JP2000321218A - Sludge densitometer - Google Patents
Sludge densitometerInfo
- Publication number
- JP2000321218A JP2000321218A JP11128119A JP12811999A JP2000321218A JP 2000321218 A JP2000321218 A JP 2000321218A JP 11128119 A JP11128119 A JP 11128119A JP 12811999 A JP12811999 A JP 12811999A JP 2000321218 A JP2000321218 A JP 2000321218A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- groove
- width
- microwave
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010802 sludge Substances 0.000 title claims description 90
- 239000000523 sample Substances 0.000 claims abstract description 44
- 239000004020 conductor Substances 0.000 claims abstract description 23
- 230000005540 biological transmission Effects 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 10
- 230000014509 gene expression Effects 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 239000002351 wastewater Substances 0.000 claims description 2
- 239000010865 sewage Substances 0.000 abstract description 18
- 238000012423 maintenance Methods 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 abstract description 3
- 238000007689 inspection Methods 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/06—Waveguide mouths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/04—Fixed joints
- H01P1/042—Hollow waveguide joints
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、下水処理プラン
ト、排水処理プラント、浄水処理プラントやそれらの汚
泥処理プラントの処理工程における汚泥中の固形物濃度
や浮遊物濃度を測定するプロセスに使用する汚泥濃度計
に関する。The present invention relates to a sludge used in a process for measuring the concentration of solids and suspended solids in sludge in the treatment process of a sewage treatment plant, a wastewater treatment plant, a water purification plant, and a sludge treatment plant thereof. It relates to a densitometer.
【0002】[0002]
【従来の技術】下水処理プラント、排水処理プラント、
浄水処理プラントやそれらの汚泥処理プラント等におい
て、各工程から発生する、又は一つの工程から他の工程
へ輸送する汚泥の固形物量を常時監視し把握すること
は、プラントの運転管理上非常に重要である。汚泥の固
形物量は、汚泥流量と汚泥濃度の二つの値から演算によ
って算出できる。2. Description of the Related Art Sewage treatment plants, wastewater treatment plants,
In a water treatment plant and those sludge treatment plants, it is very important for plant operation management to constantly monitor and grasp the amount of solid matter generated from each process or transported from one process to another process. It is. The amount of sludge solids can be calculated from two values, sludge flow rate and sludge concentration.
【0003】汚泥流量の計測には、電磁流量計や超音波
ドプラー式流量計等が使用されている。これら流量計は
比較的信頼性の高い測定が実現されている。一方、汚泥
濃度の計測については、超音波の減衰を原理としたも
の、光の透過光量や反射光量を検出原理としたものが使
用されている。これらの汚泥濃度計は、測定に対する妨
害因子や保守作業が繁雑であることなどから、電磁流量
計と比較して信頼性等において劣っているのが現状であ
る。[0003] For measuring the sludge flow rate, an electromagnetic flow meter, an ultrasonic Doppler type flow meter or the like is used. These flowmeters have achieved relatively reliable measurements. On the other hand, the measurement of the sludge concentration is based on the principle of attenuation of ultrasonic waves and the principle of detection based on the amount of transmitted light or reflected light. At present, these sludge densitometers are inferior in reliability and the like as compared with electromagnetic flowmeters due to factors disturbing measurement and complicated maintenance work.
【0004】近年、従来の汚泥濃度計の短所を解決しょ
うとしたマイクロ波利用の透過位相差検出型マイクロ波
式汚泥濃度計が開発され、使用されるようになって来
た。このマイクロ波利用のマイクロ波式汚泥濃度計は、
図5に示すように構成されている。図5において、51
は汚泥輸送管で、この汚泥輸送管51の所定部位に対向
して窓を形成する。この窓にマイクロ波発信側の濃度計
検出プローブ52と、マイクロ波受信側の濃度計検出プ
ローブ53を設ける。54は両プローブ52、53に接
続されるマイクロ波発/受信器、55はマイクロ波の発
信、受信波の位相差から、汚泥濃度を得る汚泥濃度計変
換器である。In recent years, microwave-type sludge densitometers utilizing transmission phase difference detection utilizing microwaves have been developed and used to solve the disadvantages of the conventional sludge densitometers. This microwave-based sludge densitometer using microwave
It is configured as shown in FIG. In FIG. 5, 51
Is a sludge transport pipe, which forms a window facing a predetermined portion of the sludge transport pipe 51. A densitometer detection probe 52 on the microwave transmission side and a densitometer detection probe 53 on the microwave reception side are provided in this window. Reference numeral 54 denotes a microwave transmitter / receiver connected to both probes 52 and 53, and reference numeral 55 denotes a sludge concentration meter converter for obtaining a sludge concentration from a phase difference between the transmission and reception of microwaves.
【0005】図5に示したマイクロ波式汚泥濃度計は、
清水(濃度0%)でのマイクロ波透過波の位相遅れと、
汚泥におけるマイクロ波透過波の位相遅れとの差(位相
差)が、図6に示すように汚泥濃度と直線関係にあるこ
とを利用して濃度を計測するものである。なお、濃度は
定数×Δθから求める。[0005] The microwave type sludge densitometer shown in FIG.
The phase lag of the microwave transmitted wave in Shimizu (concentration 0%)
The concentration is measured by utilizing the fact that the difference (phase difference) from the phase delay of the microwave transmitted wave in the sludge is linear with the sludge concentration as shown in FIG. Note that the concentration is obtained from a constant × Δθ.
【0006】図7は、上述したマイクロ波式汚泥濃度計
とは検出手段が異なる反射強度検出型マイクロ波式汚泥
濃度計を示す概略構成図で、図7において、71は汚泥
輸送管で、この汚泥輸送管71の所定部位に窓を形成
し、その窓にマイクロ波反射強度検出型プローブ72を
設ける。このプローブ72は、一組のプローブからマイ
クロ波を発信し、プローブと汚泥混合液(固形物を含ん
だ汚泥総体)の境界面で反射したマイクロ波を同じプロ
ーブで受信して、発信強度に対する受信強度の比を検出
する。73はマイクロ波発/受信器で、このマイクロ波
発/受信器73で検出され発信、受信強度の比を検出し
て、その検出信号を汚泥濃度変換器74に入力し、ここ
で汚泥中の固形物濃度を測定する。なお、プローブ72
には、同軸ケーブルや導波管などのデバイスを用いる。FIG. 7 is a schematic configuration diagram showing a reflection-intensity detection type microwave-type sludge densitometer having a different detecting means from the above-mentioned microwave-type sludge densitometer. In FIG. 7, reference numeral 71 denotes a sludge transport pipe. A window is formed in a predetermined portion of the sludge transport pipe 71, and a microwave reflection intensity detection type probe 72 is provided in the window. The probe 72 transmits microwaves from a set of probes, receives the microwaves reflected on the interface between the probe and the sludge mixture (total sludge including solids) with the same probe, and receives the microwaves with respect to the transmission intensity. Detect the intensity ratio. Reference numeral 73 denotes a microwave generator / receiver, which detects the ratio of the transmission and reception intensity detected and detected by the microwave generator / receiver 73, and inputs the detection signal to a sludge concentration converter 74, where the sludge concentration is detected. Measure the solids concentration. The probe 72
, Devices such as coaxial cables and waveguides are used.
【0007】[0007]
【発明が解決しようとする課題】(1)図5に示した2
つのマイクロ波式汚泥濃度計は、汚泥中でのマイクロ波
の透過成分の位相差を検出して汚泥濃度を計測する原理
であるため、例えば、大口径の輸送管(例えばφ350
以上)に設置した場合に、次のような問題が生じる。(1) 2 shown in FIG.
The two microwave-type sludge densitometers are based on the principle of measuring the sludge concentration by detecting the phase difference of the microwave transmission component in the sludge.
The following problems occur when the above is installed.
【0008】これは輸送管を大口径にすると、受信側に
到達するマイクロ波の減衰が大きくなり、位相差を検出
できなくなるため、(a)口径を小さくしたり、(b)
配管を一部小口径の管で分岐(バイパス)したり、
(c)マイクロ波の発信出力を大きくするなどの対策が
必要となる。[0008] This is because, if the diameter of the transport pipe is large, the attenuation of the microwave reaching the receiving side becomes large, and the phase difference cannot be detected. Therefore, (a) reducing the diameter or (b)
Some pipes are branched (bypassed) with small-diameter pipes,
(C) It is necessary to take measures such as increasing the output power of microwaves.
【0009】(a)については、ある程度までは可能で
あるが、限度があり、プラント設計上の許容圧力損失を
越えないことが条件になる。(A) is possible to some extent, but there is a limit and the condition is that the allowable pressure loss in the plant design should not be exceeded.
【0010】(b)については、広い設置スペースが必
要となり、スペースに余裕がないと設置できない場合が
生じる。As for (b), a large installation space is required, and if there is not enough space, installation may not be possible.
【0011】(c)については、一定の限度を超えると
電波法違反になり、発信の大出力化に伴う価格上昇に加
え電波法に準拠するための費用が必要となり、トータル
として高価格になる。Regarding (c), if the frequency exceeds a certain limit, it is a violation of the Radio Law, and in addition to the price increase accompanying the increase in transmission power, a cost for complying with the Radio Law is required, and the total price becomes high. .
【0012】(2)図5に示したマイクロ波式汚泥濃度
計は、汚泥中でのマイクロ波の透過成分の位相差を検出
して汚泥濃度を計測する原理であるため、発信器、受信
器が汚泥輸送管を挟んで対向配置される構成になってい
る。(2) The microwave type sludge densitometer shown in FIG. 5 is based on the principle of measuring the sludge concentration by detecting the phase difference of the microwave transmission component in the sludge. Are arranged to face each other with the sludge transport pipe interposed therebetween.
【0013】このため、濃度計に故障が発生したときの
対応を考慮して、発信器、受信器部分を汚泥輸送管ごと
取り外すことができるように、バイパス管を設ける必要
がある。従って、広い設置スペースが必要となり、スペ
ースに余裕がないと設置できない場合が生じてしまう。
また、濃度計本体の他にバイパス管の工事費用等が必要
になり、トータル価格が高騰する。For this reason, it is necessary to provide a bypass pipe so that the transmitter and the receiver can be removed together with the sludge transport pipe in consideration of a response when a failure occurs in the concentration meter. Therefore, a large installation space is required, and if there is not enough space, installation may not be possible.
Further, in addition to the main body of the concentration meter, construction costs for the bypass pipe are required, so that the total price rises.
【0014】(3)図5に示したマイクロ波式汚泥濃度
計では、汚泥輸送管に発信器と受信器が対向配置される
ために、送受信器を簡単に取り外すことができない。従
って、汚泥濃度の化学分析値と濃度計出力の比較校正を
行う場合も汚泥管内で行わざるを得ない。例えば、清水
でのゼロ点校正については、汚泥をバイパス側に流し、
濃度計両端のバルブを閉じ、濃度計内の汚泥を水に置き
換えて測定することで、比較的校正が正確に行うことが
できる。(3) In the microwave type sludge densitometer shown in FIG. 5, the transmitter and the receiver cannot be easily removed because the transmitter and the receiver are arranged opposite to each other in the sludge transport pipe. Therefore, comparison and calibration between the chemical analysis value of the sludge concentration and the output of the concentration meter must be performed in the sludge pipe. For example, for zero-point calibration in Shimizu, sludge flows to the bypass side,
By closing the valves at both ends of the densitometer and replacing the sludge in the densitometer with water for measurement, relatively accurate calibration can be performed.
【0015】しかし、ある汚泥濃度でのスパン測定の校
正を行う場合、ゼロ点と同様な方法では、汚泥が沈降し
てしまうので、正確な校正ができない。従って、スパン
側の校正は、通常測定時と同様に濃度計に汚泥を流し、
ある時点で採泥した汚泥を化学分析し、そのときの濃度
計出力と比較校正する方法を採らざるを得ない。しかし
ながら、通常汚泥輸送管内の汚泥濃度は、時々刻々変化
しているため、採泥した汚泥と濃度計出力を時間的に、
現物として一致させることは難しい。従って、濃度計の
出力校正が正確にできない場合が多く、測定精度に大き
く影響する問題がある。However, when calibrating the span measurement at a certain sludge concentration, the same method as for the zero point causes the sludge to settle, so that accurate calibration cannot be performed. Therefore, for calibration on the span side, sludge flows through the densitometer as in normal measurement,
At a certain point, the sludge collected at a certain point must be chemically analyzed, and a method of comparing and calibrating the sludge output at that time must be adopted. However, since the sludge concentration in the normal sludge transport pipe changes every moment, the sludge collected and the output of the densitometer are
It is difficult to match them as they are. Therefore, the output calibration of the densitometer cannot be accurately performed in many cases, and there is a problem that the measurement accuracy is greatly affected.
【0016】この発明は上記の事情に鑑みてなされたも
ので、汚水の流れに沿って溝を形成したので、測定感度
及び測定精度の向上を図るとともに、プローブ本体の取
り外し、取り付けが簡易であるため、保守点検が容易に
できる汚泥濃度計を提供することを課題とする。The present invention has been made in view of the above circumstances, and since the grooves are formed along the flow of sewage, measurement sensitivity and measurement accuracy are improved, and removal and attachment of the probe main body is simple. Therefore, an object of the present invention is to provide a sludge concentration meter that can easily perform maintenance and inspection.
【0017】[0017]
【課題を解決するための手段】この発明は、上記の課題
を達成するために、第1発明は、汚泥輸送管に反射強度
検出型マイクロ波検出プローブ本体を設け、このプロー
ブ本体からマイクロ波を汚泥輸送管内に向けて発信し、
汚泥輸送管内の被測定試料である汚泥混合液の境界面で
反射したマイクロ波を同じプローブ本体で受信し、発信
強度に対する受信強度の比を検出して汚泥混合液中の固
形物濃度や浮遊物濃度を測定する汚泥濃度計において、
前記プローブ本体は、一端が閉塞され、他端が開口され
た導波管から構成され、その導波管の他端の開口部にマ
イクロ波が透過可能な部材を有する第1導体部を設ける
とともに、その部材を前記汚泥輸送管内に向けて突出さ
せ、 その部材を内部に収納するとともに、一端が前記
第1導体部に固着され、他端に被測定試料を導く溝が形
成された第2導体部を設けたことを特徴とするものであ
る。According to the present invention, in order to achieve the above-mentioned object, a first invention is to provide a reflection intensity detecting type microwave detecting probe main body in a sludge transport pipe, and to transmit microwaves from the probe main body. Dispatch to the sludge transport pipe,
The same probe body receives the microwave reflected on the boundary surface of the sludge mixture liquid to be measured in the sludge transport pipe, detects the ratio of the reception intensity to the transmission intensity, and detects the solids concentration and suspended solids in the sludge mixture liquid. In a sludge concentration meter that measures the concentration,
The probe main body is configured by a waveguide having one end closed and another end opened, and a first conductor having a member through which microwaves can be transmitted is provided in an opening at the other end of the waveguide. A second conductor having one end fixed to the first conductor portion and the other end formed with a groove for guiding a sample to be measured, the member being protruded into the sludge transport pipe, and the member being housed therein. The present invention is characterized in that a unit is provided.
【0018】第2発明は、前記マイクロ波の透過可能な
部材が、その部材の形状の厚み、横幅、縦幅が以下の
(a),(b),(c)式から求めた値からなり、これ
ら式から得られた値の1割り以内の値を含むことを特徴
とするものである。According to a second aspect of the present invention, the member capable of transmitting microwaves has a thickness, a horizontal width and a vertical width of the shape of the member having values obtained from the following equations (a), (b) and (c). , And a value within 10% of the value obtained from these equations.
【0019】 厚み={光速×(1+2n)}/(部材のεsの平方根×共振周波数×4) …(a ) 横幅=光速/(部材のεsの平方根×遮断周波数×2) …(b) 縦幅=横幅/2 …(c) ただし、εsは比誘電率、nは0以上の整数(n=0.1.2.
…)である。Thickness = {light speed × (1 + 2n)} / (square root of ε s of member × resonant frequency × 4) (a) Width = light speed / (square root of ε s of member × cutoff frequency × 2) (B) vertical width = width / 2 (c) where ε s is a relative permittivity, and n is an integer of 0 or more (n = 0.1.2.
…).
【0020】第3発明は、前記被測定試料を導く溝の形
状が、縦幅、横幅が以下の(d),(e)式から求めた
値からなり、これら式から得られた値の1割り以内の値
を含むことを特徴とするものである。According to a third aspect of the present invention, the shape of the groove for guiding the sample to be measured is such that the vertical width and the horizontal width are determined by the following equations (d) and (e). It is characterized in that it includes a value within the division.
【0021】 溝の縦幅>マイクロ波が透過可能な部材の縦幅 ……(d) 溝の横幅=光速/(汚水のεの平方根×部材の共振周波数×2) …(e) ただし、εは誘電率である。The vertical width of the groove> the vertical width of the member through which microwaves can pass .... (d) The horizontal width of the groove = light speed / (square root of sewage ε × resonance frequency of member × 2) (e) where ε Is the dielectric constant.
【0022】第4発明は、前記被測定試料を導く溝の深
さが、以下の(f)式を満たす値からなることを特徴と
するものである。A fourth invention is characterized in that the depth of the groove for guiding the sample to be measured has a value satisfying the following expression (f).
【0023】 溝の深さ>=溝の横幅/4 ……(f)Depth of groove> = width of groove / 4/4 (f)
【0024】[0024]
【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明する。図1はこの発明の実施の第1形態
を示す反射強度検出型マイクロ波式汚泥濃度計のプロー
ブ部位の要部拡大断面図で、図1において、11は同軸
−導波管変換器からなるプローブ本体で、このプローブ
本体11の一方の端部は閉塞され、他方の端部は開放さ
れている。プローブ本体11の開放されている端部に
は、中央部に角状の貫通孔を有する板状の第1導体部1
2が取り付けられる。第1導体部12の角状の貫通孔に
は、角棒状のセラミック部材からなる高周波窓部13が
挿入固定され、その高周波窓部13は、プローブ本体1
1の軸方向(図示しない汚泥輸送管内)に突出されてい
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged cross-sectional view of a main part of a probe part of a reflection type microwave type sludge densitometer according to a first embodiment of the present invention. In FIG. 1, reference numeral 11 denotes a probe comprising a coaxial-waveguide converter. In the main body, one end of the probe main body 11 is closed and the other end is open. An open end of the probe body 11 has a plate-shaped first conductor portion 1 having a square through hole at the center.
2 is attached. A high-frequency window 13 made of a square rod-shaped ceramic member is inserted and fixed into the square through-hole of the first conductor 12, and the high-frequency window 13 is connected to the probe body 1.
1 and protrudes in the axial direction (inside the sludge transport pipe not shown).
【0025】高周波窓部13は、図2及び図3に示すよ
うに先端部に後述する溝を形成する部材14が設けられ
た筒状の第2導体部15内に密着して設けられる。部材
14は、2つの部材からなり、両部材を図示のように配
置させて、図2及び図3に示すように汚水が通過可能な
汚水通し溝16が、汚泥輸送管内を汚水が流れる方向に
形成される。17は図示しない汚泥輸送管に設けられた
フランジで、このフランジ17に第1導体部12が取り
付けられる。As shown in FIGS. 2 and 3, the high-frequency window portion 13 is provided in close contact with a cylindrical second conductor portion 15 provided with a member 14 for forming a groove, which will be described later, at the distal end. The member 14 is composed of two members, and the two members are arranged as shown in the figure. As shown in FIGS. 2 and 3, the sewage passage 16 through which the sewage can pass is formed in the direction in which the sewage flows in the sludge transport pipe. It is formed. Reference numeral 17 denotes a flange provided on a sludge transport pipe (not shown), and the first conductor portion 12 is attached to the flange 17.
【0026】前記プローブ本体11内には、アンテナ1
8が設けられ、このアンテナ18は、図7に示すマイク
ロ波発/受信器73に同軸ケーブルを介して接続され
る。なお、19は同軸ケーブルのコネクタである。20
はプローブ本体11の中空部である。 次に上記実施の
形態の動作を述べる。図7に示すマイクロ波発/受信器
73からの発信信号は図示しない同軸ケーブルを介して
アンテナ18に供給される。アンテナ18から発信され
たマイクロ波は、セラミック部材からなる高周波窓部1
3から図示しない汚泥輸送管内に放射されると、汚泥混
合液の境界面で反射されて、再び窓部13を通してプロ
ーブ本体11のアンテナ18で受信される。受信された
信号はマイクロ波発/受信器73で受信された後、汚泥
濃度計変換器74で汚泥濃度に変換されて汚泥濃度計に
表示される。The probe 1 has an antenna 1
The antenna 18 is connected to the microwave generator / receiver 73 shown in FIG. 7 via a coaxial cable. Reference numeral 19 denotes a coaxial cable connector. 20
Is a hollow portion of the probe main body 11. Next, the operation of the above embodiment will be described. A transmission signal from the microwave generator / receiver 73 shown in FIG. 7 is supplied to the antenna 18 via a coaxial cable (not shown). The microwave transmitted from the antenna 18 is transmitted to the high frequency window 1 made of a ceramic member.
When the radiation is radiated from 3 into a sludge transport pipe (not shown), it is reflected at the boundary surface of the sludge mixed liquid, and is received again by the antenna 18 of the probe body 11 through the window 13. After the received signal is received by the microwave generator / receiver 73, it is converted into the sludge concentration by the sludge concentration meter converter 74 and displayed on the sludge concentration meter.
【0027】なお、上記実施の形態において、第2導体
部15の直径を50mm、長さを300mm程度に構成して、プ
ローブ本体を汚泥輸送管に取り付けて汚泥濃度を計測す
る際にも、汚水の水圧が10kg/cm2と高い汚泥輸送管でも
プローブ本体の着脱が可能となる。In the above embodiment, the diameter of the second conductor 15 is set to about 50 mm and the length thereof is set to about 300 mm. The probe body can be attached and detached even with a sludge transport pipe whose water pressure is as high as 10 kg / cm 2 .
【0028】ここで、反射強度測定型マイクロ波式汚泥
濃度計の検出プローブについて述べるに、この検出プロ
ーブに要求される性能のうち、必要条件となるのは、次
の二つである。Here, the detection probe of the reflection-intensity measurement type microwave-type sludge densitometer will be described. Of the performances required for this detection probe, the following two are required.
【0029】必要条件1:負荷である汚泥と十分なマッ
チングが取れていること、 必要条件2:負荷である汚泥の性状の変化に応じて、マ
イクロ波の反射特性が変化すること。Necessary condition 1: Sufficient matching with load sludge is required. Necessary condition 2: Microwave reflection characteristics change in accordance with change in properties of load sludge.
【0030】上記のような必要条件を満たすために、こ
の発明では、図1から図3に示す実施の形態のように構
成した。このように構成した実施の形態を電子回路で、
たとえてみると、高周波窓部13は共振周波数の発信回
路、汚水通し溝16と、この溝16に存在する汚泥が共
振周波数に対するフィルタ回路の機能をなしている。従
って、汚泥の濃度、導電率に応じて、絞りのフィルタと
しての特性が変化し、マッチングの状態が変動する。こ
の変動をマイクロ波の反射量から測定して汚水の濃度や
導電率の情報を得ることが出来るようになる。In order to satisfy the above requirements, the present invention is configured as shown in the embodiments shown in FIGS. The embodiment configured in this way is an electronic circuit,
For example, the high-frequency window portion 13 functions as a resonance frequency transmission circuit, a sewage passage groove 16, and the sludge existing in the groove 16 functions as a filter circuit for the resonance frequency. Therefore, according to the concentration and the conductivity of the sludge, the characteristics of the diaphragm as a filter change, and the matching state fluctuates. By measuring this variation from the amount of reflected microwaves, it becomes possible to obtain information on the concentration and conductivity of the wastewater.
【0031】次に高周波窓部13と汚水通し溝16の具
体的な形状について述べるに、まず、高周波窓部13の
形状について述べる。Next, the specific shapes of the high frequency window 13 and the sewage passage 16 will be described. First, the shape of the high frequency window 13 will be described.
【0032】高周波窓部13は、厚み(マイクロ波が透
過可能な部材の厚み)が1/4、3/4、5/4波長など、一般
に0以上の整数nを用いて、(1+2n)/4波長のときに共振
する。そのときの共振周波数は、次の(1)式を用い
て、使用する共振周波数に対する高周波窓部13の厚み
が計算できる。The high-frequency window portion 13 is generally formed by using an integer n of 0 or more, such as 1/4, 3/4, and 5/4 wavelengths (thickness of a member through which microwaves can pass). Resonates at) / 4 wavelength. For the resonance frequency at that time, the thickness of the high-frequency window 13 with respect to the resonance frequency to be used can be calculated using the following equation (1).
【0033】厚み=光速×(1+2n)/(高周波窓部のεs
の平方根×共振周波数×4)…(1) ただし、εsは
比誘電率である。Thickness = light speed × (1 + 2n) / (ε s of high frequency window part)
(Square root of resonance × resonance frequency × 4) (1) where ε s is a relative permittivity.
【0034】ここで、具体的な値として、高周波窓部1
3に比誘電率が「9」のアルミナを用いたとき、共振周
波数2.2GHzで、厚みはn=0で11.4mm、n=1で34.2mm、
n=2で57mmとなる。Here, as specific values, the high frequency window 1
When alumina having a relative dielectric constant of “9” is used for 3, the resonance frequency is 2.2 GHz, the thickness is 11.4 mm when n = 0, 34.2 mm when n = 1,
57 mm when n = 2.
【0035】次に、横幅については、接続する同軸−導
波管変換器とマイクロ波の特性を一致させるのが望まし
い。これは、遮断周波数を一致させることで可能であ
る。次の(2)式を用いて高周波窓部の横幅を計算す
る。Next, with regard to the width, it is desirable that the characteristics of the microwaves match those of the coaxial-waveguide converter to be connected. This is possible by matching the cutoff frequencies. The width of the high frequency window is calculated using the following equation (2).
【0036】 横幅=光速/(高周波窓部のεsの平方根×遮断周波数×2) ……(2) ただし、εsは比誘電率である。Width = light speed / (square root of ε s of high-frequency window part × cut-off frequency × 2) (2) where ε s is a relative permittivity.
【0037】ここで、仮の値として、高周波窓部に比誘
電率が「9」のアルミナを用い、遮断周波数が1.37GHz
の同軸−導波管変換器を用いたとき、横幅は36.5mm程度
になる。なお、縦幅については、横幅の半分の値にする
のが慣例であるから、縦幅は(3)式から求められる。Here, as a temporary value, alumina having a relative dielectric constant of “9” is used for the high frequency window, and the cutoff frequency is 1.37 GHz.
When the coaxial-waveguide converter is used, the width becomes about 36.5 mm. Note that it is customary to set the vertical width to a value that is half of the horizontal width, so the vertical width can be obtained from equation (3).
【0038】縦幅=横幅/2 ……(3) ただし、(1)式、(2)式、(3)式により得られた
値は、その値の1割以内程度なら、特性に大きな影響を
与えない。Vertical width = width / 2 (3) However, if the value obtained by the formulas (1), (2) and (3) is within about 10% of the value, it greatly affects the characteristics. Do not give.
【0039】次に、汚水通し溝16の形状について述べ
るに、汚水通し溝16の縦幅(溝の長さ)については、
高周波窓部13の縦幅より長ければ問題はない。しか
し、短い場合は不要なキャパシタンスが影響してしまう
ので、好ましくない。従って、溝の縦幅と高周波窓部の
縦幅との関係が次式(4)式を満足するようにする。Next, the shape of the sewage passage groove 16 will be described. The vertical width (length of the groove) of the sewage passage groove 16 is as follows.
There is no problem if it is longer than the vertical width of the high-frequency window 13. However, when the length is short, unnecessary capacitance affects the operation, which is not preferable. Therefore, the relationship between the vertical width of the groove and the vertical width of the high-frequency window portion satisfies the following expression (4).
【0040】 溝の縦幅>高周波窓部の縦幅 ……(4) 次は、汚水通し溝16の横幅について述べる。溝16の
横幅は、溝の遮断周波数と高周波窓部13の共振周波数
が一致するように形成する。この溝は共振し、共振の仕
方は、出口側、入口側とも開放端である。溝16の横幅
は、次式で与えられる。The vertical width of the groove> the vertical width of the high frequency window section (4) Next, the horizontal width of the sewage passage groove 16 will be described. The width of the groove 16 is formed so that the cutoff frequency of the groove and the resonance frequency of the high-frequency window 13 match. This groove resonates, and the way of resonance is an open end on both the outlet side and the inlet side. The width of the groove 16 is given by the following equation.
【0041】溝の横幅=光速/(汚水のεの平方根×高
周波窓部の共振周波数×2)…(5) ただし、εは誘
電率である。Width of groove = light speed / (square root of ε of sewage × resonance frequency of high frequency window × 2) (5) where ε is a dielectric constant.
【0042】仮の値として、共振周波数に2.2GHz、水の
誘電率に76を(5)式に代入すると、溝の横幅は7.8mm
になる。As a tentative value, when the resonance frequency is 2.2 GHz and the dielectric constant of water is 76 in the equation (5), the groove width is 7.8 mm.
become.
【0043】溝の深さについては、浅すぎると常にマイ
クロ波が素通りしてしまい、フィルタにならない。論理
的には、溝の横幅を3.14で割った程度がマイクロ波を押
し戻せる目安となる。ただし、汚泥は粘性が高いので、
溝がつまる可能性があるので、できるだけ溝の深さは浅
い方が良い。そこで、設計の下限値を横幅の1/4とし
た。If the depth of the groove is too shallow, the microwave will always pass through, and it will not be a filter. Logically, dividing the width of the groove by 3.14 is a measure to push back the microwave. However, sludge is highly viscous,
Since the groove may be clogged, the depth of the groove is preferably as small as possible. Therefore, the lower limit of the design is set to 1/4 of the width.
【0044】 溝の深さ>=溝の横幅/4 ……(6) ただし、(5)式により得られた値は、その値の1割以
内程度なら、特性に大きな影響を及ぼさない。Groove Depth> = Groove Width / 4/4 (6) However, if the value obtained by the expression (5) is within about 10% of the value, the characteristics are not significantly affected.
【0045】図4は、上記で示した高周波窓部と汚水通
し溝の形状に基づいて構成した第1導体部等の具体的な
正面図及び断面図である。FIG. 4 is a specific front view and sectional view of the first conductor portion and the like formed based on the shapes of the high-frequency window portion and the sewage passage groove described above.
【0046】ここで、プローブ本体11を構成する導波
管と導波管型共振器について説明する。導波管とは、電
気の導体部で作成された中空の管であり、数千MHz以上
の高い周波数のマイクロ波を伝送するのに用いられる。
マイクロ波は、管の内部を伝送されて行く。使用するマ
イクロ波の周波数に応じて管内部の大きさが設計され
る。管の断面が四角形のときを矩形導波管、円形のとき
を円形導波管という。また、管の内部に空気の代わりに
誘電体を詰めたタイプのものを誘電体導波管という。誘
電体導波管の大きさは、同じ周波数を用いるとき、誘電
体の比誘電率の平方根に反比例して小さくなる。Here, the waveguide and the waveguide resonator constituting the probe body 11 will be described. A waveguide is a hollow tube made of an electric conductor, and is used for transmitting microwaves of a high frequency of several thousand MHz or more.
Microwaves are transmitted inside the tube. The size inside the tube is designed according to the frequency of the microwave used. A rectangular cross section is called a rectangular waveguide, and a circular cross section is called a circular waveguide. In addition, a type in which a dielectric is packed inside the tube instead of air is called a dielectric waveguide. When the same frequency is used, the size of the dielectric waveguide decreases in inverse proportion to the square root of the dielectric constant of the dielectric.
【0047】導波管共振器とは、導波管の両端もしくは
片端を閉じて管の内部に定在波を生じさせることができ
るようにしたマイクロ波回路デバイスである。小型化を
図るために、空気の代わりに誘電体を充填することも多
い。A waveguide resonator is a microwave circuit device in which both ends or one end of a waveguide are closed so that a standing wave can be generated inside the tube. To reduce the size, a dielectric is often used instead of air.
【0048】[0048]
【発明の効果】以上述べたように、この発明によれば、
汚水の流れに沿って溝を形成したので、測定感度及び測
定精度の向上を図るとともに、プローブ本体の取り外
し、取り付けが簡易であるため、保守点検も容易にでき
る等の利点がある。As described above, according to the present invention,
Since the grooves are formed along the flow of the sewage, there are advantages in that the measurement sensitivity and the measurement accuracy are improved, and since the detachment and attachment of the probe main body are simple, maintenance and inspection can be easily performed.
【図1】この発明の実施の形態を示すプローブ部位の要
部拡大断面図。FIG. 1 is an enlarged sectional view of a main part of a probe part according to an embodiment of the present invention.
【図2】第2導体部の正面図。FIG. 2 is a front view of a second conductor.
【図3】第2導体部の平面図。FIG. 3 is a plan view of a second conductor.
【図4】第2導体部の構成を示すもので、請求項2の
(a)式でn=1のときの例で、aは正面図、b、cは
断面図。FIG. 4 is a view showing a configuration of a second conductor portion, wherein n is 1 in the expression (a) of claim 2, a is a front view, and b and c are cross-sectional views.
【図5】従来例の透過位相差検出型のマイクロ波式汚泥
濃度計の概略構成説明図。FIG. 5 is a schematic configuration explanatory view of a transmission type phase difference detection type microwave type sludge concentration meter of a conventional example.
【図6】従来例の透過位相差検出型のマイクロ波式汚泥
濃度計の位相差−濃度特性図。FIG. 6 is a phase difference-concentration characteristic diagram of a conventional transmission type phase difference detection type microwave type sludge densitometer.
【図7】従来例の反射強度検出型のマイクロ波式の汚泥
濃度計の概略構成説明図。FIG. 7 is a schematic diagram illustrating the configuration of a conventional reflection intensity detection type microwave-type sludge densitometer.
11…プローブ本体 12…第1導体部 13…高周波窓部 14…部材 15…第2導体部 16…汚水通し溝 17…フランジ 18…アンテナ 19…コネクタ 20…中空部 DESCRIPTION OF SYMBOLS 11 ... Probe main body 12 ... 1st conductor part 13 ... High frequency window part 14 ... Member 15 ... 2nd conductor part 16 ... Sewage passage groove 17 ... Flange 18 ... Antenna 19 ... Connector 20 ... Hollow part
Claims (4)
検出プローブ本体を設け、このプローブ本体からマイク
ロ波を汚泥輸送管内に向けて発信し、汚泥輸送管内の被
測定試料である汚泥混合液の境界面で反射したマイクロ
波を同じプローブ本体で受信し、発信強度に対する受信
強度の比を検出して汚泥混合液中の固形物濃度や浮遊物
濃度を測定する汚泥濃度計において、 前記プローブ本体は、一端が閉塞され、他端が開口され
た導波管から構成され、その導波管の他端の開口部にマ
イクロ波が透過可能な部材を有する第1導体部を設ける
とともに、その部材を前記汚泥輸送管内に向けて突出さ
せ、 その部材を内部に収納するとともに、一端が前記
第1導体部に固着され、他端に被測定試料を導く溝が形
成された第2導体部を設けたことを特徴とする汚泥濃度
計。1. A sludge transport pipe is provided with a reflection intensity detection type microwave detection probe main body, and a microwave is transmitted from the probe main body into the sludge transport pipe, and a sludge mixture liquid as a sample to be measured in the sludge transport pipe is provided. In the sludge concentration meter which receives the microwave reflected on the boundary surface with the same probe main body, detects the ratio of the reception intensity to the transmission intensity, and measures the solid concentration or suspended solid concentration in the sludge mixture, the probe main body is A first conductor portion having a microwave-permeable member is provided at an opening at the other end of the waveguide, the first conductor portion being constituted by a waveguide having one end closed and the other end opened. A second conductor having one end fixed to the first conductor and the other end formed with a groove for guiding a sample to be measured was provided, protruding into the sludge transport pipe, accommodating the member therein, and having the other end formed with a groove for guiding a sample to be measured. Specially Sludge concentration meter to be.
の部材の形状の厚み、横幅、縦幅が以下の(a),
(b),(c)式から求めた値からなり、これら式から
得られた値の1割り以内の値を含むことを特徴とする請
求項1記載の汚泥濃度計。 厚み={光速×(1+2n)}/(部材のεsの平方根×共振周波数×4) …(a ) 横幅=光速/(部材のεsの平方根×遮断周波数×2) …(b) 縦幅=横幅/2 …(c) ただし、εsは比誘電率、nは0以上の整数(n=0.1.2.
…)である。2. The member through which the microwave can be transmitted has the following thickness (a), width, and length of the member.
2. The sludge concentration meter according to claim 1, wherein the sludge concentration meter comprises values obtained from the expressions (b) and (c) and includes values within 10% of the values obtained from these expressions. Thickness = {light speed × (1 + 2n)} / (square root of ε s of member × resonant frequency × 4) (a) Width = light speed / (square root of ε s of member × cutoff frequency × 2) (b) Vertical width = width / 2 (c) where ε s is a relative permittivity, and n is an integer of 0 or more (n = 0.1.2.
…).
幅、横幅が以下の(d),(e)式から求めた値からな
り、これら式から得られた値の1割り以内の値を含むこ
とを特徴とする請求項1記載の汚泥濃度計。 溝の縦幅>マイクロ波が透過可能な部材の縦幅 ……(d) 溝の横幅=光速/(汚水のεの平方根×部材の共振周波数×2) …(e) ただし、εは誘電率である。3. The shape of the groove for guiding the sample to be measured is such that the vertical width and the horizontal width are values obtained from the following equations (d) and (e), and are within 10% of the values obtained from these equations. 2. The sludge densitometer according to claim 1, comprising a value. The vertical width of the groove> the vertical width of the member through which microwaves can pass .... (d) The horizontal width of the groove = light speed / (square root of ε of wastewater × resonance frequency of member × 2) (e) where ε is the dielectric constant It is.
の(f)式を満たす値からなることを特徴とする請求項
1記載の汚泥濃度計。 溝の深さ>=溝の横幅/4 ……(f)4. The sludge densitometer according to claim 1, wherein the depth of the groove for guiding the sample to be measured has a value satisfying the following expression (f). Groove depth> = groove width / 4/4 (f)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12811999A JP3885407B2 (en) | 1999-05-10 | 1999-05-10 | Sludge concentration meter |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12811999A JP3885407B2 (en) | 1999-05-10 | 1999-05-10 | Sludge concentration meter |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2000321218A true JP2000321218A (en) | 2000-11-24 |
| JP3885407B2 JP3885407B2 (en) | 2007-02-21 |
Family
ID=14976861
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP12811999A Expired - Fee Related JP3885407B2 (en) | 1999-05-10 | 1999-05-10 | Sludge concentration meter |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3885407B2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008525795A (en) * | 2004-12-22 | 2008-07-17 | アストラゼネカ・アクチエボラーグ | Processing method |
| WO2021099152A1 (en) * | 2019-11-21 | 2021-05-27 | Endress+Hauser Flowtec Ag | Antenna assembly for emitting microwaves, and measuring assembly having at least one such antenna assembly |
| CN114018956A (en) * | 2021-12-13 | 2022-02-08 | 中国计量大学 | Sludge moisture content detection device and detection method |
-
1999
- 1999-05-10 JP JP12811999A patent/JP3885407B2/en not_active Expired - Fee Related
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008525795A (en) * | 2004-12-22 | 2008-07-17 | アストラゼネカ・アクチエボラーグ | Processing method |
| JP2013064740A (en) * | 2004-12-22 | 2013-04-11 | Astrazeneca Ab | Method in processing |
| WO2021099152A1 (en) * | 2019-11-21 | 2021-05-27 | Endress+Hauser Flowtec Ag | Antenna assembly for emitting microwaves, and measuring assembly having at least one such antenna assembly |
| US12247932B2 (en) | 2019-11-21 | 2025-03-11 | Endress+Hauser Flowtec Ag | Antenna assembly for emitting microwaves, and measuring assembly having at least one such antenna assembly |
| CN114018956A (en) * | 2021-12-13 | 2022-02-08 | 中国计量大学 | Sludge moisture content detection device and detection method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3885407B2 (en) | 2007-02-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7469188B2 (en) | Method and flow meter for determining the flow rate of a multiphase fluid | |
| EP0268399B1 (en) | Microwave apparatus for measuring fluid mixtures | |
| RU2418269C2 (en) | Method and apparatus for tomographic measurement of multiphase flow | |
| US6470734B2 (en) | Method and arrangement for measuring fluid | |
| US8224588B2 (en) | Method and apparatus for measuring the conductivity of the water fraction of a wet gas | |
| JP3170282B2 (en) | Field measurement device and method of electromagnetic properties of various process materials using cut-off frequency characterization and analysis | |
| CN111912885B (en) | A moisture content monitoring device and method | |
| EP0495819B1 (en) | Improvements to oil/water measurement | |
| CN107490727A (en) | A kind of dielectric constant measurement method of composite microwave sensor and measured object | |
| EA030602B1 (en) | ENCLOSURE ENCLOSURE | |
| CN212808142U (en) | Moisture content monitoring devices | |
| CN104272105B (en) | polyphase meter | |
| CN101105512A (en) | Circular waveguide standing wave measurement device for dielectric measurement in the eight millimeter wave band | |
| US4888547A (en) | Meter using a microwave bridge detector for measuring fluid mixtures | |
| JP2018531386A6 (en) | Sensors used in measurement systems suitable for dielectric impedance spectroscopy | |
| JP2018531386A (en) | Sensors used in measurement systems suitable for dielectric impedance spectroscopy | |
| CN102608431A (en) | Coaxial-dielectric circular waveguide resonant cavity with frequency range of 1GHz-8GHz and dielectric parameter testing method | |
| Penirschke et al. | Microwave mass flow detector for particulate solids based on spatial filtering velocimetry | |
| RU2199731C1 (en) | Device for determination of oil product humidity in pipe line | |
| RU2397479C1 (en) | Device for measuring volume ratio of liquid phase in stream of liquid-natural gas mixture | |
| CN107462774A (en) | A kind of new dielectric property test device and measuring method | |
| JP3885407B2 (en) | Sludge concentration meter | |
| JP3885406B2 (en) | Sludge concentration meter | |
| US7288944B1 (en) | Evanescent waveguide apparatus and method for measurement of dielectric constant | |
| RU2321010C1 (en) | Device for measurement of high quantities of complex dielectric constant of low-impedance composite materials at shf |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041117 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060726 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060915 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061031 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061113 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 7 |
|
| LAPS | Cancellation because of no payment of annual fees |