[go: up one dir, main page]

JP2000356707A - Anti-reflection film and display device having the anti-reflection film - Google Patents

Anti-reflection film and display device having the anti-reflection film

Info

Publication number
JP2000356707A
JP2000356707A JP2000122482A JP2000122482A JP2000356707A JP 2000356707 A JP2000356707 A JP 2000356707A JP 2000122482 A JP2000122482 A JP 2000122482A JP 2000122482 A JP2000122482 A JP 2000122482A JP 2000356707 A JP2000356707 A JP 2000356707A
Authority
JP
Japan
Prior art keywords
film
dye
absorption peak
region
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000122482A
Other languages
Japanese (ja)
Inventor
Sachiko Maekawa
幸子 前川
Tomoji Oishi
知司 大石
Takao Ishikawa
敬郎 石川
Daigoro Kamoto
大五郎 嘉本
Ken Takahashi
高橋  研
Shoko Nishizawa
昌紘 西沢
Norikazu Uchiyama
則和 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000122482A priority Critical patent/JP2000356707A/en
Publication of JP2000356707A publication Critical patent/JP2000356707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

(57)【要約】 【目的】 広い可視波長領域にわたって反射の少ない高
性能反射防止膜、及びそれを備えた表示装置を提供す
る。 【構成】 最上層に700〜900nmの近赤外領域に
吸収ピークを持つ色素、又は600〜700nmの領域
に吸収ピークを持つ色素、又はその両者を含む膜を有
し、そのすぐ下に500〜600nmの領域に吸収ピー
クを持つ色素を含む膜の積層膜を有し、色素含有膜の屈
折率異常分散による反射率の変化を利用した反射防止
膜。 【効果】 赤色色素の吸収によって最上層のすぐ下の層
の屈折率が異常分散し、最上層の近赤外領域に吸収を持
つ色素、又は青色色素、又はその両者を含む層との屈折
率のバランスによって、可視光全域に渡って低反射の反
射防止膜が作製できる(図1、曲線1)。さらに最上層
のすぐ下の層に含まれる500〜600nmの領域に吸
収ピークを持つ赤色色素が緑、赤のサイドバンドを吸収
し、色純度が向上する。
(57) [Summary] [Object] To provide a high-performance antireflection film with low reflection over a wide visible wavelength region, and a display device provided with the same. [Structure] A film containing a dye having an absorption peak in a near infrared region of 700 to 900 nm or a dye having an absorption peak in a region of 600 to 700 nm, or a film containing both of them, is provided immediately below. An antireflection film having a laminated film of a film containing a dye having an absorption peak in a region of 600 nm and utilizing a change in reflectance due to anomalous refractive index dispersion of the dye-containing film. [Effect] The refractive index of the layer immediately below the uppermost layer is abnormally dispersed due to the absorption of the red dye, and the refractive index of the dye having absorption in the near-infrared region of the uppermost layer, the blue dye, or a layer containing both of them. By this balance, an antireflection film having low reflection over the entire visible light region can be produced (FIG. 1, curve 1). Further, a red dye having an absorption peak in the region of 500 to 600 nm contained in the layer immediately below the uppermost layer absorbs green and red side bands, and improves color purity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面処理膜にかか
わり、特にブラウン管など表示装置のフェースプレート
の前面に設置された反射防止膜あるいは反射帯電防止膜
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment film, and more particularly to an antireflection film or a reflection antistatic film provided on a front surface of a face plate of a display device such as a cathode ray tube.

【0002】[0002]

【従来の技術】近年、表示装置、例えばブラウン管の高
性能化の一環として、フェースプレート前面に単層又は
積層の光学薄膜を形成し、光の干渉効果で外光反射を防
止する反射防止膜が形成されたものが作製されている。
この反射防止膜としては、一般に1/4波長膜とよばれ
るものが使用される。これは、空気の屈折率をn0、反
射防止膜の屈折率及び膜厚を夫々n1,d、基板の屈折
率をn2とし、反射を防止しようとする波長をλとする
とき、次の(1)及び(2)の条件を満足する単層膜を
利用するものである。
2. Description of the Related Art In recent years, as a part of improving the performance of a display device, for example, a cathode ray tube, an anti-reflection film which forms a single layer or a laminated optical thin film on the front surface of a face plate and prevents external light reflection by a light interference effect has been developed. The formed one has been produced.
As the antireflection film, a film generally called a quarter-wave film is used. When the refractive index of air is n 0 , the refractive index and film thickness of the antireflection film are n 1 and d, the refractive index of the substrate is n 2 , and the wavelength at which reflection is to be prevented is λ, A single-layer film that satisfies the conditions (1) and (2) is used.

【0003】 n1d=λ/4 (1) n1 2=n02 (2) ただし、基板としてガラスを用いた場合、n2 が1.5
2となり、n0 は空気の屈折率である1.0であるた
め、反射防止膜の屈折率n1 は1.23でなくてはなら
ない。しかし現在のところ屈折率が1.23である物質
は知られていないため、単層膜で充分な反射防止効果を
示す膜を作製することはできない。
[0003] n 1 d = λ / 4 ( 1) n 1 2 = n 0 n 2 (2) However, in the case of using the glass as a substrate, n 2 is 1.5
2 and n 0 is 1.0, which is the refractive index of air, so that the refractive index n 1 of the antireflection film must be 1.23. However, since a substance having a refractive index of 1.23 is not known at present, a film having a sufficient antireflection effect cannot be produced with a single-layer film.

【0004】そこで従来より、図2に断面模式図を示す
ように、基板5上に上層膜3及び下層膜4からなる2層
の膜を積層した積層反射防止膜が一般に用いられてい
る。積層反射防止膜へ光線10が入射すると、空気と上
層膜3の界面で反射光11が、上層膜3と下層膜4の界
面で反射光12が、下層膜と基板5の界面で反射光13
が夫々発生し、実際の反射光14はこれらの反射光1
1,12,13を合成したものとなる。この積層反射防
止膜は、空気の屈折率をn0、基板5の屈折率をn2、積
層反射防止膜の上層膜3の屈折率及び膜厚を夫々n3
3、下層膜4の屈折率及び膜厚をを夫々n4,d4
し、反射を防止しようとする波長をλとするとき、次の
(3)〜(5)の条件を満足する2層の膜を用いる。
Conventionally, as shown in the schematic cross-sectional view of FIG. 2, a laminated anti-reflection film in which a two-layer film composed of an upper film 3 and a lower film 4 is laminated on a substrate 5 is generally used. When the light beam 10 is incident on the laminated anti-reflection film, the reflected light 11 at the interface between the air and the upper film 3, the reflected light 12 at the interface between the upper film 3 and the lower film 4, and the reflected light 13 at the interface between the lower film and the substrate 5.
And the actual reflected light 14 is the reflected light 1
1, 12, and 13 are combined. The laminated anti-reflection film has a refractive index of air of n 0 , a refractive index of the substrate 5 of n 2 , a refractive index and a film thickness of the upper layer film 3 of the laminated anti-reflection film of n 3 , respectively.
Assuming that d 3 , the refractive index and the film thickness of the lower film 4 are n 4 and d 4 , respectively, and the wavelength for which reflection is to be prevented is λ, the following conditions (3) to (5) are satisfied: A layer film is used.

【0005】 n33=λ/4 (3) n44=λ/4 (4) n23 2=n04 2 (5) 従ってガラス基板を用いた場合、n2 が1.52であ
り、n0 は空気の屈折率である1.0であるため、上層
下層の反射防止膜の屈折率の比が1.23になるような
高屈折率/低屈折率の膜の組み合せを選べば良い。ま
た、反射を防止したい光の波長によって膜厚が決まるた
め、N層の反射防止膜を作製すれば、N個の波長の反射
率を低くすることができる。
[0005] n 3 d 3 = λ / 4 (3) n 4 d 4 = λ / 4 (4) n 2 n 3 2 = n 0 n 4 2 (5) Therefore, when using a glass substrate, n 2 is Since it is 1.52 and n 0 is 1.0, which is the refractive index of air, a high refractive index / low refractive index film such that the refractive index ratio of the upper and lower antireflection films is 1.23. Choose a combination of Further, since the film thickness is determined by the wavelength of the light whose reflection is to be prevented, the reflectance of N wavelengths can be reduced by forming an N-layer antireflection film.

【0006】また、波長選択吸収膜(光フィルター)を
フェースプレートの前面に形成した高画質なテレビ用の
ブラウン管が作製されている。これはある波長の光を選
択的にこのフィルターで吸収して反射防止するととも
に、色純度劣化の原因である螢光体発光スペクトルのサ
イドバンドも吸収して、コントラストと色純度の向上を
図るものである。通常このフィルターには、ゾルゲル法
を用いて作製される有機色素−ガラスゲル複合膜が用い
られる(特開平1−320742号公報)。これは有機
色素を混合したゾル溶液を塗布した後、熱処理して形成
される。
[0006] A high-quality television cathode-ray tube in which a wavelength selective absorption film (optical filter) is formed on the front surface of a face plate has been manufactured. This filter selectively absorbs light of a certain wavelength with this filter to prevent reflection, and also absorbs the sideband of the phosphor emission spectrum, which is the cause of color purity degradation, to improve contrast and color purity. It is. Usually, an organic dye-glass gel composite film produced by a sol-gel method is used for this filter (Japanese Patent Application Laid-Open No. 1-320742). This is formed by applying a sol solution in which an organic dye is mixed and then performing a heat treatment.

【0007】また膜中に酸化スズなどの導電性の微粒子
を含有させて帯電防止効果を持たせたものや、積層膜を
形成し、反射防止と帯電防止の効果を持たせたものも知
られている(特開平4−218247号公報)。更に積
層膜の少なくとも1層に400〜700nmの可視光全
波長域において吸収を有する色素を含有させることによ
って、可視光全波長域の屈折率を増加させて反射率を低
減させる方法も知られている(特開平6−208003
号公報)。またコントラストの改善のため、螢光体の発
光スペクトルに近い反射スペクトルを有する顔料を螢光
体につける方法もとられている。この方法によると、螢
光体の発光はほとんど吸収されず、外光は反射域以外の
光が吸収されるため低下し、コントラストが向上する。
この方法は青及び赤の螢光体で実用化されている。
[0007] Further, there are also known ones in which conductive fine particles such as tin oxide are contained in the film to have an antistatic effect, and those in which a laminated film is formed to have antireflection and antistatic effects. (JP-A-4-218247). Further, a method is known in which at least one layer of the laminated film contains a dye having absorption in the entire visible light wavelength range of 400 to 700 nm, thereby increasing the refractive index in the entire visible light wavelength range and reducing the reflectance. (Japanese Patent Laid-Open No. 6-208003)
No.). In order to improve the contrast, a method has been proposed in which a pigment having a reflection spectrum close to the emission spectrum of the phosphor is applied to the phosphor. According to this method, the light emitted from the phosphor is hardly absorbed, and the outside light is reduced because light outside the reflection region is absorbed, and the contrast is improved.
This method has been practiced with blue and red phosphors.

【0008】[0008]

【発明が解決しようとする課題】上述のように、低屈折
率/高屈折率の積層膜、あるいはこれらの多層膜を基体
上に形成し、光の干渉効果を利用する反射防止膜が良く
知られている。この時、上下の層の屈折率差が小さい
と、可視光全域で比較的フラットな分光反射率曲線が得
られるが、ボトム波長での反射を充分小さくすることが
できない。逆に、上下の層の屈折率差が大きいと、ボト
ム波長の反射率を下げることはできるが、ボトム波長か
らずれるにしたがって分光反射率曲線が急激に立ち上が
るため、画面がギラついてしまうという問題があった。
As described above, an antireflection film utilizing a light interference effect by forming a laminated film having a low refractive index / high refractive index or a multilayer film of these on a substrate is well known. Have been. At this time, if the refractive index difference between the upper and lower layers is small, a relatively flat spectral reflectance curve can be obtained over the entire visible light range, but the reflection at the bottom wavelength cannot be sufficiently reduced. Conversely, if the difference between the refractive indices of the upper and lower layers is large, the reflectance at the bottom wavelength can be reduced, but the spectral reflectance curve rises sharply as the wavelength deviates from the bottom wavelength, causing the problem of screen glare. there were.

【0009】近年は、帯電防止効果の向上という観点か
ら低抵抗の膜を下層膜に用いる場合が多いが、低抵抗の
膜は一般に高い屈折率を有するため、上層膜との屈折率
差が大きくなり、画面のギラつきが大きな問題となる。
また、積層反射防止膜のどちらかの層に色素をドーピン
グすると、膜の反射率が特定領域で異常に変化するとい
う欠点があった。さらに、色素含有膜の作製には、水、
アルコールなどの溶媒に極めて良くとけるアゾ染料、ア
ントラキノン染料などの有機染料が使用されている。こ
のため膜形成後、ブラウン管表面を水やアルコールを含
む布で拭くと有機染料がにじみだすという欠点があっ
た。
In recent years, a low-resistance film is often used as a lower film from the viewpoint of improving the antistatic effect. However, since a low-resistance film generally has a high refractive index, the refractive index difference from the upper film is large. The glare of the screen becomes a big problem.
Further, when a dye is doped in either layer of the laminated antireflection film, there is a disadvantage that the reflectance of the film abnormally changes in a specific region. Furthermore, water,
Organic dyes such as azo dyes and anthraquinone dyes which are very soluble in solvents such as alcohols are used. For this reason, when the surface of the cathode ray tube is wiped with a cloth containing water or alcohol after the film is formed, there is a disadvantage that the organic dye oozes out.

【0010】反射防止効果と帯電防止効果を持たせた有
機色素含有膜では、酸化スズ等の導電性の微粒子及び有
機色素を含有した酸化ケイ素のゾル溶液をブラウン管面
上に塗布成膜し、ついで酸化ケイ素のみのゾル溶液を塗
布成膜して積層膜とするが、酸化ケイ素のみのゾル溶液
は溶媒としてアルコール及び水を多量に含むため、下層
の有機色素が上層にしみだし、屈折率の異常分散による
反射率の異常を生じるという問題があった。また特開平
6−208003号公報の方法は、可視光領域全域にお
いて屈折率が増加するので、上下の層の屈折率差が大き
くなってしまい、先に述べたようにボトム波長である5
60nm付近の反射率に比べて、400nm付近及び7
00nm付近の反射率が異常に高い膜になってしまうと
いう問題があった。
In an organic dye-containing film having an antireflection effect and an antistatic effect, a sol solution of conductive fine particles such as tin oxide and silicon oxide containing an organic dye is applied and formed on the surface of a cathode ray tube. A sol solution of silicon oxide alone is applied to form a layered film.Since the sol solution of silicon oxide alone contains a large amount of alcohol and water as solvents, the lower organic dye seeps into the upper layer and abnormal refractive index dispersion occurs. There is a problem that the reflectance causes an abnormality in the reflectance. In the method disclosed in JP-A-6-208003, since the refractive index increases in the entire visible light region, the refractive index difference between the upper and lower layers increases, and as described above, the bottom wavelength of 5
Compared to the reflectance near 60 nm, the reflectance around 400 nm and 7
There is a problem that the reflectance around 00 nm becomes an abnormally high film.

【0011】本発明の目的は、上記従来技術の持つ問題
を解決して広い波長領域で反射防止効果を有する反射防
止膜を提供すること、及びその膜を用いた高コントラス
ト、帯電防止効果、反射防止効果を持つ表示装置を提供
することにある。
An object of the present invention is to provide an anti-reflection film having an anti-reflection effect in a wide wavelength range by solving the above-mentioned problems of the prior art, and to provide a high contrast, anti-static effect and reflection using the film. An object of the present invention is to provide a display device having a prevention effect.

【0012】[0012]

【課題を解決するための手段】本発明では、膜の屈折率
分散を積極的に利用することによって、広範な波長領域
で高い反射防止効果を実現することができる積層反射防
止膜を得る。すなわち、本発明の反射防止膜は、2層の
薄膜を積層した積層構造を含み、2層の薄膜は、反射防
止したい波長領域の中心波長に対して長波長側で屈折率
差が大きく、短波長側で屈折率差が小さいような屈折率
分散を有することを特徴とする。例えば、可視光領域全
般で反射の抑えられた反射防止膜を得るためには、56
0nm付近で屈折率差が大きく、400nm付近で屈折
率差が小さい層を積層するとよい。
According to the present invention, a laminated antireflection film capable of realizing a high antireflection effect in a wide wavelength range is obtained by positively utilizing the refractive index dispersion of the film. That is, the antireflection film of the present invention has a laminated structure in which two thin films are stacked, and the two thin films have a large refractive index difference on the long wavelength side with respect to the center wavelength of the wavelength region to be antireflective, and have a short refractive index. It is characterized by having a refractive index dispersion such that the refractive index difference is small on the wavelength side. For example, in order to obtain an antireflection film in which reflection is suppressed in the entire visible light region, 56
A layer having a large difference in refractive index near 0 nm and a small difference in refractive index near 400 nm may be stacked.

【0013】また、本発明の反射防止膜は、2層の薄膜
を積層した積層構造を含み、2層の薄膜は、反射防止し
たい波長領域の長波長側で屈折率が高く短波長側で屈折
率が低いような屈折率分散を有することを特徴とする。
また、本発明の反射防止膜は、2層の薄膜を積層した積
層構造を含み、2層の薄膜は、反射防止したい波長領域
の各波長において光路長が略4分の1波長であり、かつ
前記各波長における屈折率の比が略一定であるような屈
折率分散を有することを特徴とする。
Further, the antireflection film of the present invention has a laminated structure in which two thin films are laminated, and the two thin films have a high refractive index on the long wavelength side and a high refractive index on the short wavelength side in a wavelength region to be antireflective. It is characterized by having a refractive index dispersion such that the refractive index is low.
Further, the antireflection film of the present invention has a laminated structure in which two layers of thin films are laminated, and the two-layer thin film has an optical path length of about a quarter wavelength at each wavelength in a wavelength region to be antireflection, and It has a refractive index dispersion such that the ratio of the refractive index at each wavelength is substantially constant.

【0014】所望の屈折率分散を有する膜は、吸収を持
つ物質の屈折率の異常分散を利用して、すなわち所定の
波長領域に吸収ピークを有する色素を膜に含有させるこ
とにより得ることができる。より具体的に例示すると、
本発明による反射防止膜は、少なくとも2層の薄膜を積
層した多層構造を有し、最上層の膜とそのすぐ下の膜
に、それぞれ別の種類の色素を含むことを特徴とする。
ここで最上層の膜の屈折率は、そのすぐ下の膜の屈折率
よりも小さく設定する。最上層の膜に含まれる色素は、
700〜900nmの近赤外領域に吸収をもつ色素、又
は600〜700nmの領域に吸収ピークを持つ色素、
又はその両者とするのが好ましい。最上層のすぐ下の膜
に含まれる色素は、500〜600nmの領域に吸収ピ
ークを持つ色素とするのが好ましい。
A film having a desired refractive index dispersion can be obtained by utilizing anomalous dispersion of the refractive index of a substance having absorption, that is, by incorporating a dye having an absorption peak in a predetermined wavelength region into the film. . More specifically,
The antireflection film according to the present invention has a multilayer structure in which at least two thin films are stacked, and the uppermost film and the film immediately below the uppermost film contain different types of dyes.
Here, the refractive index of the uppermost film is set smaller than the refractive index of the film immediately below. The dye contained in the uppermost film is
A dye having an absorption in the near infrared region of 700 to 900 nm, or a dye having an absorption peak in the region of 600 to 700 nm,
Or both. The dye contained in the film immediately below the uppermost layer is preferably a dye having an absorption peak in the range of 500 to 600 nm.

【0015】多層膜の少なくとも1層には導電性を持た
せるのが好ましく、導電性を有する膜は最上層のすぐ下
の高屈折率膜とするのが好適である。前記反射防止膜の
具体的態様としては、最上層のすぐ下の膜が導電性を有
し、かつ500〜600nmの領域に吸収ピークを持つ
物質を含む膜である反射防止膜、最上層の膜が700〜
900nmの近赤外領域に吸収ピークを持つ物質、又は
600〜700nmの領域に吸収ピークを持つ物質、又
はその両者を含み、最上層のすぐ下の膜が導電性を有す
る膜である反射防止膜、最上層の膜が700〜900n
mの近赤外領域に吸収ピークを持つ物質、又は600〜
700nmの領域に吸収ピークを持つ物質、又はその両
者を含み、最上層のすぐ下の膜が500〜600nmの
領域に吸収ピークを持つ物質を含む膜である反射防止
膜、最上層の膜が700〜900nmの近赤外領域に吸
収ピークを持つ物質、又は600〜700nmの領域に
吸収ピークを持つ物質、又はその両者を含み、最上層の
すぐ下の膜が500〜600nmの領域に吸収ピークを
持つ物質を含み、かつ導電性を有する膜である反射防止
膜等を挙げることができる。
It is preferable that at least one layer of the multilayer film has conductivity, and the film having conductivity is preferably a high refractive index film immediately below the uppermost layer. As a specific embodiment of the antireflection film, an antireflection film in which a film immediately below the uppermost layer is conductive and contains a substance having an absorption peak in a region of 500 to 600 nm, a film of the uppermost layer Is 700 ~
An anti-reflection film containing a substance having an absorption peak in a near-infrared region of 900 nm, a substance having an absorption peak in a region of 600 to 700 nm, or both, and a film immediately below the uppermost layer being a conductive film. 700-900n for the uppermost layer
m, a substance having an absorption peak in the near infrared region, or 600 to
An antireflection film containing a substance having an absorption peak in a region of 700 nm or both thereof, a film immediately below the uppermost layer is a film containing a substance having an absorption peak in a region of 500 to 600 nm, and the film of the uppermost layer is 700 A material having an absorption peak in the near infrared region of ~ 900 nm, or a material having an absorption peak in the region of 600-700 nm, or both, and the film immediately below the top layer has an absorption peak in the region of 500-600 nm. An antireflection film or the like, which is a film containing a substance having conductivity and having conductivity.

【0016】また、本発明による反射防止膜は、少なく
とも2層の薄膜を積層した多層構造を有し、上から数え
て奇数番目の膜に300〜400nmの領域に吸収ピー
クをもつ物質を含むことを特徴とする。前記いずれの反
射防止膜においても、最上層のすぐ下の層にはSn
2、ZnO、又はITOを含ませることができる。
Further, the antireflection film according to the present invention has a multilayer structure in which at least two thin films are stacked, and an odd-numbered film counted from above contains a substance having an absorption peak in a region of 300 to 400 nm. It is characterized by. In any of the above antireflection films, the layer immediately below the uppermost layer is Sn
O 2 , ZnO, or ITO can be included.

【0017】各層の膜は、それに隣接する層に含まれる
色素が溶けない、又は良分散しない溶媒を主成分とする
塗布溶液を塗布成膜して作製するのが好ましい。700
〜900nmの近赤外領域に吸収ピークを持つ物質に
は、ブリリアントクレジルブルー、シリコンナフタロシ
アニン等のナフタロシアニン系色素、アントラキノン系
色素、ポリメチン系色素等を用いることができる。60
0〜700nmの領域に吸収ピークを持つ物質には、銅
フタロシアニン等のフタロシアニン系色素やメチレング
リーン等のフェノキサジン系色素を用いることができ
る。500〜600nmの領域に吸収ピークを持つ物質
には、アシッドレッド等のアゾ系色素、アリザリンレッ
ドS等のアントラキノン系色素、クリスタルバイオレッ
ト等のトリフェニルメタン系色素、ローダミンB等のキ
サンテン系色素等を用いることができる。300〜40
0nmの領域に吸収ピークをもつ物質には、銅フタロシ
アニン等のフタロシアニン系色素、ベンゾフェノン系色
素等を用いることができる。
The film of each layer is preferably formed by applying and forming a coating solution mainly containing a solvent in which the dye contained in the layer adjacent thereto does not dissolve or disperse well. 700
As the substance having an absorption peak in the near infrared region of about 900 nm, naphthalocyanine dyes such as brilliant cresyl blue and silicon naphthalocyanine, anthraquinone dyes, and polymethine dyes can be used. 60
As the substance having an absorption peak in the range of 0 to 700 nm, a phthalocyanine dye such as copper phthalocyanine or a phenoxazine dye such as methylene green can be used. Substances having an absorption peak in the range of 500 to 600 nm include azo dyes such as acid red, anthraquinone dyes such as alizarin red S, triphenylmethane dyes such as crystal violet, and xanthene dyes such as rhodamine B. Can be used. 300-40
As a substance having an absorption peak in a region of 0 nm, a phthalocyanine dye such as copper phthalocyanine, a benzophenone dye, or the like can be used.

【0018】用いる色素は、染料、顔料の区別を問わな
いが、顔料を使用する場合には顔料の分散粒径を100
nm以下にすることが望ましい。例えば、アシッドレッ
ドに近い顔料としては、キナクリドン系顔料がある。フ
タロシアニン、ナフタロシアニン系色素は、顔料として
の使用の他、種々の置換基を化合物に導入して溶解度を
高めたものなどがある。赤外吸収剤としては、アントラ
キノン系化合物,ポリメチン系化合物などがある。これ
らの反射防止膜をブラウン管等の表示装置の表面に形成
すると、高精細な表示装置が得られる。
The pigment used may be either a dye or a pigment. When a pigment is used, the pigment has a dispersed particle size of 100%.
It is desirable to set it to nm or less. For example, a pigment close to acid red is a quinacridone pigment. Phthalocyanine and naphthalocyanine dyes include those in which various substituents are introduced into a compound to increase the solubility in addition to the use as a pigment. Examples of the infrared absorber include anthraquinone-based compounds and polymethine-based compounds. When these antireflection films are formed on the surface of a display device such as a cathode ray tube, a high-definition display device can be obtained.

【0019】[0019]

【作用】色素などの特定波長領域に吸収を持つ物質は、
その吸収領域で屈折率が異常分散することが良く知られ
ている。これは、一般的に吸収を持つ物質の屈折率を表
す次式(6)より理論的にも予測される原理的なもので
ある。
[Function] Substances having absorption in a specific wavelength region, such as dyes,
It is well known that the refractive index is abnormally dispersed in the absorption region. This is a principle that can be theoretically predicted from the following equation (6), which generally indicates the refractive index of a substance having absorption.

【0020】[0020]

【数1】 (Equation 1)

【0021】上式(6)より、吸収を持つ膜はkの値が
0でないため、屈折率は吸収の大きさによって変化す
る。このため、低屈折率/高屈折率の積層膜のどちらか
一方の膜に色素をドープした場合、色素をドープしない
積層膜の反射率と比較して、色素の吸収波長域で反射率
が異常に変化する。この現象は本質的な問題であるが、
一方、屈折率の異常分散を利用すれば、可視光領域全域
にわたって低反射率の膜を形成できることも示唆する。
すなわち本発明は、以下のような膜を形成すれば、広い
波長領域にわたって低反射率の膜を形成できるとの考察
に基づく。
From the above equation (6), since the value of k is not 0 for a film having absorption, the refractive index changes depending on the magnitude of absorption. Therefore, when a dye is doped into one of the low refractive index / high refractive index laminated films, the reflectance is abnormal in the absorption wavelength region of the dye as compared with the reflectance of the laminated film not doped with the dye. Changes to This is an essential problem,
On the other hand, it is suggested that a film having a low reflectance can be formed over the entire visible light region by using anomalous dispersion of the refractive index.
That is, the present invention is based on the consideration that a film having a low reflectance can be formed over a wide wavelength range by forming the following film.

【0022】まず、ガラス上に形成した図2の2層反射
防止膜を考えると、前記した(3)〜(5)式から、n
4/n3=1.23、n33=λ0/4、n44=λ0/4
を満足する波長λ0において反射はゼロになるが、入射
波長がλ0からずれるに従って反射率は増加するように
なる。そのため、反射率のカーブは通常λ0をボトムと
するV字型になる。このとき、空気と上層膜3との界面
での反射光11の振幅は(n0−n3)/(n0+n3)、
上層膜3と下層膜4との界面での反射光12の振幅は
(n3−n4)/(n3+n4)、下層膜4と基板5との界
面での反射光13の振幅は(n4−n2)/(n4+n2
で表される。また、上層膜3と下層膜4との界面での反
射光12の位相は4πn33/λ、下層膜4と基板5と
の界面での反射光13の位相は4πn44/λで表され
る。従って、波長が変化すれば反射光の位相も変化し、
ある波長によってはそれぞれの界面からの反射光の位相
が一致し、結果的に反射が強められることもある。この
位相のずれを防ぐためには波長に応じて薄膜の屈折率が
変化すればよい。一般に、一番反射を抑えたい波長λ0
よ短波長側はn3とn4の差が小さいほど位相のずれは小
さく、また長波長側ではn3とn4の差が大きいほど位相
のずれは小さくなる。しかし、屈折率の変化は位相のみ
でなく振幅にも影響を及ぼすので、その設定は慎重に行
わなければならない。
First, considering the two-layer antireflection film shown in FIG. 2 formed on glass, from the above equations (3) to (5), n
4 / n 3 = 1.23, n 3 d 3 = λ 0/4, n 4 d 4 = λ 0/4
Is zero at a wavelength λ 0 that satisfies the following condition, but the reflectance increases as the incident wavelength deviates from λ 0 . Therefore, the curve of the reflectivity is usually V-shaped with λ 0 as the bottom. At this time, the amplitude of the reflected light 11 at the interface between the air and the upper film 3 is (n 0 −n 3 ) / (n 0 + n 3 ).
The amplitude of the reflected light 12 at the interface between the upper film 3 and the lower film 4 is (n 3 −n 4 ) / (n 3 + n 4 ), and the amplitude of the reflected light 13 at the interface between the lower film 4 and the substrate 5 is (n 4 -n 2) / ( n 4 + n 2)
It is represented by The phase of the reflected light 12 at the interface between the upper film 3 and the lower film 4 is 4πn 3 d 3 / λ, and the phase of the reflected light 13 at the interface between the lower film 4 and the substrate 5 is 4πn 4 d 4 / λ. It is represented by Therefore, if the wavelength changes, the phase of the reflected light also changes,
Depending on a certain wavelength, the phases of the reflected lights from the respective interfaces coincide with each other, and as a result, the reflection may be enhanced. In order to prevent this phase shift, the refractive index of the thin film may be changed according to the wavelength. Generally, the wavelength λ 0 at which the reflection is to be suppressed most is
On the shorter wavelength side, the phase shift is smaller as the difference between n 3 and n 4 is smaller, and on the longer wavelength side, the phase shift is smaller as the difference between n 3 and n 4 is larger. However, since the change in the refractive index affects not only the phase but also the amplitude, it must be carefully set.

【0023】また、一歩進んで反射防止したい波長領域
の全ての波長で反射率をゼロにするための要件について
考えると、それは前記(3)〜(5)式の無反射条件を
全ての波長において満たすことである。この要件は、図
3に示すように、波長によって屈折率が連続的に変化す
る膜を得ることができれば満足することができる。前述
の色素による吸収を利用した屈折率の制御によって図3
のような屈折率分散を得るためには、図4のように、可
視光全般にわたって吸収を持つ色素を混入すれば良い。
ただし、実際にこのようなブロードな1つの吸収を持つ
色素を用いなくとも、例えば図5に模式的に示すよう
に、吸収ピークを異にする多種類の色素を濃度を調整し
て含有させることによっても、これと同じ効果を持たせ
ることができる。
Considering the requirement to go one step further and reduce the reflectance to zero at all wavelengths in the wavelength region where it is desired to prevent reflection, the non-reflection conditions of the above equations (3) to (5) are satisfied at all wavelengths. Is to meet. This requirement can be satisfied if a film whose refractive index changes continuously depending on the wavelength can be obtained as shown in FIG. By controlling the refractive index using the absorption by the dye described above, FIG.
In order to obtain such a refractive index dispersion as shown in FIG. 4, a dye having absorption over the entire visible light may be mixed as shown in FIG.
However, even without actually using such a dye having one broad absorption, for example, as shown schematically in FIG. 5, it is necessary to adjust the concentration to include various kinds of dyes having different absorption peaks. Can have the same effect as above.

【0024】次に、可視波長領域に対する積層反射防止
膜の単純モデルとして、2層の薄膜を積層した層構造の
膜(低屈折率膜/高屈折率膜)において、上層膜と下層
膜に夫々吸収ピークの異なる別の種類の色素を含む系を
考え、図2を用いて説明する。図中3は低屈折率上層膜
で、4は高屈折率下層膜、5は基板である。上層膜3
は、色素非含有時の屈折率を1.46とし、膜中に含ま
れる色素は、700〜900nmの近赤外領域に吸収ピ
ークをもつ色素と600〜700nmの領域に吸収ピー
クを持つ色素とする。下層膜4に含まれる色素は500
〜600nmの領域に吸収ピークを持つ赤色色素とす
る。この下層膜4の色素非含有時の屈折率を1.8とす
る。この積層膜の上層の屈折率は、色素含有によって図
6(a)のような吸収を示すとき、色素の吸収の効果で
図6(b)のように、各吸収ピークを中心として、その
長波長側では屈折率は大きくなり、短波長側では小さく
なるというように異常分散する。また下層の屈折率も、
図7(a)のような吸収を持つとき、色素の吸収の効果
で図7(b)のように、各吸収ピークを中心として、そ
の長波長側では屈折率は大きくなり、短波長側では小さ
くなるというように異常分散する。このため可視領域の
高波長側で屈折率が高く、低波長側で屈折率の低い膜が
得られる。
Next, as a simple model of a laminated anti-reflection film for the visible wavelength region, in a film having a layer structure in which two thin films are laminated (low-refractive-index film / high-refractive-index film), an upper film and a lower film are respectively provided. A system including another type of dye having a different absorption peak will be described with reference to FIG. In the figure, 3 is a lower refractive index upper layer film, 4 is a high refractive index lower layer film, and 5 is a substrate. Upper layer film 3
Has a refractive index of 1.46 when no dye is contained, and the dye contained in the film includes a dye having an absorption peak in the near infrared region of 700 to 900 nm and a dye having an absorption peak in the region of 600 to 700 nm. I do. The pigment contained in the lower layer film 4 is 500
A red dye having an absorption peak in the region of -600 nm. The refractive index of the lower layer film 4 when no dye is contained is 1.8. When the refractive index of the upper layer of this laminated film shows absorption as shown in FIG. 6 (a) due to the inclusion of the dye, the effect of the absorption of the dye causes the length of the refractive index to be centered on each absorption peak as shown in FIG. 6 (b). Abnormal dispersion occurs such that the refractive index increases on the wavelength side and decreases on the short wavelength side. Also, the refractive index of the lower layer,
7A, when the absorption is as shown in FIG. 7A, the refractive index becomes large on the long wavelength side with respect to each absorption peak, and on the short wavelength side, as shown in FIG. Anomalous dispersion such as becoming smaller. Therefore, a film having a high refractive index on the high wavelength side in the visible region and a low refractive index on the low wavelength side can be obtained.

【0025】低屈折率/高屈折率膜を積層し、光の干渉
効果を利用して反射を抑えている積層膜の上下に色素を
入れたこの膜の反射率は、それぞれの層の屈折率の異常
分散の効果で図1中に示した分光反射率曲線1のよう
に、可視波長領域全域にわたって低く抑えられることが
シミュレーションの結果で示される。ここで分光反射率
曲線2は色素非含有積層膜に対するものである。色素を
含有させることによって可視領域全域にわたって非常に
低反射の膜が作製できる。
A low-refractive-index / high-refractive-index film is laminated, and a dye is placed above and below the laminated film that suppresses reflection by utilizing the light interference effect. The simulation results show that the effect of the anomalous dispersion can be suppressed to a low level over the entire visible wavelength region as shown by the spectral reflectance curve 1 shown in FIG. Here, the spectral reflectance curve 2 is for a dye-free laminated film. By incorporating a dye, a film having a very low reflection can be produced over the entire visible region.

【0026】ここで、最上層に含有する色素を700〜
900nmの近赤外領域に吸収ピークをもつ色素、又は
600〜700nmの領域に吸収ピークを持つ色素のう
ちのどちらか一方にしても色素非含有時よりも優れた反
射防止効果を実現することができる。ただし、例えば6
00〜700nmの領域に吸収ピークを持つ色素だけを
混入した場合、600nm以下の可視光領域においては
十分な反射防止効果が実現できるものの、色素を含有さ
せない場合と比べて600〜700nm付近の反射率が
若干上昇するという問題がある。また、700〜900
nmの近赤外領域に吸収ピークをもつ色素だけを混入し
た場合、一番反射を抑えたい560nm付近での反射率
を十分に下げることができないという問題がある。その
ため、700〜900nmの近赤外領域に吸収ピークを
もつ色素と600〜700nmの領域に吸収ピークを持
つ色素の両者を同時に混入することが最も効果的であ
り、望ましい。
Here, the pigment contained in the uppermost layer is 700 to
Even if one of the dye having an absorption peak in the near-infrared region of 900 nm and the dye having an absorption peak in the region of 600 to 700 nm, it is possible to realize an antireflection effect superior to that when no dye is contained. it can. However, for example, 6
When only a dye having an absorption peak is mixed in the region of 00 to 700 nm, a sufficient antireflection effect can be realized in the visible light region of 600 nm or less, but the reflectance around 600 to 700 nm is lower than that in the case where the dye is not contained. However, there is a problem that is slightly increased. Also, 700-900
In the case where only a dye having an absorption peak in the near-infrared region of nm is mixed, there is a problem that the reflectance at around 560 nm where reflection is to be suppressed most cannot be sufficiently reduced. Therefore, it is most effective and desirable to simultaneously mix both a dye having an absorption peak in the near infrared region of 700 to 900 nm and a dye having an absorption peak in the region of 600 to 700 nm.

【0027】例えば、700〜900nmの近赤外領域
に吸収をもつ色素としてシリコンナフタロシアニン、6
00〜700nmの間に吸収ピークを持つ色素として銅
フタロシアニン、500〜600nmの間に吸収ピーク
を持つ色素としてアシッドレッドを用い、上層をSiO
2 系膜、下層をITO系膜とすると、実際に図1に示す
分光反射率曲線1のように可視領域全域での反射率防止
効果が得られる。
For example, silicon naphthalocyanine as a dye having an absorption in the near infrared region of 700 to 900 nm, 6
Copper phthalocyanine is used as a dye having an absorption peak between 00 and 700 nm, and Acid Red is used as a dye having an absorption peak between 500 and 600 nm.
When the two- system film and the lower layer are made of an ITO-based film, an effect of preventing reflectance in the entire visible region is actually obtained as shown by a spectral reflectance curve 1 shown in FIG.

【0028】ここで、色素を混入する層の積層順序は、
添加する色素の種類によって最適なものがある。例え
ば、500〜600nmに吸収を持つ赤色色素を最上層
に持ってくると、560nm付近の吸収ピークの影響で
600nm付近の屈折率が上昇してしまい、その結果、
600nm付近の反射率が異常に高くなってしまう。し
かし、650nm付近に吸収を持つ銅フタロシアンは、
600nm以下の屈折率を下げる作用をするため、反射
率の低いものが得られる。このように、色素を混入する
層の順序を謝ると逆効果になるおそれがある。
Here, the order of lamination of the layers containing the dye is as follows.
Some are optimal depending on the type of dye to be added. For example, when a red dye having absorption at 500 to 600 nm is brought to the uppermost layer, the refractive index at around 600 nm increases due to the influence of the absorption peak at around 560 nm.
The reflectance around 600 nm becomes abnormally high. However, copper phthalocyanine having an absorption around 650 nm is
Since it acts to lower the refractive index of 600 nm or less, a material having a low reflectance can be obtained. As described above, if the order of the layers in which the dyes are mixed is apologized, there is a possibility that the effect may be adversely affected.

【0029】また赤色色素の吸収によって、人間の視感
感度の一番高い560nm付近の光が吸収される。また
これはブラウン管などの螢光体を用いた表示装置では、
螢光体のサイドバンドを吸収する働きもする。下層を導
電性を有する膜とすれば、帯電防止効果も備えられる。
これらの積層膜を作製するにあたって、上層と下層の膜
にそれぞれ独立した色素を入れる必要がある。これは、
積層膜を作製する際、それぞれの層で色素の滲み出しが
起こってはならないことを意味する。そのため、最上層
の膜は、すぐ下の層に含まれる色素が溶けない、又は良
分散しない溶媒を主成分とする塗布溶液を塗布成膜して
作製すると、下部色素が上部に滲み出すことが無く、屈
折率のコントロールが容易である。最上層のすぐ下の層
は、最上層に含まれる色素が溶けない、又は良分散しな
い溶媒を主成分とする塗布溶液を塗布成膜して作製する
と、上部色素の下部への侵入も無く、屈折率のコントロ
ールが容易である。
Further, light near 560 nm, which has the highest human luminous sensitivity, is absorbed by the absorption of the red dye. Also, this is a display device using a phosphor such as a cathode ray tube,
It also works to absorb the phosphor sidebands. If the lower layer is made of a conductive film, it also has an antistatic effect.
In preparing these laminated films, it is necessary to add independent dyes to the upper and lower films. this is,
This means that when a laminated film is produced, no bleeding of the dye should occur in each layer. For this reason, when the uppermost layer film is formed by applying and forming a coating solution mainly containing a solvent in which the dye contained in the layer immediately below does not dissolve or disperse well, the lower dye may seep to the upper part. No control of refractive index. The layer immediately below the uppermost layer is formed by applying and forming a coating solution mainly containing a solvent in which the dye contained in the uppermost layer does not dissolve or disperse well. Control of the refractive index is easy.

【0030】SiO2 を主成分として、近赤外領域に吸
収を持つ色素と青色色素を含む膜と、そのすぐ下の導電
性を有し、近赤外領域に吸収を持つ色素と青色色素が溶
けない、又は良分散しない溶媒を主成分とする塗布溶液
を塗布成膜して作製した導電膜の少なくとも2層の膜を
最表面に有するブラウン管も、図1に分光反射率曲線1
で示されるように、従来のブラウン管よりも可視光領域
全域に渡って低反射のブラウン管が得られる。
A film containing SiO 2 as a main component and a dye and a blue dye having absorption in the near infrared region, and a dye and a blue dye having conductivity immediately below and having absorption in the near infrared region are formed. A CRT having at least two layers of a conductive film formed by applying a coating solution containing a solvent that does not dissolve or disperse well as a main component on the outermost surface is also shown in FIG.
As shown in the above, a CRT with lower reflection over the entire visible light region than the conventional CRT can be obtained.

【0031】最上層のすぐ下の層がSnO2、ZnO又
はITOを含む膜であれば、高屈折率の膜として作用す
る。これらの膜は導電性を有するため、帯電防止効果も
兼ね備えることができる。この導電膜は、最上層のすぐ
下の層であることが望ましい。なぜなら通常、導電膜の
屈折率は酸化物系の物質のうちでは大きい方に分類され
る。そのためガラス上の2層膜を考えた場合、それらの
比が1.23となるためには上層の屈折率より下層の屈
折率の方が大きくなくてはならないからである。
If the layer immediately below the uppermost layer contains SnO 2 , ZnO or ITO, it acts as a high refractive index film. Since these films have conductivity, they can also have an antistatic effect. This conductive film is desirably a layer immediately below the uppermost layer. This is because the refractive index of a conductive film is generally classified into a larger one among oxide-based materials. Therefore, when a two-layer film on glass is considered, the refractive index of the lower layer must be larger than that of the upper layer in order for the ratio to be 1.23.

【0032】また、色素混入の効果は、偶数番目だけ、
又は奇数番目だけの膜に色素を加えた場合においてもみ
られる。少なくとも2層の薄膜を積層した多層構造の膜
を表面に有し、上から数えて奇数番目の膜に、300〜
400nmの領域に吸収ピークをもつ物質を含む反射防
止膜を作製すると、すぐ下の層に赤色色素を含まなくて
も400nm付近の反射を抑えることができる。これ
は、300〜400nmの領域に吸収ピークをもつとそ
れより長波長側の400nm付近の屈折率が大きくな
り、その結果、下地の高屈折率の膜との屈折率差が小さ
くなるためである。
In addition, the effect of the pigment mixture is only for the even-numbered
Or, it is also observed when a dye is added to only odd-numbered films. A film having a multilayer structure in which at least two thin films are stacked is provided on the surface, and an odd-numbered film counted from the top has a thickness of 300 to
When an antireflection film containing a substance having an absorption peak in the region of 400 nm is manufactured, reflection at around 400 nm can be suppressed even if the layer immediately below does not contain a red pigment. This is because, when an absorption peak is in the region of 300 to 400 nm, the refractive index near 400 nm on the longer wavelength side becomes larger, and as a result, the difference in refractive index from the underlying high refractive index film becomes smaller. .

【0033】以上説明した高性能反射防止膜を得るため
の原理は、2層構造膜だけでなく、多層構造の膜にも適
用できる。ただし色素を混入する層は、なるべく最上層
に近い層であることが望ましい。なぜなら外光が反射防
止膜に入射して下の層との界面で反射する際、最上層と
そのすぐ下の層との界面での反射が一番大きく、順次下
の層へ進むに従って、小さくなる。したがって色素混入
の効果が最も顕著に現われるのが最上層とそのすぐ下の
層に添加したときだからである。
The principle described above for obtaining a high-performance antireflection film can be applied not only to a film having a two-layer structure but also to a film having a multilayer structure. However, the layer in which the dye is mixed is desirably a layer as close to the uppermost layer as possible. Because, when external light is incident on the anti-reflection film and reflected at the interface with the lower layer, the reflection at the interface between the uppermost layer and the layer immediately below it is the largest, and as the light progresses to the lower layer, it becomes smaller in order. Become. Therefore, the effect of the incorporation of the dye is most remarkably exhibited when it is added to the uppermost layer and the layer immediately below.

【0034】[0034]

【発明の実施の形態】以下、実施例によって本発明を詳
細に説明する。 〔実施例1〕重量比でSi(OC25)4:H2O:HNO
3:THF=2:1:0.1:20の溶液を調製し、こ
れに700nm〜900nmの近赤外領域に吸収ピーク
を持つシリコンナフタロシアニンと、600nm〜70
0nmの間に吸収ピークを持つ銅フタロシアニンをそれ
ぞれ重量で0.18%になるように混入した。また、粒
径20nmのITO微粒子を分散したエタノールに重量
で0.06%になるように500nm〜600nmの間
に吸収ピークを持つアシッドレッドを混入した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to examples. EXAMPLE 1 Si in a weight ratio (OC 2 H 5) 4: H 2 O: HNO
3 : A solution of THF = 2: 1: 0.1: 20 was prepared, and silicon naphthalocyanine having an absorption peak in the near infrared region of 700 nm to 900 nm was added thereto.
Copper phthalocyanine having an absorption peak at 0 nm was mixed so as to be 0.18% by weight. Acid red having an absorption peak between 500 nm and 600 nm was mixed with ethanol in which ITO fine particles having a particle diameter of 20 nm were dispersed so that the weight became 0.06%.

【0035】このアシッドレッド含有ITO溶液をブラ
ウン管表面に150rpmで回転塗布し、乾燥後、シリ
コンナフタロシアニンと銅フタロシアニン含有SiO2
溶液を150rpmで回転塗布した。この時、フタロシ
アニン、ナフタロシアニン系色素はTHFには良分散す
るがエタノールにはほとんど分散せず、またアシッドレ
ッドはエタノールには溶解するが、THFにはほとんど
溶解しないため、それぞれの層の色素が他の層にしみだ
すことはなかった。成膜後、160℃で30分間熱処理
した。
This acid red-containing ITO solution was spin-coated at 150 rpm on the surface of a cathode ray tube, dried, and then dried with silicon naphthalocyanine and copper phthalocyanine-containing SiO 2.
The solution was spin coated at 150 rpm. At this time, the phthalocyanine and naphthalocyanine dyes are well dispersed in THF but are hardly dispersed in ethanol, and acid red is dissolved in ethanol but hardly dissolved in THF. It did not seep into other layers. After the film formation, heat treatment was performed at 160 ° C. for 30 minutes.

【0036】作製したブラウン管の断面図を図8に示
す。図中、6はシリコンナフタロシアニンと銅フタロシ
アニン含有SiO2 膜、7はアシッドレッド含有ITO
膜、8はブラウン管である。それぞれの膜厚は約100
nmであった。このブラウン管の最表面の膜の透過率と
屈折率を、図6(a)(b)に示す。また、最表面から
2層目の膜の透過率と屈折率を、図7(a)(b)に示
す。
FIG. 8 shows a sectional view of the produced cathode ray tube. In the figure, 6 is a SiO 2 film containing silicon naphthalocyanine and copper phthalocyanine, and 7 is ITO containing acid red.
Reference numeral 8 denotes a cathode ray tube. Each film thickness is about 100
nm. FIGS. 6A and 6B show the transmittance and the refractive index of the film on the outermost surface of the cathode ray tube. FIGS. 7A and 7B show the transmittance and the refractive index of the second film from the outermost surface.

【0037】このブラウン管の分光反射率曲線を、図1
に曲線1で示す。図1の曲線2は、本実施例と同じ、た
だし色素を含有しない反射防止膜を被着したブラウン管
の分光反射率曲線である。図1から明らかなように、本
実施例のブラウン管は下層の屈折率が充分低いにもかか
わらず、各層に色素を混入しないときに問題となってい
た極端なV字型の反射カーブは現れず可視光領域全域に
渡って非常に反射の少ない、また560nm付近のサイ
ドバンドのない高精細なものであった。また、このブラ
ウン管はITO微粒子が導電性を有するため表面抵抗が
105 Ω/□台と低く、帯電防止効果も兼ね備えてい
た。
FIG. 1 shows the spectral reflectance curve of this CRT.
Is shown by curve 1. Curve 2 in FIG. 1 is the spectral reflectance curve of a CRT with the same antireflection film containing no dye as in the present example. As is clear from FIG. 1, the cathode ray tube of the present embodiment does not show an extreme V-shaped reflection curve, which is a problem when no dye is mixed in each layer, although the refractive index of the lower layer is sufficiently low. It had very little reflection over the entire visible light region, and had high definition without side bands around 560 nm. In addition, this cathode ray tube had a low surface resistance of the order of 10 5 Ω / □ because the ITO fine particles had conductivity, and also had an antistatic effect.

【0038】また、銅フタロシアニンの代わりにメチレ
ングリーンやブリリアントクレジルブルーを用い、アシ
ッドレッドの代わりにアリザリンレッド、クリスタルバ
イオレッドやキナクリドンを用い、更に、シリコンナフ
タロシアニンの代わりにアントラキノンやポリメチンを
用いて、上記と同様にして反射防止膜を作製した。それ
ぞれの色素の濃度は0.06wt%、膜厚は約100n
mとした。こうして作製した種々の反射防止膜の反射ス
ペクトルを図9に示す。図中、曲線21は下層にアザリ
ンレッド、上層にメチレングリーンとアントラキノンを
混合した積層膜の反射率曲線、曲線22は下層にクリス
タルバイオレット、上層にブリリアントクレジルブルー
とポリメチンを混合した積層膜の反射率曲線、曲線23
は下層にキナクリドン、上層にメチレングリーン及びポ
リメチンを混合した積層膜の反射率曲線である。図9か
ら分かるように、吸収ピーク位置が略同じ色素であれば
どの様な色素を用いても同様に優れた反射特性を有する
膜が得られる。
Further, methylene green or brilliant cresyl blue is used in place of copper phthalocyanine, alizarin red, crystal violet or quinacridone is used in place of acid red, and anthraquinone or polymethine is used in place of silicon naphthalocyanine. An antireflection film was produced in the same manner as described above. The concentration of each dye is 0.06 wt%, and the film thickness is about 100 n
m. FIG. 9 shows the reflection spectra of various antireflection films thus produced. In the drawing, curve 21 is a reflectance curve of a laminated film in which azaline red is mixed in the lower layer, methylene green and anthraquinone are mixed in the upper layer, and curve 22 is a reflection of a laminated film in which crystal violet is mixed in the lower layer and brilliant cresyl blue and polymethine are mixed in the upper layer. Rate curve, curve 23
Is a reflectance curve of a laminated film in which quinacridone is mixed in the lower layer and methylene green and polymethine are mixed in the upper layer. As can be seen from FIG. 9, a film having excellent reflection characteristics can be obtained using any dye as long as the dye has the same absorption peak position.

【0039】〔実施例2〕重量比でSi(OC25)4
2O:HNO3:THF=2:1:0.1:20の溶液
を調製し、これに600nm〜700nmの間に吸収ピ
ークを持つ銅フタロシアニンを重量で0.18%になる
ように混入した。また、粒径20nmのITO微粒子を
分散したエタノールに重量で0.06%になるように5
00nm〜600nmの間に吸収ピークを持つアシッド
レッドを混入した。
Example 2 Si (OC 2 H 5 ) 4 in weight ratio:
A solution of H 2 O: HNO 3 : THF = 2: 1: 0.1: 20 was prepared, and copper phthalocyanine having an absorption peak between 600 nm and 700 nm was mixed therein to be 0.18% by weight. did. Further, 5% by weight of ethanol was dispersed in ethanol in which ITO fine particles having a particle diameter of 20 nm were dispersed so as to be 0.06%.
Acid red having an absorption peak between 00 nm and 600 nm was mixed.

【0040】このアシッドレッド含有ITO溶液をブラ
ウン管最表面に150rpmで回転塗布し、乾燥後、銅
フタロシアニン含有SiO2 溶液を150rpmで回転
塗布した。この時、フタロシアニン系色素はTHFには
良分散するがエタノールにはほとんど分散せず、またア
シッドレッドはエタノールには溶解するが、THFには
ほとんど溶解しないため、それぞれの層の色素が他の層
にしみだすことはなかった。成膜後、160℃で30分
間熱処理した。それぞれの層の膜厚は約100nmであ
った。
The ITO solution containing acid red was spin-coated on the outermost surface of the cathode ray tube at 150 rpm, and after drying, the SiO 2 solution containing copper phthalocyanine was spin-coated at 150 rpm. At this time, the phthalocyanine dye is well dispersed in THF but hardly dispersed in ethanol, and acid red is dissolved in ethanol but hardly dissolved in THF. It did not seep. After the film formation, heat treatment was performed at 160 ° C. for 30 minutes. The thickness of each layer was about 100 nm.

【0041】このブラウン管の最表面の膜の透過率と屈
折率を図10(a),(b)に示す。このブラウン管
は、図11に示すように600nm以下の領域で非常に
反射の少ない、また560nm付近のサイドバンドのな
い高精細なものであった。また、このブラウン管はIT
O微粒子が導電性を有するため表面抵抗が105 Ω/□
台と低く、帯電防止効果も兼ね備えていた。
FIGS. 10A and 10B show the transmittance and the refractive index of the film on the outermost surface of the cathode ray tube. As shown in FIG. 11, the CRT had very little reflection in a region of 600 nm or less and had high definition without a side band around 560 nm. In addition, this cathode ray tube is IT
Surface resistance is 10 5 Ω / □ because O particles are conductive
It was as low as a table and had an antistatic effect.

【0042】〔実施例3〕重量比でSi(OC25)4
2O:HNO3:THF=2:1:0.1:20の溶液
を調製し、これに700nm〜900nmの間に吸収ピ
ークを持つシリコンナフタロシアニンを重量で0.18
%になるように混入した。また、粒径20nmのITO
微粒子を分散したエタノールに、重量で0.06%にな
るように500nm〜600nmの間に吸収ピークを持
つローダミンBを混入した。
Example 3 Si (OC 2 H 5 ) 4 by weight ratio:
A solution of H 2 O: HNO 3 : THF = 2: 1: 0.1: 20 was prepared, and silicon naphthalocyanine having an absorption peak between 700 nm and 900 nm was added thereto in an amount of 0.18 by weight.
%. In addition, ITO having a particle size of 20 nm
Rhodamine B having an absorption peak between 500 nm and 600 nm was mixed with ethanol in which the fine particles were dispersed so as to be 0.06% by weight.

【0043】このローダミンB含有ITO溶液をブラウ
ン管最表面に150rpmで回転塗布し、乾燥後、シリ
コンナフタロシアニン含有SiO2 溶液を150rpm
で回転塗布した。この時、ナフタロシアニン系色素はT
HFには良分散するがエタノールにはほとんど分散せ
ず、またローダミン系色素はエタノールには溶解する
が、THFにはほとんど溶解しないため、それぞれの層
の色素が他の層にしみだすことはなかった。成膜後、1
60℃で30分間熱処理した。それぞれの膜厚は約10
0nmであった。
This rhodamine B-containing ITO solution was spin-coated at 150 rpm on the top surface of a cathode ray tube, dried, and then silicon naphthalocyanine-containing SiO 2 solution was rolled at 150 rpm.
And spin coated. At this time, the naphthalocyanine dye is T
The pigment in each layer was well dispersed in HF but hardly dispersed in ethanol, and the rhodamine dye was soluble in ethanol but hardly dissolved in THF, so that the dye in each layer did not seep into other layers. . After film formation, 1
Heat treatment was performed at 60 ° C. for 30 minutes. Each film thickness is about 10
It was 0 nm.

【0044】このブラウン管の最表面の膜の透過率と屈
折率を図12(a),(b)に示す。また、2層目の透
過率と屈折率は図7(a),b)と同様であった。この
ブラウン管は、図13に示すように、可視光全域に渡っ
て反射の少ない、また560nm付近のサイドバンドの
ない高精細なものであった。また、このブラウン管はI
TO微粒子が導電性を有するため、表面抵抗が105 Ω
/□台と低く、帯電防止効果も兼ね備えていた。
FIGS. 12A and 12B show the transmittance and the refractive index of the film on the outermost surface of the cathode ray tube. The transmittance and the refractive index of the second layer were the same as in FIGS. 7A and 7B. As shown in FIG. 13, this CRT had high reflection with little reflection over the entire visible light range and no side band near 560 nm. Also, this CRT is I
Since the TO fine particles have conductivity, the surface resistance is 10 5 Ω.
/ □ low, and also had an antistatic effect.

【0045】〔実施例4〕重量比でSi(OC25)4
2O:HNO3:THF=2:1:0.1:20の溶液
を調製し、これに700nm〜900nmの間に吸収ピ
ークを持つシリコンナフタロシアニンと、600nm〜
700nmの間に吸収ピークを持つ銅フタロシアニンを
それぞれ重量で0.18%になるように混入した。ま
た、重量比でTi(OC37)4:H2O:HNO3:Et
OH=3:1:0.1:20の溶液を調製した。
Example 4 Si (OC 2 H 5 ) 4 in weight ratio:
A solution of H 2 O: HNO 3 : THF = 2: 1: 0.1: 20 was prepared, and silicon naphthalocyanine having an absorption peak between 700 nm and 900 nm was added thereto.
Copper phthalocyanine having an absorption peak between 700 nm was mixed so as to be 0.18% by weight. Also, by weight ratio, Ti (OC 3 H 7 ) 4 : H 2 O: HNO 3 : Et.
A solution of OH = 3: 1: 0.1: 20 was prepared.

【0046】このTiO2 溶液をブラウン管最表面に1
50rpmで回転塗布し、乾燥後、シリコンナフタロシ
アニンと銅フタロシアニン含有SiO2 溶液を150r
pmで回転塗布した。この時、フタロシアニン、ナフタ
ロシアニン系色素はTHFには良分散するがエタノール
にはほとんど分散しないため、色素が下の層にしみだす
ことはなかった。成膜後、160℃で30分間熱処理し
た。それぞれの膜厚は約100nmであった。このブラ
ウン管は、図14に示すように、可視光領域全域に渡っ
て非常に反射の少ない高精細なものであった。
This TiO 2 solution is applied to the top surface of the cathode ray tube by 1
After spin-coating at 50 rpm and drying, the SiO 2 solution containing silicon naphthalocyanine and copper phthalocyanine is
Spin coating at pm. At this time, the phthalocyanine and naphthalocyanine dyes were well dispersed in THF but hardly dispersed in ethanol, so that the dyes did not seep into the lower layer. After the film formation, heat treatment was performed at 160 ° C. for 30 minutes. Each film thickness was about 100 nm. As shown in FIG. 14, this cathode ray tube had a high definition with very little reflection over the entire visible light region.

【0047】〔実施例5〕重量比でSi(OC25)4
2O:HNO3:THF=2:1:0.1:20の溶液
を調製し、これに700nm〜900nmの近赤外領域
に吸収ピークを持つシリコンナフタロシアニンと、60
0nm〜700nmの間に吸収ピークを持つ銅フタロシ
アニンをそれぞれ重量で0.18%になるように混入し
た。また、粒径20nmのSnO2 微粒子を分散したエ
タノールに、重量で0.06%になるように500nm
〜600nmの間に吸収ピークを持つアシッドレッドを
混入した。
Example 5 Si (OC 2 H 5 ) 4 in weight ratio:
A solution of H 2 O: HNO 3 : THF = 2: 1: 0.1: 20 was prepared, and silicon naphthalocyanine having an absorption peak in a near-infrared region from 700 nm to 900 nm was added thereto.
Copper phthalocyanine having an absorption peak between 0 nm and 700 nm was mixed so as to be 0.18% by weight. In addition, 500 nm so that the weight becomes 0.06% in ethanol in which SnO 2 fine particles having a particle diameter of 20 nm are dispersed.
Acid red having an absorption peak between -600 nm was mixed.

【0048】このアシッドレッド含有SnO2 溶液をブ
ラウン管最表面に150rpmで回転塗布し、乾燥後、
シリコンナフタロシアニンと銅フタロシアニン含有Si
2溶液を150rpmで回転塗布した。この時、フタ
ロシアニン、ナフタロシアニン系色素はTHFには良分
散するがエタノールにはほとんど分散せず、またアシッ
ドレッドはエタノールには溶解するが、THFにはほと
んど溶解しないため、それぞれの層の色素が他の層にし
みだすことはなかった。成膜後、160℃で30分間熱
処理した。それぞれの層の膜厚は約100nmであっ
た。このブラウン管は、図15に示す反射率曲線を示す
ように、可視光全域に渡って非常に反射の少ない、また
560nm付近のサイドバンドのない高精細なものであ
った。また、このブラウン管はSnO2 微粒子が導電性
を有するため表面抵抗が106 Ω/□台と低く、帯電防
止効果も兼ね備えていた。
This acid red-containing SnO 2 solution was spin-coated at 150 rpm on the outermost surface of a cathode ray tube, dried and dried.
Silicon containing naphthalocyanine and copper phthalocyanine
The O 2 solution was spin coated at 150 rpm. At this time, the phthalocyanine and naphthalocyanine dyes are well dispersed in THF but are hardly dispersed in ethanol, and acid red is dissolved in ethanol but hardly dissolved in THF. It did not seep into other layers. After the film formation, heat treatment was performed at 160 ° C. for 30 minutes. The thickness of each layer was about 100 nm. As shown in the reflectance curve of FIG. 15, the CRT had very little reflection over the entire visible light range, and had high definition without a side band near 560 nm. The cathode ray tube had a low surface resistance of the order of 10 6 Ω / □ due to the electrical conductivity of the SnO 2 fine particles, and also had an antistatic effect.

【0049】〔実施例6〕重量比でSi(OC25)4
2O:HNO3:THF=2:1:0.1:20の溶液
を調製し、これに700nm〜900nmの間に吸収ピ
ークを持つシリコンナフタロシアニンと600nm〜7
00nmの間に吸収ピークを持つ銅フタロシアニンをそ
れぞれ重量で0.18%になるように混入した。また、
重量比でTi(OC37)4:H2O:HNO3:EtOH
=3:1:0.1:20の溶液を調製し、重量で0.0
6%になるように500nm〜600nmの間に吸収ピ
ークを持つアシッドレッドを混入した。
Example 6 Si (OC 2 H 5 ) 4 in weight ratio:
A solution of H 2 O: HNO 3 : THF = 2: 1: 0.1: 20 was prepared, and silicon naphthalocyanine having an absorption peak between 700 nm and 900 nm and 600 nm to 7 nm.
Copper phthalocyanine having an absorption peak between 00 nm was mixed so as to be 0.18% by weight. Also,
Ti (OC 3 H 7 ) 4 : H 2 O: HNO 3 : EtOH by weight ratio
= 3: 1: 0.1: 20 solution was prepared, 0.0
Acid red having an absorption peak between 500 nm and 600 nm was mixed so as to be 6%.

【0050】このアシッドレッド含有TiO2 溶液をブ
ラウン管最表面に150rpmで回転塗布し、乾燥後、
シリコンナフタロシアニンと銅フタロシアニン含有Si
2溶液を150rpmで回転塗布した。その後160
℃で30分間熱処理した。それぞれの層の膜厚は約10
0nmであった。このブラウン管の反射率を図16に示
すが、可視光領域全域に渡って非常に反射の少ない、ま
た560nm付近のサイドバンドのない高精細なもので
あった。
The acid red-containing TiO 2 solution was spin-coated at 150 rpm on the top surface of a cathode ray tube, dried, and then dried.
Silicon containing naphthalocyanine and copper phthalocyanine
The O 2 solution was spin coated at 150 rpm. Then 160
Heat treated at 300C for 30 minutes. The thickness of each layer is about 10
It was 0 nm. FIG. 16 shows the reflectance of this CRT. The CRT had very little reflection over the entire visible light region and had high definition without a side band around 560 nm.

【0051】〔実施例7〕重量比でSi(OC25)4
2O:HNO3:THF=2:1:0.1:20の溶液
を調製し、これに700nm〜900nmの間に吸収ピ
ークを持つシリコンナフタロシアニンと600nm〜7
00nmの間に吸収ピークを持つ銅フタロシアニンをそ
れぞれ重量で0.18%になるように混入した。また、
重量比でZn(OC25)2:H2O:HNO3:EtOH
=1.5:1:0.1:20の溶液を調製し、重量で
0.06%になるように500nm〜600nmの間に
吸収ピークを持つアシッドレッドを混入した。
Example 7 Si (OC 2 H 5 ) 4 in weight ratio:
A solution of H 2 O: HNO 3 : THF = 2: 1: 0.1: 20 was prepared, and silicon naphthalocyanine having an absorption peak between 700 nm and 900 nm and 600 nm to 7 nm.
Copper phthalocyanine having an absorption peak between 00 nm was mixed so as to be 0.18% by weight. Also,
Zn (OC 2 H 5 ) 2 : H 2 O: HNO 3 : EtOH by weight ratio
= 1.5: 1: 0.1: 20 was prepared, and acid red having an absorption peak between 500 nm and 600 nm was mixed so as to be 0.06% by weight.

【0052】このアシッドレッド含有ZnO溶液をブラ
ウン管最表面に150rpmで回転塗布し、乾燥後、シ
リコンナフタロシアニンと銅フタロシアニン含有SiO
2 溶液を150rpmで回転塗布した。その後160℃
で30分間熱処理した。それぞれの層の膜厚は約100
nmであった。このブラウン管の反射率を図17に示す
が、可視光全域に渡って反射の非常に少ない、また56
0nm付近のサイドバンドのない高精細なものであっ
た。また、このブラウン管はZnOが導電性を有するた
め表面抵抗が107 Ω/□台と低く、帯電防止効果も兼
ね備えていた。
This acid red-containing ZnO solution was spin-coated at 150 rpm on the top surface of a cathode ray tube, dried, and then dried with silicon naphthalocyanine and copper phthalocyanine-containing SiO2.
The two solutions were spin-coated at 150 rpm. Then 160 ° C
For 30 minutes. The thickness of each layer is about 100
nm. FIG. 17 shows the reflectance of this cathode ray tube. The reflectance is very small over the entire visible light range.
It was a high-definition device having no side band near 0 nm. In addition, this cathode-ray tube had a low surface resistance of the order of 10 7 Ω / □ due to the conductivity of ZnO, and also had an antistatic effect.

【0053】〔実施例8〕重量比でSi(OC25)4
2O:HNO3:THF=2:1:0.1:20の溶液
を調製し、これに300nm〜400nmの領域に吸収
ピークを持つ銅フタロシアニンを重量で0.18%にな
るように混入した。粒径20nmのITO微粒子を分散
したエタノール溶液をブラウン管最表面に150rpm
で回転塗布し、乾燥後、銅フタロシアニン含有SiO2
溶液を150rpmで回転塗布した。成膜後、160℃
で30分間熱処理した。それぞれの層の膜厚は約100
nmであった。
Example 8 Si (OC 2 H 5 ) 4 in weight ratio:
A solution of H 2 O: HNO 3 : THF = 2: 1: 0.1: 20 was prepared, and copper phthalocyanine having an absorption peak in a region of 300 nm to 400 nm was mixed with the solution to 0.18% by weight. did. An ethanol solution in which ITO fine particles having a particle size of 20 nm are dispersed is applied to the top surface of the cathode ray tube at 150 rpm
After spin-coating and drying, copper phthalocyanine-containing SiO 2
The solution was spin coated at 150 rpm. After film formation, 160 ° C
For 30 minutes. The thickness of each layer is about 100
nm.

【0054】このブラウン管は、ITO微粒子が導電性
を有し、表面抵抗が104 Ω/□台と低抵抗であるた
め、帯電防止効果も兼ね備えていた。また、色素を入れ
ないときの上下の膜のベース屈折率差が大きいにもかか
わらず、反射防止膜に色素を混入しないときに問題とな
っていた400nm付近の反射の立ち上がりもなく、図
18に示すように可視光全域に渡って反射の小さい高精
細なものが得られた。また、銅フタロシアニンの代わり
にUV吸収剤であるベンゾフェノン系色素を混入して
も、400nm付近の吸収の立上りのない反射特性を持
つ膜が得られた。
This cathode-ray tube also had an antistatic effect because the ITO fine particles had conductivity and the surface resistance was as low as 10 4 Ω / □. In addition, despite the large difference in base refractive index between the upper and lower films when no dye was added, there was no rise of reflection around 400 nm which was a problem when the dye was not mixed into the antireflection film, and FIG. As shown, a high-definition object with small reflection over the entire visible light range was obtained. Further, even when a benzophenone-based dye as a UV absorber was mixed in place of copper phthalocyanine, a film having a reflection characteristic without absorption rising near 400 nm was obtained.

【0055】〔実施例9〕重量比でSi(OC25)4
2O:HNO3:THF=2:1:0.1:20の溶液
を調製し、これに200nm〜400nmの領域に吸収
ピークを持つ銅フタロシアニンとシリコンナフタロシア
ニンをそれぞれ重量で0.18%になるように混入し
た。粒径20nmのITO微粒子を分散したエタノール
溶液をブラウン管最表面に150rpmで回転塗布し、
乾燥後、銅フタロシアニンとシリコンナフタロシアニン
含有SiO2 溶液を150rpmで回転塗布した。成膜
後、160℃で30分間熱処理した。それぞれの層の膜
厚は約100nmであった。
Example 9 Si (OC 2 H 5 ) 4 :
A solution of H 2 O: HNO 3 : THF = 2: 1: 0.1: 20 was prepared, and copper phthalocyanine and silicon naphthalocyanine each having an absorption peak in a region of 200 nm to 400 nm were added by 0.18% by weight. It was mixed so that it might become. An ethanol solution in which ITO fine particles having a particle diameter of 20 nm are dispersed is spin-coated at 150 rpm on the outermost surface of the cathode ray tube,
After drying, a SiO 2 solution containing copper phthalocyanine and silicon naphthalocyanine was spin-coated at 150 rpm. After the film formation, heat treatment was performed at 160 ° C. for 30 minutes. The thickness of each layer was about 100 nm.

【0056】このブラウン管はITO微粒子が導電性を
有するため、表面抵抗が104 Ω/□台と低抵抗であっ
て帯電防止効果も兼ね備えていた。また、下地膜の屈折
率が大きく、色素を入れないときの上下の膜のベース屈
折率差が大きいにもかかわらず、反射防止膜に色素を混
入しないときに問題となっていた400nm付近の反射
の立ち上がりもなく、図19に示すように可視光領域全
域に渡って反射の小さい高精細なものが得られた。
[0056] The cathode ray tube because the ITO fine particles is electrically conductive, the surface resistance was also combines 10 4 Ω / □ platform and antistatic effect with a low resistance. In addition, despite the large refractive index of the base film and the large difference in base refractive index between the upper and lower films when the dye is not added, the reflection around 400 nm which has become a problem when the dye is not mixed into the antireflection film. , And a high-definition device with small reflection over the entire visible light region was obtained as shown in FIG.

【0057】〔実施例10〕重量比でSi(OC
25)4:H2O:HNO3:THF=2:1:0.1:2
0の溶液を調製し、これに700nm〜900nmの近
赤外領域に吸収ピークを持つシリコンナフタロシアニン
と、600nm〜700nmの間に吸収ピークを持つ銅
フタロシアニンをそれぞれ重量で0.18%になるよう
に混入した。また、粒径20nmのITO微粒子を分散
したエタノールに重量で0.06%になるように、50
0nm〜600nmの間に吸収ピークを持つアシッドレ
ッドを混入した。また、重量比でTi(OC37)4:H2
O:HNO3:EtOH=3:1:0.1:20の溶液
を調製した。
[Embodiment 10] Si (OC
2 H 5) 4: H 2 O: HNO 3: THF = 2: 1: 0.1: 2
0 was prepared, and a silicon naphthalocyanine having an absorption peak in the near infrared region of 700 nm to 900 nm and a copper phthalocyanine having an absorption peak between 600 nm to 700 nm were respectively 0.18% by weight. Mixed. In addition, 50% by weight of 20% by weight of ethanol in ethanol in which ITO fine particles having a particle size of 20 nm are dispersed.
Acid red having an absorption peak between 0 nm and 600 nm was mixed. Also, the weight ratio of Ti (OC 3 H 7 ) 4 : H 2
A solution of O: HNO 3 : EtOH = 3: 1: 0.1: 20 was prepared.

【0058】このTi(OC37)4 ゾル溶液をブラウン
管最表面に150rpmで回転塗布し、乾燥後、アシッ
ドレッド含有ITO溶液を150rpmで回転塗布して
乾燥後、シリコンナフタロシアニンと銅フタロシアニン
含有SiO2 溶液150rpmで回転塗布した。この
時、フタロシアニン、ナフタロシアニン系色素はTHF
には良分散するがエタノールにはほとんど分散せず、ま
たアシッドレッドはエタノールには溶解するが、THF
にはほとんど溶解しないため、それぞれの層の色素が他
の層にしみだすことはなかった。このようにして3層膜
を成膜後、160℃で30分間熱処理した。それぞれの
層の膜厚は約100nmであった。
This Ti (OC 3 H 7 ) 4 sol solution was spin-coated at 150 rpm on the outermost surface of the cathode ray tube, dried, and then acid-red-containing ITO solution was spin-coated at 150 rpm, dried, and dried with silicon naphthalocyanine and copper phthalocyanine. Spin coating was performed at 150 rpm with a SiO 2 solution. At this time, the phthalocyanine and naphthalocyanine dyes are THF
Disperses well in ethanol but hardly disperses in ethanol, and acid red dissolves in ethanol,
The dye in each layer did not seep into the other layers because it hardly dissolved in the dye. After forming the three-layer film in this way, it was heat-treated at 160 ° C. for 30 minutes. The thickness of each layer was about 100 nm.

【0059】作製したブラウン管の断面図を図20に示
す。図中、9はTiO2 膜、6はシリコンナフタロシア
ニンと銅フタロシアニン含有SiO2 膜、7はアシッド
レッド含有ITO膜、8はブラウン管である。それぞれ
の膜の膜厚は約100nmであった。このブラウン管の
反射率を図21に示すが、可視光領域全域に渡って非常
に反射の少ない、また560nm付近のサイドバンドの
ない高精細なものであった。また、このブラウン管は、
ITO微粒子が導電性を有するため、表面抵抗が105
Ω/□台と低抵抗であり、帯電防止効果も兼ね備えてい
た。
FIG. 20 shows a sectional view of the produced cathode ray tube. In the figure, 9 is a TiO 2 film, 6 is a SiO 2 film containing silicon naphthalocyanine and copper phthalocyanine, 7 is an ITO film containing acid red, and 8 is a cathode ray tube. The thickness of each film was about 100 nm. FIG. 21 shows the reflectance of this cathode ray tube. The CRT had very little reflection over the entire visible light region and had high definition without a side band around 560 nm. Also, this CRT is
Since the ITO fine particles have conductivity, the surface resistance is 10 5
The resistance was as low as Ω / □, and it also had an antistatic effect.

【0060】[0060]

【発明の効果】本発明によると、色素含有膜の屈折率の
異常分散による反射率の変化を利用した広い可視波長領
域にわたって反射の少ない反射防止膜を得ることがで
き、また反射防止効果及び帯電防止効果を兼ね備えた高
精細表示装置を作製することができる。
According to the present invention, it is possible to obtain an anti-reflection film having low reflection over a wide visible wavelength region by utilizing a change in reflectance due to anomalous dispersion of the refractive index of the dye-containing film. A high-definition display device having a prevention effect can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】近赤外領域に吸収を持つ色素と青色色素含有S
iO2 膜と赤色色素含有ITO膜との積層膜の可視光領
域の反射率を示す図。
FIG. 1 shows a dye having absorption in the near infrared region and a blue dye-containing S
shows the reflectance in the visible region of the laminated film of the iO 2 film and the red dye-containing ITO film.

【図2】反射防止膜の断面図。FIG. 2 is a sectional view of an antireflection film.

【図3】広範な波長で無反射条件を満足する膜の屈折率
を示す図。
FIG. 3 is a view showing a refractive index of a film satisfying a non-reflection condition in a wide range of wavelengths.

【図4】図3に示した屈折率分散を達成するための吸収
ピークを示す図。
FIG. 4 is a diagram showing an absorption peak for achieving the refractive index dispersion shown in FIG.

【図5】多種類の色素によって吸収ピークを実現する方
法の説明図。
FIG. 5 is an explanatory diagram of a method for realizing an absorption peak with various kinds of dyes.

【図6】(a)は近赤外領域に吸収を持つ色素と青色色
素含有SiO2 膜の透過率を示す図、(b)は近赤外領
域に吸収を持つ色素と青色色素含有SiO2 膜の屈折率
を示す図。
6A is a diagram showing the transmittance of a dye having absorption in the near infrared region and a SiO 2 film containing a blue dye, and FIG. 6B is a diagram showing the transmittance of dye having absorption in the near infrared region and SiO 2 containing a blue dye. FIG. 4 is a diagram showing a refractive index of a film.

【図7】(a)は赤色色素含有ITO膜の透過率を示す
図、(b)は赤色色素含有ITO膜の屈折率を示す図。
7A is a diagram showing the transmittance of a red dye-containing ITO film, and FIG. 7B is a diagram showing the refractive index of a red dye-containing ITO film.

【図8】近赤外領域に吸収を持つ色素及び青色色素含有
SiO2 膜と、赤色色素含有ITOとの積層膜を最表面
に備えたブラウン管の模式図。
FIG. 8 is a schematic diagram of a cathode ray tube provided with a laminated film of a SiO 2 film containing a dye and a blue dye having absorption in the near infrared region and ITO containing a red dye on the outermost surface.

【図9】色素の種類を変えた反射防止膜の反射率を示す
図。
FIG. 9 is a graph showing the reflectance of an antireflection film in which the type of dye is changed.

【図10】(a)は銅フタロシアニン含有SiO2 膜の
透過率を示す図、(b)は銅フタロシアニン含有SiO
2 膜の屈折率を示す図。
10A is a diagram showing the transmittance of a copper phthalocyanine-containing SiO 2 film, and FIG. 10B is a diagram showing the copper phthalocyanine-containing SiO 2 film.
The figure which shows the refractive index of two films.

【図11】銅フタロシアニン含有SiO2 膜とアシッド
レッド含有ITO膜との積層膜を最表面に備えたブラウ
ン管の反射率を示す図。
FIG. 11 is a diagram showing the reflectance of a CRT provided with a laminated film of a copper phthalocyanine-containing SiO 2 film and an acid red-containing ITO film on the outermost surface.

【図12】(a)はシリコンナフタロシアニン含有Si
2 膜の透過率を示す図、(b)はシリコンナフタロシ
アニン含有SiO2 膜の屈折率を示す図。
FIG. 12 (a) shows silicon-naphthalocyanine-containing Si
O 2 film shows a transmittance of, (b) is a diagram showing a refractive index of the silicon naphthalocyanine-containing SiO 2 film.

【図13】シリコンナフタロシアニン含有SiO2 膜と
ローダミン含有ITO膜との積層膜を最表面に備えたブ
ラウン管の反射率を示す図。
FIG. 13 is a view showing the reflectance of a CRT provided with a laminated film of a silicon naphthalocyanine-containing SiO 2 film and a rhodamine-containing ITO film on the outermost surface.

【図14】シリコンナフタロシアニン及び銅フタロシア
ニン含有SiO2 膜とTiO2 膜との積層膜を最表面に
備えたブラウン管の反射率を示す図。
FIG. 14 is a diagram showing the reflectance of a CRT provided with a laminated film of a SiO 2 film containing silicon naphthalocyanine and copper phthalocyanine and a TiO 2 film on the outermost surface.

【図15】シリコンナフタロシアニン及び銅フタロシア
ニン含有SiO2 膜とアシッドレッド含有SnO2 膜と
の積層膜を最表面に備えたブラウン管の反射率を示す
図。
FIG. 15 is a diagram showing the reflectance of a CRT provided with a laminated film of an SiO 2 film containing silicon naphthalocyanine and copper phthalocyanine and a SnO 2 film containing acid red on the outermost surface.

【図16】シリコンナフタロシアニン及び銅フタロシア
ニン含有SiO2 膜とアシッドレッド含有TiO2 膜と
の積層膜を最表面に備えたブラウン管の反射率を示す
図。
FIG. 16 is a diagram showing the reflectance of a CRT provided with a laminated film of a SiO 2 film containing silicon naphthalocyanine and copper phthalocyanine and a TiO 2 film containing acid red on the outermost surface.

【図17】シリコンナフタロシアニン及び銅フタロシア
ニン含有SiO2 膜とアシッドレッド含有ZnO膜との
積層膜を最表面に備えたブラウン管の反射率を示す図。
FIG. 17 is a diagram showing the reflectance of a CRT provided with a laminated film of a SiO 2 film containing silicon naphthalocyanine and copper phthalocyanine and a ZnO film containing acid red on the outermost surface.

【図18】銅フタロシアニン含有SiO2 膜とITO膜
との積層膜を最表面に備えたブラウン管の反射率を示す
図。
FIG. 18 is a view showing the reflectance of a CRT provided with a laminated film of a copper phthalocyanine-containing SiO 2 film and an ITO film on the outermost surface.

【図19】シリコンナフタロシアニン及び銅フタロシア
ニン含有SiO2 膜とITO膜との積層膜を最表面に備
えたブラウン管の反射率を示す図。
FIG. 19 is a view showing the reflectance of a CRT provided with a laminated film of an SiO 2 film containing silicon naphthalocyanine and copper phthalocyanine and an ITO film on the outermost surface.

【図20】近赤外領域に吸収を持つ色素及び青色色素含
有SiO2 膜と、赤色色素含有ITO膜と、TiO2
の3層積層膜を最表面に備えたブラウン管の断面模式
図。
FIG. 20 is a schematic cross-sectional view of a cathode ray tube provided with a three-layer laminated film of a dye and a blue dye-containing SiO 2 film having absorption in the near infrared region, a red dye-containing ITO film, and a TiO 2 film on the outermost surface.

【図21】近赤外領域に吸収を持つ色素及び青色色素含
有SiO2 膜と、赤色色素含有ITO膜と、TiO2
の3層積層膜を最表面に備えたブラウン管の反射率を示
す図。
FIG. 21 is a diagram showing the reflectance of a CRT provided with a three-layer laminated film of a dye and a blue dye-containing SiO 2 film having absorption in the near infrared region, a red dye-containing ITO film, and a TiO 2 film on the outermost surface. .

【符号の説明】[Explanation of symbols]

1…近赤外領域に吸収を持つ色素と青色色素含有SiO
2 膜と、赤色色素含有ITO膜からなる積層膜の反射ス
ペクトル、2…SiO2 膜とITO膜からなる積層膜の
反射スペクトル、3…低屈折率上層膜、4…高屈折率下
層膜、5…基板、6…銅フタロシアニン及びシリコンナ
フタロシアニン含有SiO2 膜、7…アシッドレッド含
有ITO膜、8…ブラウン管、9…TiO2 膜、10…
入射光、14…合成反射光
1: Dye having absorption in near infrared region and SiO containing blue dye
2 Reflection spectrum of laminated film composed of red dye-containing ITO film, 2 ... Reflection spectrum of laminated film composed of SiO 2 film and ITO film, 3 ... Lower refractive index upper film, 4 ... High refractive index lower film, 5 ... substrate, 6 ... copper phthalocyanine and silicon naphthalocyanine-containing SiO 2 film, 7 ... acid Red containing ITO film, 8 ... CRT, 9 ... TiO 2 film, 10 ...
Incident light, 14 ... synthetic reflected light

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09F 9/00 313 G09F 9/00 313 H01J 29/88 H01J 29/88 H04N 5/72 H04N 5/72 A (72)発明者 石川 敬郎 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 嘉本 大五郎 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 高橋 研 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 西沢 昌紘 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 (72)発明者 内山 則和 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G09F 9/00 313 G09F 9/00 313 H01J 29/88 H01J 29/88 H04N 5/72 H04N 5/72 A (72) Inventor Takao Ishikawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory Co., Ltd. (72) Inventor Daigoro Kamoto 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Stock Company Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Ken Takahashi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi Research Laboratory (72) Inventor, Masahiro Nishizawa 3300 Hayano, Mobara-shi, Chiba Co., Ltd. Hitachi, Ltd.Electronic Device Division (72) Inventor Norikazu Uchiyama 3300 Hayano, Mobara-shi, Chiba Pref.Hitachi, Ltd. In the Division

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2層の薄膜を積層した多層構
造を有し、最上層の膜とそのすぐ下の膜に各々光吸収ピ
ークの異なる色素を含むことを特徴とする反射防止膜。
1. An antireflection film having a multilayer structure in which at least two layers of thin films are stacked, wherein the uppermost film and the film immediately below it contain dyes having different light absorption peaks.
【請求項2】 最上層の膜の屈折率がそのすぐ下の膜の
屈折率よりも小さいことを特徴とする請求項1記載の反
射防止膜。
2. The antireflection film according to claim 1, wherein the refractive index of the uppermost film is smaller than that of the film immediately below the uppermost film.
【請求項3】 最上層の膜が700〜900nmの近赤
外領域に吸収ピークをもつ物質、又は600〜700n
mの領域に吸収ピークを持つ物質、又はその両者を含む
ことを特徴とする請求項2記載の反射防止膜。
3. A substance having an absorption peak in a near infrared region of 700 to 900 nm, or a material having an absorption peak of 600 to 700 nm.
3. The anti-reflection film according to claim 2, comprising a substance having an absorption peak in a region of m or both of them.
【請求項4】 最上層のすぐ下の膜が500〜600n
mの領域に吸収ピークを持つ物質を含むことを特徴とす
る請求項2記載の反射防止膜。
4. The film immediately below the uppermost layer has a thickness of 500 to 600 n.
3. The antireflection film according to claim 2, comprising a substance having an absorption peak in a region of m.
【請求項5】 最上層のすぐ下の膜が導電性を有するこ
とを特徴とする請求項2記載の反射防止膜。
5. The antireflection film according to claim 2, wherein the film immediately below the uppermost layer has conductivity.
【請求項6】 最上層のすぐ下の膜が導電性を有し、か
つ500〜600nmの領域に吸収ピークを持つ物質を
含むことを特徴とする請求項2記載の反射防止膜。
6. The antireflection film according to claim 2, wherein the film immediately below the uppermost layer has conductivity and contains a substance having an absorption peak in a range of 500 to 600 nm.
【請求項7】 最上層の膜が700〜900nmの近赤
外領域に吸収ピークをもつ物質、又は600〜700n
mの領域に吸収ピークを持つ物質、又はその両者を含
み、最上層のすぐ下の膜が導電性を有することを特徴と
する請求項2記載の反射防止膜。
7. A substance whose uppermost layer has an absorption peak in the near infrared region of 700 to 900 nm, or 600 to 700 n.
3. The anti-reflection coating according to claim 2, wherein a material having an absorption peak in a region m or both of them is included, and a film immediately below the uppermost layer has conductivity.
【請求項8】 最上層の膜が700〜900nmの近赤
外領域に吸収ピークをもつ物質、又は600〜700n
mの領域に吸収ピークを持つ物質、又はその両者を含
み、最上層のすぐ下の膜が500〜600nmの領域に
吸収ピークを持つ物質を含むことを特徴とする請求項2
記載の反射防止膜。
8. A substance whose uppermost film has an absorption peak in a near infrared region of 700 to 900 nm, or a material having an absorption peak of 600 to 700 nm.
3. A film having an absorption peak in the region of m or both thereof, and the film immediately below the uppermost layer contains a material having an absorption peak in the region of 500 to 600 nm.
The antireflection film as described in the above.
【請求項9】 最上層の膜が700〜900nmの近赤
外領域に吸収ピークをもつ物質、又は600〜700n
mの領域に吸収ピークを持つ物質、又はその両者を含
み、最上層のすぐ下の膜が500〜600nmの領域に
吸収ピークを持つ物質を含み、かつ導電性を有すること
を特徴とする請求項2記載の反射防止膜。
9. A substance whose uppermost layer has an absorption peak in the near infrared region of 700 to 900 nm, or 600 to 700 n
The film immediately below the uppermost layer contains a substance having an absorption peak in a region of 500 to 600 nm and has conductivity, including a substance having an absorption peak in a region of m or both. 2. The antireflection film according to 2.
【請求項10】 最上層の膜を作製する溶液として、そ
のすぐ下の膜に含まれる色素が溶けない、又は良分散し
ない溶媒を主成分とする溶液を用いることを特徴とする
請求項2記載の反射防止膜の作製方法。
10. The method according to claim 2, wherein the solution for forming the uppermost layer film is a solution mainly composed of a solvent in which the dye contained in the layer immediately below the layer does not dissolve or disperse well. Method for producing an anti-reflection film.
【請求項11】 最上層のすぐ下の層を作製する溶液と
して、最上層に含まれる色素が溶けない、又は良分散し
ない溶媒を主成分とする溶液を用いることを特徴とする
請求項2記載の反射防止膜の作製方法。
11. The solution for preparing a layer immediately below the uppermost layer, wherein a solution mainly containing a solvent in which a dye contained in the uppermost layer does not dissolve or disperse well is used. Method for producing an anti-reflection film.
【請求項12】 最上層に含まれる700〜900nm
の近赤外領域に吸収ピークをもつ物質がナフタロシアニ
ン系色素、アントラキノン系色素、ポリメチン系色素か
ら選ばれた色素であることを特徴とする請求項3、7、
8又は9記載の反射防止膜。
12. 700 to 900 nm contained in the uppermost layer
Wherein the substance having an absorption peak in the near infrared region is a dye selected from naphthalocyanine dyes, anthraquinone dyes, and polymethine dyes.
10. The antireflection film according to 8 or 9.
【請求項13】 最上層に含まれる600〜700nm
の領域に吸収ピークを持つ物質がフタロシアニン系色
素、フェノキサジン系色素、ブリリアントクレジルブル
ー系色素から選ばれた色素であることを特徴とする請求
項3、7、8又は9記載の反射防止膜。
13. 600 nm to 700 nm contained in the uppermost layer
10. The antireflection film according to claim 3, wherein the substance having an absorption peak in the region is a dye selected from a phthalocyanine dye, a phenoxazine dye, and a brilliant cresyl blue dye. .
【請求項14】 最上層のすぐ下の層に含まれる500
〜600nmの領域に吸収ピークを持つ物質がアゾ系色
素、キサンテン系色素、アントラキノン系色素、トリフ
ェニルメタン系色素、キナクリドン系色素から選ばれた
色素であるであることを特徴とする請求項4、6、8又
は9記載の反射防止膜。
14. 500 in a layer immediately below the top layer
The substance having an absorption peak in a range of from about 600 nm to about 600 nm is a dye selected from an azo dye, a xanthene dye, an anthraquinone dye, a triphenylmethane dye, and a quinacridone dye. 10. The antireflection film according to 6, 8 or 9.
【請求項15】 最上層のすぐ下の層にSnO2 が含ま
れることを特徴とする請求項5、6、7又は9記載の反
射防止膜。
15. The anti-reflection coating according to claim 5, wherein the layer immediately below the uppermost layer contains SnO 2 .
【請求項16】 最上層のすぐ下の層にITOが含まれ
ることを特徴とする請求項5、6、7又は9記載の反射
防止膜。
16. The antireflection film according to claim 5, wherein the layer immediately below the uppermost layer contains ITO.
【請求項17】 最上層のすぐ下の層にZnOが含まれ
ることを特徴とする請求項5、6、7又は9記載の反射
防止膜。
17. The antireflection film according to claim 5, wherein the layer immediately below the uppermost layer contains ZnO.
【請求項18】 少なくとも2層の薄膜を積層した多層
構造を有し、上から数えて奇数番目の膜に300〜40
0nmの領域に吸収ピークをもつ物質を含むことを特徴
とする反射防止膜。
18. A multilayer structure in which at least two layers of thin films are stacked, wherein odd-numbered films counted from above have a thickness of 300 to 40.
An anti-reflection film comprising a substance having an absorption peak in a region of 0 nm.
【請求項19】 300〜400nmの領域に吸収ピー
クをもつ物質がフタロシアニン系色素又はベンゾフェノ
ン系色素であることを特徴とする請求項18記載の反射
防止膜。
19. The antireflection film according to claim 18, wherein the substance having an absorption peak in a range of 300 to 400 nm is a phthalocyanine dye or a benzophenone dye.
【請求項20】 2層の薄膜を積層した積層構造を含
み、前記2層の薄膜は、反射防止したい波長領域の中心
波長に対して長波長側で屈折率差が大きく、短波長側で
屈折率差が小さいような屈折率分散を有することを特徴
とする反射防止膜。
20. A laminated structure in which two thin films are stacked, wherein the two thin films have a large difference in refractive index on the long wavelength side with respect to the center wavelength of the wavelength region to be antireflection, and refraction on the short wavelength side. An antireflection film having a refractive index dispersion such that a difference in index is small.
【請求項21】 2層の薄膜を積層した積層構造を含
み、前記2層の薄膜は、反射防止したい波長領域の長波
長側で屈折率が高く短波長側で屈折率が低いような屈折
率分散を有することを特徴とする反射防止膜。
21. A laminated structure in which two thin films are stacked, wherein the two thin films have a high refractive index on the long wavelength side and a low refractive index on the short wavelength side in a wavelength region to be antireflective. An anti-reflection film having dispersion.
【請求項22】 2層の薄膜を積層した積層構造を含
み、前記2層の薄膜は、反射防止したい波長領域の各波
長において光路長が略4分の1波長であり、かつ前記各
波長における屈折率の比が略一定であるような屈折率分
散を有することを特徴とする反射防止膜。
22. A laminated structure in which two layers of thin films are laminated, wherein the two-layer thin film has an optical path length of about a quarter wavelength at each wavelength in a wavelength region to be prevented from being reflected, and An antireflection film having a refractive index dispersion such that a refractive index ratio is substantially constant.
【請求項23】 所定の波長領域に吸収ピークを有する
色素の含有によって前記薄膜の屈折率分散を達成したこ
とを特徴とする請求項20〜22のいずれか1項記載の
反射防止膜。
23. The anti-reflection film according to claim 20, wherein the refractive index dispersion of the thin film is achieved by containing a dye having an absorption peak in a predetermined wavelength region.
【請求項24】 請求項1〜9、12〜23のいずれか
1項記載の反射防止膜を表面に備えたことを特徴とする
表示装置。
24. A display device comprising the antireflection film according to claim 1 on a surface thereof.
JP2000122482A 2000-01-01 2000-04-24 Anti-reflection film and display device having the anti-reflection film Pending JP2000356707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122482A JP2000356707A (en) 2000-01-01 2000-04-24 Anti-reflection film and display device having the anti-reflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122482A JP2000356707A (en) 2000-01-01 2000-04-24 Anti-reflection film and display device having the anti-reflection film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07059099A Division JP3098926B2 (en) 1995-03-17 1995-03-17 Anti-reflective coating

Publications (1)

Publication Number Publication Date
JP2000356707A true JP2000356707A (en) 2000-12-26

Family

ID=18632951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122482A Pending JP2000356707A (en) 2000-01-01 2000-04-24 Anti-reflection film and display device having the anti-reflection film

Country Status (1)

Country Link
JP (1) JP2000356707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055410A (en) * 2000-12-28 2002-07-08 모치즈키 아키히로 Near infrared absorption material
JP2007265871A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Organic electroluminescence element and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055410A (en) * 2000-12-28 2002-07-08 모치즈키 아키히로 Near infrared absorption material
JP2007265871A (en) * 2006-03-29 2007-10-11 Toppan Printing Co Ltd Organic electroluminescence element and display device

Similar Documents

Publication Publication Date Title
JP3098926B2 (en) Anti-reflective coating
KR950002430B1 (en) Cathode ray tube and its manufacturing method
EP1153322B1 (en) Dye combinations for image enhancement filters for color video displays
US4852974A (en) Anti-reflection film for an optical element consisting of an organic material
KR100682783B1 (en) Dye Compounds for Multi-Bandpass Filters for Video Displays
US6366012B1 (en) Cathode ray tube having a light absorbing filter layer formed on a glass panel thereof
KR100760169B1 (en) Light-absorptive antireflection filter, display device, and methods of producing the same
JP2000356707A (en) Anti-reflection film and display device having the anti-reflection film
TW440706B (en) Display apparatus
EP1058285B1 (en) Cathode ray tube
JPH0246403A (en) Colored filters and cathode ray tubes
US20020153824A1 (en) Display unit and manufacturing method thereof
JP3039945B2 (en) Color cathode ray tube
JP3196227B2 (en) Cathode ray tube and method of manufacturing the same
JP3779337B2 (en) Antireflection film and display device
JP2001066420A (en) Surface treatment film for display device and display device using the same
JPH10162756A (en) High definition cathode ray tube and method of manufacturing the same
Itou et al. A SiO2-ZrO2 Gel Film Doped with Organic Pigments Made by the Sol-Gel Method for Contrast Enhancement of Color Picture Tubes
KR100258917B1 (en) Aras coating for panel of crt
JPH01311546A (en) cathode ray tube
JPH06103931A (en) Cathode ray tube
JPH0754749B2 (en) Thin film EL device
JPH0536365A (en) Multifunction paint film
JPH06103930A (en) Cathode ray tube and manufacturing method thereof
KR20010021380A (en) Color picture screen with color filter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607