[go: up one dir, main page]

JP2001051007A - Grounding protector circuit for cold cathode discharge tube lighting circuit - Google Patents

Grounding protector circuit for cold cathode discharge tube lighting circuit

Info

Publication number
JP2001051007A
JP2001051007A JP11228547A JP22854799A JP2001051007A JP 2001051007 A JP2001051007 A JP 2001051007A JP 11228547 A JP11228547 A JP 11228547A JP 22854799 A JP22854799 A JP 22854799A JP 2001051007 A JP2001051007 A JP 2001051007A
Authority
JP
Japan
Prior art keywords
circuit
transformer
voltage
discharge tube
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11228547A
Other languages
Japanese (ja)
Inventor
Ryoichi Uda
良一 宇田
Kazuyuki Hayakawa
和之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11228547A priority Critical patent/JP2001051007A/en
Publication of JP2001051007A publication Critical patent/JP2001051007A/en
Priority to US09/842,011 priority patent/US6621670B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Housings And Mounting Of Transformers (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Inverter Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the manufacturing of a step-up transformer for igniting neon tubes and provide a coil for detecting the grounding. SOLUTION: The step-up transformer is disposed in a case 52 on a wiring board 51 on which an inverter for converting a commercial a-c power into a high frequency power, and a grounding detector circuit, etc., are mounted, lead wires (cables) 53, 54 for leading out a high voltage output of the step-up transformer are erected on the wiring board 51, coils 57, 58 are wound around air-core bobbins 55, 56, lead wires 53, 54 pass through the air-core bobbins 55, 56, and outputs of the coils 51, 58 are fed to a grounding detector circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は昇圧トランスの高
電圧出力によりネオン管、アルゴン管などの冷陰極放電
管を点灯させる点灯回路における高電圧側の地絡を検出
する地絡保護回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground fault protection circuit for detecting a ground fault on a high voltage side in a lighting circuit for lighting a cold cathode discharge tube such as a neon tube or an argon tube with a high voltage output of a step-up transformer.

【0002】[0002]

【従来の技術】この種の地絡保護回路は、例えば特願平
7−71831号(特開平8−271566号)で提案
されている。この地絡保護回路を図4を参照して簡単に
説明する。昇圧トランス11の一次巻線12の一端は入
力端子13に接続され、他端はトライアック14を介し
て入力端子15に接続され、昇圧トランス11の高電圧
出力側である二次巻線16,17の一端は互いに接続さ
れて、トランスケースに接続され、各他端は出力端子1
8,19にそれぞれ接続される。出力端子18,19に
はネオン管のような冷陰極放電管20が接続される。入
力端子13,15間の電源入力が整流平滑回路26で整
流平滑され、その出力がツェナーダイオード27で一定
電圧とされ、その一定電圧が分圧回路28により分圧さ
れ、基準電圧Erが作られて比較器29の反転入力端に
供給される。比較器29の出力側は分圧回路を通じてサ
イリスタ31のゲートに接続され、ツェナーダイオード
27の両端は解除スイッチ32を通じてサイリスタ31
の両端に接続される。二次巻線16,17とそれぞれ磁
気的に結合した第1,第2三次巻線21,22の各一端
は互いに接続され、各他端は検出回路23内の全波整流
回路33の入力端に接続され、全波整流回路33の出力
端は平滑回路34を通じて比較器29の非反転入力端に
接続される。
2. Description of the Related Art A ground fault protection circuit of this type has been proposed, for example, in Japanese Patent Application No. 7-71831 (Japanese Patent Application Laid-Open No. 8-271566). This ground fault protection circuit will be briefly described with reference to FIG. One end of the primary winding 12 of the step-up transformer 11 is connected to the input terminal 13, and the other end is connected to the input terminal 15 via the triac 14, and the secondary windings 16 and 17 on the high-voltage output side of the step-up transformer 11. Are connected to each other and connected to a transformer case, and each other end is connected to an output terminal 1.
8 and 19 respectively. A cold cathode discharge tube 20 such as a neon tube is connected to the output terminals 18 and 19. A power input between the input terminals 13 and 15 is rectified and smoothed by a rectifying and smoothing circuit 26, and its output is made a constant voltage by a Zener diode 27. The constant voltage is divided by a voltage dividing circuit 28 to generate a reference voltage Er. And supplied to the inverting input terminal of the comparator 29. The output side of the comparator 29 is connected to the gate of the thyristor 31 through a voltage dividing circuit, and both ends of the zener diode 27 are connected through the release switch 32 to the thyristor 31.
Are connected to both ends. One ends of the first and second tertiary windings 21 and 22 magnetically coupled to the secondary windings 16 and 17 are connected to each other, and the other ends are input terminals of a full-wave rectifier circuit 33 in the detection circuit 23. , And the output terminal of the full-wave rectifier circuit 33 is connected to the non-inverting input terminal of the comparator 29 through the smoothing circuit 34.

【0003】例えば第1,第2三次巻線21,22の誘
起電圧が互いに打ち消されるように接続されていると、
正常状態においては第1,第2三次巻線21,22に等
しい電圧が誘起され、検出回路23の入力は0となって
おり、比較器29の非反転入力端の電圧も0となってい
る。しかし、第1,第2二次巻線16,17の一方、例
えば16が地絡すると、その二次巻線によって誘起され
る方の三次巻線、この例では21の誘起電圧もほぼ0と
なり、比較器29の非反転端に比較的大きな正電圧が現
れ、これが基準電圧Erを超えて比較器29の出力が反
転して大きな正レベルが出力され、サイリスタ31がオ
ンとなり、地絡が生じたことが検出される。
For example, if the induced voltages of the first and second tertiary windings 21 and 22 are connected so as to cancel each other,
In a normal state, voltages equal to the first and second tertiary windings 21 and 22 are induced, the input of the detection circuit 23 is 0, and the voltage of the non-inverting input terminal of the comparator 29 is also 0. . However, if one of the first and second secondary windings 16 and 17, for example, 16 is grounded, the induced voltage of the tertiary winding induced by the secondary winding, 21 in this example, becomes almost zero. , A relatively large positive voltage appears at the non-inverting end of the comparator 29, which exceeds the reference voltage Er, the output of the comparator 29 is inverted and a large positive level is output, the thyristor 31 is turned on, and a ground fault occurs. Is detected.

【0004】図4では、この検出出力により一次巻線1
2への電流を自動的に遮断するようにした場合で、一次
巻線12と直列にスイッチ24としてのトライアック1
4が挿入され、サイリスタ31およびスイッチ32の直
列回路の両端間にツェナーダイオード36および抵抗器
37の直列回路が接続され、その抵抗器37の両端間に
トライアック14の一端とゲートが接続される。従って
正常な状態においてはサイリスタ31がオフで、ツェナ
ーダイオード36を通じてトライアック14がオン状態
となり、一次巻線12に交流電力が供給される。しか
し、前述したように二次巻線の一方が地絡すると、比較
器29の出力が反転してサイリスタ31がオンとなり、
トライアック14のゲート電圧が下がってトライアック
14がオフとなり、一次巻線12への交流電力の供給が
遮断される。
In FIG. 4, the primary winding 1 is detected by the detection output.
2 is automatically cut off, and a triac 1 as a switch 24 is connected in series with the primary winding 12.
4, a series circuit of a Zener diode 36 and a resistor 37 is connected between both ends of a series circuit of the thyristor 31 and the switch 32, and one end and a gate of the triac 14 are connected between both ends of the resistor 37. Therefore, in a normal state, the thyristor 31 is turned off, the triac 14 is turned on through the Zener diode 36, and AC power is supplied to the primary winding 12. However, as described above, when one of the secondary windings is grounded, the output of the comparator 29 is inverted and the thyristor 31 is turned on,
As the gate voltage of the triac 14 drops, the triac 14 is turned off, and the supply of AC power to the primary winding 12 is cut off.

【0005】[0005]

【発明が解決しようとする課題】地絡検出のための三次
巻線21,22は、図5に示すように磁気コア41が挿
通されたボビン42上に巻回され、その上にクラフト
紙、ポリエステルテープなどの絶縁フィルム43が巻か
れ、更にその上に二次巻線16,17がそれぞれ巻かれ
ていた。
The tertiary windings 21 and 22 for detecting a ground fault are wound on a bobbin 42 through which a magnetic core 41 is inserted, as shown in FIG. An insulating film 43 such as a polyester tape was wound thereon, and the secondary windings 16 and 17 were further wound thereon.

【0006】このように三次巻線21,22を巻回し、
更に絶縁フィルム43を巻いた上でで二次巻線16,1
7を巻くという順次工程度を必要とし、また三次巻線2
1,22の引き出し線加工、三次巻線21,22と二次
巻線16,17間の絶縁処理の手数の点から昇圧トラン
ス11の製造に比較的時間がかかった。特にインバータ
により高周波高電圧を発生させて冷陰極放電管20を点
灯させるようにした場合の昇圧トランス11の場合は、
大きさが小形になっているため、三次巻線21,22の
巻回、絶縁フィルム43の巻回、引き出し線加工がやり
にくかった。
In this way, the tertiary windings 21 and 22 are wound,
Further, after winding the insulating film 43, the secondary windings 16, 1
7 and a tertiary winding 2
It took a relatively long time to manufacture the step-up transformer 11 from the viewpoint of the number of lead wires for forming the step-up transformers 1 and 22 and the insulation between the tertiary windings 21 and 22 and the secondary windings 16 and 17. In particular, in the case of the step-up transformer 11 in which the high-frequency high voltage is generated by the inverter to turn on the cold cathode discharge tube 20,
Since the size was small, winding of the tertiary windings 21 and 22, winding of the insulating film 43, and lead wire processing were difficult.

【0007】[0007]

【課題を解決するための手段】この発明によれば、昇圧
トランスの高電圧を外部へ導出する各リード線と電磁的
に結合した第1,第2コイルが設けられ、これら第1,
第2コイルの出力が、地絡検出回路へ供給される。
According to the present invention, there are provided first and second coils which are electromagnetically coupled to respective lead wires for leading a high voltage of a step-up transformer to the outside.
The output of the second coil is supplied to a ground fault detection circuit.

【0008】[0008]

【発明の実施の形態】図1にこの発明の実施例を示す。
配線基板51上に図に示していないが昇圧トランス11
が配され、その昇圧トランス11はケース52で覆われ
ている。また配線基板51上には図に示していないが、
商用交流電力を高周波電力に変換するインバータや、地
絡検出回路などが構成されている。昇圧トランス11の
高電圧出力を外部に導出するための2次側出力リード線
(ケーブル)53,54が配線基板51に対し立てられ
ている。
FIG. 1 shows an embodiment of the present invention.
Although not shown in FIG.
And the step-up transformer 11 is covered with a case 52. Although not shown in the drawing on the wiring board 51,
An inverter that converts commercial AC power into high-frequency power, a ground fault detection circuit, and the like are configured. Secondary output leads (cables) 53 and 54 for leading the high voltage output of the step-up transformer 11 to the outside are set up with respect to the wiring board 51.

【0009】この実施例においては、空芯ボビン55,
56にそれぞれ第1,第2コイル57,58が巻かれ、
そのボビン55,56がリード線53,54上に通され
て、第1,第2コイル57,58とリード線53,54
とが電磁結合される。第1,第2コイル57,58の各
両端は配線基板51上に形成されている、図に示してい
ない、地絡検出回路に接続される。第1,第2コイル5
7,58の巻数は比較的多く、例えば1000回とさ
れ、なるべく大きな出力、例えば10V程度が得られる
ようにされる。
In this embodiment, the air-core bobbins 55,
First and second coils 57 and 58 are wound around 56, respectively.
The bobbins 55, 56 are passed over the leads 53, 54, and the first and second coils 57, 58 and the leads 53, 54
Are electromagnetically coupled. Both ends of the first and second coils 57 and 58 are connected to a ground fault detection circuit (not shown) formed on the wiring board 51. First and second coils 5
The number of turns of 7, 58 is relatively large, for example, 1000 turns, so that as large an output as possible, for example, about 10 V is obtained.

【0010】図2にこの発明を適用した、冷陰極放電管
点灯回路の例を示す。この例は、商用電力を高周波電力
に変換し、高周波電力により冷陰極放電管を点灯させる
場合である。商用電源61に接続されるべき入力端子1
3,15は電源スイッチ62を介して全波整流回路63
の入力側に接続され、整流回路63の出力側は平滑回路
64に接続され、平滑回路64の一端は接地され、他端
は一次巻線12の中点に接続され、また抵抗素子65,
66を通じてツェナーダイオード67の一端に接続さ
れ、ツェナーダイオード67の他端は接地される。この
ツェナーダイオード67の両端間電圧は抵抗素子68と
ツェナーダイオード69により分圧され、そのツェナー
ダイオード69の両端間に分圧抵抗器71,72に接続
され、分圧抵抗器71,72の各分圧点はFETのスイ
ッチング素子73,74の各ゲートに接続されると共
に、一次巻線12と電磁結合した帰還巻線75の両端に
接続される。
FIG. 2 shows an example of a cold cathode discharge tube lighting circuit to which the present invention is applied. In this example, commercial power is converted to high-frequency power, and the cold-cathode discharge tube is turned on by high-frequency power. Input terminal 1 to be connected to commercial power supply 61
3 and 15 are full-wave rectifier circuits 63 via a power switch 62.
The output side of the rectifier circuit 63 is connected to the smoothing circuit 64, one end of the smoothing circuit 64 is grounded, the other end is connected to the middle point of the primary winding 12, and the resistance element 65,
The other end of the Zener diode 67 is grounded. The voltage between both ends of the Zener diode 67 is divided by the resistance element 68 and the Zener diode 69, and is connected between the both ends of the Zener diode 69 to the voltage dividing resistors 71 and 72. The pressure point is connected to each gate of the switching elements 73 and 74 of the FET, and is connected to both ends of a feedback winding 75 electromagnetically coupled to the primary winding 12.

【0011】一次巻線12の両端はそれぞれスイッチン
グ素子73,74を通じて接地され、また一次巻線12
の両端間にコンデンサ76が接続される。一次巻線1
2、スイッチング素子73,74、帰還巻線75、コン
デンサ76により自励発振回路(プッシュプルインバー
タ)77が構成され、例えば10kHz〜30kHzの
高周波信号が発生し、これが昇圧されて二次巻線16の
両端に高電圧出力として得られ、この高電圧出力が放電
管20に印加され、放電管20が点灯する。
Both ends of the primary winding 12 are grounded through switching elements 73 and 74, respectively.
Is connected between both ends of the capacitor. Primary winding 1
2. A self-excited oscillation circuit (push-pull inverter) 77 is constituted by the switching elements 73 and 74, the feedback winding 75, and the capacitor 76. For example, a high-frequency signal of 10 kHz to 30 kHz is generated. Are obtained as a high-voltage output at both ends of the discharge tube 20. This high-voltage output is applied to the discharge tube 20, and the discharge tube 20 is turned on.

【0012】二次巻線の16の両端と出力端子18,1
9間のリード線53,54とそれぞれ電磁結合したコイ
ル57,58の各出力は全波整流回路81,82へ供給
される。整流回路81,82の各整流出力は平滑回路8
3,84で平滑され、その両平滑出力は差回路85で互
いの差電圧VD が検出される。この差電圧VD はウイン
ドウコンパレータ86へ供給される。つまりコンパレー
タ87の非反転入力端へ供給され、基準電圧V3と比較
されると共にコンパレータ88の反転入力端に供給され
て基準電圧V1と比較される。コンパレータ87,88
の各出力は逆流阻止ダイオード89,91をそれぞれ通
じて、サイリスタ92のゲートへ供給される。サイリス
タ92は抵抗素子65,66の抵抗点と接地との間に接
続される。
Both ends of the secondary winding 16 and the output terminals 18, 1
The outputs of the coils 57 and 58 that are electromagnetically coupled to the lead wires 53 and 54 between the coils 9 are supplied to full-wave rectifier circuits 81 and 82, respectively. Each rectified output of the rectifier circuits 81 and 82 is supplied to a smoothing circuit 8.
3,84 in the smooth, the two smoothed output difference voltage V D of each other in the difference circuit 85 is detected. The differential voltage V D is supplied to the window comparator 86. That is, it is supplied to the non-inverting input terminal of the comparator 87 and is compared with the reference voltage V3, and is also supplied to the inverting input terminal of the comparator 88 and is compared with the reference voltage V1. Comparators 87, 88
Are supplied to the gate of the thyristor 92 through the backflow blocking diodes 89 and 91, respectively. The thyristor 92 is connected between the resistance points of the resistance elements 65 and 66 and the ground.

【0013】正常状態においては、第1,第2コイル5
7,58に同一の大きさの電圧が誘起され、差回路85
の出力電圧VD は仮想ゼロ電位V2になる。この時の差
電圧VD =V2に対し、コンパレータ87の基準電圧V
3の方が大きく、またコンパレータ88の基準電圧V1
の方が小さく、V1<V2<V3状態になるように、V
1,V3が選定され、各コンパレータ87,88の各出
力は負電圧となり、サイリスタ92のゲートには電圧が
印加されず、サイリスタ92は不導通状態にあり、イン
バータ77は発振状態にあり、商用電源61の電力が高
周波電力に変換されて、放電管20が点灯する。
In a normal state, the first and second coils 5
Voltages of the same magnitude are induced at 7, 58 and the difference circuit 85
The output voltage V D of becoming the virtual zero potential V2. At this time, the difference voltage V D = V2 and the reference voltage V
3 is larger than the reference voltage V1 of the comparator 88.
Is smaller and V1 <V2 <V3 so that V1 <V2 <V3.
1, V3 is selected, each output of each of the comparators 87 and 88 becomes a negative voltage, no voltage is applied to the gate of the thyristor 92, the thyristor 92 is in a non-conductive state, the inverter 77 is in an oscillating state, and The power of the power supply 61 is converted to high-frequency power, and the discharge tube 20 is turned on.

【0014】しかし、例えば、リード線53側の配線、
放電管、配線接続点などが、例えばそのネオン塔の造営
材と接触して地絡すると、大地に電流が流れ、第1コイ
ル57に誘起される電圧が小さくなり、差回路85の出
力電圧VD は正となり、この正のVD は基準電圧V3よ
り大となって、コンパレータ89の出力が正となり、そ
の正電圧がサイリスタ92のゲートに印加されて、サイ
リスタ92が導通し、FET73,74のゲートのバイ
アスがゼロとなり、インバータ77は動作を停止する。
However, for example, wiring on the lead wire 53 side,
When the discharge tube, the wiring connection point, or the like comes into contact with, for example, the building material of the neon tower, a current flows to the ground, the voltage induced in the first coil 57 decreases, and the output voltage V of the difference circuit 85 decreases. D becomes positive, this positive V D becomes larger than the reference voltage V3, and the output of the comparator 89 becomes positive. The positive voltage is applied to the gate of the thyristor 92, and the thyristor 92 becomes conductive, and the FETs 73, 74 Becomes zero, and the inverter 77 stops operating.

【0015】リード線54側の放電管、配線、又はその
接続点が、例えばそのネオン塔の造営材に接触すると、
大地に電流が流れ、コイル58に誘起される電圧が小さ
くなり、差回路85の出力電圧VD は負電圧となりV2
より小さく、基準電圧V1よりも小さくなり、コンパレ
ータ88の出力が正電位となり、これがサイリスタ92
のゲートに印加されて、サイリスタ92が導通し、イン
バータ77の発振が停止する。
When the discharge tube, the wiring, or the connection point on the lead wire 54 side contacts, for example, the building material of the neon tower,
Earth current flows, the voltage induced in the coil 58 decreases, the output voltage V D of the difference circuit 85 becomes a negative voltage V2
Smaller than the reference voltage V1, and the output of the comparator 88 becomes a positive potential.
, The thyristor 92 conducts, and the oscillation of the inverter 77 stops.

【0016】このように地絡事故があると、これが検出
され、出力端子18,19への高周波電力の供給が停止
され、災害などが生じるおそれはない。インバータ77
としては2つのスイッチング素子によるものに限らず、
4つのスイッチング素子により構成するものでもよく、
また自励形のみならず、他励形であってもよい。
When such a ground fault has occurred, it is detected and the supply of high-frequency power to the output terminals 18 and 19 is stopped, so that there is no possibility that a disaster or the like will occur. Inverter 77
Is not limited to two switching elements,
It may be composed of four switching elements,
In addition to the self-excited type, the type may be separately excited.

【0017】またインバータ式点灯回路のみならず、低
周波交流電力による点灯回路にもこの発明は適用でき
る。つまり例えば図2中のコイル57,58を図4に示
したように、その三次巻線21,22と同様に一端を互
いに接続し、他端を検出回路23へ接続すればよい。ま
たコイル57,58の誘起電圧の差を検出する場合に限
らず、コイル57,58の各誘起電圧のそれぞれの大き
さを検知して昇圧トランス11の二次側出力の供給を停
止するようにしてもよい。例えば図3に図2、図4と対
応する部分に同一符号を付けて示すように、2次側出力
リード線53,54にそれぞれ電磁結合して設けられた
第1,第2コイル57,58の各誘起電圧はそれぞれ整
流平滑されて、コンパレータ94,95でそれぞれ基準
電圧VS1と比較され、正常状態ではコイル57,58
の各誘起電圧が大きいため、コンパレータ94,95の
出力は共に正電位となり、ダイオード96,97によ
り、ホトカプラ98の発光素子98Lに電流は流れず、
ホトカプラ98の受光素子98Pを介して端子13,1
5間に接続されたリレー99に電流が流れず、そのリレ
ーの切替え接点99Cの常閉側NCを通じて端子13,
15が一次巻線12と接続され、交流電圧が一次巻線1
2へ供給される。
The present invention can be applied not only to an inverter type lighting circuit but also to a lighting circuit using low-frequency AC power. That is, for example, as shown in FIG. 4, the coils 57 and 58 in FIG. 2 may be connected at one end to each other similarly to the tertiary windings 21 and 22, and may be connected to the detection circuit 23 at the other end. In addition to detecting the difference between the induced voltages of the coils 57 and 58, the magnitude of each induced voltage of the coils 57 and 58 is detected to stop the supply of the secondary output of the step-up transformer 11. You may. For example, as shown in FIG. 3 by assigning the same reference numerals to portions corresponding to FIGS. 2 and 4, first and second coils 57 and 58 provided electromagnetically coupled to secondary output lead wires 53 and 54, respectively. Are rectified and smoothed, and compared with the reference voltage VS1 by comparators 94 and 95, respectively, and the coils 57 and 58 are in a normal state.
Are high, the outputs of the comparators 94 and 95 both have a positive potential, and no current flows through the diodes 96 and 97 to the light emitting element 98L of the photocoupler 98.
The terminals 13 and 1 are connected via the light receiving element 98P of the photocoupler 98.
No current flows through the relay 99 connected between the terminals 5, and the terminals 13 and 13 are connected through the normally closed NC of the switching contact 99C of the relay.
15 is connected to the primary winding 12 and the AC voltage is
2.

【0018】しかし、地絡事故が発生すると、その発生
した側のコイル57又は58の誘起電圧が低下し、コン
パレータ94又は95の入力が基準電圧VS1より小と
なり、コンパレータの出力が低レベルとなり、ダイオー
ド96又は97が導通して発光素子98Lに電流が流
れ、これが発光し、受光素子98Pが導通してリレー9
9が動作し、その切替接点が常開側NOに接続され、交
流電力の一次巻線12への供給が遮断されると共に、リ
レー99の保持回路が構成される。
However, when a ground fault occurs, the induced voltage of the coil 57 or 58 on the side where the ground fault has occurred decreases, the input of the comparator 94 or 95 becomes smaller than the reference voltage VS1, and the output of the comparator becomes low. When the diode 96 or 97 conducts, a current flows through the light emitting element 98L, which emits light, the light receiving element 98P conducts, and the relay 9
9 operates, its switching contact is connected to the normally open side NO, the supply of AC power to the primary winding 12 is cut off, and a holding circuit for the relay 99 is configured.

【0019】インバータ式点灯回路においても、図3、
又は図4に示した検出回路23により、二次巻線16へ
の電力の供給を停止してもよい。逆に図2に示した検出
回路23を用いて、商用電力の一次巻線12への供給を
制御してもよい。この場合はサイリスタ92は、一次巻
線12の一端と直列に挿入される。
In the inverter type lighting circuit, FIG.
Alternatively, the supply of power to the secondary winding 16 may be stopped by the detection circuit 23 illustrated in FIG. Conversely, the supply of the commercial power to the primary winding 12 may be controlled using the detection circuit 23 shown in FIG. In this case, the thyristor 92 is inserted in series with one end of the primary winding 12.

【0020】[0020]

【発明の効果】以上述べたようにこの発明によれば、地
絡事故を検出するための第1,第2コイル57,58
を、高電圧出力を外部へ供給するためのリード線53,
54と電磁的に結合させているため、昇圧トランス11
に対し、三次巻線21,22を設ける必要がなく、昇圧
トランス11の製造が頗る簡単となる。第1,第2コイ
ル57,58は昇圧トランス11と併行して生産すれば
よく、しかも、その第1,第2コイル57,58は外部
リード線53,54上に挿通すればよく、その取付けも
頗る簡単である。このように昇圧トランス11に、三次
巻線21,22を設けないで済むことは、特にインバー
タ式点灯回路のように昇圧トランス11が小形になった
場合にその生産が頗る容易となる効果が大きい。
As described above, according to the present invention, the first and second coils 57 and 58 for detecting a ground fault are provided.
Are connected to a lead wire 53 for supplying a high voltage output to the outside.
54 and the step-up transformer 11
On the other hand, there is no need to provide the tertiary windings 21 and 22, and the manufacture of the step-up transformer 11 becomes extremely simple. The first and second coils 57 and 58 may be produced in parallel with the step-up transformer 11, and the first and second coils 57 and 58 may be inserted through the external lead wires 53 and 54. It is also very simple. The elimination of the provision of the tertiary windings 21 and 22 in the step-up transformer 11 has a great effect that the production of the step-up transformer 11 becomes extremely easy especially when the step-up transformer 11 is downsized as in an inverter type lighting circuit. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の要部の外形を簡略に示す図。FIG. 1 is a diagram schematically showing an outline of a main part of the present invention.

【図2】この発明を適用したインバータ方式点灯回路の
例を示す図。
FIG. 2 is a diagram showing an example of an inverter type lighting circuit to which the present invention is applied.

【図3】この発明を商用電力点灯方式に適用した例を示
す回路図。
FIG. 3 is a circuit diagram showing an example in which the present invention is applied to a commercial power lighting system.

【図4】従来の放電管点灯回路の保護回路の例を示す
図。
FIG. 4 is a diagram showing an example of a conventional protection circuit for a discharge tube lighting circuit.

【図5】従来の昇圧トランスを示す断面図。FIG. 5 is a sectional view showing a conventional step-up transformer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H05B 41/02 H05B 41/02 Z Fターム(参考) 2G014 AA04 AB04 AB54 AC18 3K072 AA01 AA19 AB03 BA03 BB01 BC03 BC07 DD04 EB05 GA02 GB12 GB14 GB18 GC03 GC04 5G058 AA02 AB06 5H007 BB03 CA02 CB06 CC32 DC02 FA03 FA14 HA01 HA03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // H05B 41/02 H05B 41/02 Z F term (Reference) 2G014 AA04 AB04 AB54 AC18 3K072 AA01 AA19 AB03 BA03 BB01 BC03 BC07 DD04 EB05 GA02 GB12 GB14 GB18 GC03 GC04 5G058 AA02 AB06 5H007 BB03 CA02 CB06 CC32 DC02 FA03 FA14 HA01 HA03

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 昇圧トランスの高電圧出力を冷陰極放電
管に印加して点灯する点灯回路の地絡保護回路におい
て、 上記昇圧トランスの高電圧を外部へ導出する各リード線
と電磁的に結合された第1,第2コイルと、 これら第1,第2コイルの出力が供給され、上記トラン
スの高電圧出力側の地絡を検出する地絡検出回路とを備
えることを特徴とする冷陰極放電管点灯回路の地絡保護
回路。
1. A ground fault protection circuit of a lighting circuit for lighting by applying a high voltage output of a step-up transformer to a cold cathode discharge tube, wherein the high voltage of the step-up transformer is electromagnetically coupled to each lead wire leading out to the outside. A cold-cathode characterized by comprising a first and a second coil, and a ground fault detecting circuit supplied with outputs of the first and second coils and detecting a ground fault on a high voltage output side of the transformer. Ground fault protection circuit for discharge tube lighting circuit.
JP11228547A 1999-08-12 1999-08-12 Grounding protector circuit for cold cathode discharge tube lighting circuit Pending JP2001051007A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11228547A JP2001051007A (en) 1999-08-12 1999-08-12 Grounding protector circuit for cold cathode discharge tube lighting circuit
US09/842,011 US6621670B2 (en) 1999-08-12 2001-04-26 Ground fault protection circuit for discharge tube lighting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228547A JP2001051007A (en) 1999-08-12 1999-08-12 Grounding protector circuit for cold cathode discharge tube lighting circuit

Publications (1)

Publication Number Publication Date
JP2001051007A true JP2001051007A (en) 2001-02-23

Family

ID=16878101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228547A Pending JP2001051007A (en) 1999-08-12 1999-08-12 Grounding protector circuit for cold cathode discharge tube lighting circuit

Country Status (1)

Country Link
JP (1) JP2001051007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049420A1 (en) * 2005-10-26 2007-05-03 Sharp Kabushiki Kaisha Discharge lamp lighting device, illuminator, liquid crystal display and method for detecting fault in discharge lamp lighting device
WO2009107503A1 (en) * 2008-02-26 2009-09-03 レシップ 株式会社 Discharge lamp control circuit with ground fault protection function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049420A1 (en) * 2005-10-26 2007-05-03 Sharp Kabushiki Kaisha Discharge lamp lighting device, illuminator, liquid crystal display and method for detecting fault in discharge lamp lighting device
WO2009107503A1 (en) * 2008-02-26 2009-09-03 レシップ 株式会社 Discharge lamp control circuit with ground fault protection function

Similar Documents

Publication Publication Date Title
AU612118B2 (en) High voltage power supply particularly adapted for a TWT
US6111732A (en) Apparatus and method for detecting ground fault
US6621670B2 (en) Ground fault protection circuit for discharge tube lighting circuit
JP2001051007A (en) Grounding protector circuit for cold cathode discharge tube lighting circuit
US6104585A (en) Protection circuit for tap-grounded leakage transformer
JP2003017287A (en) Power supply device for lighting cold cathode discharge lamp having ground protection function
US7113068B2 (en) Winding structure of inductor used in power factor correction circuit
JP2001085183A (en) Ground protection circuit of discharge lamp lighting circuit
KR100315444B1 (en) A transformer combined with capacitor and inductor and high voltage generator using the generator
TW438952B (en) Microwave oven
US5828182A (en) Apparatus for supplying power from a ballast circuit to an auxiliary load
JP2001169552A (en) Power supply unit of electronic apparatus
JP2001028831A (en) Grounding failure detection circuit of neon transformer
KR200152032Y1 (en) Smps noise removing apparatus
JP3042777B1 (en) X-ray tube device
JPH1074643A (en) High voltage generating coil of high voltage discharge lamp lighting equipment
JPH09215342A (en) High frequency power supply apparatus
JPH06325886A (en) High frequency lighting device
JP2549185Y2 (en) X-ray equipment
JP2814016B2 (en) X-ray power supply
JP3023513B2 (en) Electrical equipment
JP2649428B2 (en) Gas laser device
JPH01130492A (en) Booster transformer for high frequency heating device
JPH0322817A (en) Discharge detecting circuit for high voltage power source
JP2000125549A (en) Switching power unit realizing on/off control without auxiliary power

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060111