[go: up one dir, main page]

JP2000353316A - Apparatus for production of magnetic recording medium - Google Patents

Apparatus for production of magnetic recording medium

Info

Publication number
JP2000353316A
JP2000353316A JP11165005A JP16500599A JP2000353316A JP 2000353316 A JP2000353316 A JP 2000353316A JP 11165005 A JP11165005 A JP 11165005A JP 16500599 A JP16500599 A JP 16500599A JP 2000353316 A JP2000353316 A JP 2000353316A
Authority
JP
Japan
Prior art keywords
film
protective film
abnormal
power supply
plasma generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11165005A
Other languages
Japanese (ja)
Inventor
Masahiko Sugiyama
正彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP11165005A priority Critical patent/JP2000353316A/en
Publication of JP2000353316A publication Critical patent/JP2000353316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to suppress the number of abnormal electric discharges even if a protective film deposition rate is increased by installing plural sputtering targets for forming the protective films in a vacuum chamber and connecting the respective sputtering targets to respective independent power sources. SOLUTION: The plural sputtering targets 14 and plural plasma generating electrodes 15 are installed. The respective sputtering targets 14 and the respective plasma generating electrodes 15 are connected to the respective independent DC power sources 16 and the AC power sources 18. The plasmas generated by respectively independently controlling the respective sputtering targets 14 and the respective plasma generating electrodes 15 are controlled, by which the abnormal electric discharges may be decreased even if the protective film deposition rate is increased and a film 6 is not broken. The sputtering targets or the plasma generating power source are divided and controlled by the respective independent power source, by which the entire making current is dispersed to the respective power sources to make the maximum current of the respective power sources smaller than the current at the time of the independent power source. The abnormal electric discharges are thereby decreased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体の製
造装置に関する。そして、この発明は特に、保護膜成膜
速度を上げても異常放電数を少なく押さえることがで
き、保護膜の膜厚異常、保護膜特性異常、基板フィルム
破壊が少ない磁気記録媒体を生産することができる製造
装置を提供することを目的としている。
The present invention relates to an apparatus for manufacturing a magnetic recording medium. In particular, the present invention is to produce a magnetic recording medium in which the number of abnormal discharges can be kept low even when the deposition rate of the protective film is increased, and the thickness of the protective film is abnormal, the characteristic of the protective film is abnormal, and the substrate film is less damaged. It is an object of the present invention to provide a manufacturing apparatus capable of performing the above.

【0002】[0002]

【従来の技術】磁気テ−プの記録密度は近年急速に高密
度化が図られている。この過程で、磁気テ−プは高抗磁
力、高磁束密度を有する酸化鉄テープ、メタルテ−プ、
及び薄膜テ−プへと高性能なものに移行している。この
磁気テ−プの応用として、VTR分野では今後、デジタ
ル化、高精細化を達成するために、特に薄膜テ−プが注
目されている。
2. Description of the Related Art The recording density of a magnetic tape has been rapidly increased in recent years. In this process, the magnetic tape is made of iron oxide tape, metal tape, which has high coercive force and high magnetic flux density.
And to high performance thin film tapes. As an application of this magnetic tape, in the field of VTRs, in order to achieve digitization and high definition, a thin film tape is particularly attracting attention.

【0003】この薄膜テ−プとしては磁性膜が斜方蒸着
法により形成された、いわゆる蒸着テープが実用化され
ている。これは、具体的には真空中でピアス型電子銃を
用いて、電子ビームをルツボ中のCo,CoNiなどの
磁性材料に照射して、これらの材料を溶融、蒸発させ、
酸素を導入しながら、PET(ポリエチレンテレフタレ
ート)、PEN(ポリエチレンナフタレート)、PI
(ポリイミド)、PA(アラミド)などのベースフィル
ム(非磁性基板)上にCoO、CoNiOよりなる薄膜
が形成される。
As this thin film tape, a so-called evaporation tape in which a magnetic film is formed by an oblique evaporation method has been put to practical use. Specifically, a magnetic material such as Co or CoNi in a crucible is irradiated with an electron beam using a pierce-type electron gun in a vacuum to melt and evaporate these materials.
While introducing oxygen, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PI
A thin film made of CoO or CoNiO is formed on a base film (nonmagnetic substrate) such as (polyimide) or PA (aramid).

【0004】次に、磁気テープの耐久性、耐蝕性を向上
させるために磁性膜の上に保護膜が形成される。保護膜
としてはDLC(ダイヤモンドライクカーボン)が多く
利用されている。これは硬度が大きく、摩擦係数が低い
ため記録再生時のヘッドとの摺動時における耐摩耗性に
効果を発揮する。また、DLC膜は100オングストロ
ーム程度の薄い膜でも緻密で、磁性膜表面にムラなく均
一に成膜することができるため、磁気記録媒体の出力低
下の一原因となるスペーシングロスを低減できる。また
磁性膜単独では酸化しやすいため、DLC保護膜により
酸化を防止し、耐蝕性を向上させることができる。耐摩
耗性、耐蝕性は保護膜の上に形成するフッ素系潤滑剤と
の相互作用により更に向上する。
Next, a protective film is formed on the magnetic film in order to improve the durability and corrosion resistance of the magnetic tape. DLC (diamond-like carbon) is often used as a protective film. This is effective in abrasion resistance when sliding with the head at the time of recording and reproduction because of high hardness and low coefficient of friction. In addition, the DLC film can be formed densely and uniformly on the surface of the magnetic film even if the DLC film is as thin as about 100 angstroms, so that a spacing loss which causes a decrease in output of the magnetic recording medium can be reduced. Further, since the magnetic film alone is easily oxidized, the oxidation can be prevented by the DLC protective film, and the corrosion resistance can be improved. Abrasion resistance and corrosion resistance are further improved by interaction with a fluorine-based lubricant formed on the protective film.

【0005】DLC膜は一般的にスパッタ法、CVD法
などにより形成される。一般的な保護膜成膜装置を図2
に示す。真空槽1内に、巻出しロール2、巻取りロール
3、ガイドロール4、5及び冷却キャンロール7が配置
されており、これらのロール間に磁性膜が形成されたフ
ィルム6が巻き回され、巻出しロール2から巻取りロー
ル3に至るまで図中矢印方向に走行する。冷却キャンロ
ール7の内部には、冷却装置が配置され、上記フィルム
6の磁性膜上への保護膜形成時の温度上昇によるフィル
ム6の熱変形等を防止している。
The DLC film is generally formed by a sputtering method, a CVD method, or the like. Figure 2 shows a general protective film deposition system.
Shown in An unwinding roll 2, a take-up roll 3, guide rolls 4, 5 and a cooling can roll 7 are arranged in a vacuum chamber 1, and a film 6 on which a magnetic film is formed is wound between these rolls. It travels from the unwinding roll 2 to the winding roll 3 in the direction of the arrow in the figure. A cooling device is disposed inside the cooling can roll 7 to prevent a thermal deformation of the film 6 due to a rise in temperature when a protective film is formed on the magnetic film of the film 6.

【0006】スパッタ法では、カーボンターゲット8は
スパッタ用電源9に接続されている。このスパッタ用電
源9はDC、AC、RFあるいはそれらの重畳である。
AC、RF電源を用いる場合は電源9とターゲット8間
に整合器9’を設置する。10はガス導入口で、Arガス
を導入してプラズマを形成し、カーボンターゲット8を
スパッタすることによりDLC膜を形成する。この際
に、N2、H2などの添加ガスを導入して、膜質を改善す
る方法も考案されている。
In the sputtering method, the carbon target 8 is connected to a power supply 9 for sputtering. The power source 9 for sputtering is DC, AC, RF, or a superposition thereof.
When an AC or RF power supply is used, a matching unit 9 ′ is provided between the power supply 9 and the target 8. Numeral 10 denotes a gas inlet, which forms a plasma by introducing Ar gas and forms a DLC film by sputtering a carbon target 8. At this time, a method of improving the film quality by introducing an additional gas such as N 2 or H 2 has been devised.

【0007】またCVD法では、図3の様にプラズマ発
生用電極13がプラズマ用電源11に接続されている。
このプラズマ用電源13はDC、AC、RFあるいはそ
れらの重畳である。AC,RF電源を用いる場合は電源
13と電極11間に整合器12を設置する。
In the CVD method, the plasma generating electrode 13 is connected to the plasma power source 11 as shown in FIG.
The plasma power source 13 is DC, AC, RF, or a superposition thereof. When an AC or RF power supply is used, the matching device 12 is provided between the power supply 13 and the electrode 11.

【0008】ガス導入口10から、メタン、アセチレ
ン、エチレン、ベンゼン、トルエン、キシレンなどのC
H系のガスを導入し、電極にDC、AC、RF電圧を印
加してプラズマを形成し、導入ガスをプラズマのエネル
ギーにより一度分解し、カーボンを基板上で再結合させ
ることによりDLC膜を形成する。この際に、N2、H2
などの添加ガスを導入して、膜質を改善する方法も考案
されている。
[0008] From the gas inlet 10, C such as methane, acetylene, ethylene, benzene, toluene, xylene, etc.
A H-based gas is introduced, DC, AC, and RF voltages are applied to the electrodes to form plasma, the introduced gas is once decomposed by the energy of the plasma, and the DLC film is formed by recombining the carbon on the substrate. I do. At this time, N 2 , H 2
A method of improving the film quality by introducing an additive gas such as the above has also been devised.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
スパッタ法、CVD法で、保護膜の成膜速度を上げるた
めに投入パワーを上げた場合、磁性膜上に突起物や微小
な膜抜け(ピンホ−ル)があると、この部分で異常放電
が発生し、所定の膜厚及び特性を有するDLC膜を均一
に形成することができなかった。さらに異常放電が激し
い場合は、基板を破壊する虞もあった。このため、従来
の製造装置では、生産速度を向上させることが難しかっ
た。本発明は、保護膜成膜速度を上げても異常放電数を
少なく押さえることができ、保護膜の膜厚異常、保護膜
特性異常、基板フィルム破壊が少ない磁気記録媒体を生
産することができる製造装置を提供することを目的とし
ている。
However, when the input power is increased by the above-mentioned sputtering method and CVD method in order to increase the deposition rate of the protective film, protrusions or minute film omissions on the magnetic film (pin-off). -), Abnormal discharge occurred in this portion, and a DLC film having a predetermined thickness and characteristics could not be formed uniformly. Further, when abnormal discharge is severe, the substrate may be broken. For this reason, it was difficult to improve the production speed in the conventional manufacturing apparatus. According to the present invention, it is possible to manufacture a magnetic recording medium in which the number of abnormal discharges can be suppressed even if the film forming speed of the protective film is increased, and the film thickness of the protective film is abnormal, the characteristic of the protective film is abnormal, and the substrate film is less damaged. It is intended to provide a device.

【0010】[0010]

【課題を解決するための手段】そこで、上記課題を解決
するために本発明は、強磁性金属薄膜が積層された非磁
性基板をキャンロールに沿って一定方向に走行させつ
つ、スパッター法により前記強磁性金属薄膜上に保護膜
を形成する磁気記録媒体の製造装置において、保護膜形
成用の複数のスパッターターゲットを真空槽内に設置
し、前記各スパッターターゲットをそれぞれ独立した電
源に接続したことを特徴とする磁気記録媒体の製造装
置、を提供すると共に、強磁性金属薄膜が積層された非
磁性基板をキャンロールに沿って一定方向に走行させつ
つ、プラズマCVD法により前記強磁性金属薄膜上に保
護膜を形成する磁気記録媒体の製造装置において、保護
膜形成用の複数のプラズマ発生用電極を真空槽内に設置
し、前記各プラズマ発生用電極をそれぞれ独立した電源
に接続したことを特徴とする磁気記録媒体の製造装置、
を提供するものである。
Therefore, in order to solve the above-mentioned problems, the present invention provides a method in which a non-magnetic substrate on which a ferromagnetic metal thin film is laminated is moved in a predetermined direction along a can roll, and the non-magnetic substrate is sputtered. In a magnetic recording medium manufacturing apparatus for forming a protective film on a ferromagnetic metal thin film, a plurality of sputter targets for forming a protective film are installed in a vacuum chamber, and each of the sputter targets is connected to an independent power supply. A magnetic recording medium manufacturing apparatus, characterized in that a non-magnetic substrate on which a ferromagnetic metal thin film is laminated is moved in a certain direction along a can roll, and the ferromagnetic metal thin film is formed on the ferromagnetic metal thin film by a plasma CVD method. In a magnetic recording medium manufacturing apparatus for forming a protective film, a plurality of plasma generating electrodes for forming a protective film are installed in a vacuum chamber, and each of the plasma generating electrodes is formed. Apparatus for manufacturing a magnetic recording medium characterized by connecting the electrodes to the independent power supply,
Is provided.

【0011】[0011]

【発明の実施の形態】上記の問題点を解消すべく種々検
討を重ねた結果、図1a,bに示すように、複数のスパ
ッターターゲット14、複数のプラズマ発生用電極15
を設置し、各スパッターターゲット14、各プラズマ発
生用電極15それぞれを独立した電源16,18に接続
する。そして、各スパッターターゲット14、各プラズ
マ発生用電極15それぞれを独立に制御して、発生する
プラズマを制御する。これにより、保護膜成膜速度を上
げるために全投入パワーを上げても、異常放電を低減で
き、かつフィルム6(基板)の破壊をなくすことができ
ることが判明した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a result of various studies to solve the above problems, as shown in FIGS. 1a and 1b, a plurality of sputter targets 14 and a plurality of plasma generating electrodes 15 are formed.
Is installed, and each sputter target 14 and each plasma generating electrode 15 are connected to independent power supplies 16 and 18. Then, each sputter target 14 and each plasma generating electrode 15 are independently controlled to control the generated plasma. As a result, it has been found that even if the total input power is increased in order to increase the protective film deposition rate, abnormal discharge can be reduced and the film 6 (substrate) can be prevented from being broken.

【0012】放電電圧はガス圧に依存するため、成膜条
件が決まれば一定である。また、成膜速度は投入パワー
に比例するため成膜速度を上げるためには放電電流を上
げる必要がある。異常放電電流は正常のプラズマ発生時
の電流よりも大きい。特にこの大電流が放電部分に局所
的に印加され、膜厚異常、DLCの特性異常、基板温度
の上昇による基板破壊が発生する。
Since the discharge voltage depends on the gas pressure, it is constant once the film forming conditions are determined. Further, since the deposition rate is proportional to the input power, it is necessary to increase the discharge current in order to increase the deposition rate. The abnormal discharge current is larger than the current when a normal plasma is generated. In particular, this large current is locally applied to the discharge portion, which causes abnormal film thickness, abnormal DLC characteristics, and substrate destruction due to an increase in substrate temperature.

【0013】最大放電電流値を電源側で制限することに
より異常放電を抑制することができるが、成膜速度が制
限され、生産性を向上できない。上記のようにスパッタ
ーターゲットまたはプラズマ発生用電極を分割し、それ
ぞれ独立した電源で、プラズマを制御することにより、
全投入電流を各電源に分散させ、各電源の最大電流を、
単独電源の際の電流よりも小さくすることにより、全投
入電流を上げても異常放電を低減でき、上記異常放電時
の弊害をなくすことができる。
Although the abnormal discharge can be suppressed by limiting the maximum discharge current value on the power supply side, the film forming speed is limited and productivity cannot be improved. By dividing the sputter target or the electrode for plasma generation as described above and controlling the plasma with independent power supplies,
All input currents are distributed to each power supply, and the maximum current of each power supply is
By making the current smaller than that of the single power supply, the abnormal discharge can be reduced even if the total input current is increased, and the adverse effect at the time of the abnormal discharge can be eliminated.

【0014】以下に示す実施例により、本発明を具体的
に説明する。 <実施例1>図1-aのように、直径1000mmの冷却キャン
ロール7を用いて、200mmX500mmの大きさのカー
ボンターゲット14(スパッターターゲット)を5カ所
に設置し、5台のDC電源16をそれぞれ異なるカーボ
ンターゲット14に接続した。Arガスを導入して、ガ
ス圧力を2mmTorrとして、6.4μmPETフィルム上
に、予め0.2μmCoO薄膜を形成したフイルム6
(基板)を走行させて、DLC膜形成のためのスパッタ
ーを連続1時間行った。DLCの膜厚はフィルム速度を
調整し、DLC膜厚100オングストロームをCoO磁
性膜の上に形成した。各電源は設定電流が最大電流にな
るように制御されている。放電電圧1000Vで、投入
パワーを変えた際の、全パワー、各電源の放電電流と異
常放電数、DLC膜成膜後に判明した膜厚異常箇所数、
基板破壊箇所数を表1に示す。以下膜厚異常とは100
±20オングストローム以外の膜厚を、基板破壊は目視
観察で判明できる基板の穴あき現象を意味する。
The present invention will be specifically described with reference to the following examples. <Embodiment 1> As shown in FIG. 1-a, using a cooling can roll 7 having a diameter of 1000 mm, carbon targets 14 (sputter targets) having a size of 200 mm × 500 mm were installed at five places, and five DC power supplies 16 were connected. Each was connected to a different carbon target 14. A film 6 in which a 0.2 μm CoO thin film was previously formed on a 6.4 μm PET film by introducing Ar gas at a gas pressure of 2 mmTorr.
The (substrate) was run, and sputtering for forming a DLC film was continuously performed for one hour. The DLC film thickness was adjusted at a film speed, and a DLC film thickness of 100 Å was formed on the CoO magnetic film. Each power supply is controlled so that the set current becomes the maximum current. When the input voltage was changed at a discharge voltage of 1000 V, the total power, the discharge current of each power supply and the number of abnormal discharges, the number of abnormal film thicknesses found after the DLC film was formed,
Table 1 shows the number of substrate breaks. Below 100 is abnormal film thickness
With a film thickness other than ± 20 Å, substrate destruction means a perforation phenomenon of the substrate that can be found by visual observation.

【0015】 表1 <実施例1> 全パワー 各電源の放電電流 異常放電数 膜厚異常箇所数 基板破壊箇所数 25kW 5A 0 0 0 35 7 0 0 0 50 10 0 0 0 75 15 1 1 0 100 20 2 1 1Table 1 <Example 1> Total power Discharge current of each power supply Abnormal discharge number Number of abnormal film thickness Number of substrate destruction points 25kW 5A 0 0 0 35 7 0 0 0 50 10 0 0 0 75 15 1 1 0 100 20 2 1 1

【0016】<比較例1>図1-aの装置において、各カ
ーボンターゲット14を共通の1つの電源に接続した以
外の装置構成は実施例1と同様にしてDLC膜を成膜し
た。放電電圧1000Vで、投入パワーを変えた際の、
全パワー、単独電源の放電電流と異常放電数、成膜後に
調査した膜厚異常箇所数と基板破壊箇所数を表2に示
す。
Comparative Example 1 A DLC film was formed in the same manner as in Example 1 except that each carbon target 14 was connected to one common power supply in the apparatus shown in FIG. 1-a. When the input voltage was changed at a discharge voltage of 1000 V,
Table 2 shows the total power, the discharge current of a single power supply and the number of abnormal discharges, the number of abnormal film thicknesses and the number of substrate breaks examined after film formation.

【0017】 表2 <比較例1> 全パワー 単独電源の放電電流 異常放電数 膜厚異常箇所数 基板破壊箇所数 25kW 25A 0 0 0 35 35 4 2 2 50 50 10 3 7 75 75 25 10 15 100 100 42 15 27Table 2 <Comparative Example 1> Total power Discharge current of single power supply Abnormal discharge number Number of abnormal film thickness Number of substrate destruction points 25kW 25A 0 0 0 35 35 4 2 2 50 50 10 3 7 75 75 25 10 15 100 100 42 15 27

【0018】<実施例2>図1-bのように、直径1000mm
の冷却キャンロール7を用いて、200mmX500mmの
大きさのプラズマ発生用電極15を5カ所に設置し、5
台のAC電源18をそれぞれ異なる電極15に接続し
た。電極15と電源18間には整合器17を設置し、電
極15からの反射が少なくなるように整合を取った。ア
セチレンガスを導入して、ガス圧力を5mmTorrとしてD
LC膜形成のためのCVDを連続1時間行った。6.4
μmPETフィルム上に、予め0.2μmCoO薄膜を形
成した上に、フイルム速度を調整して、DLC膜100
オングストロームを形成した。各電源は設定電流が最大
電流になるように制御されている。放電電圧500V
で、投入パワーを変えた際の、全パワー、各電源の放電
電流と異常放電数、成膜後に判明した膜厚異常箇所数、
基板破壊箇所数を表3に示す。
<Embodiment 2> As shown in FIG.
Using the cooling can roll 7 of the above, the plasma generating electrodes 15 of 200 mm × 500 mm
Each of the two AC power supplies 18 was connected to a different electrode 15. A matching device 17 was provided between the electrode 15 and the power supply 18 so that matching was performed so that reflection from the electrode 15 was reduced. Acetylene gas is introduced and the gas pressure is set to 5 mmTorr.
CVD for forming an LC film was continuously performed for 1 hour. 6.4
A 0.2 μm CoO thin film was previously formed on a μm PET film, and the film speed was adjusted.
Angstrom was formed. Each power supply is controlled so that the set current becomes the maximum current. Discharge voltage 500V
Then, when the input power was changed, the total power, the discharge current of each power supply and the number of abnormal discharges, the number of abnormal film thicknesses found after film formation,
Table 3 shows the number of substrate breaks.

【0019】 表3 <実施例2> 全パワー 各電源の放電電流 異常放電数 膜厚異常箇所数 基板破壊箇所数 12.5kW 5A 0 0 0 17.5 7 0 0 0 25 10 1 1 0 37.5 15 3 2 1 50 20 6 4 2Table 3 <Example 2> Total power Discharge current of each power supply Abnormal discharge number Number of abnormal film thickness Number of substrate breakage points 12.5kW 5A 0 0 0 17.5 7 0 0 0 25 10 1 1 0 37.5 15 3 2 1 50 20 6 4 2

【0020】<比較例2>図1-bの装置において、5個
のプラズマ発生用電極15を共通の1つの電源に接続し
た以外の装置構成は実施例2と同様にしてDLC膜を成
膜した。放電電圧500Vで、投入パワーを変えた際
の、全パワー、単独電源の放電電流と異常放電数、成膜
後に調査した膜厚異常箇所数、基板破壊箇所数を表4に
示す。
Comparative Example 2 A DLC film was formed in the same manner as in Example 2 except that the five plasma generating electrodes 15 were connected to one common power supply in the apparatus shown in FIG. 1-b. did. Table 4 shows the total power, the discharge current of the single power supply and the number of abnormal discharges, the number of abnormal film thickness locations examined after film formation, and the number of substrate breakdown locations when the input power was changed at a discharge voltage of 500 V.

【0021】 表4 <比較例2> 全パワー 単独電源の放電電流 異常放電数 膜厚異常箇所数 基板破壊箇所数 12.5kW 25A 0 0 0 17.5 35 2 1 1 25 50 10 2 8 37.5 75 22 8 14 50 100 38 12 26Table 4 <Comparative Example 2> Total power Discharge current of single power supply Abnormal discharge number Number of abnormal film thickness Number of substrate destruction points 12.5kW 25A 0 0 0 17.5 35 2 1 1 25 50 10 2 8 37.5 75 22 8 14 50 100 38 12 26

【0022】表1〜4の結果から、スパッターターゲッ
トまたはプラズマ発生用電極を分割し、それぞれ独立し
た電源で、プラズマを制御することにより、全投入電流
を各電源に分散させ、各電源の最大電流を、単独電源の
際の電流よりも小さくできるため、全投入電流を上げて
も異常放電を低減でき、膜厚異常、基板破壊の弊害を少
なくすこるとができる。
From the results shown in Tables 1 to 4, the sputter target or the electrode for plasma generation is divided, and the plasma is controlled by independent power supplies, so that the total input current is distributed to each power supply and the maximum current of each power supply is controlled. Can be made smaller than the current when a single power supply is used, so that abnormal discharge can be reduced even when the total input current is increased, and the adverse effects of abnormal film thickness and substrate destruction can be reduced.

【0023】[0023]

【発明の効果】以上の通り、本発明の製造装置によれ
ば、放電電流を上げて、保護膜の成膜速度を上げても異
常放電数を少なく押さえることができるため、保護膜の
膜厚異常、保護膜特性異常、基板破壊が少ない磁気記録
媒体を生産することができ、生産速度、歩留まりを向上
させることができる。
As described above, according to the manufacturing apparatus of the present invention, the number of abnormal discharges can be suppressed even if the discharge current is increased and the deposition rate of the protective film is increased. It is possible to produce a magnetic recording medium with less abnormalities, abnormalities in protective film characteristics, and less substrate destruction, and improve production speed and yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1、実施例2を示す図である。FIG. 1 is a diagram showing a first embodiment and a second embodiment.

【図2】従来例を示す図である。FIG. 2 is a diagram showing a conventional example.

【図3】従来例を示す図である。FIG. 3 is a diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

14 カーボンターゲット(スパッターターゲット) 15 プラズマ発生用電極 16 DC電源 18 AC電源 14 carbon target (sputter target) 15 electrode for plasma generation 16 DC power supply 18 AC power supply

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】強磁性金属薄膜が積層された非磁性基板を
キャンロールに沿って一定方向に走行させつつ、スパッ
ター法により前記強磁性金属薄膜上に保護膜を形成する
磁気記録媒体の製造装置において、 保護膜形成用の複数のスパッターターゲットを真空槽内
に設置し、 前記各スパッターターゲットをそれぞれ独立した電源に
接続したことを特徴とする磁気記録媒体の製造装置。
An apparatus for manufacturing a magnetic recording medium, wherein a protective film is formed on a ferromagnetic metal thin film by sputtering while a non-magnetic substrate on which a ferromagnetic metal thin film is laminated is moved in a predetermined direction along a can roll. 3. The apparatus for manufacturing a magnetic recording medium according to claim 1, wherein a plurality of sputter targets for forming a protective film are provided in a vacuum chamber, and each of the sputter targets is connected to an independent power supply.
【請求項2】強磁性金属薄膜が積層された非磁性基板を
キャンロールに沿って一定方向に走行させつつ、プラズ
マCVD法により前記強磁性金属薄膜上に保護膜を形成
する磁気記録媒体の製造装置において、 保護膜形成用の複数のプラズマ発生用電極を真空槽内に
設置し、 前記各プラズマ発生用電極をそれぞれ独立した電源に接
続したことを特徴とする磁気記録媒体の製造装置。
2. A method of manufacturing a magnetic recording medium, comprising forming a protective film on a ferromagnetic metal thin film by a plasma CVD method while running a non-magnetic substrate on which a ferromagnetic metal thin film is laminated in a predetermined direction along a can roll. An apparatus for manufacturing a magnetic recording medium, wherein a plurality of plasma generating electrodes for forming a protective film are provided in a vacuum chamber, and each of the plasma generating electrodes is connected to an independent power supply.
JP11165005A 1999-06-11 1999-06-11 Apparatus for production of magnetic recording medium Pending JP2000353316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11165005A JP2000353316A (en) 1999-06-11 1999-06-11 Apparatus for production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11165005A JP2000353316A (en) 1999-06-11 1999-06-11 Apparatus for production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2000353316A true JP2000353316A (en) 2000-12-19

Family

ID=15804042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11165005A Pending JP2000353316A (en) 1999-06-11 1999-06-11 Apparatus for production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2000353316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656755B1 (en) 1999-11-17 2003-12-02 Denso Corporation Method for manufacturing semiconductor device by polishing
JP2009209380A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Film-forming apparatus
CN117364028A (en) * 2023-10-20 2024-01-09 苏州迈为科技股份有限公司 TCO film layer and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656755B1 (en) 1999-11-17 2003-12-02 Denso Corporation Method for manufacturing semiconductor device by polishing
JP2009209380A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Film-forming apparatus
CN117364028A (en) * 2023-10-20 2024-01-09 苏州迈为科技股份有限公司 TCO film layer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US6319325B1 (en) Apparatus for producing thin film, process for producing thin film and guide roller
JPH1011734A (en) Magnetic recording medium
JP3555797B2 (en) Film forming apparatus and film forming method
JP2000353316A (en) Apparatus for production of magnetic recording medium
JPH10251851A (en) Film deposition method and film deposition device
JP3852476B2 (en) Magnetic recording medium
JP2003346321A (en) Magnetic recording medium and its manufacturing method
JP2000293847A (en) Device for production of magnetic recording medium
US20070141239A1 (en) Magnetic recording medium and method of fabricating the same
JP2000331335A (en) Apparatus for production of magnetic recording medium
JPH08337873A (en) Sputtering method
JP4234469B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP2005330553A (en) Film-forming apparatus and film-forming method
JP2002030446A (en) Film deposition method, film deposition system, method for producing magnetic tape and device tehrefor
JPH10237659A (en) Formation of coating and device therefor
JP2005232569A (en) Deposition system and magnetic recording medium manufactured by using the same
JP2002327272A (en) Film forming apparatus
JPH10195664A (en) Film forming method and its device
JPH10310869A (en) Production of magnetic recording medium and device for producing magnetic recording medium
JP2006131965A (en) Film-forming apparatus and magnetic recording medium produced by using the same
JP2004273084A (en) Method for manufacturing magnetic recording medium
JP2004225143A (en) Film deposition apparatus and film deposition method, and method for manufacturing magnetic recording medium
JP2004280889A (en) Manufacturing method and device of magnetic recording medium
JP2005310326A (en) Manufacturing method of magnetic recording medium
JPS63275040A (en) Production of magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017