit can be simplified.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1〜図2は本発明の一実施形態を示すも
のであって、図1はPHS電話機の充電回路の構成を示
す回路ブロック図、図2はPHS電話機の充電回路にお
ける共振回路部分とこの等価回路を示す回路図である。
なお、図3〜図4に示した従来例と同様の機能を有する
構成部材には同じ番号を付記する。
FIGS. 1 and 2 show one embodiment of the present invention. FIG. 1 is a circuit block diagram showing a configuration of a charging circuit of a PHS telephone, and FIG. 2 is a resonance circuit part in the charging circuit of the PHS telephone. And a circuit diagram showing the equivalent circuit.
Components having the same functions as those of the conventional example shown in FIGS. 3 and 4 are denoted by the same reference numerals.

【0018】本実施形態は、従来例と同様にPHS電話
機1の充電回路について説明する。なお、充電器2は、
図3に示した従来例のものと同様の構成であり、PHS
電話機1をこの充電器2の載置台の上に載置するだけ
で、内蔵された非水電解質二次電池11が無接点により
充電されるようになっている。
In this embodiment, a charging circuit of the PHS telephone 1 will be described in the same manner as in the conventional example. In addition, the charger 2
The configuration is the same as that of the conventional example shown in FIG.
By simply placing the telephone 1 on the mounting table of the charger 2, the built-in non-aqueous electrolyte secondary battery 11 is charged without contact.

【0019】本実施形態のPHS電話機1の充電回路で
は、図1に示すように、共振回路が受け側コイルL1と
共振コンデンサC1と電界効果トランジスタQ1とによる
直列共振回路によって構成されている。受け側コイルL
1は、上記充電器2の載置台に載置されるPHS電話機
1のプラスチックケース板のすぐ上側に配置されて、充
電器2側の送り側コイルL2に接近するようになってい
る点は従来と同様である。また、この受け側コイルL1
と共振コンデンサC1は、これらだけで直列共振回路を
構成した場合の共振周波数が、充電器2の送り側コイル
L2から送られて来る高周波電磁誘導の周波数に一致す
るように設定されている。電界効果トランジスタQ1
は、ここではnチャンネルのMOS−FETを可変抵抗
素子として使用している。nチャンネルのFETは、ゲ
ート電圧VGSを負の範囲で変化させると、ドレイン電流
IDとドレイン−ソース間電圧VDSとのID−VDS特性が
変化する。そして、このID−VDS特性の立ち上がり部
分(非飽和領域)を利用すれば、ゲート電圧VGSに応じ
てドレイン−ソース間の抵抗値が変化する可変抵抗素子
として利用することができる。なお、MOS−FET
は、pチャンネルのものを用いても同様である。また、
接合型FETやバイポーラトランジスタでも、可変抵抗
素子として用いることができるが、MOS−FETを用
いた場合には、ゲート酸化膜の耐電圧の範囲内で双方向
の電流を流すことができ、回路構成を簡単にすることが
できる。
In the charging circuit of the PHS telephone 1 of this embodiment, as shown in FIG. 1, the resonance circuit is constituted by a series resonance circuit including a receiving coil L1, a resonance capacitor C1, and a field effect transistor Q1. Receiving coil L
1 is arranged just above the plastic case plate of the PHS telephone 1 mounted on the mounting table of the charger 2 so as to approach the sending coil L2 of the charger 2 in the related art. Is the same as The receiving coil L1
The resonance capacitor C1 and the resonance capacitor C1 are set so that the resonance frequency when a series resonance circuit is constituted by them alone matches the frequency of the high-frequency electromagnetic induction sent from the sending coil L2 of the charger 2. Field effect transistor Q1
Here, an n-channel MOS-FET is used as a variable resistance element. In the n-channel FET, when the gate voltage VGS is changed in a negative range, the ID-VDS characteristics of the drain current ID and the drain-source voltage VDS change. If the rising portion (unsaturated region) of the ID-VDS characteristic is used, it can be used as a variable resistance element in which the drain-source resistance changes according to the gate voltage VGS. In addition, MOS-FET
Is the same even when a p-channel type is used. Also,
Junction FETs and bipolar transistors can also be used as variable resistance elements, but when MOS-FETs are used, a bidirectional current can flow within the withstand voltage range of the gate oxide film, and the circuit configuration Can be simplified.

【0020】上記PHS電話機1の充電回路は、充電器
2から高周波電磁誘導によって共振回路に供給された電
力を整流ダイオードD1と平滑コンデンサC2によって直
流に変換して非水電解質二次電池11に送り充電を行う
ようになっている。また、この充電回路は、電池電圧検
出回路12と充電電流検出回路13と満充電検出回路1
4と定電圧定電流制御回路15とを備えている。電池電
圧検出回路12は、従来例と同様に、非水電解質二次電
池11の端子電圧から電池電圧を検出する回路であり、
充電電流検出回路13も、低抵抗の検流器RCの端子電
圧から充電電流を検出する回路である。満充電検出回路
14も、従来例と同様に、この充電電流検出回路13が
検出した充電電流に基づいて充電の完了を検出する回路
であるが、充電の完了を検出した場合には、共振回路と
非水電解質二次電池11との間に挿入したスイッチ素子
16を遮断して充電を停止させるようになっている。ま
た、定電圧定電流制御回路15は、電池電圧検出回路1
2が検出した電池電圧が所定値を超えると、電界効果ト
ランジスタQ1のゲート電圧VGを制限して抵抗値を増大
させると共に、充電電流検出回路13が検出した充電電
流が所定値を超えた場合にも、電界効果トランジスタQ
1のゲート電圧VGを制限して抵抗値を増大させる回路で
ある。なお、ダイオードD2は、従来例と同様に、充電
電流の逆流を防止するためのものである。
The charging circuit of the PHS telephone 1 converts the electric power supplied from the charger 2 to the resonance circuit by high-frequency electromagnetic induction into direct current by the rectifier diode D1 and the smoothing capacitor C2, and sends it to the nonaqueous electrolyte secondary battery 11. It is designed to charge. The charging circuit includes a battery voltage detection circuit 12, a charging current detection circuit 13, and a full charge detection circuit 1.
4 and a constant voltage / current control circuit 15. The battery voltage detection circuit 12 is a circuit that detects the battery voltage from the terminal voltage of the nonaqueous electrolyte secondary battery 11 as in the conventional example,
The charging current detection circuit 13 is also a circuit that detects the charging current from the terminal voltage of the low-resistance current detector RC. The full charge detection circuit 14 is also a circuit for detecting the completion of charging based on the charging current detected by the charging current detection circuit 13 as in the conventional example. The switch element 16 inserted between the battery and the nonaqueous electrolyte secondary battery 11 is shut off to stop charging. Further, the constant voltage / current control circuit 15 includes the battery voltage detection circuit 1.
2 when the battery voltage exceeds a predetermined value, the gate voltage VG of the field effect transistor Q1 is limited to increase the resistance value, and when the charging current detected by the charging current detection circuit 13 exceeds the predetermined value, Also field-effect transistor Q
This is a circuit that limits the gate voltage VG of one and increases the resistance value. Note that the diode D2 is for preventing the backflow of the charging current as in the conventional example.

【0021】上記構成のPHS電話機1の充電回路は、
受け側コイルL1と共振コンデンサC1と電界効果トラン
ジスタQ1とからなる共振回路が、図2に示すような等
価回路で表される。即ち、受け側コイルL1に誘起され
る電力を交流電圧源Vで表し、受け側コイルL1をイン
ダクタンスLと内部抵抗RLとで表し、電界効果トラン
ジスタQ1を可変インピーダンスZで表す。また、共振
コンデンサC1は、そのままキャパシタンスCで表す。
そして、この共振回路に流れる電流をIで表せば、イン
ダクタンスLに貯えられるエネルギは数1で示され、
The charging circuit of the PHS telephone 1 having the above configuration is as follows.
A resonance circuit including the receiving coil L1, the resonance capacitor C1, and the field effect transistor Q1 is represented by an equivalent circuit as shown in FIG. That is, the power induced in the receiving coil L1 is represented by an AC voltage source V, the receiving coil L1 is represented by an inductance L and an internal resistance RL, and the field effect transistor Q1 is represented by a variable impedance Z. Further, the resonance capacitor C1 is represented by the capacitance C as it is.
If the current flowing through the resonance circuit is represented by I, the energy stored in the inductance L is expressed by the following equation 1.

【数1】 この電流Iは、数2で示されることになる。(Equation 1) This current I is expressed by Equation 2.

【数2】 しかも、インダクタンスLとキャパシタンスCは、共振
周波数が高周波電磁誘導の周波数に一致して数3の関係
となるので、
(Equation 2) Moreover, since the resonance frequency of the inductance L and the capacitance C coincides with the frequency of the high-frequency electromagnetic induction, the inductance L and the capacitance C are expressed by the following equation (3).

【数3】 これを数2に代入すれば、電流Iは数4で示される。(Equation 3) By substituting this into Equation 2, the current I is shown by Equation 4.

【数4】 従って、共振回路に流れる電流Iは、可変インピーダン
スZによって変化し、このためインダクタンスLに貯え
られるエネルギ、即ち充電器2から高周波電磁誘導によ
って供給される電力も、この可変インピーダンスZに応
じて変化することになる。
(Equation 4) Therefore, the current I flowing through the resonance circuit changes according to the variable impedance Z. Therefore, the energy stored in the inductance L, that is, the power supplied from the charger 2 by high-frequency electromagnetic induction also changes according to the variable impedance Z. Will be.

【0022】なお、本実施形態では、可変インピーダン
スZとして電界効果トランジスタQ1による可変抵抗素
子を用いているので、この電流Iの変化は、共振回路の
共振特性を示すQの低下によるものとなる。しかし、可
変インピーダンスZがインダクタンスやキャパシタンス
を変化させるものである場合には、共振回路の共振周波
数(共振点)のずれによって電流Iが変化することにな
る。
In this embodiment, since the variable resistance element using the field effect transistor Q1 is used as the variable impedance Z, the change in the current I is caused by a decrease in Q indicating the resonance characteristic of the resonance circuit. However, when the variable impedance Z changes the inductance and the capacitance, the current I changes due to a shift in the resonance frequency (resonance point) of the resonance circuit.

【0023】上記構成のPHS電話機1の充電回路は、
充電電流が所定値(例えば100mA)を超えようとす
ると、充電電流検出回路13がこれを検出して定電圧定
電流制御回路15が電界効果トランジスタQ1の抵抗値
を上昇させるので、共振回路に供給される電力を減少さ
せて定電流充電が行われるようにすることができる。ま
た、非水電解質二次電池11の電池電圧が所定値(例え
ば4.1V)を超えようとすると、電池電圧検出回路1
2がこれを検出して定電圧定電流制御回路15が電界効
果トランジスタQ1の抵抗値を上昇させるので、共振回
路に供給される電力を減少させて定電圧充電が行われる
ようにすることができる。さらに、非水電解質二次電池
11が満充電となって充電電流が所定値よりも小さくな
ると、満充電検出回路14がこれを検出してスイッチ素
子16を遮断することにより、充電を完了させることが
できる。
The charging circuit of the PHS telephone 1 having the above configuration is as follows.
When the charging current is going to exceed a predetermined value (for example, 100 mA), the charging current detection circuit 13 detects this and the constant voltage / constant current control circuit 15 increases the resistance value of the field effect transistor Q1. Power to be supplied can be reduced so that constant current charging is performed. When the battery voltage of the non-aqueous electrolyte secondary battery 11 tries to exceed a predetermined value (for example, 4.1 V), the battery voltage detection circuit 1
2 detects this, and the constant voltage / constant current control circuit 15 increases the resistance value of the field effect transistor Q1, so that the power supplied to the resonance circuit can be reduced so that constant voltage charging can be performed. . Further, when the nonaqueous electrolyte secondary battery 11 is fully charged and the charging current becomes smaller than a predetermined value, the full charge detection circuit 14 detects this and shuts off the switch element 16 to complete the charging. Can be.

【0024】従って、本実施形態の充電回路を用いた場
合にも、図4に示した従来例と同様に、定電圧定電流充
電を行うことができる。しかも、本実施形態の場合に
は、高周波電磁誘導によって共振回路の受け側コイルL
1が受け取る電力自体を制御できるので、電力を過剰に
受け取って不要な分を熱として消費する必要がなくなる
ので、充電回路の発熱を大幅に減少することができるよ
うになる。
Therefore, even when the charging circuit of this embodiment is used, constant voltage and constant current charging can be performed as in the conventional example shown in FIG. Moreover, in the case of the present embodiment, the receiving coil L of the resonance circuit is generated by high-frequency electromagnetic induction.
Since the power itself received by 1 can be controlled, there is no need to receive excessive power and consume unnecessary power as heat, so that the heat generation of the charging circuit can be greatly reduced.

【0025】なお、上記実施形態では、受け側コイルL
1と共振コンデンサC1とからなる共振回路に電界効果ト
ランジスタQ1を挿入する場合について説明したが、イ
ンピーダンスを変化させることができる可変インピーダ
ンス回路であればどのような素子を用いてもよく、コイ
ルやコンデンサ等を含む複数の素子を組み合わせてイン
ピーダンスを変化させる可変インピーダンス回路を挿入
することもできる。また、この可変インピーダンス回路
は、共振回路の共振特性を示すQを変化させたり共振周
波数(共振点)にずれを生じさせるものであれば、共振
コンデンサC1に直列に挿入する他、任意の位置に挿入
することができる。
In the above embodiment, the receiving coil L
Although the case where the field effect transistor Q1 is inserted into the resonance circuit including the resonance capacitor C1 and the resonance capacitor C1 has been described, any element may be used as long as the variable impedance circuit can change the impedance. It is also possible to insert a variable impedance circuit that changes the impedance by combining a plurality of elements including the above. In addition, this variable impedance circuit may be inserted in series with the resonance capacitor C1 or may be placed at any position as long as it changes Q indicating the resonance characteristics of the resonance circuit or causes a shift in the resonance frequency (resonance point). Can be inserted.

【0026】さらに、上記実施形態では、定電圧定電流
充電を行う充電回路について説明したが、定電圧充電又
は定電流充電のいずれかのみを行う充電回路にも同様に
実施可能である。また、上記実施形態では、PHS電話
機1の充電回路について説明したが、無接触充電システ
ムを用いる他の機器の充電回路にも同様に実施すること
ができ、非水電解質二次電池11以外の他の二次電池の
充電回路にも同様に実施することができる。
Further, in the above-described embodiment, the charging circuit for performing the constant voltage / constant current charging has been described. However, the present invention can be similarly applied to a charging circuit for performing only the constant voltage charging or the constant current charging. In the above embodiment, the charging circuit of the PHS telephone 1 has been described. However, the present invention can be similarly applied to the charging circuits of other devices using the non-contact charging system. The same can be applied to the charging circuit of the secondary battery.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
の二次電池の充電回路によれば、受け側の共振回路のイ
ンピーダンスを変化させて不要な電力を受け取らないよ
うにするので、充電回路の発熱を低減することができる
ようになる。そして、充電回路の発熱が低減するという
ことは、無接点充電システム全体の効率が改善されたと
いうことでもあり、効率が上がることにより最終的に充
電出力のパワ−アップとなる。
As is clear from the above description, according to the charging circuit for a secondary battery of the present invention, the impedance of the resonance circuit on the receiving side is changed so that unnecessary power is not received. Heat generation of the circuit can be reduced. The reduction in the heat generation of the charging circuit means that the efficiency of the entire non-contact charging system has been improved, and the increased efficiency ultimately increases the power of the charging output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すものであって、PH
S電話機の充電回路の構成を示す回路ブロック図であ
る。
FIG. 1 illustrates one embodiment of the present invention, wherein PH
FIG. 3 is a circuit block diagram showing a configuration of a charging circuit of the S telephone.

【図2】本発明の一実施形態を示すものであって、PH
S電話機の充電回路における共振回路部分とこの等価回
路を示す回路図である。
FIG. 2 illustrates one embodiment of the present invention, wherein PH is
FIG. 3 is a circuit diagram showing a resonance circuit portion in a charging circuit of the S telephone and its equivalent circuit.

【図3】従来例を示すものであって、PHS電話機の充
電回路とこのPHS電話機の充電器の構成を示す回路ブ
ロック図である。
FIG. 3, which shows a conventional example, is a circuit block diagram illustrating a configuration of a charging circuit of a PHS telephone and a charger of the PHS telephone.

【図4】従来例を示すものであって、PHS電話機の充
電動作を説明する図である。
FIG. 4 shows a conventional example and is a diagram for explaining a charging operation of a PHS telephone.

【符号の説明】[Explanation of symbols]

1 PHS電話機 11 非水電解質二次電池 12 電池電圧検出回路 13 充電電流検出回路 15 定電圧定電流制御回路 Q1 電界効果トランジスタ L1 受け側コイル C1 共振コンデンサ DESCRIPTION OF SYMBOLS 1 PHS telephone 11 Non-aqueous electrolyte secondary battery 12 Battery voltage detection circuit 13 Charge current detection circuit 15 Constant voltage constant current control circuit Q1 Field effect transistor L1 Receiving coil C1 Resonant capacitor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G003 AA01 BA01 CA03 CA14 CC02 GA01 GB04 GB08 5H029 AJ02 AJ12 AM01 BJ27 CJ16 HJ17 HJ18 5H030 AA01 AS14 BB01 BB09 DD01 DD05 DD18 FF42 FF43  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5G003 AA01 BA01 CA03 CA14 CC02 GA01 GB04 GB08 5H029 AJ02 AJ12 AM01 BJ27 CJ16 HJ17 HJ18 5H030 AA01 AS14 BB01 BB09 DD01 DD05 DD18 FF42 FF43

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電磁誘導による電力を受け取る受け側コ
イルと共振コンデンサとで構成される共振回路の電力を
整流して二次電池に供給する二次電池の充電回路におい
て、 二次電池の充電電流及び/又は電池電圧を検出し、これ
ら充電電流及び/又は電池電圧の大きさに応じて制御信
号を出力する充電制御回路を設けると共に、 この充電制御回路が出力する制御信号に応じてインピー
ダンスを変化させる可変インピーダンス回路を共振回路
に挿入したことを特徴とする二次電池の充電回路。
1. A charging circuit for a secondary battery, which rectifies power of a resonance circuit composed of a receiving coil for receiving power by electromagnetic induction and a resonance capacitor and supplies the power to the secondary battery, wherein a charging current of the secondary battery is And / or a battery control circuit that detects a battery voltage and outputs a control signal according to the magnitude of the charging current and / or battery voltage, and changes an impedance according to a control signal output by the battery control circuit. A charging circuit for a secondary battery, wherein a variable impedance circuit to be inserted is inserted into a resonance circuit.
【請求項2】 前記充電制御回路が、二次電池の充電電
流と電池電圧とを検出し、充電電流が所定値を超えた場
合、及び、電池電圧が所定値を超えた場合に、可変イン
ピーダンス回路のインピーダンスを変化させる制御信号
を出力するものであることを特徴とする請求項1に記載
の二次電池の充電回路。
2. The charging control circuit detects a charging current and a battery voltage of a secondary battery, and sets a variable impedance when the charging current exceeds a predetermined value and when the battery voltage exceeds a predetermined value. The charging circuit for a secondary battery according to claim 1, wherein the control circuit outputs a control signal that changes the impedance of the circuit.
【請求項3】 前記可変インピーダンス回路が、共振コ
ンデンサに直列に挿入されたMOS型電界効果トランジ
スタであることを特徴とする請求項1又は請求項2に記
載の二次電池の充電回路。
3. The charging circuit for a secondary battery according to claim 1, wherein the variable impedance circuit is a MOS type field effect transistor inserted in series with a resonance capacitor.
JP11085241A 1999-03-29 1999-03-29 Charging circuit for secondary battery Pending JP2000287375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11085241A JP2000287375A (en) 1999-03-29 1999-03-29 Charging circuit for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11085241A JP2000287375A (en) 1999-03-29 1999-03-29 Charging circuit for secondary battery

Publications (1)

Publication Number Publication Date
JP2000287375A true JP2000287375A (en) 2000-10-13

Family

ID=13853077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11085241A Pending JP2000287375A (en) 1999-03-29 1999-03-29 Charging circuit for secondary battery

Country Status (1)

Country Link
JP (1) JP2000287375A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389629B1 (en) * 2000-12-29 2003-06-27 삼성전기주식회사 Charger circuit in mobile terminal
JP2006325350A (en) * 2005-05-20 2006-11-30 Nichicon Corp Power supply device
CN100349354C (en) * 2005-04-30 2007-11-14 华为技术有限公司 Cell phone charging circuit and charging method
US7518267B2 (en) 2003-02-04 2009-04-14 Access Business Group International Llc Power adapter for a remote device
JP2009111977A (en) * 2007-09-01 2009-05-21 Maquet Gmbh & Co Kg Apparatus and method for performing wireless transmission of energy and/or data between source apparatus and at least one target apparatus
US8127155B2 (en) 2008-01-07 2012-02-28 Access Business Group International Llc Wireless power adapter for computer
JP2012065455A (en) * 2010-09-16 2012-03-29 Nec Tokin Corp Non-contact charging system, electronic device, and method of protecting non-contact communication circuit
JP2012522482A (en) * 2009-03-25 2012-09-20 クアルコム,インコーポレイテッド Optimizing wireless power devices to charge batteries
JP2013212043A (en) * 2012-02-28 2013-10-10 Hitachi Maxell Ltd Small electrical apparatus having non-contact charging device and non-contact type charging system
JP2014131440A (en) * 2012-12-28 2014-07-10 Seiko Instruments Inc Electronic component, power reception device, and power feeding system
US8823319B2 (en) 2009-01-22 2014-09-02 Qualcomm Incorporated Adaptive power control for wireless charging of devices
JP2014183660A (en) * 2013-03-19 2014-09-29 Nitto Denko Corp Wireless power transmission device, heating control method of wireless power transmission device and manufacturing method of wireless power transmission device
JP2014209813A (en) * 2013-04-16 2014-11-06 日東電工株式会社 Wireless power transmission device, heating control method of wireless power transmission device, and method of manufacturing wireless power transmission device
JP2015012655A (en) * 2013-06-27 2015-01-19 Tdk株式会社 Wireless power receiver and wireless power transmitter
JP2015056954A (en) * 2013-09-11 2015-03-23 シャープ株式会社 Charging circuit
WO2015083223A1 (en) 2013-12-02 2015-06-11 富士通株式会社 Power reception apparatus, power transmission apparatus, and wireless power supply system
JP2015119559A (en) * 2013-12-18 2015-06-25 キヤノン株式会社 Electronic apparatus, method, and program
CN104795904A (en) * 2010-09-30 2015-07-22 英特尔公司 Wireless power transfer apparatus and method thereof
CN105576787A (en) * 2016-03-08 2016-05-11 周云侠 General large-current constant current charger
JP2016105690A (en) * 2008-07-28 2016-06-09 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wireless power transmission for electronic devices provided with parasitic resonant tank
US9461714B2 (en) 2008-03-05 2016-10-04 Qualcomm Incorporated Packaging and details of a wireless power device
JP2017520187A (en) * 2014-06-18 2017-07-20 ゼットパワー, エルエルシー Voltage regulator and control circuit for silver zinc battery in hearing aid
WO2019182350A1 (en) * 2018-03-23 2019-09-26 삼성전자 주식회사 Electronic device and control method for determining power transmission path at least on basis of attribute of power supplied from outside of electronic device and state of electronic device
JP2019165594A (en) * 2018-03-20 2019-09-26 株式会社ダイヘン Power reception device and power reception control method
GB2575128A (en) * 2018-06-29 2020-01-01 Etherdyne Tech Inc Wireless power receiver circuits that provide constant voltage or current to an electrical load, and methods
JP2022044472A (en) * 2020-09-07 2022-03-17 日本たばこ産業株式会社 Power supply unit for aerosol generator
US11362543B2 (en) 2018-06-29 2022-06-14 Etherdyne Technologies, Inc. Wireless power receiver circuits that provide constant voltage or current to an electrical load, and methods

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389629B1 (en) * 2000-12-29 2003-06-27 삼성전기주식회사 Charger circuit in mobile terminal
US7518267B2 (en) 2003-02-04 2009-04-14 Access Business Group International Llc Power adapter for a remote device
CN100349354C (en) * 2005-04-30 2007-11-14 华为技术有限公司 Cell phone charging circuit and charging method
JP2006325350A (en) * 2005-05-20 2006-11-30 Nichicon Corp Power supply device
JP2009111977A (en) * 2007-09-01 2009-05-21 Maquet Gmbh & Co Kg Apparatus and method for performing wireless transmission of energy and/or data between source apparatus and at least one target apparatus
US8127155B2 (en) 2008-01-07 2012-02-28 Access Business Group International Llc Wireless power adapter for computer
US9461714B2 (en) 2008-03-05 2016-10-04 Qualcomm Incorporated Packaging and details of a wireless power device
JP2016105690A (en) * 2008-07-28 2016-06-09 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wireless power transmission for electronic devices provided with parasitic resonant tank
US9473209B2 (en) 2008-08-20 2016-10-18 Intel Corporation Wireless power transfer apparatus and method thereof
US8823319B2 (en) 2009-01-22 2014-09-02 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US9559526B2 (en) 2009-01-22 2017-01-31 Qualcomm Incorporated Adaptive power control for wireless charging of devices
JP2012522482A (en) * 2009-03-25 2012-09-20 クアルコム,インコーポレイテッド Optimizing wireless power devices to charge batteries
US8803474B2 (en) 2009-03-25 2014-08-12 Qualcomm Incorporated Optimization of wireless power devices
JP2012065455A (en) * 2010-09-16 2012-03-29 Nec Tokin Corp Non-contact charging system, electronic device, and method of protecting non-contact communication circuit
JP2017099278A (en) * 2010-09-30 2017-06-01 インテル コーポレイション Wireless power transfer apparatus and method
CN104795904A (en) * 2010-09-30 2015-07-22 英特尔公司 Wireless power transfer apparatus and method thereof
JP2015149890A (en) * 2010-09-30 2015-08-20 インテル コーポレイション Wireless power transfer apparatus and method thereof
JP2013212043A (en) * 2012-02-28 2013-10-10 Hitachi Maxell Ltd Small electrical apparatus having non-contact charging device and non-contact type charging system
JP2014131440A (en) * 2012-12-28 2014-07-10 Seiko Instruments Inc Electronic component, power reception device, and power feeding system
JP2014183660A (en) * 2013-03-19 2014-09-29 Nitto Denko Corp Wireless power transmission device, heating control method of wireless power transmission device and manufacturing method of wireless power transmission device
JP2014209813A (en) * 2013-04-16 2014-11-06 日東電工株式会社 Wireless power transmission device, heating control method of wireless power transmission device, and method of manufacturing wireless power transmission device
JP2015012655A (en) * 2013-06-27 2015-01-19 Tdk株式会社 Wireless power receiver and wireless power transmitter
JP2015056954A (en) * 2013-09-11 2015-03-23 シャープ株式会社 Charging circuit
WO2015083223A1 (en) 2013-12-02 2015-06-11 富士通株式会社 Power reception apparatus, power transmission apparatus, and wireless power supply system
KR20160067217A (en) 2013-12-02 2016-06-13 후지쯔 가부시끼가이샤 Power reception apparatus, power transmission apparatus, and wireless power supply system
JP2015119559A (en) * 2013-12-18 2015-06-25 キヤノン株式会社 Electronic apparatus, method, and program
JP2017520187A (en) * 2014-06-18 2017-07-20 ゼットパワー, エルエルシー Voltage regulator and control circuit for silver zinc battery in hearing aid
CN105576787A (en) * 2016-03-08 2016-05-11 周云侠 General large-current constant current charger
JP2019165594A (en) * 2018-03-20 2019-09-26 株式会社ダイヘン Power reception device and power reception control method
WO2019182350A1 (en) * 2018-03-23 2019-09-26 삼성전자 주식회사 Electronic device and control method for determining power transmission path at least on basis of attribute of power supplied from outside of electronic device and state of electronic device
KR20190111640A (en) * 2018-03-23 2019-10-02 삼성전자주식회사 An electronic device determining a power transmission path at least based on a property of a power being supplied from outside of the electronic device and a status of the electronic device and control method thereof
US11621569B2 (en) 2018-03-23 2023-04-04 Samsung Electronics Co., Ltd. Electronic device and control method for determining power transmission path at least on basis of attribute of power supplied from outside of electronic device and state of electronic device
KR102540749B1 (en) 2018-03-23 2023-06-08 삼성전자주식회사 An electronic device determining a power transmission path at least based on a property of a power being supplied from outside of the electronic device and a status of the electronic device and control method thereof
GB2575128A (en) * 2018-06-29 2020-01-01 Etherdyne Tech Inc Wireless power receiver circuits that provide constant voltage or current to an electrical load, and methods
GB2575128B (en) * 2018-06-29 2020-09-16 Etherdyne Technologies Inc Wireless power receiver circuits that provide constant voltage or current to an electrical load, and methods
US10931149B2 (en) 2018-06-29 2021-02-23 Etherdyne Technologies, Inc. Wireless power receiver circuits that provide constant voltage or current to an electrical load, and methods
US11362543B2 (en) 2018-06-29 2022-06-14 Etherdyne Technologies, Inc. Wireless power receiver circuits that provide constant voltage or current to an electrical load, and methods
JP2022044472A (en) * 2020-09-07 2022-03-17 日本たばこ産業株式会社 Power supply unit for aerosol generator

Similar Documents

Publication Publication Date Title
JP2000287375A (en) Charging circuit for secondary battery
US8160654B2 (en) Power reception control device, power reception device, and electronic instrument
US20190379424A1 (en) Device and system for power transmission
US10069340B2 (en) Wireless power receiver for adjusting magnitude of wireless power
US9716403B2 (en) Battery charger circuit for changing between modes during operation based on temperature and battery voltage and method therefor
US9716389B2 (en) Power feeding system, power feeding device, and power feeding method
CN106560975B (en) Power receiving device and wireless power transmission system
US8031490B2 (en) Power supply circuit and power supply system
US20100327804A1 (en) Chargeable electric device
US8581443B2 (en) Circuit arrangement and method for inductive energy transfer
CN213185645U (en) Wireless power receiving circuit and electronic device
US9219380B2 (en) Bypass control bidirectional wireless charging device
US20050162125A1 (en) Integrated induction battery charge apparatus
JP5954788B2 (en) Electronic component, power receiving device, and power feeding system
CN101777801A (en) Contactless power transmission circuit
US10164472B2 (en) Method and apparatus for wirelessly charging portable electronic devices
US20140152248A1 (en) Bypass Control Wireless Charging Device
US12368326B2 (en) Charging control method, electronic device, and wireless charging system
US20160373004A1 (en) Starting circuit of power management chip, and power management chip
US11652368B2 (en) Non-contact power supply device and power transmission device
JP2006325350A (en) Power supply device
KR200217303Y1 (en) Apparatus for charging a battery wirelessly
KR20200010601A (en) Device and system for power transmission
US10707700B2 (en) Power feeding system, power feeding device, and power feeding method
JP2004129315A (en) Noncontact charger

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119