[go: up one dir, main page]

JP2000304906A - Microlens array for solid-state imaging device and solid-state imaging device using the same - Google Patents

Microlens array for solid-state imaging device and solid-state imaging device using the same

Info

Publication number
JP2000304906A
JP2000304906A JP11116472A JP11647299A JP2000304906A JP 2000304906 A JP2000304906 A JP 2000304906A JP 11116472 A JP11116472 A JP 11116472A JP 11647299 A JP11647299 A JP 11647299A JP 2000304906 A JP2000304906 A JP 2000304906A
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
microlens array
microlens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11116472A
Other languages
Japanese (ja)
Inventor
Osamu Koga
修 古賀
Tadashi Ishimatsu
忠 石松
Kenzo Fukuyoshi
健蔵 福吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP11116472A priority Critical patent/JP2000304906A/en
Publication of JP2000304906A publication Critical patent/JP2000304906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

(57)【要約】 【課題】固体撮像素子の受光部の受光効率を上げ、固体
撮像装置の感度や画質を向上できるマイクロレンズアレ
イ及び固体撮像素子を提供することを目的とする。 【解決手段】半導体基板11に受光部12、遮光部1
3、平坦化層14、カラーフイルター層15及びオーバ
ーコート層16を形成し、あらかじめ波長450nmで
の消衰係数が0.57×10-3になるように調整された
ポジ型レジスト(JSR(株)製)にて樹脂パターン層
を形成し、130℃で加熱・軟化させることにより凸レ
ンズ状のマイクロレンズ21及びマイクロレンズアレイ
22を有する固体撮像素子10を得る。さらに、マイク
ロレンズ21上に、あらかじめ波長450nmでの屈折
率が1.45になるように調合されたアクリル系樹脂に
て0.09μm厚の充填率改善層31を形成したマイク
ロレンズアレイ32を有する固体撮像素子20を得る。
(57) Abstract: An object is to provide a microlens array and a solid-state imaging device that can increase the light-receiving efficiency of a light-receiving section of a solid-state imaging device and improve the sensitivity and image quality of a solid-state imaging device. A light receiving unit and a light shielding unit are provided on a semiconductor substrate.
3. A positive resist (JSR (Co., Ltd.), in which a flattening layer 14, a color filter layer 15, and an overcoat layer 16 are formed and the extinction coefficient at a wavelength of 450 nm is adjusted in advance to 0.57 × 10 −3. The solid-state imaging device 10 having the convex lens-shaped microlenses 21 and the microlens array 22 is obtained by forming a resin pattern layer and heating and softening the resin pattern layer at 130 ° C. Further, on the microlens 21, there is provided a microlens array 32 in which a filling rate improving layer 31 having a thickness of 0.09 μm is formed of an acrylic resin prepared so that the refractive index at a wavelength of 450 nm is 1.45. The solid-state imaging device 20 is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はマイクロレンズアレ
イを設けた固体撮像素子に関し、特に光の利用効率を向
上させるマイクロレンズアレイに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device provided with a microlens array, and more particularly to a microlens array for improving light use efficiency.

【0002】[0002]

【従来の技術】固体撮像素子は、一般に半導体基板上に
受光部と電荷転送部とが設けられ、受光部で光電交換さ
れた電荷を電荷転送部に転送する構成となっている。こ
のため、半導体基板上の100%の領域を受光部とする
ことができず、受光部の受光効率を向上させる方法とし
て、水平方向、垂直方向に二次元的に配置されたフォト
ダイオードからなる受光部上にマイクロレンズ27を図
6のように配置し、受光部12に集光させることで、固
体撮像素子の感度を向上させている。
2. Description of the Related Art In general, a solid-state imaging device is provided with a light receiving section and a charge transfer section on a semiconductor substrate, and transfers charges photoelectrically exchanged by the light receiving section to the charge transfer section. For this reason, 100% of the area on the semiconductor substrate cannot be used as the light receiving portion. As a method for improving the light receiving efficiency of the light receiving portion, a light receiving device comprising photodiodes arranged two-dimensionally in the horizontal and vertical directions is used. The microlenses 27 are arranged on the unit as shown in FIG. 6 and are focused on the light receiving unit 12 to improve the sensitivity of the solid-state imaging device.

【0003】図6は従来の固体撮像素子30の構成を模
式的に示した部分断面図であり、11はシリコンからな
る半導体基板、12はフォトダイオードからなる受光
部、13は遮光部、14は平坦化層、15は色分解用の
カラーフィルター層、16はオーバーコート層、41は
マイクロレンズ、42はマイクロレンズアレイである。
FIG. 6 is a partial cross-sectional view schematically showing the structure of a conventional solid-state imaging device 30, in which 11 is a semiconductor substrate made of silicon, 12 is a light receiving portion made of a photodiode, 13 is a light shielding portion, and 14 is a light shielding portion. A flattening layer, 15 is a color filter layer for color separation, 16 is an overcoat layer, 41 is a micro lens, and 42 is a micro lens array.

【0004】入射光はマイクロレンズ41で集光され、
オーバーコート層16、カラーフイルター層15及び平
坦化層14を通り受光部12に入射し、入射光量に応じ
て電荷に変換され電荷転送される。このとき、入射光の
全部が受光部12上に入射しないで遮光部13上にも入
射し、この遮光部13上に入射した光量は電荷に変換さ
れないで、固体撮像素子の感度低下を招く一要因になっ
ている。
The incident light is condensed by a micro lens 41,
The light enters the light receiving section 12 through the overcoat layer 16, the color filter layer 15, and the flattening layer 14, is converted into electric charge according to the amount of incident light, and is transferred. At this time, all of the incident light does not enter the light receiving unit 12 but also enters the light shielding unit 13, and the amount of light incident on the light shielding unit 13 is not converted into electric charge, which causes a decrease in sensitivity of the solid-state imaging device. It is a factor.

【0005】近年、固体撮像素子の画素数を増やしたハ
ンディムーヴィー(商品名)やデジタル・スチル・カメ
ラ等の固体撮像装置として展開されている。単純に固体
撮像素子の画素数が増えた分だけ固体撮像素子含めた光
学系を大きくできれば問題ないが、この分野は小型化、
軽量化の傾向は強く、画素数は増えるが固体撮像装置は
従来と同じ大きさか、さらに小型化される傾向にある。
In recent years, solid-state imaging devices have been developed as solid-state imaging devices such as a handy movie (trade name) and a digital still camera in which the number of pixels of the solid-state imaging device is increased. There is no problem if the optical system including the solid-state image sensor can be simply increased by the amount of pixels of the solid-state image sensor.
There is a strong tendency to reduce the weight, and the number of pixels increases, but the solid-state imaging device tends to be the same size as before or smaller.

【0006】一定の寸法内に多くの画素数を納めようと
すれば、画素面積を小さくしなければならず、感度低下
や飽和出力電圧低下といった特性低下を招くことにな
る。このためフォトダイオードに入射する光量を高める
ことが必要になってくる。しかしながら、従来のマイク
ロレンズアレイを形成する方法ではレンズ形状及び位置
精度を制御するのに限界があり、感度向上に今以上の効
果を期待できないのが現状である。具体的には、マイク
ロレンズの画素ピッチが5μmの場合直径は4.5μm
のマイクロレンズを形成するのが限界である。
[0006] If a large number of pixels are to be accommodated within a certain size, the pixel area must be reduced, resulting in a reduction in characteristics such as a decrease in sensitivity and a decrease in saturation output voltage. For this reason, it is necessary to increase the amount of light incident on the photodiode. However, in the conventional method of forming a microlens array, there is a limit in controlling the lens shape and the positional accuracy, and at present, no further effect can be expected for improving the sensitivity. Specifically, when the pixel pitch of the micro lens is 5 μm, the diameter is 4.5 μm
The limit is to form a microlens.

【0007】また、マイクロレンズの材料として現在感
光性の有機樹脂を使用しているが、特に短波長域での光
吸収が大きく、短波長の透過率が低下して、波長により
固体撮像素子の感度や画質の低下を起こしたりする問題
がある。
Further, a photosensitive organic resin is currently used as the material of the microlens. Particularly, the light absorption in a short wavelength region is large, the transmittance of the short wavelength is reduced, and the solid-state imaging device is changed depending on the wavelength. There is a problem that the sensitivity and the image quality are reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記問題点に
鑑み考案されたもので、固体撮像素子の受光部の受光効
率を上げ、固体撮像装置の感度や画質を向上できるマイ
クロレンズアレイ及び固体撮像素子を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been devised in view of the above-mentioned problems, and a microlens array and a solid-state imaging device capable of improving the light-receiving efficiency of a light-receiving portion of a solid-state imaging device and improving the sensitivity and image quality of a solid-state imaging device. An object is to provide an imaging device.

【0009】[0009]

【課題を解決するための手段】本発明に於いて上記課題
を達成するために、まず請求項1においては、水平方向
と垂直方向に二次元的に配置された受光部上にマイクロ
レンズアレイが形成されてなる固体撮像素子において、
前記マイクロレンズアレイを構成しているマイクロレン
ズの消衰係数が波長450nmで1.82×10-3以下
であることを特徴とする固体撮像素子用マイクロレンズ
アレイとしたものである。
In order to achieve the above object, according to the present invention, first, a microlens array is provided on a light receiving portion arranged two-dimensionally in a horizontal direction and a vertical direction. In the solid-state imaging device formed,
A microlens array for a solid-state imaging device, wherein an extinction coefficient of a microlens constituting the microlens array is 1.82 × 10 −3 or less at a wavelength of 450 nm.

【0010】また、請求項2においては、前記マイクロ
レンズの表面に充填率改善層を設けたことを特徴とする
請求項1に記載の固体撮像素子用マイクロレンズアレイ
としたものである。
According to a second aspect of the present invention, there is provided the microlens array for a solid-state imaging device according to the first aspect, wherein a filling rate improving layer is provided on the surface of the microlens.

【0011】また、請求項3においては、前記充填率改
善層の屈折率が波長450nmで1.46以下であるこ
とを特徴とする請求項1又は2に記載の固体撮像素子用
マイクロレンズアレイとしたものである。
According to a third aspect of the present invention, there is provided a microlens array for a solid-state imaging device according to the first or second aspect, wherein a refractive index of the filling factor improving layer is 1.46 or less at a wavelength of 450 nm. It was done.

【0012】また、請求項4においては、前記充填率改
善層の光学膜厚が波長450nmで100〜150nm
の範囲であることを特徴とする請求項1ないし請求項3
のうちいずれか一項に記載の固体撮像素子用マイクロレ
ンズアレイとしたものである。
According to a fourth aspect of the present invention, the filling thickness improving layer has an optical thickness of 100 to 150 nm at a wavelength of 450 nm.
4. The method according to claim 1, wherein
A microlens array for a solid-state imaging device according to any one of the above.

【0013】さらにまた、請求項5においては、請求項
1ないし請求項4のうちいずれか一項に記載の固体撮像
素子用マイクロレンズアレイを設けたことを特徴とする
固体撮像素子としたものである。
According to a fifth aspect of the present invention, there is provided a solid-state imaging device comprising the solid-state imaging device microlens array according to any one of the first to fourth aspects. is there.

【0014】[0014]

【発明の実施の形態】本発明者らは上記課題を解決すべ
く鋭意検討を行い、マイクロレンズを形成している有機
樹脂の消衰係数(K)に着目し、有機樹脂の消衰係数と
透過率との関係を調べた結果、消衰係数が波長(450
nm)で1.82×10-3以下の樹脂でマイクロレンズ
を形成した場合実用上ブルーのピーク感度波長450n
mで透過率が85%以上を示すことが判明した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies in order to solve the above problems, and focused on the extinction coefficient (K) of the organic resin forming the microlens. As a result of examining the relationship with the transmittance, the extinction coefficient was changed to the wavelength (450
When a microlens is formed of a resin of 1.82 × 10 −3 or less in terms of nm), a blue peak sensitivity wavelength of 450 n is practically used.
It was found that the transmittance was 85% or more at m.

【0015】消衰係数(K)の異なる1.2μm厚の各
種樹脂層の各波長に対する透過率をシミュレーションし
た結果を図2に示す。図2からも分かるように、波長4
50nmでの透過率を85%以上に設定した場合1.8
2×10-3以下の消衰係数を有する樹脂を使ってマイク
ロレンズを形成すれば、固体撮像素子の感度向上に寄与
できることが分かる。
FIG. 2 shows the results of simulating the transmittance of various resin layers having a different extinction coefficient (K) of 1.2 μm thickness for each wavelength. As can be seen from FIG.
When the transmittance at 50 nm is set to 85% or more 1.8
It can be seen that forming a microlens using a resin having an extinction coefficient of 2 × 10 −3 or less can contribute to improvement in sensitivity of a solid-state imaging device.

【0016】また、マイクロレンズアレイの場合マイク
ロレンズ間のギャップをゼロにして形成できれば集光効
率を向上できるが、マイクロレンズを作製するプロセス
(材料、露光光学系、プロセス等)のバラツキを考慮す
るとマイクロレンズ間のギャップは0.5μmが限界で
ある。このマイクロレンズ間のギャップをゼロに近づけ
る方法としてマイクロレンズの表面に充填率改善層(透
明薄膜層)を形成することが有効であることを見いだし
た。
In the case of a micro-lens array, if the gap between the micro-lenses can be formed to be zero, the light-collecting efficiency can be improved. However, considering the variation in the process (material, exposure optical system, process, etc.) for manufacturing the micro-lenses, The gap between microlenses is limited to 0.5 μm. It has been found that it is effective to form a filling factor improving layer (transparent thin film layer) on the surface of the microlens as a method for bringing the gap between the microlenses close to zero.

【0017】この充填率改善層を形成することで、マイ
クロレンズ間のギャップを埋めることができ、より集光
効率を高くした固体撮像素子用のマイクロレンズアレイ
を作製できる。さらに、マイクロレンズの表面反射を低
減でき、総合的に集光効率を上げることができ、固体撮
像素子の感度向上に寄与できる。
By forming the filling rate improving layer, a gap between microlenses can be filled, and a microlens array for a solid-state imaging device with higher light-collecting efficiency can be manufactured. Further, the surface reflection of the microlens can be reduced, the light-collecting efficiency can be increased comprehensively, and the sensitivity of the solid-state imaging device can be improved.

【0018】マイクロレンズの表面反射を低減するに
は、充填率改善層としてマイクロレンズの屈折率よりも
低屈折の材料を用い、所定の膜厚で形成してやればよ
い。具体的には、1.82×10-3以下の消衰係数を有
するマイクロレンズ表面に波長450nmでの屈折率が
1.46以下で、且つ波長450nmでの光学膜厚(屈
折率×膜厚)が100〜150nmである充填率改善層
を設けることにより、波長450nmでマイクロレンズ
の表面反射率を3%以下にすることができる。
In order to reduce the surface reflection of the microlens, a material having a lower refractive index than that of the microlens may be used as the filling rate improving layer and may be formed to have a predetermined thickness. Specifically, on the surface of a microlens having an extinction coefficient of 1.82 × 10 −3 or less, the refractive index at a wavelength of 450 nm is 1.46 or less and the optical film thickness (refractive index × film thickness) at a wavelength of 450 nm. By providing the filling rate improving layer having a thickness of 100 to 150 nm, the surface reflectance of the microlens at a wavelength of 450 nm can be reduced to 3% or less.

【0019】以上説明したように本発明のマイクロレン
ズアレイは1.82×10-3以下の消衰係数を有する材
料でマイクロレンズを形成してやればマイクロレンズ単
体でも波長450nmで85%以上の透過率が得られる
が、マイクロレンズ表面に波長450nmでの屈折率が
1.46以下で、且つ波長450nmでの光学膜厚(屈
折率×膜厚)が100〜150nmである充填率改善層
を設けることにより、波長450nmで85%以上の透
過率が得られると同時に、マイクロレンズの表面反射率
を3%以下にすることができ、総合的にマイクロレンズ
アレイの集光効率を上げることができ、固体撮像素子の
感度向上に寄与できる。
As described above, if the microlens array of the present invention is formed of a material having an extinction coefficient of 1.82 × 10 −3 or less, the transmittance of the microlens alone is 85% or more at a wavelength of 450 nm. Is provided on the microlens surface with a filling rate improving layer having a refractive index at a wavelength of 450 nm of 1.46 or less and an optical film thickness (refractive index × film thickness) at a wavelength of 450 nm of 100 to 150 nm. As a result, a transmittance of 85% or more at a wavelength of 450 nm can be obtained, and at the same time, the surface reflectance of the microlens can be reduced to 3% or less. This can contribute to an improvement in the sensitivity of the imaging device.

【0020】[0020]

【実施例】以下実施例により本発明を詳細に説明する。
図1(a)に本発明の固体撮像素子用マイクロレンズア
レイ及び固体撮像素子の実施例1を模式的に示した部分
断面図を、図1(b)に本発明の固体撮像素子用マイク
ロレンズアレイ及び固体撮像素子の実施例2を模式的に
示した部分断面図をしめす。
The present invention will be described in detail with reference to the following examples.
1A is a partial cross-sectional view schematically showing a microlens array for a solid-state imaging device and a solid-state imaging device according to a first embodiment of the present invention, and FIG. 1B is a microlens for a solid-state imaging device according to the present invention. A partial cross-sectional view schematically showing Example 2 of an array and a solid-state imaging device is shown.

【0021】<実施例1>まず、フォトダイオードから
なる受光部12及びアルミニウムからなる遮光部13が
形成された半導体基板11上にアクリル系樹脂溶液をス
ピンナーで塗布し、所定厚の平坦化層14を形成した。
Embodiment 1 First, an acrylic resin solution is applied by a spinner on a semiconductor substrate 11 on which a light receiving portion 12 made of a photodiode and a light shielding portion 13 made of aluminum are formed, and a planarizing layer 14 having a predetermined thickness is formed. Was formed.

【0022】次に、平坦化層14上に、感光性顔料溶液
をスピンナーで塗布し、所定厚の感光性顔料層を形成
し、パターニング処理して、受光部上に一色目のカラー
フィルターを形成した。順次この工程を繰り返し、二色
目、三色目のカラーフィルターを形成し、Red、Gr
een、Blueからなる3色のカラーフィルター層1
5を形成した
Next, a photosensitive pigment solution is applied on the flattening layer 14 by a spinner to form a photosensitive pigment layer having a predetermined thickness, and is patterned to form a first color filter on the light receiving portion. did. This process is sequentially repeated to form a second color filter and a third color filter, and Red, Gr
color filter layer 1 of three colors consisting of eeen and Blue
Formed 5

【0023】次に、カラーフィルター層15上にアクリ
ル系樹脂溶液をスピンナーで回転塗布し、所定厚のオー
バーコート層16を形成した。
Next, an acrylic resin solution was spin-coated on the color filter layer 15 with a spinner to form an overcoat layer 16 having a predetermined thickness.

【0024】次に、オーバーコート層16上に、あらか
じめ波長450nmでの消衰係数が0.57×10-3
なるように調整されたポジ型レジスト(MER−35
4:JSR(株)製)をスピンナーで回転塗布し、感光
層を形成し、パターン露光して受光部12に対応した所
定サイズの樹脂パターン層を形成した。さらに、この樹
脂層パターン層を130℃で加熱・軟化させることによ
り凸レンズ状のマイクロレンズ21を形成し、マイクロ
レンズアレイ22を有する固体撮像素子10を得た(図
1(a)参照)。
Next, on the overcoat layer 16, a positive resist (MER-35) adjusted in advance so that the extinction coefficient at a wavelength of 450 nm is 0.57 × 10 -3.
4: JSR Corp.) was spin-coated with a spinner to form a photosensitive layer, and pattern exposure was performed to form a resin pattern layer of a predetermined size corresponding to the light receiving section 12. Further, this resin layer pattern layer was heated and softened at 130 ° C. to form a microlens 21 having a convex lens shape, thereby obtaining a solid-state imaging device 10 having a microlens array 22 (see FIG. 1A).

【0025】ここで、上記マイクロレンズアレイ22を
同一サイズのガラス基板上に別途作製したサンプルの分
光透過率を測定した結果を図3に示す。波長450nm
での透過率は88.5%を示し、本発明の請求項1の妥
当性が確認された。
FIG. 3 shows the results of measuring the spectral transmittance of a sample in which the microlens array 22 was separately formed on a glass substrate of the same size. 450nm wavelength
Showed 88.5%, which confirmed the validity of claim 1 of the present invention.

【0026】<実施例2>実施例1で得られたマイクロ
レンズ21上に、あらかじめ波長450nmでの屈折率
が1.45になるように調合されたアクリル系樹脂溶液
を、スピンナーで回転塗布し、0.09μm厚の充填率
改善層31を形成したマイクロレンズアレイ32を有す
る固体撮像素子20を作製した(図1(b)参照)。
<Embodiment 2> An acrylic resin solution previously prepared so that the refractive index at a wavelength of 450 nm is 1.45 is spin-coated on the microlens 21 obtained in Embodiment 1 with a spinner. A solid-state imaging device 20 having a microlens array 32 on which a filling factor improving layer 31 having a thickness of 0.09 μm was formed (see FIG. 1B).

【0027】充填率改善層31を形成することにより、
マイクロレンズ間のギャップは0.2μmになり、レン
ズの光学的充填率を76%から90%に向上することが
できた。
By forming the filling rate improving layer 31,
The gap between the micro lenses became 0.2 μm, and the optical filling factor of the lens could be improved from 76% to 90%.

【0028】上記マイクロレンズ21に充填率改善層3
1を形成したマイクロレンズアレイ32を同一サイズの
ガラス基板上に別途作製したサンプルの分光透過率を測
定した結果を図4に示す。波長450nmでの透過率は
90%を示し、マイクロレンズ単体のマイクロレンズア
レイ22に比べて更に1.5%の透過率向上が見られ
た。
The microlens 21 has a filling rate improving layer 3
FIG. 4 shows the result of measuring the spectral transmittance of a sample in which the microlens array 32 in which the sample No. 1 was formed was separately formed on a glass substrate of the same size. The transmittance at a wavelength of 450 nm was 90%, and the transmittance was further improved by 1.5% as compared with the microlens array 22 having a single microlens.

【0029】さらに、上記マイクロレンズ21に充填率
改善層31を形成したマイクロレンズアレイ32を同一
サイズのガラス基板上に別途作製したサンプルの分光反
射率特性を測定した結果を図5に示す。波長450nm
での反射率は2.4%を示し、従来のマイクロレンズ単
体のマイクロレンズアレイ42に比べて半分以下の反射
率にすることができた。
FIG. 5 shows the results of measuring the spectral reflectance characteristics of a sample in which a microlens array 32 in which the filling factor improving layer 31 is formed on the microlens 21 is separately formed on a glass substrate of the same size. 450nm wavelength
Shows a reflectance of 2.4%, which is less than half the reflectance of the conventional microlens array 42 with a single microlens.

【0030】<比較例>実施例1で得られた固体撮像素
子のオーバーコート層16上に、あらかじめ波長450
nmでの消衰係数が1.94×10-3になるように調整
されたポジ型レジスト(JSR(株)製)をスピンナー
で回転塗布し、感光層を形成し、パターン露光して受光
部12に対応した所定サイズの樹脂パターン層を形成し
た。さらに、この樹脂パターン層を130℃で加熱・軟
化させることにより凸レンズ状のマイクロレンズ41を
形成し、マイクロレンズアレイ42を有する固体撮像素
子30を得た(図6参照)。
<Comparative Example> On the overcoat layer 16 of the solid-state imaging device obtained in Example 1, a wavelength of 450
A positive resist (manufactured by JSR Corporation) adjusted to have an extinction coefficient in nm of 1.94 × 10 −3 is spin-coated with a spinner, a photosensitive layer is formed, pattern exposure is performed, and a light receiving portion is formed. A resin pattern layer of a predetermined size corresponding to No. 12 was formed. Further, the resin pattern layer was heated and softened at 130 ° C. to form a microlens 41 having a convex lens shape, thereby obtaining a solid-state imaging device 30 having a microlens array 42 (see FIG. 6).

【0031】ここで、上記マイクロレンズアレイ42を
同一サイズのガラス基板上に別途作製したサンプルの分
光透過率を測定した結果を図7に、分光反射率を測定し
た結果を図8にそれぞれ示す。波長450nmでの透過
率は84.5%を示し、目標の85%をクリヤーできな
かった。波長450nmでの反射率は4.9%であっ
た。
Here, FIG. 7 shows the result of measuring the spectral transmittance of a sample in which the microlens array 42 was separately formed on a glass substrate of the same size, and FIG. 8 shows the result of measuring the spectral reflectance. The transmittance at a wavelength of 450 nm was 84.5%, and the target of 85% could not be cleared. The reflectance at a wavelength of 450 nm was 4.9%.

【0032】最後に、固体撮像素子の端子電極上に形成
された樹脂層を、公知のドライエッチング法でパターニ
ング処理し、図1(a)及び(b)に示す固体撮像素子
10及び20を作製し、従来の固体撮像素子30に比べ
て光電変換効率が向上しているのが確認された。
Finally, the resin layer formed on the terminal electrodes of the solid-state imaging device is patterned by a known dry etching method to produce the solid-state imaging devices 10 and 20 shown in FIGS. 1A and 1B. However, it was confirmed that the photoelectric conversion efficiency was improved as compared with the conventional solid-state imaging device 30.

【0033】[0033]

【発明の効果】上記したように、波長450nmで1.
82×10-3以下の消衰係数を有するマイクロレンズを
使用すれば少なくとも85%以上の透過率が得られ、固
体撮像素子の感度向上に寄与できる。さらに、マイクロ
レンズ上に充填改善層を形成することにより、マイクロ
レンズ間のギャップを埋めて、より集光効率を高くした
固体撮像素子用マイクロレンズアレイを形成でき、マイ
クロレンズの表面反射の低減、且つ透過率の向上ができ
るため固体撮像素子の感度向上及び固体撮像装置の小型
化に寄与できる。
As described above, at a wavelength of 450 nm, 1.
If a microlens having an extinction coefficient of 82 × 10 −3 or less is used, a transmittance of at least 85% or more can be obtained, which can contribute to improvement in sensitivity of the solid-state imaging device. Furthermore, by forming a filling improvement layer on the microlenses, the gap between the microlenses can be filled to form a microlens array for a solid-state imaging device with a higher light-collecting efficiency. In addition, since the transmittance can be improved, it is possible to contribute to improvement in sensitivity of the solid-state imaging device and downsizing of the solid-state imaging device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は、本発明の固体撮像素子用マイクロレ
ンズアレイ及び固体撮像素子の実施例1を模式的に示し
た部分断面図である。(b)は、本発明の固体撮像素子
用マイクロレンズアレイ及び固体撮像素子の実施例2を
模式的に示した部分断面図である。
FIG. 1A is a partial cross-sectional view schematically illustrating a microlens array for a solid-state imaging device and a solid-state imaging device according to a first embodiment of the present invention. (B) is a partial sectional view schematically showing Example 2 of the microlens array for a solid-state imaging device and the solid-state imaging device of the present invention.

【図2】消衰係数(K)の異なる1.2μm厚の各種樹
脂層の各波長に対する透過率をシミュレーションした結
果を示す説明図である。
FIG. 2 is an explanatory diagram showing the results of simulating the transmittance for various wavelengths of various resin layers having a thickness of 1.2 μm having different extinction coefficients (K).

【図3】実施例1の固体撮像素子用マイクロレンズアレ
イの分光透過率特性を示す説明図である。
FIG. 3 is an explanatory diagram illustrating a spectral transmittance characteristic of the microlens array for a solid-state imaging device according to the first embodiment.

【図4】実施例2の固体撮像素子用マイクロレンズアレ
イの分光透過率特性を示す説明図である。
FIG. 4 is an explanatory diagram showing a spectral transmittance characteristic of a microlens array for a solid-state imaging device according to a second embodiment.

【図5】実施例2の固体撮像素子用マイクロレンズアレ
イの分光反射率特性を示す説明図である。
FIG. 5 is an explanatory diagram illustrating spectral reflectance characteristics of a microlens array for a solid-state imaging device according to a second embodiment.

【図6】従来の固体撮像素子用マイクロレンズアレイ及
び固体撮像素子を模式的に示した部分断面図である。
FIG. 6 is a partial cross-sectional view schematically illustrating a conventional microlens array for a solid-state imaging device and a solid-state imaging device.

【図7】従来(比較例)の固体撮像素子用マイクロレン
ズアレイの分光透過率特性を示す説明図である。
FIG. 7 is an explanatory diagram showing a spectral transmittance characteristic of a conventional (comparative example) microlens array for a solid-state imaging device.

【図8】従来(比較例)の固体撮像素子用マイクロレン
ズアレイの分光反射率特性を示す説明図である。
FIG. 8 is an explanatory diagram showing a spectral reflectance characteristic of a conventional (comparative example) microlens array for a solid-state imaging device.

【符号の説明】[Explanation of symbols]

10、20、30……固体撮像素子 11……半導体基板 12……受光部 13……遮光部 14……平坦化層 15……カラーフィルター層 16……オーバーコート層 21、41……マイクロレンズ 22、32、42……マイクロレンズアレイ 31……充填率改善層 10, 20, 30 ... solid-state image sensor 11 ... semiconductor substrate 12 ... light receiving unit 13 ... light shielding unit 14 ... flattening layer 15 ... color filter layer 16 ... overcoat layer 21, 41 ... microlens 22, 32, 42... Microlens array 31... Filling rate improving layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M118 AA10 AB01 BA09 CA02 EA20 FA06 GB03 GB07 GB11 GC08 GD04 GD07 5C024 AA01 CA00 EA04 EA08 FA01 GA01 5F088 BA01 BB03 EA06 HA02 HA20 JA12 LA03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4M118 AA10 AB01 BA09 CA02 EA20 FA06 GB03 GB07 GB11 GC08 GD04 GD07 5C024 AA01 CA00 EA04 EA08 FA01 GA01 5F088 BA01 BB03 EA06 HA02 HA20 JA12 LA03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水平方向と垂直方向に二次元的に配置され
た受光部を有する固体撮像素子上に形成されたマイクロ
レンズアレイにおいて、前記マイクロレンズアレイを構
成しているマイクロレンズの消衰係数が波長450nm
で1.82×10-3以下であることを特徴とする固体撮
像素子用マイクロレンズアレイ。
1. A microlens array formed on a solid-state imaging device having a light receiving portion two-dimensionally arranged in a horizontal direction and a vertical direction, wherein an extinction coefficient of a microlens constituting the microlens array is provided. Has a wavelength of 450 nm
A microlens array for a solid-state imaging device, which is 1.82 × 10 −3 or less.
【請求項2】前記マイクロレンズの表面に充填率改善層
を設けたことを特徴とする請求項1に記載の固体撮像素
子用マイクロレンズアレイ。
2. The microlens array for a solid-state imaging device according to claim 1, wherein a filling rate improving layer is provided on a surface of said microlens.
【請求項3】前記充填率改善層の屈折率が波長450n
mで1.46以下であることを特徴とする請求項1又は
2に記載の固体撮像素子用マイクロレンズアレイ。
3. The filling factor improving layer has a refractive index of 450 nm.
3. The microlens array for a solid-state imaging device according to claim 1, wherein m is 1.46 or less.
【請求項4】前記充填率改善層の光学膜厚が波長450
nmで100〜150nmの範囲であることを特徴とす
る請求項1ないし請求項3のうちいずれか一項に記載の
固体撮像素子用マイクロレンズアレイ。
4. The optical film thickness of the filling rate improving layer is 450 wavelengths.
4. The microlens array for a solid-state imaging device according to claim 1, wherein the range is 100 to 150 nm in nm. 5.
【請求項5】請求項1ないし請求項4のうちいずれか一
項に記載の固体撮像素子用マイクロレンズアレイを設け
たことを特徴とする固体撮像素子。
5. A solid-state imaging device comprising the microlens array for a solid-state imaging device according to claim 1.
JP11116472A 1999-04-23 1999-04-23 Microlens array for solid-state imaging device and solid-state imaging device using the same Pending JP2000304906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11116472A JP2000304906A (en) 1999-04-23 1999-04-23 Microlens array for solid-state imaging device and solid-state imaging device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11116472A JP2000304906A (en) 1999-04-23 1999-04-23 Microlens array for solid-state imaging device and solid-state imaging device using the same

Publications (1)

Publication Number Publication Date
JP2000304906A true JP2000304906A (en) 2000-11-02

Family

ID=14687959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11116472A Pending JP2000304906A (en) 1999-04-23 1999-04-23 Microlens array for solid-state imaging device and solid-state imaging device using the same

Country Status (1)

Country Link
JP (1) JP2000304906A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1491918A3 (en) * 2003-06-24 2005-01-26 Lg Electronics Inc. Microlens array sheet of projection screen, and method for manufacturing the same
JP2005203737A (en) * 2003-12-19 2005-07-28 Nitto Denko Corp Manufacturing method of semiconductor light emitting device
US6961185B2 (en) 2003-01-17 2005-11-01 Nitto Denko Corporation Microlens array
KR100540557B1 (en) * 1999-12-28 2006-01-10 매그나칩 반도체 유한회사 Image sensor manufacturing method for improving optical transmission rate
US7150568B2 (en) 2003-02-06 2006-12-19 Seiko Epson Corporation Light-receiving element, manufacturing method for the same, optical module, and optical transmitting device
KR100698097B1 (en) 2005-08-23 2007-03-23 동부일렉트로닉스 주식회사 CMOS image sensor and its manufacturing method
US7722965B2 (en) 2003-12-26 2010-05-25 Nitto Denko Corporation Electroluminescence device, planar light source and display using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100540557B1 (en) * 1999-12-28 2006-01-10 매그나칩 반도체 유한회사 Image sensor manufacturing method for improving optical transmission rate
US6961185B2 (en) 2003-01-17 2005-11-01 Nitto Denko Corporation Microlens array
US7150568B2 (en) 2003-02-06 2006-12-19 Seiko Epson Corporation Light-receiving element, manufacturing method for the same, optical module, and optical transmitting device
US7520680B2 (en) 2003-02-06 2009-04-21 Seiko Epson Corporation Light-receiving element, manufacturing method for the same, optical module, and optical transmitting device
EP1491918A3 (en) * 2003-06-24 2005-01-26 Lg Electronics Inc. Microlens array sheet of projection screen, and method for manufacturing the same
US7248407B2 (en) 2003-06-24 2007-07-24 Lg Electronics Inc. Microlens array sheet of projection screen, and method for manufacturing the same
JP2005203737A (en) * 2003-12-19 2005-07-28 Nitto Denko Corp Manufacturing method of semiconductor light emitting device
US7722965B2 (en) 2003-12-26 2010-05-25 Nitto Denko Corporation Electroluminescence device, planar light source and display using the same
KR100698097B1 (en) 2005-08-23 2007-03-23 동부일렉트로닉스 주식회사 CMOS image sensor and its manufacturing method

Similar Documents

Publication Publication Date Title
US6876049B2 (en) Colors only process to reduce package yield loss
CN100365820C (en) Solid-state imaging device, manufacturing method of solid-state imaging device, video camera
US7009772B2 (en) High transmittance overcoat for microlens arrays in semiconductor color imagers
US6495813B1 (en) Multi-microlens design for semiconductor imaging devices to increase light collection efficiency in the color filter process
US9131100B2 (en) Solid-state imaging device with lens, method of manufacturing solid-state imaging device with lens, and electronic apparatus
US7955764B2 (en) Methods to make sidewall light shields for color filter array
US9419035B2 (en) Image sensor with color pixels having uniform light absorption depths
JPH05206429A (en) Colored microlens array and manufacturing method thereof
US9978789B2 (en) Image-sensing device
CN1816117A (en) Image sensor with embedded optical element
KR20150089644A (en) Image sensor and method for manufacturing the same
US8395699B2 (en) Solid-state imaging device, camera, electronic apparatus, and method for manufacturing solid-state imaging device
CN100474603C (en) CMOS image sensor and method for manufacturing the same
US20050045805A1 (en) Solid-state image sensor and a manufacturing method thereof
JP2013076859A (en) Manufacturing method for color filter, manufacturing method for solid state imager, and solid state imager
JP2000304906A (en) Microlens array for solid-state imaging device and solid-state imaging device using the same
KR100937657B1 (en) Image sensor and its manufacturing method
JP6921486B2 (en) Solid-state image sensor
KR102429987B1 (en) Micro lens array and Image sensor module including the same and Manufacturing method thereof
JP2011243749A (en) Solid state image pickup device and manufacturing method thereof
JP5027081B2 (en) Color imaging device and method for manufacturing color imaging device
JP2000307090A (en) Microlens array for solid-state imaging device, solid-state imaging device using the same, and manufacturing method thereof
JP3747682B2 (en) Solid-state imaging device and manufacturing method thereof
JP2017092179A (en) Solid-state imaging device and manufacturing method thereof
JP4497076B2 (en) Solid-state imaging device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602