JP2000354854A - Pollution environment purification device and restoration method - Google Patents
Pollution environment purification device and restoration methodInfo
- Publication number
- JP2000354854A JP2000354854A JP16513999A JP16513999A JP2000354854A JP 2000354854 A JP2000354854 A JP 2000354854A JP 16513999 A JP16513999 A JP 16513999A JP 16513999 A JP16513999 A JP 16513999A JP 2000354854 A JP2000354854 A JP 2000354854A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- volatile organic
- purification device
- light
- purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/20—Waste processing or separation
Landscapes
- Processing Of Solid Wastes (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は揮発性有機塩素化合
物で汚染された環境(土壌や地下水等)の浄化装置およ
び浄化方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for purifying an environment (soil, groundwater, etc.) contaminated with a volatile organic chlorine compound.
【0002】[0002]
【従来の技術】産業技術の発展の中で様々な揮発性有機
塩素化合物が使用され、これらが化学的に安定であるた
めにその廃棄処理は深刻な問題となっている。また、使
用済みの揮発性有機塩素化合物が自然環境を汚染するな
どの環境問題もおこっており、その解決に多大な努力が
払われている。典型的な揮発性有機塩素化合物はトリク
ロロエチレンやテトラクロロエチレンなどの塩素化脂肪
族炭化水素であり、これらが漏洩して汚染された土壌や
地下水を経済的かつ効率的に浄化する技術が望まれてい
る。2. Description of the Related Art Various volatile organic chlorine compounds have been used in the development of industrial technology, and their disposal is a serious problem due to their chemical stability. In addition, environmental problems such as the use of used volatile organic chlorine compounds polluting the natural environment have occurred, and great efforts have been made to solve them. Typical volatile organic chlorine compounds are chlorinated aliphatic hydrocarbons such as trichloroethylene and tetrachloroethylene, and a technique for economically and efficiently purifying soil and groundwater leaked and contaminated by these compounds is desired.
【0003】土壌を浄化するには、汚染土壌を掘削して
焼却する方法の他、汚染土壌中の地下空気や地下水を真
空吸引して活性炭などで揮発性有機塩素化合物を吸着回
収する方法が一般的である。[0003] In order to purify the soil, in addition to excavating and burning the contaminated soil, a method of vacuum-suctioning underground air or groundwater in the contaminated soil to adsorb and recover volatile organic chlorine compounds with activated carbon or the like is generally used. It is a target.
【0004】真空吸引法で土壌中より回収された揮発性
有機塩素化合物の分解処理しては、焼却、熱分解、光分
解、酸化分解、還元分解、触媒、あるいは微生物分解な
どの方法が知られている。例えば、酸化剤や触媒を用い
る例としては、オゾンで分解する方法(特開平03-3829
7)、過酸化水素の存在下で紫外線を照射する方法(特
開昭63-218293)、あるいは過酸化水素や鉄塩で酸化分
解する方法(特開昭60-261590)等が知られている。原
位置において過酸化水素や次亜塩素酸を酸化剤として揮
発性有機塩素化合物を分解する方法も開示されている
(米国特許5525008、5611642)。また、次亜塩素酸ナト
リウムと紫外線照射を組み合わせた分解方法も提案され
ている(特開平05-269374、米国特許5582741)。酸化チ
タンなどの光触媒に光を照射してアルカリ条件下で揮発
性有機塩素化合物を分解する方法も知られている(特開
平07-144137)。[0004] Methods for decomposing volatile organic chlorine compounds recovered from soil by vacuum suction include methods such as incineration, thermal decomposition, photolysis, oxidative decomposition, reductive decomposition, catalysis, and microbial decomposition. ing. For example, as an example using an oxidizing agent or a catalyst, a method of decomposing with ozone (JP-A-03-3829)
7), a method of irradiating ultraviolet rays in the presence of hydrogen peroxide (JP-A-63-218293), and a method of oxidative decomposition with hydrogen peroxide or iron salt (JP-A-60-261590) are known. . A method of decomposing volatile organic chlorine compounds in situ using hydrogen peroxide or hypochlorous acid as an oxidizing agent has also been disclosed (US Pat. A decomposition method combining sodium hypochlorite and ultraviolet irradiation has also been proposed (JP-A-05-269374, US Pat. No. 5,558,271). A method is also known in which a volatile organic chlorine compound is decomposed under alkaline conditions by irradiating light to a photocatalyst such as titanium oxide (JP-A-07-144137).
【0005】これら以外にも、気化した揮発性有機塩素
化合物に紫外線やレーザーを照射する方法(特開平08-2
43351、特開平06-262035)、白金系の酸化物を用いて酸
化分解を行なう方法(特開平06-31135)、あるいは鉄粉
による分解方法(特開平08-257570)などがある。In addition to these methods, a method of irradiating a vaporized volatile organic chlorine compound with ultraviolet rays or a laser (Japanese Patent Laid-Open No.
43351, JP-A-06-262035), a method of performing oxidative decomposition using a platinum-based oxide (JP-A-06-31135), and a decomposition method using iron powder (JP-A-08-257570).
【0006】排水中、あるいは地下水中の揮発性汚染物
質を効率的に分離あるいは分解する方法もいくつか知ら
れている。例えば、多孔質体からなる羽根体を管内に配
置して、羽根体を通過する液体と管内を通過する気体を
接触させ、液体中の揮発性汚染物質を気体へ移動させる
方法(特開平05-096144)や微生物などの揮発性汚染物
質を分解する分解手段を多孔質体に固定し、これをリア
クタ内に配置して分解する方法(特開平08-024893、特
開平09-266784、特開平10-084947、米国特許5057221)
などがある。また、酸化チタンなどの光触媒を多孔質体
とし、これに光を照射しながら地下水中の汚染物質を分
解する方法(米国特許5862449)も提案されている。こ
のように地下空気や地下水中の揮発性有機塩素化合物の
分解方法は数多く提案されているが、実用的な観点から
はさらに低コストで安全な処理方法が望まれている。Several methods are known for efficiently separating or decomposing volatile pollutants in wastewater or groundwater. For example, a method of disposing a vane body made of a porous body in a pipe, bringing a liquid passing through the vane body into contact with a gas passing through the pipe, and moving volatile contaminants in the liquid to a gas (Japanese Patent Laid-Open No. 05-2005). 096144) and a method of decomposing volatile contaminants such as microorganisms by fixing them to a porous body, disposing them in a reactor and decomposing them (JP 08-024893, JP 09-266784, JP 10 -084947, U.S. Pat.
and so on. In addition, a method has been proposed in which a photocatalyst such as titanium oxide is used as a porous body, and a pollutant in groundwater is decomposed while irradiating the porous body (US Pat. No. 5,682,449). As described above, many methods for decomposing volatile organic chlorine compounds in underground air and underground water have been proposed, but from a practical viewpoint, a further low-cost and safe treatment method is desired.
【0007】[0007]
【発明が解決しようとする課題】本発明は上記したよう
な技術的背景に鑑みなされたものであり、揮発性有機塩
素化合物を含む地下空気や地下水を原位置にて浄化可能
な装置及び方法を提供することを目的とするものであ
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above technical background, and an apparatus and a method capable of purifying ground air or groundwater containing volatile organic chlorine compounds in situ. It is intended to provide.
【0008】[0008]
【課題を解決するための手段】上記のような目的を達成
すべく検討を重ねた結果、揮発性有機塩素化合物と塩素
ガスとを光照射下で接触させることにより極めて効率的
に揮発性有機塩素化合物を分解できることを見出し、本
発明をなすに至った。As a result of repeated studies to achieve the above object, the volatile organic chlorine compound and chlorine gas are brought into contact with each other under light irradiation so that the volatile organic chlorine compound can be extremely efficiently used. The inventors have found that the compound can be decomposed, and have accomplished the present invention.
【0009】すなわち、本発明の一実施態様にかかる揮
発性有機塩素化合物を含む環境の浄化装置は、多孔質体
からなる外壁を有するチャンバー;該チャンバー内の圧
力の減圧手段;該チャンバー内に塩素ガスを供給する手
段;及び該チャンバー内を照射する光照射手段、とを有
することを特徴とするものである。That is, an apparatus for purifying an environment containing a volatile organic chlorine compound according to one embodiment of the present invention includes: a chamber having an outer wall made of a porous material; a pressure reducing means for reducing the pressure in the chamber; Means for supplying gas; and light irradiation means for irradiating the inside of the chamber.
【0010】また本発明の一実施態様にかかる揮発性有
機塩素化合物を含む地下空気もしくは地下水の浄化方法
は、多孔質体からなる外壁を有するチャンバー; 該チ
ャンバー内の圧力の減圧手段;該チャンバー内に塩素ガ
スを供給する手段;及び該チャンバー内を照射する光照
射手段、とを有する浄化装置を汚染位置に埋設する工
程;該チャンバー内を減圧して該外壁を通して気体状の
該揮発性有機塩素化合物をチャンバー内に導入する工
程;該チャンバー内に塩素ガスを導入する工程;および
該チャンバー内の塩素ガス及び気体状の揮発性有機塩素
化合物の混合ガスに光照射して該揮発性有機塩素化合物
を分解する工程、を有する事を特徴とするものである。The method for purifying underground air or groundwater containing a volatile organic chlorine compound according to one embodiment of the present invention includes a chamber having an outer wall made of a porous material; a means for reducing the pressure in the chamber; Burying a purification device having a means for supplying chlorine gas to the chamber; and a light irradiating means for irradiating the inside of the chamber at a contaminated position; depressurizing the inside of the chamber and passing the gaseous volatile organic chlorine through the outer wall Introducing a compound into the chamber; introducing chlorine gas into the chamber; and irradiating the mixed gas of the chlorine gas and the gaseous volatile organic chlorine compound in the chamber with light to produce the volatile organic chlorine compound. And a step of decomposing.
【0011】上記のように揮発性有機塩素化合物と塩素
ガスとの混合ガスに光照射することによって揮発性有機
塩素化合物が分解される理由は明らかでない。しかし例
えば塩化ナトリウム等の電解質を含む水の電気分解によ
って生成する水は次亜塩素酸を含み、この次亜塩素酸か
ら塩素が生成することはよく知られている。この塩素に
光照射することにより塩素ラジカルを誘起し、これが分
解に作用するものと考えられる。The reason why the volatile organic chlorine compound is decomposed by irradiating the mixed gas of the volatile organic chlorine compound and chlorine gas with light as described above is not clear. However, it is well known that water generated by electrolysis of water containing an electrolyte such as sodium chloride contains hypochlorous acid, and chlorine is generated from this hypochlorous acid. It is considered that irradiation of this chlorine with light induces chlorine radicals, which act on decomposition.
【0012】なお特開平08-281271には電解槽内の染色
排水中の染料を電気分解により発生する次亜塩素酸又は
/及び次亜塩素酸イオンにより分解する技術が開示され
ている。また雑誌「水処理技術」Vol.37、No.5(1996)
第33頁には電気化学反応を利用した染色排水の処理につ
いて記載されている。しかし、これらの特許公開公報あ
るいは雑誌には揮発性有機塩素化合物を含む水性媒体を
分解できることを示唆する記載はない。また光照射によ
り分解反応を促進させることについても記述されていな
い。Japanese Patent Application Laid-Open No. 08-281271 discloses a technique for decomposing a dye in a dyeing wastewater in an electrolytic cell by hypochlorous acid and / or hypochlorite ions generated by electrolysis. In addition, magazine "Water Treatment Technology" Vol.37, No.5 (1996)
Page 33 describes the treatment of dyeing wastewater using electrochemical reactions. However, there is no description in these patent publications or magazines suggesting that an aqueous medium containing a volatile organic chlorine compound can be decomposed. Further, there is no description about promoting a decomposition reaction by light irradiation.
【0013】[0013]
【発明の実施の形態】図1は塩素を用いた浄化装置の断
面図である。柱状または平板上の浄化装置100は、多
孔質体から成る外壁2を備えたチャンバー1、光照射手
段3、チャンバー1内への塩素ガスのインレット5、ア
ウトレット6、電線または光ファイバ7より成る。円錐
型のコーン4は、浄化装置1を土壌中に打ち込む場合な
ど必要に応じて取り付ければよい。装置内はアウトレッ
ト6と耐圧ホースを介してつながった吸引ポンプによっ
てチャンバー1内が減圧可能に構成されている。そして
チャンバー1内が減圧されることによって、揮発性有機
塩素化合物を含む地下空気または/および地下水は多孔
質体の外壁2に浸透し、チャンバー1内には該多孔質体
を通過し、あるいは多孔質体から気化された揮発性有機
塩素化合物が導入される。また、塩素ガスはインレット
5より導入され、チャンバー内部でガス状の揮発性有機
塩素化合物と塩素ガスとが混合される。両者の混合を促
進するために装置内に適宜塩素ガスの流れを乱す邪魔板
などを挿入しても良い。該混合ガスに対して光照射手段
3を用いて、光を照射することによって揮発性有機塩素
化合物を分解することができ、その結果、環境が浄化さ
れる。FIG. 1 is a sectional view of a purifying apparatus using chlorine. The purification device 100 on a columnar or flat plate comprises a chamber 1 having an outer wall 2 made of a porous material, light irradiating means 3, an inlet 5, an outlet 6 for chlorine gas into the chamber 1, an electric wire or an optical fiber 7. The conical cone 4 may be attached as needed, for example, when the cleaning device 1 is driven into soil. The inside of the apparatus is configured such that the inside of the chamber 1 can be depressurized by a suction pump connected to the outlet 6 via a pressure-resistant hose. When the pressure in the chamber 1 is reduced, the underground air and / or groundwater containing the volatile organic chlorine compound penetrates the outer wall 2 of the porous body, and passes through the porous body in the chamber 1 or Volatile organic chlorine compounds vaporized from the matrix are introduced. Further, chlorine gas is introduced from the inlet 5, and a gaseous volatile organic chlorine compound and chlorine gas are mixed inside the chamber. A baffle plate or the like that disturbs the flow of chlorine gas may be appropriately inserted into the apparatus to promote the mixing of the two. The volatile organic chlorine compound can be decomposed by irradiating the mixed gas with light using the light irradiating means 3, and as a result, the environment is purified.
【0014】分解後、アウトレット6からは浄化済みの
地下空気または/および地下水、余剰の塩素および分解
生成物等を流去することで、環境の連続的な浄化を行な
うことが可能である。After the decomposition, the environment 6 can be continuously purified by removing purified ground air or / and groundwater, excess chlorine and decomposition products from the outlet 6.
【0015】光照射手段3がガラス管に挿入して防水処
理を施したブラックライト蛍光ランプや青色発光ダイオ
ードを棒状に並べたアレイのような場合は、浄化装置に
電線7を取り付け、地上から電力を供給する。また、光
照射手段3が漏洩型光ファイバの場合は、浄化装置に光
ファイバ7を取り付け、地上から太陽光または人工光を
導入する。In the case where the light irradiation means 3 is an array in which a black light fluorescent lamp or a blue light emitting diode, which is inserted into a glass tube and subjected to a waterproof treatment, is arranged in a bar shape, an electric wire 7 is attached to the purification device, and power is supplied from the ground. Supply. When the light irradiating means 3 is a leaky optical fiber, the optical fiber 7 is attached to the purification device, and sunlight or artificial light is introduced from the ground.
【0016】ここで揮発性有機塩素化合物としては主に
塩素化脂肪族炭化水素が挙げられるが、具体的にはビニ
ルクロライド、1,1-ジクロロエチレン、cis-ジクロロエ
チレン、trans-ジクロロエチレン、トリクロロエチレ
ン、テトラクロロエチレンなどの塩素化エチレンのほか
に、クロロメタン、ジクロロメタン、クロロホルムなど
の塩素化メタン、が挙げられる。これらの揮発性有機塩
素化合物は単独で土壌中または/および地下水中に含ま
れていてもよいし、また2つ以上の化合物が共存してい
ても構わない。揮発性有機塩素化合物の濃度は、環境基
準値が設定されている化合物については環境基準値から
飽和水溶液濃度までが対象となる。また、環境基準値が
設けられていない化合物については、生物毒性のない濃
度から飽和水溶液濃度までが処理濃度となる。Here, the volatile organic chlorine compounds mainly include chlorinated aliphatic hydrocarbons, specifically, vinyl chloride, 1,1-dichloroethylene, cis-dichloroethylene, trans-dichloroethylene, trichloroethylene, tetrachloroethylene and the like. And chlorinated methane such as chloromethane, dichloromethane and chloroform. These volatile organic chlorine compounds may be contained solely in soil or / and groundwater, or two or more compounds may coexist. The concentration of the volatile organic chlorine compound ranges from the environmental standard value to the concentration of the saturated aqueous solution for the compound for which the environmental standard value is set. For compounds for which no environmental standard value is provided, the treatment concentration ranges from a concentration at which no biological toxicity occurs to a concentration of a saturated aqueous solution.
【0017】分解処理の際に照射光としては、300〜450
nmの波長の光を用いればよい。また光照射強度として
は、例えば波長365 nmにピークを持つ光源では0.1mW/cm
2(300nm〜400nm間を測定)で分解が進み、1mW/cm2以上
であれば実用上十分な光強度である。このようなもので
地中または井戸中に埋設する浄化装置に適した小型の光
源としてはブラックライト、カラー蛍光ランプ、発光ダ
イオードなどが挙げられる。また、地上に光源を設置
し、光源から光ファイバーなどの光導波路に光を導入
し、これを地中または井戸中の浄化装置まで導くことに
より光源と浄化装置を分離させることもできる。このこ
とにより、発熱量や小型化の点で多少不利な光源である
水銀ランプ、電界発光素子などの人工光源のほかに、安
定に利用できるとすれば太陽光を利用することも可能に
なる。また、光照射手段として漏洩型光ファイバーを用
いれば、光を線状あるいは面状に発光させることができ
るので、浄化装置における分解効率をさらに向上させる
ことが可能である。In the decomposition treatment, the irradiation light may be 300 to 450
Light having a wavelength of nm may be used. The light irradiation intensity is, for example, 0.1 mW / cm for a light source having a peak at a wavelength of 365 nm.
2 (measured between 300 nm and 400 nm) promotes decomposition, and a light intensity of 1 mW / cm 2 or more is practically sufficient. As such a small light source suitable for a purification device buried underground or in a well, a black light, a color fluorescent lamp, a light emitting diode, and the like can be given. Alternatively, the light source and the purification device can be separated by installing a light source on the ground, introducing light from the light source into an optical waveguide such as an optical fiber, and guiding the light to a purification device in the ground or a well. Thus, in addition to artificial light sources such as mercury lamps and electroluminescent elements, which are somewhat disadvantageous in terms of heat generation and miniaturization, sunlight can be used if it can be used stably. In addition, if a leaky optical fiber is used as the light irradiating means, light can be emitted linearly or planarly, so that the decomposition efficiency in the purification device can be further improved.
【0018】揮発性有機塩素化合物の浄化装置では、単
位時間に多量の化合物を処理することが望まれるので、
大きな分解反応速度が要求される。このため、濃縮操作
などにより水性媒体中の揮発性有機塩素化合物濃度を上
げたり、揮発性有機塩素化合物を気化させて気相で反応
させたりするとよい。本発明の浄化装置では分解反応は
主に気相で進行すると考えられるので、水性媒体から揮
発性有機塩素化合物の気化が反応律速にならないように
気化速度を大きくすることが好ましい。最も好適な方法
の一つは、気液界面の面積を大きくできる多孔質体を水
性媒体の流路に用いて、気液の接触を促進して気化速度
を大きくする方法であり、チャンバーの外壁を多孔質体
として、環境、例えば地下水を該多孔質体に浸透させる
ことによって、地下水中の揮発性有機塩素化合物を効率
的に気化させ、チャンバー内に導入することができる。
多孔質体には有機あるいは無機の多くのものが利用でき
る。例えば、テフロン、ポリスチレン、ポリエチレン、
ポリウレタン、塩化ビニル、尿素樹脂、フェノール樹
脂、ゴムなどの多孔質体、パーライト、バーミキュライ
ト、泡ガラスなどの多孔質体、あるいはアスベスト、ロ
ックウール、グラスウール、セラミックファイバー、動
植物繊維、炭素質繊維などの繊維材料も浄化装置に充填
することにより多孔質体と同様の効果を示すことができ
る。さらに、アルミナ、ケイ酸カルシウム、炭酸マグネ
シウム、ケイソウ土などの無機材料を焼成して多孔質体
としてもよい。In a volatile organic chlorine compound purifying apparatus, it is desired to treat a large amount of a compound per unit time.
A large decomposition reaction rate is required. Therefore, the concentration of the volatile organic chlorine compound in the aqueous medium may be increased by a concentration operation or the like, or the volatile organic chlorine compound may be vaporized and reacted in the gas phase. In the purifying apparatus of the present invention, since the decomposition reaction is considered to proceed mainly in the gas phase, it is preferable to increase the vaporization rate so that the vaporization of the volatile organic chlorine compound from the aqueous medium does not become reaction-limited. One of the most suitable methods is to use a porous body capable of increasing the area of the gas-liquid interface in the flow path of the aqueous medium to promote the gas-liquid contact and increase the vaporization rate. As a porous material, by permeating the environment, for example, groundwater, into the porous material, the volatile organic chlorine compound in the groundwater can be efficiently vaporized and introduced into the chamber.
Many organic or inorganic materials can be used for the porous body. For example, Teflon, polystyrene, polyethylene,
Porous materials such as polyurethane, vinyl chloride, urea resin, phenolic resin, and rubber; porous materials such as perlite, vermiculite, and foam glass; or fibers such as asbestos, rock wool, glass wool, ceramic fiber, animal and plant fibers, and carbonaceous fibers The same effect as the porous body can be exhibited by filling the material into the purification device. Further, inorganic materials such as alumina, calcium silicate, magnesium carbonate, and diatomaceous earth may be fired to form a porous body.
【0019】装置内部の気圧は、吸引ポンプによって常
に地下空気圧または/および地下水圧より低い0.5〜0.9
気圧に保たれる。減圧されることにより、浄化対象の地
下空気または/および地下水が多孔質製の浄化装置外壁
を介して自然に装置内部に浸透する。更に、塩素ガスの
供給または多孔質体を介した機能水の供給気化も促進さ
れる。また、装置内部に溜まった液体の排水にも有用で
ある。真空ポンプは、ポンプ自身の維持を考えると地上
に設置して耐圧ホースで装置と接続した方が良いが、装
置内に取り付け装置と共に土壌中に埋設または井戸中に
沈めても構わない。The air pressure inside the apparatus is always 0.5 to 0.9 lower than the underground air pressure and / or the underground water pressure by a suction pump.
Maintained at atmospheric pressure. When the pressure is reduced, the underground air or / and groundwater to be purified naturally penetrates into the inside of the device through the porous purification device outer wall. Further, supply of chlorine gas or supply and vaporization of functional water through the porous body are also promoted. It is also useful for draining liquid accumulated inside the apparatus. Considering the maintenance of the pump itself, the vacuum pump is preferably installed on the ground and connected to the device with a pressure-resistant hose. However, the vacuum pump may be buried in the soil together with the device and submerged in a well together with the device.
【0020】また、装置内に浸透した地下空気または/
および地下水と機能水または/および塩素(機能水由来
や次亜塩素酸由来を含む)と十分に混合して光照射する
ことにより効率よく分解できる。自然拡散により十分混
合できる場合以外は、両者を混合するための手段を浄化
装置内に設けることが望ましい。具体的には、攪拌翼で
混合ガスを攪拌する、ガス流路に邪魔板を取り付けて混
合を促進する、などが挙げられる。In addition, the underground air permeated into the apparatus and / or
In addition, by efficiently mixing groundwater with functional water or / and chlorine (including those derived from functional water and hypochlorous acid) and irradiating with light, it can be efficiently decomposed. Unless the mixture can be sufficiently mixed by natural diffusion, it is desirable to provide a means for mixing the two in the purification device. Specific examples include stirring the mixed gas with a stirring blade, and attaching a baffle plate to the gas flow path to promote mixing.
【0021】分解に利用する塩素は市販の塩素ガスでよ
い。さらに安全に塩素を供給する方法としては、機能水
から塩素ガスを気化させ、その塩素ガスを利用すればよ
い。この機能水は、塩化ナトリウムや塩化カリウムなど
の電解質を水に溶解し、この水を一対の電極によって電
気分解することによって陽極側で得られる酸性水を指し
ている。望ましい機能水の性状としては、水素イオン濃
度(pH値)が1〜4、作用電極をプラチナ電極とし参照電極
を銀−塩化銀としたときの酸化還元電位が800〜1500 m
V、かつ塩素濃度が5〜150mg/Lである。また、機能水と
同様な性状をもつ水溶液を化学的に調製してもよい。例
えば、次亜塩素酸ナトリウムに塩酸を添加しても機能水
と同じ働きをする。The chlorine used for the decomposition may be a commercially available chlorine gas. As a method for more safely supplying chlorine, chlorine gas may be vaporized from functional water and the chlorine gas may be used. This functional water refers to acidic water obtained on the anode side by dissolving an electrolyte such as sodium chloride or potassium chloride in water and electrolyzing the water with a pair of electrodes. Desirable properties of the functional water include a hydrogen ion concentration (pH value) of 1 to 4, a redox potential of 800 to 1500 m when the working electrode is a platinum electrode and the reference electrode is silver-silver chloride.
V, and the chlorine concentration is 5 to 150 mg / L. Further, an aqueous solution having the same properties as the functional water may be prepared chemically. For example, addition of hydrochloric acid to sodium hypochlorite has the same function as functional water.
【0022】図2は機能水を用いた浄化装置の概略斜視
図、図3は図2のAA線断面図である。柱状または平板
上の浄化装置11は、機能水と水性媒体が混合しないよ
うに分離された2つの多孔質体12及び13、光照射手
段14、機能水のインレット16、アウトレット17、
電線または光ファイバ18より成る。円錐型のコーン1
5は、浄化装置11を土壌中に打ち込む場合など必要に
応じて取り付ければよい。装置内はアウトレット17と
耐圧ホースを介してつながった吸引ポンプ(不図示)に
よって減圧され、揮発性有機塩素化合物を含む地下空気
または/および地下水は多孔質体の外壁12に浸透し、
チャンバー内に気体状の揮発性有機塩素化合物が導入さ
れる。また、機能水はインレット16より装置外部に液
や気体が漏れないように表面加工された多孔質体13内
に導入され、チャンバー内部に塩素ガスが供給される。
その結果、チャンバー内では揮発性有機塩素化合物と塩
素ガスとが混合される。なお両者の混合を促進するため
に装置内に適宜流れを乱す邪魔板などを挿入しても良
い。そして該混合ガスに対して光照射手段14を用い
て、光を照射することで揮発性有機塩素化合物が分解さ
れ、環境の浄化が行なわれる。FIG. 2 is a schematic perspective view of a purifying apparatus using functional water, and FIG. 3 is a sectional view taken along line AA of FIG. The purification device 11 on a columnar or flat plate is composed of two porous bodies 12 and 13 separated so that the functional water and the aqueous medium are not mixed, a light irradiation means 14, an inlet 16 and an outlet 17 of the functional water,
It comprises an electric wire or an optical fiber 18. Conical cone 1
5 may be attached as needed, such as when the purification device 11 is driven into soil. The inside of the apparatus is depressurized by a suction pump (not shown) connected to the outlet 17 via a pressure-resistant hose, and ground air or / and ground water containing a volatile organic chlorine compound permeates the outer wall 12 of the porous body,
A gaseous volatile organic chlorine compound is introduced into the chamber. The functional water is introduced into the porous body 13 whose surface has been processed so that liquid and gas do not leak from the inlet 16 to the outside of the apparatus, and chlorine gas is supplied into the chamber.
As a result, the volatile organic chlorine compound and the chlorine gas are mixed in the chamber. A baffle plate or the like that disturbs the flow may be inserted into the apparatus as appropriate in order to promote the mixing of the two. By irradiating the mixed gas with light using the light irradiating means 14, the volatile organic chlorine compound is decomposed and the environment is purified.
【0023】光照射手段14がガラス管に挿入して防水
処理を施したブラックライト蛍光ランプや青色発光ダイ
オードを棒状に並べたアレイのような場合は、浄化装置
に電線18を取り付け、地上から電力を供給する。ま
た、光照射手段14が漏洩型光ファイバの場合は、浄化
装置に光ファイバ18を取り付け、地上から太陽光また
は人工光を導入する。When the light irradiating means 14 is an array of rod-shaped black light fluorescent lamps or blue light emitting diodes which are inserted into a glass tube and subjected to waterproofing, an electric wire 18 is attached to the purification device, and power is supplied from the ground. Supply. When the light irradiating means 14 is a leaky optical fiber, an optical fiber 18 is attached to the purification device, and sunlight or artificial light is introduced from the ground.
【0024】図4は図1または2の装置を実際に地中に
埋設した場合を表した模式図である。分解装置25を土
壌中の汚染領域26内に埋設する。この時、汚染領域2
6が地下水位以上でも以下でも良い。地上には、塩素ガ
スタンクまたは機能水生成装置または機能水タンク21
を設置し、ここから供給された塩素ガスまたは送水送気
管24を介して浄化装置25へ送る。また、吸引ポンプ
22を用いて装置内の気圧を減圧して地下空気または/
および地下水を浄化装置内部に浸透させると共に、余剰
の塩素、機能水、浄化済みの地下空気または/および地
下水を回収する。図3では吸引ポンプ22は地上に設置
されているが、地中の装置内に組み込み送水送気管24
を介して地上に排気する構造にしても良い。また、図3
では集光装置23で太陽光を集めて送水送気管24に併
設した光ファイバで浄化装置に光を導入しているが、送
水送気管24に電線を併設して浄化装置25内のブラッ
クライト蛍光ランプを点灯しても良い。FIG. 4 is a schematic diagram showing a case where the apparatus shown in FIG. 1 or 2 is actually buried in the ground. The decomposition device 25 is buried in the contaminated area 26 in the soil. At this time, the contaminated area 2
6 may be above or below the groundwater level. On the ground, a chlorine gas tank or a functional water generator or a functional water tank 21
Is installed, and is sent to the purification device 25 via the chlorine gas supplied therefrom or the water / air supply pipe 24. Further, the pressure inside the apparatus is reduced by using the suction pump 22 to reduce the underground air or /
And permeate the groundwater into the purifier, and collect excess chlorine, functional water, purified ground air and / or groundwater. In FIG. 3, the suction pump 22 is installed on the ground.
A structure may be used in which the air is exhausted to the ground via the. FIG.
In the above, the sunlight is collected by the light condensing device 23 and the light is introduced into the purification device by an optical fiber provided in the water supply / air supply tube 24. The lamp may be turned on.
【0025】以上、本発明にかかる種々の実施態様につ
いて具体的に説明したが、本発明はこれら実施態様に限
定されるものでないことはいうまでもない。Although various embodiments according to the present invention have been specifically described above, it is needless to say that the present invention is not limited to these embodiments.
【0026】以下、実施例により本発明を詳述するが、
これらは本発明をなんら限定するものではない。Hereinafter, the present invention will be described in detail with reference to Examples.
They do not limit the invention in any way.
【0027】実施例1塩素ガスを供給しブラックライトを照射して汚染地下水
を浄化した例 <実験に用いた装置の説明>図1に示す実験装置を作製
して実施例に供した。はじめに、下端にステンレス製の
円錐型のコーン4を取り付けたアルミナ製の多孔質円筒
管2(内径40 mm、外径60 mm、長さ500 mm、日本ガイシ
(株)製、FA-2)を用意した。次に、多孔質円筒管2の
内部に光源3(ブラックライト、東芝ライテック(株)
製、6 W 2本)を配置した。最後に、インレット5及び
アウトレット6をもつステンレス製フランジで多孔質円
筒管2の上端を塞ぎ、浄化装置を組み立てた。Example 1 Contaminated groundwater was supplied by supplying chlorine gas and irradiating it with black light.
Example of Purification <Explanation of Apparatus Used in Experiment> An experimental apparatus shown in FIG. 1 was prepared and used in Examples. First, an alumina porous cylindrical tube 2 (inner diameter 40 mm, outer diameter 60 mm, length 500 mm, manufactured by NGK Insulators, FA-2) having a stainless steel conical cone 4 attached to the lower end is prepared. Prepared. Next, a light source 3 (black light, Toshiba Lighting & Technology Corp.) is placed inside the porous cylindrical tube 2.
2 W, 6 W). Finally, the upper end of the porous cylindrical tube 2 was closed with a stainless steel flange having an inlet 5 and an outlet 6 to assemble a purification device.
【0028】<揮発性有機塩素化合物の分解>密閉でき
る金属製の容器に純水を入れ、1,1-ジクロロエチレン、
cis-ジクロロエチレン、trans-ジクロロエチレン、トリ
クロロエチレン、テトラクロロエチレン、及びジクロロ
メタンのそれぞれの濃度が5mg/Lとなるように溶解し、
汚染地下水に見立てた。<Decomposition of Volatile Organic Chlorine Compounds> Pure water is placed in a sealable metal container, and 1,1-dichloroethylene,
cis-dichloroethylene, trans-dichloroethylene, trichloroethylene, tetrachloroethylene, and dissolved so that each concentration of dichloromethane becomes 5 mg / L,
Simulated contaminated groundwater.
【0029】この水槽内に、インレット、アウトレット
の為のテフロン管および電線を接続した浄化装置1をコ
ーンが下向きになるように沈めた。塩素濃度が500 ppmV
となるように塩素(塩素ボンベから供給)と空気を混合
し、これをインレット5から毎分10mLの流量で導入し
た。また、アウトレット6に接続したテフロン管には吸
引ポンプを取り付け、毎分15mLの流量で、装置内の水及
び気体を吸引し、光源4を点灯させた。この時アウトレ
ット6に接続された吸引ポンプの吸気側の気圧は約0.8
気圧であった。吸引ポンプから排出される気体および水
の中の揮発性有機塩素化合物の濃度をそれぞれ、電子捕
獲型検出器付きのガスクロマトグラフィー(直接試料を
注入、及びn-ヘキサン抽出後に試料を注入、島津製作所
(株)社製、GC-14B)により測定した。その結果、気体
中のいずれの揮発性有機塩素化合物の濃度も0.05ppmV以
下であった。また、溶液中のいずれの揮発性有機塩素化
合物の濃度も0.1mg/L以下であり、この浄化装置により
汚染土壌の地下水を効率よく浄化できることを確かめ
た。In this water tank, a purifying device 1 connected to a Teflon tube for an inlet and an outlet and an electric wire was sunk so that the cone was directed downward. Chlorine concentration is 500 ppmV
Then, chlorine (supplied from a chlorine cylinder) and air were mixed in such a manner as to be introduced, and this was introduced from the inlet 5 at a flow rate of 10 mL / min. Further, a suction pump was attached to the Teflon tube connected to the outlet 6, and water and gas in the apparatus were sucked at a flow rate of 15 mL / min, and the light source 4 was turned on. At this time, the pressure on the suction side of the suction pump connected to the outlet 6 is about 0.8.
Atmospheric pressure. The concentration of volatile organochlorine compounds in the gas and water discharged from the suction pump was determined by gas chromatography with an electron capture detector (inject the sample directly, and inject the sample after extracting with n-hexane, Shimadzu Corporation) (GC-14B). As a result, the concentration of any volatile organic chlorine compounds in the gas was 0.05 ppmV or less. In addition, the concentration of any volatile organic chlorine compounds in the solution was 0.1 mg / L or less, and it was confirmed that the groundwater of contaminated soil could be efficiently purified by this purification device.
【0030】次に、塩素濃度を5 ppmV〜1000 ppmVの範
囲で変化させて、分解後の揮発性有機塩素化合物の濃度
を測定したところ、いずれの塩素濃度においても揮発性
有機塩素化合物の初期濃度(5mg/L)よりも低下してお
り、本浄化装置により浄化できることを確かめた。Next, the chlorine concentration was changed in the range of 5 ppmV to 1000 ppmV, and the concentration of the volatile organic chlorine compound after the decomposition was measured. (5 mg / L), and it was confirmed that purification was possible with this purification device.
【0031】比較例1 インレット5より空気のみを導入した以外は、実施例1
と同様に実験を行なった。その結果、気体中のいずれの
揮発性有機塩素化合物の濃度も100ppmV以上で、溶液中
のいずれの揮発性有機塩素化合物の濃度も3mg/L以上と
なった。このことより、塩素を導入しなければ汚染土壌
の地下空気を浄化できないことがわかった。Comparative Example 1 Example 1 was repeated except that only air was introduced from the inlet 5.
An experiment was performed in the same manner as described above. As a result, the concentration of any volatile organic chlorine compound in the gas was 100 ppmV or more, and the concentration of any volatile organic chlorine compound in the solution was 3 mg / L or more. From this, it was found that the ground air in the contaminated soil could not be purified without introducing chlorine.
【0032】実施例2太陽光を照射して汚染地下水を浄化した例 図1の光照射手段3を漏洩型光ファイバ(住友3M、3Mラ
イトファイバーサイドライト高輝度タイプ)にかえ、太
陽光を装置内に照射した以外は実施例1と同様の実験を
行った。その結果、気体中のいずれの塩素化脂肪族炭化
水素の濃度も0.1ppmV以下であった。また、溶液中のい
ずれの塩素化脂肪族炭化水素の濃度も0.1mg/L以下であ
り、この浄化装置により塩素化脂肪族炭化水素を効率よ
く分解できることがわかった。Example 2 Example of Purifying Contaminated Groundwater by Irradiating Sunlight The light irradiating means 3 shown in FIG. 1 is changed to a leaky optical fiber (Sumitomo 3M, 3M light fiber sidelight high-brightness type), and sunlight is applied to the apparatus. The same experiment as in Example 1 was performed except that the irradiation was performed inside. As a result, the concentration of any chlorinated aliphatic hydrocarbon in the gas was 0.1 ppmV or less. In addition, the concentration of any chlorinated aliphatic hydrocarbon in the solution was 0.1 mg / L or less, and it was found that the chlorinated aliphatic hydrocarbon could be efficiently decomposed by this purifier.
【0033】次に、漏洩型光ファイバーからの照射光強
度を10μW/cm2〜10mW/cm2の範囲で変化させて、分解後
の揮発性有機塩素化合物の濃度を測定したところ、いず
れの光強度においても揮発性有機塩素化合物の初期濃度
(5mg/L)よりも低下しており、この浄化装置により汚染
土壌の地下水を効率よく浄化できることを確かめた。Next, the concentration of the volatile organic chlorine compound after decomposition was measured while changing the irradiation light intensity from the leaky optical fiber in the range of 10 μW / cm 2 to 10 mW / cm 2. Initial concentration of volatile organic chlorine compounds
(5 mg / L), confirming that the groundwater of contaminated soil can be efficiently purified by this purification device.
【0034】実施例3テフロン多孔質管でできた装置で汚染地下水を浄化した
例 実施例1において、アルミナ製の多孔質管にかえてテフ
ロン製の多孔質管(テフロンフィルター、平均孔径25
μm、厚み0.13 mm)を用いて浄化装置を作製した。この
装置を用いて、実施例1と同様にして揮発性有機塩素化
合物の分解を行なった。その結果、気体中のいずれの揮
発性有機塩素化合物の濃度も0.7ppmV以下であった。ま
た、溶液中のいずれの揮発性有機塩素化合物の濃度も0.
15mg/L以下であり、この浄化装置により汚染土壌の地下
水を効率よく浄化できることを確かめた。Example 3 Contaminated groundwater was purified with a device made of Teflon porous tubes.
Example In Example 1, a porous tube made of Teflon (Teflon filter, average pore size 25) was used instead of the porous tube made of alumina.
(μm, 0.13 mm thick). Using this apparatus, the decomposition of volatile organic chlorine compounds was carried out in the same manner as in Example 1. As a result, the concentration of any volatile organic chlorine compounds in the gas was 0.7 ppmV or less. In addition, the concentration of any volatile organic chlorine compounds in the solution was set to 0.
It was 15 mg / L or less, and it was confirmed that the groundwater of contaminated soil can be efficiently purified by this purification device.
【0035】実施例4塩素ガスを供給しブラックライトを照射して汚染地下空
気を浄化した例 密閉できる金属製の容器に土壌を入れ、インレットおよ
びアウトレットのテフロン管および電線を接続した実施
例1と同様の浄化装置を埋設した。次に、1,1-ジクロロ
エチレン、cis-ジクロロエチレン、trans-ジクロロエチ
レン、トリクロロエチレン、テトラクロロエチレン、及
びジクロロメタンを添加し、数日間土壌内の空気を循環
して均一化し、汚染土壌に見立てた。この時、それぞれ
の濃度が10ppmVであった。Example 4 A contaminated underground air was supplied by supplying chlorine gas and irradiating black light.
Example of Purified Air The soil was put in a metal container that can be sealed, and the same purification device as in Example 1 in which the Teflon tubes and the electric wires of the inlet and outlet were connected was buried. Next, 1,1-dichloroethylene, cis-dichloroethylene, trans-dichloroethylene, trichloroethylene, tetrachloroethylene, and dichloromethane were added, and the air in the soil was circulated and homogenized for several days to be regarded as a contaminated soil. At this time, each concentration was 10 ppmV.
【0036】実施例1と同様の実験を行い、吸引ポンプ
の排気から回収した気体の濃度を測定したところいずれ
の塩素化脂肪族炭化水素の濃度も0.1ppmV以下であり、
この浄化装置により汚染土壌の地下空気を効率よく浄化
できることを確かめた。The same experiment as in Example 1 was carried out, and the concentration of gas recovered from the exhaust of the suction pump was measured. The concentration of any chlorinated aliphatic hydrocarbon was 0.1 ppmV or less.
It has been confirmed that this purification device can efficiently purify underground air in contaminated soil.
【0037】実施例5機能水を供給しブラックライトを照射して汚染地下水を
浄化した例 <実験に用いた装置の説明>図2に示す実験装置を作製
して実施例に供した。はじめに、アルミナ製の多孔質円
筒管(内径40 mm、外径60 mm、長さ500 mm、日本ガイシ
(株)製、FA-2)を縦に2等分(12及び13)し、1
3の外側部分のみにアルミニウムを蒸着し、流下する溶
液が外に漏れないようにした。次に両円筒の断面部分に
ステンレス板(幅10 mm、長さ500 mm、厚み2mm)を挟ん
で、再び円筒形とした。この円筒の内部に実施例1と同
様な光源14を設置し、インレット16、アウトレット
17をもつステンレス製フランジおよび円錐型のコーン
で円筒形の両端を塞いで、浄化装置を作製した。Example 5 Contaminated groundwater was supplied by supplying functional water and irradiating it with black light.
Example of Purification <Explanation of Apparatus Used in Experiment> An experimental apparatus shown in FIG. 2 was prepared and used in Examples. First, an alumina porous cylindrical tube (inner diameter 40 mm, outer diameter 60 mm, length 500 mm, manufactured by NGK Insulators, Ltd., FA-2) was vertically divided into two equal parts (12 and 13), and 1
Aluminum was deposited only on the outer part of No. 3 so that the flowing solution did not leak out. Next, a stainless steel plate (width 10 mm, length 500 mm, thickness 2 mm) was sandwiched between the cross sections of both cylinders, and the cylinders were formed again. A light source 14 similar to that of Example 1 was installed inside the cylinder, and both ends of the cylinder were closed with a stainless steel flange having an inlet 16 and an outlet 17 and a conical cone, thereby producing a purification device.
【0038】<塩素化脂肪族炭化水素の分解>実施例1
と同様に、この装置を揮発性有機塩素化合物の濃度が5m
g/Lの水槽に沈めた。<Decomposition of Chlorinated Aliphatic Hydrocarbons>
In the same way as above, the concentration of volatile
Submerged in g / L aquarium.
【0039】次に、強酸性機能水生成装置(商品名:強
電解水生成器(Model FW-200)、アマノ(株)社製)を用
いて機能水を調製した。この装置を用いて、電解する水
の電解質濃度、電解時間を種々変化させて、陽極側で得
られる機能水のpH及び酸化還元電位をpHメーター
((株)東興化学研究所、TCX-90i及びKP900-2N)及び
導電率メーター((株)東興化学研究所、TCX-90i及びK
M900-2N)で、さらに塩素濃度を塩素試験紙(アドバン
テック)により測定した。その結果、電解質である塩化
ナトリウムの濃度(標準濃度は1000mg/L)、電解電流
値、電解時間などによってこの機能水のpHは1〜4、酸化
還元電位は800〜1500mV、また塩素濃度は5〜150mg/Lに
変化した。そこで本実施例では機能水としてpH2.6、酸
化還元電位1000 mV、塩素濃度54mg/Lの機能水を用意し
た。なお、この機能水は電解質(塩化ナトリウム)濃度
を1000mg/L、電解時間を5分間とすることによって得ら
れた。この機能水ををインレット16から毎分10mLの流
量で導入した。また、アウトレット17に接続したテフ
ロン管には吸引ポンプを取り付け、毎分15mLの流量で、
装置内の水及び気体を吸引し、光源14を点灯させた。
この時アウトレット6に接続された吸引ポンプの吸気側
の気圧は約0.8気圧であった。吸引ポンプから排出され
る気体および水の中の揮発性有機塩素化合物の濃度をそ
れぞれ、電子捕獲型検出器付きのガスクロマトグラフィ
ー(直接試料を注入、及びn-ヘキサン抽出後に試料を注
入、島津製作所(株)社製、GC-14B)により測定した。
その結果、気体中のいずれの揮発性有機塩素化合物の濃
度も0.05ppmV以下であった。また、溶液中のいずれの揮
発性有機塩素化合物の濃度も0.1mg/L以下であり、この
浄化装置により揮発性有機塩素化合物を効率よく分解で
きることがわかった。Next, functional water was prepared using a strongly acidic functional water generator (trade name: Strong electrolyzed water generator (Model FW-200), manufactured by Amano Corporation). Using this device, the electrolyte concentration and electrolysis time of the water to be electrolyzed are varied, and the pH and oxidation-reduction potential of the functional water obtained on the anode side are measured with a pH meter (Toko Chemical Laboratory, TCX-90i and KP900-2N) and conductivity meter (Toko Chemical Laboratory Co., Ltd., TCX-90i and K
M900-2N), and the chlorine concentration was further measured with a chlorine test paper (Advantech). As a result, the pH of this functional water is 1-4, the oxidation-reduction potential is 800-1500mV, and the chlorine concentration is 5 depending on the concentration of sodium chloride as electrolyte (standard concentration is 1000mg / L), electrolysis current value and electrolysis time. Changed to 150150 mg / L. Therefore, in this example, functional water having a pH of 2.6, an oxidation-reduction potential of 1000 mV, and a chlorine concentration of 54 mg / L was prepared as functional water. This functional water was obtained by setting the electrolyte (sodium chloride) concentration to 1000 mg / L and the electrolysis time to 5 minutes. This functional water was introduced from the inlet 16 at a flow rate of 10 mL / min. In addition, a suction pump was attached to the Teflon tube connected to the outlet 17, and at a flow rate of 15 mL per minute,
Water and gas in the device were sucked, and the light source 14 was turned on.
At this time, the pressure on the suction side of the suction pump connected to the outlet 6 was about 0.8 atm. The concentration of volatile organochlorine compounds in the gas and water discharged from the suction pump was determined by gas chromatography with an electron capture detector (injecting the sample directly and injecting the sample after extracting with n-hexane, Shimadzu Corporation) (GC-14B).
As a result, the concentration of any volatile organic chlorine compounds in the gas was 0.05 ppmV or less. In addition, the concentration of any volatile organic chlorine compound in the solution was 0.1 mg / L or less, and it was found that the volatile organic chlorine compound can be efficiently decomposed by this purifying device.
【0040】次に、塩素濃度を5ppmV〜1000ppmVの範囲
で変化させて、分解後の揮発性有機塩素化合物の濃度を
測定したところ、いずれの塩素濃度においても揮発性有
機塩素化合物の初期濃度(5mg/L)よりも低下しており、
この浄化装置により汚染土壌の地下水を効率よく浄化で
きることを確かめた。Next, when the concentration of the volatile organic chlorine compound after decomposition was measured while changing the chlorine concentration in the range of 5 ppmV to 1000 ppmV, the initial concentration of the volatile organic chlorine compound (5 mg / L)
It was confirmed that this purification device can efficiently purify groundwater in contaminated soil.
【0041】実施例6合成機能水を供給して汚染地下水を浄化した例 次亜塩素酸ナトリウムを0.01wt%含む塩酸(10mM)溶液を
調製した合成機能水を用いた以外は、実施例5と同様の
実験を行った。その結果、気体中のいずれの揮発性有機
塩素化合物の濃度も0.05ppmV以下であり、この浄化装置
により揮発性有機塩素化合物を効率よく分解できること
がわかった。Example 6 Example of Purifying Contaminated Groundwater by Supplying Synthetic Functional Water Example 5 was prepared in the same manner as in Example 5 except that a synthetic functional water prepared with a hydrochloric acid (10 mM) solution containing 0.01% by weight of sodium hypochlorite was used. A similar experiment was performed. As a result, the concentration of any volatile organic chlorine compound in the gas was 0.05 ppmV or less, and it was found that the volatile organic chlorine compound can be efficiently decomposed by this purification device.
【0042】さらに、次亜塩素酸塩の濃度や塩酸濃度を
変化させ、pH1〜4、酸化還元電位800mV〜1500mV、塩素
濃度5mg/L〜150mg/Lの機能水を作製して分解に供したと
ころ、いずれの場合においても揮発性有機塩素化合物の
初期濃度(5mg/L)よりも低下しており、この浄化装置に
より汚染土壌の地下水を効率よく浄化できることを確か
めた。Further, the concentration of hypochlorite and the concentration of hydrochloric acid were changed to prepare functional water having a pH of 1 to 4, an oxidation-reduction potential of 800 mV to 1500 mV, and a chlorine concentration of 5 mg / L to 150 mg / L, and subjected to decomposition. However, in each case, the concentration was lower than the initial concentration of the volatile organic chlorine compound (5 mg / L), and it was confirmed that the groundwater of the contaminated soil could be efficiently purified by this purification device.
【0043】実施例7機能水を供給して汚染土壌を浄化した例 実施例5と同様の装置を実施例4と同様の汚染土壌に埋
設して実験を行った。その結果、いずれの塩素化脂肪族
炭化水素の濃度も0.1ppmV以下であり、この浄化装置に
より汚染土壌の地下空気を効率よく浄化できることを確
かめた。Example 7 Example of Purifying Contaminated Soil by Supplying Functional Water An apparatus similar to that in Example 5 was buried in the same contaminated soil as in Example 4, and an experiment was performed. As a result, the concentration of each chlorinated aliphatic hydrocarbon was 0.1 ppmV or less, and it was confirmed that the underground air of the contaminated soil could be efficiently purified by this purification device.
【0044】[0044]
【発明の効果】本発明により、揮発性有機塩素化合物、
特にテトラクロロエチレンやトリクロロエチレンなどの
塩素化脂肪族炭化水素で汚染された土壌地下空気または
/および地下水を効率よく分解浄化することが可能とな
った。According to the present invention, a volatile organic chlorine compound,
In particular, it has become possible to efficiently decompose and purify soil ground air and / or ground water contaminated with chlorinated aliphatic hydrocarbons such as tetrachloroethylene and trichloroethylene.
【図1】本発明の一実施態様にかかる浄化装置の概略断
面図FIG. 1 is a schematic sectional view of a purification device according to an embodiment of the present invention.
【図2】本発明の他の実施態様にかかる浄化装置の概略
断面図FIG. 2 is a schematic sectional view of a purification device according to another embodiment of the present invention.
【図3】図2のAA線断面図FIG. 3 is a sectional view taken along line AA of FIG. 2;
【図4】図1または図2の装置を浄化されるべき位置に
埋設した場合を表わす概略図FIG. 4 is a schematic diagram showing a case where the device of FIG. 1 or 2 is buried in a position to be purified;
1 浄化装置 2 多孔質体 3 光照射手段 4 地中打ち込み用の円錐コーン 5 インレット 6 アウトレット 7 電線または光導入用の光ファイバ 11 浄化装置 12 地下空気または/および地下水浸透用の多孔質体 13 機能水侵出用の多孔質体 14 光照射手段 15 地中打ち込み用の円錐コーン 16 インレット 17 アウトレット 18 電線または光導入用の光ファイバ 21 塩素ガスタンクまたは機能水生成装置または機能
水タンク 22 吸引ポンプ 23 集光装置 24 光ファイバを併設した送水送気管 26 土壌の汚染領域 100 浄化装置DESCRIPTION OF SYMBOLS 1 Purifier 2 Porous body 3 Light irradiation means 4 Conical cone for underground driving 5 Inlet 6 Outlet 7 Electric wire or optical fiber for introducing light 11 Purifier 12 Porous body for infiltration of ground air or / and groundwater 13 Function Porous body for water intrusion 14 Light irradiation means 15 Conical cone for underground driving 16 Inlet 17 Outlet 18 Electric wire or optical fiber for light introduction 21 Chlorine gas tank or functional water generator or functional water tank 22 Suction pump 23 Gathering Optical device 24 Water supply air pipe with optical fiber 26 Soil contaminated area 100 Purification device
フロントページの続き (72)発明者 加藤 欽也 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 川口 正浩 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 Fターム(参考) 4D004 AA41 AB06 AB07 CA34 CA43 CA50 CB01 CB42 CB43 CB50 CC01 CC03 CC11 CC12 CC15 DA03 DA07 DA20 4D037 AA01 AB14 BA16 BA18 BB07 BB09 4D050 AA01 AA20 AB19 BB05 BB06 BC09 BC10 BD02 BD03 4G075 AA03 AA15 AA37 BA05 BD12 BD13 BD15 CA05 CA32 CA33 CA57 CA73 EB32 FA02 FA14 FB04 FB12 Continued on the front page (72) Kinya Kato, Inventor, 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Masahiro Kawaguchi 3-30-2, Shimomaruko, Ota-ku, Tokyo Canon Inc. F-term (reference) 4D004 AA41 AB06 AB07 CA34 CA43 CA50 CB01 CB42 CB43 CB50 CC01 CC03 CC11 CC12 CC15 DA03 DA07 DA20 4D037 AA01 AB14 BA16 BA18 BB07 BB09 4D050 AA01 AA20 AB19 BB05 BB06 BC09 BC10 A02 BD03 A03 BD05 A03 CA32 CA33 CA57 CA73 EB32 FA02 FA14 FB04 FB12
Claims (26)
装置であって、多孔質体からなる外壁を有するチャンバ
ー;該チャンバー内の圧力の減圧手段;該チャンバー内
に塩素ガスを供給する手段;及び該チャンバー内を照射
する光照射手段、とを有することを特徴とする浄化装
置。1. An apparatus for purifying an environment containing a volatile organic chlorine compound, comprising: a chamber having an outer wall made of a porous material; means for reducing the pressure in the chamber; means for supplying chlorine gas into the chamber; And a light irradiation means for irradiating the inside of the chamber.
1に記載の浄化装置。2. The purification device according to claim 1, wherein the porous body is a ceramic.
2に記載の浄化装置。3. The purification device according to claim 2, wherein the ceramic is alumina.
載の浄化装置。4. The purifying apparatus according to claim 1, wherein the porous body is a polymer.
載の浄化装置。5. The purifying apparatus according to claim 4, wherein the polymer is Teflon.
炭化水素である請求項1に記載の浄化装置。6. The purification device according to claim 1, wherein the volatile organic chlorine compound is a chlorinated aliphatic hydrocarbon.
エチレン、cis-ジクロロエチレン、trans-ジクロロエチ
レン、トリクロロエチレン、テトラクロロエチレン、及
びジクロロメタンの中の少なくとも一つである請求項6
に記載の浄化装置。7. The chlorinated aliphatic hydrocarbon is at least one of 1,1-dichloroethylene, cis-dichloroethylene, trans-dichloroethylene, trichloroethylene, tetrachloroethylene, and dichloromethane.
Purification device according to claim 1.
プ、ブラックライト、発光ダイオードあるいは電界発光
素子の中の少なくとも一つである請求項1に記載の浄化
装置。8. The purification device according to claim 1, wherein the light irradiation means is at least one of an optical fiber, a mercury lamp, a black light, a light emitting diode, and an electroluminescent element.
が、太陽光、水銀ランプ、ブラックライト、発光ダイオ
ード、あるいは電界発光素子の中の少なくとも一つであ
る請求項8に記載の浄化装置。9. The purification device according to claim 8, wherein the light source for supplying light to the optical fiber is at least one of sunlight, a mercury lamp, a black light, a light emitting diode, and an electroluminescent element. .
ある請求項1に記載の浄化装置。10. The purification device according to claim 1, wherein the wavelength of the light is in a wavelength range of 300 nm to 450 nm.
である請求項1に記載の浄化装置。11. The light intensity of the light is 10 μW / cm 2 to 10 mW / cm 2.
The purification device according to claim 1, wherein
ンバー内への機能水の導入手段を含む請求項1記載の浄
化装置。12. The purifying apparatus according to claim 1, wherein the means for supplying the chlorine gas includes a means for introducing functional water into the chamber.
質体に機能水を導入する手段を含む請求項1記載の浄化
装置。13. The purification apparatus according to claim 1, wherein the means for supplying the chlorine gas includes a means for introducing functional water into the porous body.
1〜4、酸化還元電位(作用電極:プラチナ電極、参照電
極:銀−塩化銀電極)800 mV〜1500 mV、及び塩素濃度
が5mg/L〜1000mg/Lなる特性を有する請求項13に記載
の浄化装置。14. The functional water has a hydrogen ion concentration (pH value).
14. The method according to claim 13, which has a characteristic in which the oxidation-reduction potential (working electrode: platinum electrode, reference electrode: silver-silver chloride electrode) is 800 mV to 1500 mV, and the chlorine concentration is 5 mg / L to 1000 mg / L. Purification device.
解により陽極近傍に生成する酸性水である請求項13に
記載の浄化装置。15. The purification apparatus according to claim 13, wherein the functional water is acidic water generated near the anode by electrolysis of water containing an electrolyte.
カリウムの少なくとも一方であることを特徴とする請求
項15に記載の浄化装置。16. The purification apparatus according to claim 15, wherein the electrolyte is at least one of sodium chloride and potassium chloride.
る請求項13に記載の浄化装置。17. The purification apparatus according to claim 13, wherein the functional water is an aqueous solution of hypochlorite.
ム及び次亜塩素酸カリウムの少なくとも一方である請求
項17に記載の浄化装置。18. The purification device according to claim 17, wherein the hypochlorite is at least one of sodium hypochlorite and potassium hypochlorite.
含む請求項17に記載の浄化装置。19. The purification device according to claim 17, wherein the aqueous solution further contains an inorganic acid or an organic acid.
酸、シュウ酸、硫酸、リン酸、ホウ酸、酢酸、ギ酸、リ
ンゴ酸、及びクエン酸から選ばれる少なくとも一つであ
る請求項19に記載の浄化装置。20. The inorganic acid or the organic acid is at least one selected from hydrochloric acid, hydrofluoric acid, oxalic acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, formic acid, malic acid and citric acid. Purification device according to claim 1.
ある請求項1記載の浄化装置。21. The purification apparatus according to claim 1, wherein the environment is underground air or groundwater.
もしくは地下水の浄化方法であって、多孔質体からなる
外壁を有するチャンバー;該チャンバー内の圧力の減圧
手段;該チャンバー内に塩素ガスを供給する手段;及び
該チャンバー内を照射する光照射手段、とを有する浄化
装置を汚染位置に埋設する工程;該チャンバー内を減圧
して該外壁を通して気体状の該揮発性有機塩素化合物を
チャンバー内に導入する工程;該チャンバー内に塩素ガ
スを導入する工程;および該チャンバー内の塩素ガス及
び気体状の揮発性有機塩素化合物の混合ガスに光照射し
て該揮発性有機塩素化合物を分解する工程、を有する事
を特徴とする浄化方法。22. A method for purifying underground air or groundwater containing a volatile organic chlorine compound, comprising: a chamber having an outer wall made of a porous material; a means for reducing the pressure in the chamber; and supplying chlorine gas into the chamber. Burying a purification device having a light irradiation means for irradiating the inside of the chamber at a contaminated position; depressurizing the inside of the chamber and introducing the gaseous volatile organic chlorine compound through the outer wall into the chamber. Introducing a chlorine gas into the chamber; and irradiating the mixed gas of the chlorine gas and the gaseous volatile organic chlorine compound in the chamber with light to decompose the volatile organic chlorine compound. Purification method characterized by having.
族炭化水素である請求項22に記載の浄化方法。23. The method according to claim 22, wherein the volatile organic chlorine compound is a chlorinated aliphatic hydrocarbon.
ロエチレン、cis-ジクロロエチレン、trans-ジクロロエ
チレン、トリクロロエチレン、テトラクロロエチレン、
及びジクロロメタンの中の少なくとも一つである請求項
23に記載の浄化方法。24. The chlorinated aliphatic hydrocarbon is 1,1-dichloroethylene, cis-dichloroethylene, trans-dichloroethylene, trichloroethylene, tetrachloroethylene,
24. The purification method according to claim 23, wherein the purification method is at least one of: and dichloromethane.
圧する請求項22に記載の浄化方法。25. The purification method according to claim 22, wherein the pressure in the apparatus is reduced to 0.5 to 0.9 atm.
質体から該塩素ガスを発生させる請求項22記載の浄化
方法。26. The purification method according to claim 22, wherein functional water is introduced into the porous body, and the chlorine gas is generated from the porous body.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16513999A JP2000354854A (en) | 1999-06-11 | 1999-06-11 | Pollution environment purification device and restoration method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16513999A JP2000354854A (en) | 1999-06-11 | 1999-06-11 | Pollution environment purification device and restoration method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2000354854A true JP2000354854A (en) | 2000-12-26 |
Family
ID=15806645
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP16513999A Withdrawn JP2000354854A (en) | 1999-06-11 | 1999-06-11 | Pollution environment purification device and restoration method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2000354854A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20040021765A (en) * | 2002-09-04 | 2004-03-11 | 김강호 | Enhanced hybrid soil remediation system of contaminated soil with organic chemical compound |
| CN106948460A (en) * | 2017-05-04 | 2017-07-14 | 黄河勘测规划设计有限公司 | Underground water conduit valve pit microcirculation air exchanging method |
| JP2021013911A (en) * | 2019-07-16 | 2021-02-12 | 大成建設株式会社 | Drive-in injection pipe, double pipe for drive-in injection pipe, and soil purification method |
-
1999
- 1999-06-11 JP JP16513999A patent/JP2000354854A/en not_active Withdrawn
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20040021765A (en) * | 2002-09-04 | 2004-03-11 | 김강호 | Enhanced hybrid soil remediation system of contaminated soil with organic chemical compound |
| CN106948460A (en) * | 2017-05-04 | 2017-07-14 | 黄河勘测规划设计有限公司 | Underground water conduit valve pit microcirculation air exchanging method |
| CN106948460B (en) * | 2017-05-04 | 2021-03-12 | 黄河勘测规划设计研究院有限公司 | Underground water pipeline valve well microcirculation air exchange method |
| JP2021013911A (en) * | 2019-07-16 | 2021-02-12 | 大成建設株式会社 | Drive-in injection pipe, double pipe for drive-in injection pipe, and soil purification method |
| JP7160767B2 (en) | 2019-07-16 | 2022-10-25 | 大成建設株式会社 | Drive-in injection pipe, double pipe for drive-in injection pipe, and soil remediation method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2350363C (en) | Process and system for decomposing pollutants | |
| Sirés et al. | Electrochemical advanced oxidation processes: today and tomorrow. A review | |
| US6462250B1 (en) | Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means | |
| US6538170B2 (en) | Polluted soil remediation apparatus, polluted soil remediation method, pollutant degrading apparatus and pollutant degrading method | |
| JP3825993B2 (en) | Pollutant decomposition method and apparatus | |
| EP1010453B1 (en) | Method and apparatus for decomposing gaseous aliphatic or aromatic hydrocarbon halide compound | |
| US6599431B2 (en) | Purifying apparatus for contaminated water and ground water and method thereof | |
| US7163615B2 (en) | Method of treating substance to be degraded and its apparatus | |
| JP2000354854A (en) | Pollution environment purification device and restoration method | |
| JP2002136867A (en) | Method and apparatus for regenerating adsorbent | |
| JP2001240559A (en) | Decomposition method of organic chlorine compound and decomposition apparatus used for the method | |
| JP3825992B2 (en) | Contaminated water and groundwater purification apparatus and method | |
| JP3501719B2 (en) | Pollutant decomposition apparatus and method | |
| JP3501764B2 (en) | Repair device and method for soil containing contaminants | |
| JP2000354877A (en) | Decomposition apparatus and decomposition method for organic chlorine compounds | |
| JP2001000828A (en) | Disassembly method and device with adsorption electrode | |
| JP2001062469A (en) | Pollutant decomposition method, pollutant decomposition apparatus, groundwater purification apparatus, and groundwater purification method | |
| JP3461312B2 (en) | Decomposition method and decomposition apparatus for gaseous halogenated aliphatic hydrocarbon compound or gaseous halogenated aromatic hydrocarbon compound | |
| US7018514B2 (en) | Method and apparatus for processing substances to be decomposed | |
| JP2001240560A (en) | Decomposition method with adsorption step and decomposition device with adsorption means | |
| JP2000317268A (en) | Method and apparatus for purifying pollutant gas using a tubular reactor | |
| JP2002143642A (en) | Decomposition method of pollutant gas and equipment used for it | |
| JP2000225336A (en) | Method for decomposing halogenated aliphatic hydrocarbon compound or aromatic compound, method for purifying medium contaminated by at least one of halogenated aliphatic hydrocarbon compound and aromatic compound, and apparatus used therefor | |
| JP2001113128A (en) | Decomposition method and decomposition apparatus for gaseous halogenated aliphatic hydrocarbon compounds | |
| JP2001046548A (en) | Decomposition method of halogenated aliphatic hydrocarbon compound and apparatus used therefor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060905 |