JP2001076719A - Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery - Google Patents
Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP2001076719A JP2001076719A JP24627399A JP24627399A JP2001076719A JP 2001076719 A JP2001076719 A JP 2001076719A JP 24627399 A JP24627399 A JP 24627399A JP 24627399 A JP24627399 A JP 24627399A JP 2001076719 A JP2001076719 A JP 2001076719A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- negative electrode
- secondary battery
- aqueous electrolyte
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
(57)【要約】
【課題】 高容量でサイクル寿命の極めて優れたデンド
ライトによる短絡のない信頼性の高い高エネルギー密度
の非水電解質二次電池を得る。
【解決手段】 式(1):M1 aM2で示され、0≦a≦
5を満たす組成のA相を有する粒子の表面の全部または
一部が、式(2):M1'bM2'cで示され、c=1または
c=0であって、c=1のときはa<bを満たす組成の
B相で被覆されている材料であって、M1およびM1'
は、Na、K、Rb、Cs、Ce、Ti、Zr、Hf、
V、Nb、Ta、Ca、Sr、Ba、Y、La、Cr、
Mo、W、Mn、Tc、Ru、Os、Co、Rh、I
r、Ni、Pd、Cu、AgおよびFeよりなる
(m1)群から選択された元素であり、M2およびM2'
は、Al、Ga、In、Si、Ge、Sn、Pb、Sb
およびBiよりなる(m2)群から選択された元素であ
る非水電解質二次電池用負極材料。[PROBLEMS] To provide a highly reliable non-aqueous electrolyte secondary battery having a high capacity and a high energy density without a short circuit due to a dendrite having an extremely excellent cycle life. SOLUTION: Formula (1): represented by M 1 a M 2 , where 0 ≦ a ≦
The whole or a part of the surface of the particles having the phase A having the composition satisfying Formula 5 is represented by Formula (2): M 1 ′ b M 2 ′ c , where c = 1 or c = 0 and c = 1 Is a material coated with a B phase having a composition satisfying a <b, and M 1 and M 1 ′
Are Na, K, Rb, Cs, Ce, Ti, Zr, Hf,
V, Nb, Ta, Ca, Sr, Ba, Y, La, Cr,
Mo, W, Mn, Tc, Ru, Os, Co, Rh, I
an element selected from the group (m 1 ) consisting of r, Ni, Pd, Cu, Ag, and Fe; M 2 and M 2 ′
Represents Al, Ga, In, Si, Ge, Sn, Pb, Sb
And a negative electrode material for a non-aqueous electrolyte secondary battery, which is an element selected from the group (m 2 ) consisting of Bi.
Description
【0001】[0001]
【発明の属する技術分野】本発明は非水電解質二次電池
用負極材料、その製造法および高い電気容量と長寿命を
両立させた非水電解質二次電池に関する。The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery having both high electric capacity and long life.
【0002】[0002]
【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は、高電圧、高エネルギー密度
が期待でき、多くの研究が行われている。非水電解質二
次電池の正極活物質には、遷移金属の酸化物およびカル
コゲン化合物、例えばLiMn2O4、LiCoO2、L
iNiO2、V2O5、Cr2O5、MnO2、TiS2、M
oS2などが知られている。これらは、層状構造または
トンネル構造を有し、リチウムイオンが出入りできる結
晶構造を有する。2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode can be expected to have a high voltage and a high energy density, and much research has been conducted. The positive electrode active material of the nonaqueous electrolyte secondary battery includes a transition metal oxide and a chalcogen compound, for example, LiMn 2 O 4 , LiCoO 2 , L
iNiO 2 , V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , M
oS 2 and the like are known. These have a layered structure or a tunnel structure, and have a crystal structure through which lithium ions can enter and exit.
【0003】一方、負極活物質としては、金属リチウム
が多く検討されている。しかし、金属リチウムを用いた
場合、充電時にリチウム表面に樹枝状のリチウム、すな
わちデンドライトが析出し、充放電効率の低下または正
極と接して内部短絡を生じるという問題点がある。そこ
で、リチウムの樹枝状成長を抑制し、リチウムを吸蔵お
よび放出できるリチウム系合金、例えばリチウム−アル
ミニウム合金などを負極活物質に用いる検討がなされて
いる。しかし、深い充放電を繰り返すと、電極材料が微
粉化し、サイクル特性に問題が生じる。On the other hand, as a negative electrode active material, metallic lithium has been widely studied. However, when metal lithium is used, there is a problem that dendritic lithium, ie, dendrite, precipitates on the surface of lithium during charging, which lowers the charging / discharging efficiency or causes an internal short circuit due to contact with the positive electrode. Therefore, studies have been made to use a lithium-based alloy capable of absorbing and releasing lithium, such as a lithium-aluminum alloy, as a negative electrode active material, while suppressing dendritic growth of lithium. However, when deep charge / discharge is repeated, the electrode material becomes finer, which causes a problem in cycle characteristics.
【0004】現在、金属リチウムやリチウム系合金より
も容量が小さい一方、リチウムを可逆的に吸蔵および放
出でき、サイクル特性、安全性などにも優れた黒鉛系炭
素材料を負極に用いたリチウムイオン電池が実用化され
ている。しかし、黒鉛系炭素材料を負極に使用した場
合、その実用的容量は、理論容量(372mAh/g)
に近い350mAh/gである。また、理論密度が2.
2g/ccと低く、実際にシート状の負極とすると、さ
らに密度が低下する。従って、電池のさらなる高容量化
を求めるには、単位体積あたりの容量が高い金属系無機
材料を負極活物質として用いる必要がある。At present, a lithium ion battery using a graphite-based carbon material for a negative electrode, which has a smaller capacity than metallic lithium and a lithium-based alloy, can reversibly insert and extract lithium, and has excellent cycle characteristics and safety. Has been put to practical use. However, when a graphite-based carbon material is used for the negative electrode, its practical capacity is the theoretical capacity (372 mAh / g).
350 mAh / g. The theoretical density is 2.
The density is as low as 2 g / cc, and if a sheet-shaped negative electrode is actually used, the density is further reduced. Therefore, in order to further increase the capacity of the battery, it is necessary to use a metal-based inorganic material having a high capacity per unit volume as the negative electrode active material.
【0005】金属系無機材料を負極活物質に使用する場
合の問題として、リチウムの吸蔵および放出にともなう
膨脹および収縮の繰り返しにより生じる活物質の微粉化
の問題、電解液と活物質との反応による有機物被膜の堆
積の問題の2点が挙げられる。どちらも活物質の反応性
を低下させる作用をもち、充放電サイクル寿命を短くす
る。[0005] When a metal-based inorganic material is used as a negative electrode active material, there are problems such as pulverization of the active material caused by repetition of expansion and contraction accompanying occlusion and release of lithium, and a reaction between the electrolyte and the active material. There are two problems of the deposition of the organic film. Both have the effect of reducing the reactivity of the active material and shorten the charge / discharge cycle life.
【0006】前記微粉化の問題に対しては、例えば一粒
子内にリチウムを吸蔵する相と吸蔵しない相とを共存さ
せ、充電状態(吸蔵状態)の応力をリチウムを吸蔵しな
い相で緩和する技術(特開平11−86854号公
報)、一粒子内にリチウムを吸蔵する相を2相以上共存
させ、各相のリチウム吸蔵時の構造変化による応力を緩
和する技術(特開平11−86853号公報)が開示さ
れている。しかし、これらの手法を取り入れた負極材料
であっても、微粉化の問題の充分な解決には至っていな
い。In order to solve the problem of pulverization, for example, a technique of coexisting a phase occluding lithium and a phase not occluding lithium in one particle to relieve stress in a charged state (occluding state) by a phase not occluding lithium. (Japanese Patent Application Laid-Open No. H11-86853), a technique in which two or more phases that occlude lithium in one particle coexist to alleviate the stress due to the structural change of each phase during occlusion of lithium (Japanese Patent Application Laid-Open No. H11-86853). Is disclosed. However, even a negative electrode material incorporating these techniques has not yet sufficiently solved the problem of pulverization.
【0007】一方で、活物質表面をフッ素化合物や炭酸
化合物の被膜で覆うことで電池の充放電効率を向上させ
る試みがなされている(特開平11−135153号公
報)。しかし、これらの被膜は機械的強度が弱く、微粉
化の抑制には不充分である。また、これらの被膜の成分
は、一般的なリチウムイオン電池用電解液を使用した場
合に有機物被膜として生成する化合物であり、被膜の堆
積を推進する可能性を有している。On the other hand, an attempt has been made to improve the charge / discharge efficiency of a battery by covering the surface of an active material with a film of a fluorine compound or a carbonate compound (JP-A-11-135153). However, these coatings have low mechanical strength and are insufficient for suppressing pulverization. The components of these films are compounds that are formed as organic films when a general lithium-ion battery electrolyte is used, and have the potential to promote the deposition of the films.
【0008】[0008]
【発明が解決しようとする課題】本発明は、前記膨脹お
よび収縮にともなう微粉化の問題および活物質表面に堆
積する有機物被膜の問題の両方を防止した高容量で充放
電サイクル特性に優れた非水電解質二次電池用負極材料
を提供することを目的とする。SUMMARY OF THE INVENTION The present invention is directed to a non-volatile semiconductor device having a high capacity and excellent charge-discharge cycle characteristics which prevents both the problem of pulverization due to the expansion and contraction and the problem of an organic film deposited on the surface of an active material. An object of the present invention is to provide a negative electrode material for a water electrolyte secondary battery.
【0009】[0009]
【課題を解決するための手段】本発明は、式(1):M
1 aM2で示され、0≦a≦5を満たす組成のA相を有す
る粒子の表面の全部または一部が、式(2):M1'
bM2'cで示され、c=1またはc=0であって、c=1
のときはa<bを満たす組成のB相で被覆されている材
料であって、式(1)中のM1および式(2)中のM1'
は、Na、K、Rb、Cs、Ce、Ti、Zr、Hf、
V、Nb、Ta、Ca、Sr、Ba、Y、La、Cr、
Mo、W、Mn、Tc、Ru、Os、Co、Rh、I
r、Ni、Pd、Cu、AgおよびFeよりなる
(m1)群から選択された少なくとも1種の元素であ
り、式(1)中のM2および式(2)中のM2'は、A
l、Ga、In、Si、Ge、Sn、Pb、Sbおよび
Biよりなる(m2)群から選択された少なくとも1種
の元素である非水電解質二次電池用負極材料に関する。According to the present invention, there is provided an image processing device comprising the following formula (1): M
All or part of the surface of the particles having the phase A represented by 1 a M 2 and having a composition satisfying 0 ≦ a ≦ 5 is represented by the formula (2): M 1 ′
b M 2 ' c , where c = 1 or c = 0 and c = 1
Is a material coated with a B phase having a composition satisfying a <b, and M 1 in the formula (1) and M 1 ′ in the formula (2)
Are Na, K, Rb, Cs, Ce, Ti, Zr, Hf,
V, Nb, Ta, Ca, Sr, Ba, Y, La, Cr,
Mo, W, Mn, Tc, Ru, Os, Co, Rh, I
At least one element selected from the group (m 1 ) consisting of r, Ni, Pd, Cu, Ag and Fe, wherein M 2 in the formula (1) and M 2 ′ in the formula (2) are A
The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery, which is at least one element selected from the group (m 2 ) consisting of 1, Ga, In, Si, Ge, Sn, Pb, Sb, and Bi.
【0010】前記非水電解質二次電池用負極材料におい
て、A相を有する粒子の表面の50%以上は、B相で被
覆されていることが好ましい。また、(m1)群から選
択された少なくとも1種の元素の濃度は、負極材料粒子
の表面から内部に向かって傾斜的に減少していることが
好ましい。In the negative electrode material for a non-aqueous electrolyte secondary battery, it is preferable that 50% or more of the surface of the particles having the A phase is coated with the B phase. Further, it is preferable that the concentration of at least one element selected from the group (m 1 ) gradually decreases from the surface to the inside of the negative electrode material particles.
【0011】本発明は、前記非水電解質二次電池用負極
材料がリチウムを吸蔵した材料にも関し、特に、A相が
リチウムを吸蔵した相の組成を、式(1'):LixM1 a
M2で示し、B相がリチウムを吸蔵した相の組成を、式
(2'):LiyM1'bM2'cで示したとき、0≦(y/
x)≦0.5を満たす材料が好ましい。The present invention also relates to a material in which the negative electrode material for a non-aqueous electrolyte secondary battery has absorbed lithium. In particular, the composition of the phase in which phase A has absorbed lithium is represented by the formula (1 ′): Li x M 1 a
It indicated M 2, the composition of the phase B phase has occluded a lithium, Formula (2 '): When shown by Li y M 1' b M 2 'c, 0 ≦ (y /
x) Materials satisfying ≦ 0.5 are preferred.
【0012】本発明の非水電解質二次電池用負極材料
は、45μm以下の平均粒径を有する粒子であることが
好ましい。The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is preferably particles having an average particle diameter of 45 μm or less.
【0013】また、本発明は、A相を有する粒子の表層
部に対して、(i)(m1)群から選択された少なくと
も1種の元素をメッキする工程、(ii)メカニカルアロ
イ法により、(m1)群から選択された少なくとも1種
の元素を複合化させる工程および(iii)メカノケミカ
ル法により、(m1)群から選択された少なくとも1種
の元素を複合化させる工程のいずれかを行うことを特徴
とする前記非水電解質二次電池用負極材料の製造法に関
する。この方法で得られた粒子は、さらに、還元雰囲気
または不活性ガス雰囲気下で加熱処理することが好まし
い。[0013] The present invention also provides a method of (i) plating at least one element selected from the group (m 1 ) on the surface layer of the particles having A phase, and (ii) a mechanical alloying method. , A step of compounding at least one element selected from the group (m 1 ), and (iii) a step of compounding at least one element selected from the group (m 1 ) by a mechanochemical method. And a method for producing the negative electrode material for a non-aqueous electrolyte secondary battery. The particles obtained by this method are preferably further subjected to a heat treatment in a reducing atmosphere or an inert gas atmosphere.
【0014】さらに、本発明は、A相を有する粒子と
(m1)群から選択された少なくとも1種の元素を含む
有機化合物とを、還元雰囲気下で、混合し、加熱処理す
る非水電解質二次電池用負極材料の製造法およびA相を
有する粒子の表層部に対して、プラズマ法またはイオン
注入法により、(m1)群から選択された少なくとも1
種の元素を導入する(複合化させる)工程を有する非水
電解質二次電池用負極材料の製造法に関する。Further, the present invention provides a non-aqueous electrolyte in which particles having phase A and an organic compound containing at least one element selected from the group (m 1 ) are mixed and heat-treated in a reducing atmosphere. A method for producing a negative electrode material for a secondary battery and at least one selected from the group (m 1 ) selected from the group (m 1 ) by a plasma method or an ion implantation method for a surface layer of particles having an A phase.
The present invention relates to a method for producing a negative electrode material for a non-aqueous electrolyte secondary battery having a step of introducing (compositing) various kinds of elements.
【0015】また、本発明は、充放電可能な正極と、非
水電解質と、前記負極材料からなる負極とを具備した非
水電解質二次電池に関する。The present invention also relates to a non-aqueous electrolyte secondary battery including a chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a negative electrode made of the negative electrode material.
【0016】[0016]
【発明の実施の形態】本発明の非水電解質二次電池用負
極材料では、式(1):M1 aM2で示され、0≦a≦
5、好ましくは0.5≦a≦3を満たす組成のA相を有
する粒子の表面の全部または一部が、式(2):M1'b
M2'cで示され、c=1またはc=0であって、c=1
のときはa<bを満たす組成のB相で被覆されている。
式(1)において、aが5を超えると、リチウムとの反
応性の低いM1の元素構成比が大きくなるため、低容量
となる。また、aが0.5未満になると、A相の膨張・
収縮の差が大きくなり、微粉化しやすくなる傾向があ
る。一方、式(2)において、c=1の場合、1≦b<
20、さらには2≦b≦10であることが好ましい。な
お、A相は、式(1)においてa=0の場合、(m2)
群から選択された少なくとも1種の元素のみからなる単
体または合金となり、B相は、式(2)においてc=0
の場合、(m1)群から選択された少なくとも1種の元
素のみからなる単体または合金となる。A相とB相は、
それぞれが1種のみ存在していればよいが、それぞれが
2種以上存在してもよい。この場合、c=1であってa
<bの関係を満たすA相とB相との組み合わせが2組以
上成立することもあるが、前記関係を満たす組み合わせ
が少なくとも1組存在していればよい。BEST MODE FOR CARRYING OUT THE INVENTION The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is represented by the following formula (1): M 1 a M 2 , where 0 ≦ a ≦
5, preferably all or part of the surface of the particles having the A phase having a composition satisfying 0.5 ≦ a ≦ 3 is represented by the formula (2): M 1 ′ b
M 2 ′ c , where c = 1 or c = 0 and c = 1
In the case of, it is covered with the B phase having a composition satisfying a <b.
In the formula (1), if a exceeds 5, the elemental composition ratio of M 1 having low reactivity with lithium increases, resulting in low capacity. When a is less than 0.5, the expansion of the A phase
The difference in shrinkage is large, and there is a tendency that the powder is easily pulverized. On the other hand, in Expression (2), when c = 1, 1 ≦ b <
20, more preferably 2 ≦ b ≦ 10. The phase A is expressed as (m 2 ) when a = 0 in the equation (1).
It becomes a simple substance or an alloy composed of only at least one element selected from the group, and the B phase is c = 0 in the formula (2).
In the case of ( 1 ), it is a simple substance or an alloy composed of only at least one element selected from the group (m 1 ). A phase and B phase
Only one kind of each may be present, but two or more kinds of each may be present. In this case, c = 1 and a
There may be two or more combinations of the A phase and the B phase that satisfy the relationship <b, but it is sufficient that at least one combination that satisfies the relationship exists.
【0017】B相は、A相に比べて、一般にリチウムに
対する反応性が低い。そのためA相を有する粒子がB相
で被覆されていると、負極材料粒子の表面における活性
が低くなるとともにA相と電解液との反応が抑制され、
有機物被膜の堆積が抑制される。さらに、負極材料粒子
の機械的強度も増加するため、材料の微粉化も抑制され
る。その結果、長寿命な負極材料を得ることができる。
かかる観点から、A相を有する粒子の表面の50%以
上、さらには55〜85%は、B相で被覆されているこ
とが好ましい。被覆された表面が50%未満になると、
有機物被膜の生成や材料の微粉化を抑制する効果が小さ
くなる。The B phase generally has a lower reactivity to lithium than the A phase. Therefore, when the particles having the A phase are coated with the B phase, the activity on the surface of the negative electrode material particles is reduced and the reaction between the A phase and the electrolytic solution is suppressed,
The deposition of the organic film is suppressed. Further, the mechanical strength of the negative electrode material particles also increases, so that pulverization of the material is suppressed. As a result, a long-life negative electrode material can be obtained.
From this viewpoint, it is preferable that 50% or more, more preferably 55 to 85%, of the surface of the particles having the A phase is coated with the B phase. When the coated surface is less than 50%,
The effect of suppressing the formation of the organic film and the pulverization of the material is reduced.
【0018】式(1)中のM1および式(2)中のM1'
は、Na、K、Rb、Cs、Ce、Ti、Zr、Hf、
V、Nb、Ta、Ca、Sr、Ba、Y、La、Cr、
Mo、W、Mn、Tc、Ru、Os、Co、Rh、I
r、Ni、Pd、Cu、AgおよびFeよりなる
(m1)群から選択された少なくとも1種の元素であ
る。一の相に1種のみの(m1)群から選択された元素
が含まれている場合、その元素は、Ti、Zr、V、N
b、La、Sr、Ba、Cr、Mn、Co、Ni、Cu
またはFeであることが好ましく、Ti、V、Nb、M
n、Co、Ni、CuまたはFeであることが、特に好
ましい。M 1 in the formula (1) and M 1 ′ in the formula (2)
Are Na, K, Rb, Cs, Ce, Ti, Zr, Hf,
V, Nb, Ta, Ca, Sr, Ba, Y, La, Cr,
Mo, W, Mn, Tc, Ru, Os, Co, Rh, I
At least one element selected from the group (m 1 ) consisting of r, Ni, Pd, Cu, Ag and Fe. When one phase contains only one element selected from the (m 1 ) group, the element includes Ti, Zr, V, N
b, La, Sr, Ba, Cr, Mn, Co, Ni, Cu
Or, it is preferably Fe, and Ti, V, Nb, M
Particularly preferred is n, Co, Ni, Cu or Fe.
【0019】一方、式(1)中のM2および式(2)中
のM2'は、Al、Ga、In、Si、Ge、Sn、P
b、SbおよびBiよりなる(m2)群から選択された
少なくとも1種の元素である。一の相に1種のみの(m
2)群から選択された元素が含まれている場合、その元
素は、Al、In、Si、Ge、SnまたはPbである
ことが好ましく、Al、SiまたはSnであることが、
特に好ましい。On the other hand, M 2 in the formula (1) and M 2 ′ in the formula (2) represent Al, Ga, In, Si, Ge, Sn, P
At least one element selected from the group (m 2 ) consisting of b, Sb and Bi. Only one type (m
2 ) When an element selected from the group is included, the element is preferably Al, In, Si, Ge, Sn or Pb, and preferably Al, Si or Sn.
Particularly preferred.
【0020】(m1)群から選択された少なくとも1種
の元素の濃度は、負極材料粒子の表面から内部に向かっ
て傾斜的に減少していることが好ましい。負極材料がこ
のようなリチウムに対して反応性の低い相から活性な相
へと連続的に変化する傾斜相を有する場合、材料の微粉
化の抑制効果がさらに向上する。It is preferable that the concentration of at least one element selected from the group (m 1 ) decreases gradually from the surface of the negative electrode material particles toward the inside. When the negative electrode material has such a gradient phase that continuously changes from a phase having low reactivity to lithium to an active phase, the effect of suppressing the pulverization of the material is further improved.
【0021】A相がリチウムを吸蔵した相の組成を、0
≦a≦5かつ0<xを満たす式(1'):LixM1 aM2
で示し、B相がリチウムを吸蔵した相の組成を、c=1
またはc=0であって、c=1のときはa<bを満たす
式(2'):LiyM1'bM2'cで示すと、0≦(y/x)
≦0.5、さらには0.05≦(y/x)≦0.25を
満たすことが好ましい。y/xが0.5を超えると、有
機物被膜の生成や材料の微粉化を抑制する効果が小さく
なる。The composition of the phase in which the phase A has absorbed lithium is 0%.
Formula (1 ′) satisfying ≦ a ≦ 5 and 0 <x: Li x M 1 a M 2
And the composition of the phase in which the phase B has absorbed lithium is c = 1.
Or, when c = 0 and c = 1, formula (2 ′) that satisfies a <b: 0 ≦ (y / x) where Li y M 1 ′ b M 2 ′ c
≦ 0.5, and more preferably 0.05 ≦ (y / x) ≦ 0.25. When y / x exceeds 0.5, the effect of suppressing the formation of the organic film and the pulverization of the material is reduced.
【0022】本発明の負極材料の平均粒径は、非水電解
質二次電池の負極が一般に80μm程度のシート状であ
ることから、45μm以下、さらには1〜30μmであ
ることが好ましい。平均粒径が45μmを超えると、シ
ート状負極の表面に凸凹が多くなり、電池特性が低下す
る傾向がある。The average particle size of the negative electrode material of the present invention is preferably 45 μm or less, more preferably 1 to 30 μm, since the negative electrode of a non-aqueous electrolyte secondary battery is generally in the form of a sheet of about 80 μm. When the average particle size exceeds 45 μm, the surface of the sheet-shaped negative electrode has many irregularities, and battery characteristics tend to be reduced.
【0023】A相は、できるだけ微細な結晶粒からなる
ことが、良好な電池特性を得るうえで望ましい。具体的
には、結晶粒の平均粒径が10μm以下、さらには0.
01〜2.5μm、とくには0.01〜1μmであるこ
とが好ましい。結晶粒の平均粒径が微細になることで、
結晶間の粒界領域が増加し、リチウムイオンが拡散しや
すくなる。その結果、反応が均一に起こるようになり、
材料の一部に大きな負荷がかかることなく、安定な電池
特性が得られる。B相も、できるだけ微細な結晶粒から
なることが、良好な電池特性を得るうえで望ましい。具
体的には、結晶粒の平均粒径が10μm以下、さらには
0.01〜2.5μm、とくには0.01〜1μmであ
ることが好ましい。前記と同様に、結晶粒の平均粒径が
微細になることでリチウムイオンが拡散しやすくなり、
リチウムイオンがA相全体に拡散して反応が均一に進行
しやすくなる。It is desirable that the phase A be composed of crystal grains as fine as possible in order to obtain good battery characteristics. Specifically, the average grain size of the crystal grains is 10 μm or less, and more preferably 0.1 μm.
It is preferably from 01 to 2.5 μm, particularly preferably from 0.01 to 1 μm. By making the average grain size of the crystal grains fine,
The grain boundary region between the crystals increases, and lithium ions are easily diffused. As a result, the reaction starts to occur uniformly,
Stable battery characteristics can be obtained without applying a large load to a part of the material. It is desirable that the B phase also be composed of crystal grains as fine as possible in order to obtain good battery characteristics. Specifically, the average grain size of the crystal grains is preferably 10 μm or less, more preferably 0.01 to 2.5 μm, and particularly preferably 0.01 to 1 μm. As described above, lithium ions are easily diffused due to the fine average grain size of the crystal grains,
Lithium ions diffuse throughout the phase A, and the reaction easily proceeds uniformly.
【0024】本発明の負極材料を得る方法としては、A
相を有する粒子の表層部に対して、(m1)群から選択
された少なくとも1種の元素をメッキする工程、例えば
(m1)群から選択された元素の無電解メッキ液にA相
を有する粒子を入れ、温度を適温に保ちながら5〜60
分間攪拌する工程を含む方法が挙げられる。また、別の
方法として、A相を有する粒子の表層部に対して、メカ
ニカルアロイ法により、(m1)群から選択された少な
くとも1種の元素を複合化させる工程、例えば(m1)
群から選択された元素の単体または合金5〜20重量部
を、A相を有する粒子80〜95重量部(合計100重
量部)とともに機械的に攪拌混合し、両者間で固相反応
を起こさせる工程を含む方法が挙げられる。また、さら
に別の方法として、A相を有する粒子の表層部に対し
て、メカノケミカル法により(m1)群から選択された
少なくとも1種の元素を複合化させる工程を含む方法が
挙げられる。As a method for obtaining the negative electrode material of the present invention, A
A step of plating at least one element selected from the group (m 1 ) on the surface layer of the particles having a phase, for example, applying the phase A to an electroless plating solution of the element selected from the group (m 1 ). 5-60 while keeping the temperature at an appropriate temperature.
A method including a step of stirring for minutes. Further, as another method, a step of compounding at least one element selected from the group (m 1 ) with the surface layer of the particles having the A phase by a mechanical alloy method, for example, (m 1 )
A simple substance or an alloy of 5 to 20 parts by weight of an element selected from the group is mechanically stirred and mixed together with 80 to 95 parts by weight of particles having an A phase (100 parts by weight in total) to cause a solid-phase reaction between the two. And a method including a step. Further, as still another method, a method including a step of compounding at least one element selected from the group (m 1 ) by a mechanochemical method on the surface layer of the particles having the A phase can be mentioned.
【0025】前記方法で得られた粒子は、さらに、還元
雰囲気またはアルゴン、窒素などの不活性ガス雰囲気下
で加熱処理することが好ましい。前記加熱処理として
は、粒子の種類によって異なるため一概にはいえない
が、例えば1〜10時間かけて100〜1500℃にま
で昇温した後、1〜72時間加熱を行う処理が好まし
い。The particles obtained by the above method are preferably further subjected to a heat treatment in a reducing atmosphere or an atmosphere of an inert gas such as argon or nitrogen. The heat treatment cannot be said unconditionally because it varies depending on the type of particles, but for example, a treatment in which the temperature is raised to 100 to 1500 ° C. over 1 to 10 hours and then heating is performed for 1 to 72 hours is preferable.
【0026】また、A相を有する粒子と(m1)群から
選択された少なくとも1種の元素を含む有機化合物、例
えばトリエトキシ鉄、ペンタエトキシモリブデンなどの
アルコキシド化合物などとを、還元雰囲気下で、混合
し、加熱処理する工程、A相を有する粒子の表層部に対
して、プラズマ法またはイオン注入法により、(m1)
群から選択された少なくとも1種の元素を導入する工程
を含む方法でも、本発明の負極材料を得ることができ
る。Further, the particles having the A phase and an organic compound containing at least one element selected from the group (m 1 ), for example, an alkoxide compound such as triethoxyiron and pentaethoxymolybdenum are mixed under a reducing atmosphere. Mixing and heat-treating the surface layer of the particles having the A phase by a plasma method or an ion implantation method to obtain (m 1 )
The negative electrode material of the present invention can also be obtained by a method including a step of introducing at least one element selected from the group.
【0027】[0027]
【実施例】次に、本発明を実施例に基づいてさらに具体
的に説明する。 《実施例1〜24》表1〜2に示す材料組成および表1
〜2に示す種類のA相を有する粒子を以下の手順で調製
した。Fe(塊状)、Cu(粒状)、Co(粒状)、M
n(塊状)、Ni(粒状)、Ti(塊状)、Sn(粒
状)、Si(粒状)およびAl(粉末)の中から表1〜
2の材料組成に応じた必要な原料を選択し、所定のモル
比で混合し、アーク溶解炉で鋳造した。得られた鋳造品
をガスアトマイズ法を用いることで球状粒子とした。こ
の化合物に45ミクロンメッシュのふるいを通して平均
粒径28μmの粒子を得た。得られた粒子に対してX線
回折分析を行ったところ、各粒子中に表1〜2に示した
所定のA相の存在が確認された。また、各粒子に対して
EPMA分析を行ったところ、いずれの粒子においても
A相を構成する結晶粒の平均粒径は0.3〜2.5μm
の範囲であり、最大でも5μmであった。Next, the present invention will be described more specifically based on examples. << Examples 1 to 24 >> Material compositions shown in Tables 1 and 2 and Table 1
Particles having the type A phase shown in Nos. 1 to 2 were prepared by the following procedure. Fe (lump), Cu (granular), Co (granular), M
Table 1 from among n (lump), Ni (granular), Ti (lump), Sn (granular), Si (granular) and Al (powder)
The necessary raw materials according to the material composition of No. 2 were selected, mixed at a predetermined molar ratio, and cast in an arc melting furnace. The obtained casting was converted into spherical particles by using a gas atomizing method. This compound was passed through a 45-micron mesh sieve to obtain particles having an average particle size of 28 μm. When X-ray diffraction analysis was performed on the obtained particles, the presence of the predetermined A phase shown in Tables 1 and 2 was confirmed in each particle. When an EPMA analysis was performed on each particle, the average particle size of the crystal grains constituting the A phase was 0.3 to 2.5 μm in any of the particles.
And the maximum was 5 μm.
【0028】次に、前記A相を有する粒子の表層部に対
して、表1〜2に示した表面処理を行い、表1〜2に示
す温度で熱処理を行い、B相を形成させた。なお、表1
〜2中、表面処理の列に示す元素の表示は表面処理に用
いた(m1)群から選択された元素を示し、( )内の
「粉末」という表示は前記元素の粉末を用いて所定の粒
子をメカニカルアロイ法により処理したことを、「メッ
キ」という表示は所定の粒子をメッキ処理したことを示
す。また、表面処理の列および熱処理温度(℃)の列に
示す「−」という表示はそれぞれ表面処理および熱処理
を行わなかったことを示す。Next, the surface layer of the particles having the phase A was subjected to the surface treatments shown in Tables 1 and 2, and the heat treatment was performed at the temperatures shown in Tables 1 and 2 to form the phase B. Table 1
2 to 2, the elements in the column of the surface treatment indicate elements selected from the group (m 1 ) used for the surface treatment, and the indication “powder” in parentheses indicates a predetermined number using the powder of the element. That the particles were treated by the mechanical alloy method, and the indication "plating" indicates that predetermined particles were plated. Further, "-" in the column of the surface treatment and the column of the heat treatment temperature (° C.) indicate that the surface treatment and the heat treatment were not performed, respectively.
【0029】前記メカニカルアロイ法では、平均粒径
0.05μmのCu粉末、Fe粉末およびTi粉末、平
均粒径0.03μmのNi粉末ならびに平均粒径0.1
μmのMn粉末を用いた。所定の粒子と所定の粉末を、
それぞれ10:1(重量比)で混合した後、遊星ボール
ミルで10分間回転攪拌させた。In the mechanical alloy method, Cu powder, Fe powder and Ti powder having an average particle size of 0.05 μm, Ni powder having an average particle size of 0.03 μm, and an average particle size of 0.1
μm Mn powder was used. Predetermined particles and predetermined powder,
After mixing at a ratio of 10: 1 (weight ratio), the mixture was rotated and stirred by a planetary ball mill for 10 minutes.
【0030】また、前記メッキ処理では、市販のNi無
電解メッキ液、Co無電解メッキ液およびCu無電解メ
ッキ液を用いた。前記粒子を所定の無電解メッキ浴に入
れ、Ni無電解メッキ液の場合は50℃、Co無電解メ
ッキ液の場合は70℃、Cu無電解メッキ液の場合は2
0℃で撹拌しながら30分間放置した。In the plating treatment, a commercially available Ni electroless plating solution, Co electroless plating solution, and Cu electroless plating solution were used. The particles are placed in a predetermined electroless plating bath, and the temperature is 50 ° C. for the Ni electroless plating solution, 70 ° C. for the Co electroless plating solution, and 2 ° C. for the Cu electroless plating solution.
The mixture was left for 30 minutes with stirring at 0 ° C.
【0031】次に、表面処理後の粒子に対して、任意の
熱処理を行った。具体的には、アルゴン雰囲気下で、表
1〜2に示す所定の熱処理温度まで3時間かけて粒子を
昇温した後、12時間その温度で保持した。冷却は自然
放冷を行った。この工程は、(m1)群から選択された
元素の濃度が表面から内部に向かって傾斜的に減少する
構造を実現するための工程である。Next, the particles subjected to the surface treatment were subjected to an optional heat treatment. Specifically, the particles were heated to a predetermined heat treatment temperature shown in Tables 1 and 2 over 3 hours in an argon atmosphere, and then kept at that temperature for 12 hours. Cooling was performed by natural cooling. This step is a step for realizing a structure in which the concentration of an element selected from the (m 1 ) group decreases gradually from the surface toward the inside.
【0032】前記各工程の結果、各粒子の表層部には、
表1〜2に示す種類のB相がそれぞれ形成された。各粒
子の断面をSEMにより観察したところ、全ての粒子の
表面の50%以上がB相で被覆されていることが確認で
きた。As a result of the above steps, the surface layer of each particle has:
The types B phases shown in Tables 1 and 2 were formed, respectively. When the cross section of each particle was observed by SEM, it was confirmed that 50% or more of the surface of all the particles was covered with the B phase.
【0033】次に、得られた粒子を負極活物質に用いて
図1に示す試験セルを作製した。負極活物質7.5gに
対して、導電剤として黒鉛粉末2gおよび結着剤として
ポリエチレン粉末0.5gを混合し、合剤とした。この
合剤0.1gを直径17.5mmに加圧成型して電極1
とし、ケース3の中に設置した。微孔性ポリプロピレン
セパレータ7を電極上に置いた。1モル/リットルとな
るように過塩素酸リチウム(LiClO4)を溶解させ
たエチレンカーボネートとジメトキシエタンとの体積比
で1:1の混合溶液を非水電解質としてセパレータ上に
注液した。この上に、内側に直径17.5mmの金属リ
チウム4を張り付け、外周部にポリプロピレンガスケッ
ト8を付けた封口板6を置いて、封口し、試験セルとし
た。なお、図1中、2は電極1の集電体を、5は金属リ
チウム4の集電体を示す。Next, a test cell shown in FIG. 1 was prepared by using the obtained particles as a negative electrode active material. To 7.5 g of the negative electrode active material, 2 g of graphite powder as a conductive agent and 0.5 g of polyethylene powder as a binder were mixed to form a mixture. 0.1 g of this mixture was press-molded to a diameter of 17.5 mm to form an electrode 1
And placed in Case 3. A microporous polypropylene separator 7 was placed on the electrode. A 1: 1 by volume mixed solution of ethylene carbonate and dimethoxyethane in which lithium perchlorate (LiClO 4 ) was dissolved at a concentration of 1 mol / liter was injected as a non-aqueous electrolyte onto the separator. On this, metal lithium 4 having a diameter of 17.5 mm was adhered on the inside, and a sealing plate 6 with a polypropylene gasket 8 attached on the outer periphery was placed and sealed to form a test cell. In FIG. 1, reference numeral 2 denotes a current collector of the electrode 1, and reference numeral 5 denotes a current collector of the metallic lithium 4.
【0034】この試験セルについて、0.5mAの定電
流で、電極1がリチウム対極4に対して0Vになるまで
カソード分極し(電極1を負極として見る場合には充電
に相当する。)、次に、電極が1.5Vになるまでアノ
ード分極した(電極1を負極として見る場合には放電に
相当する。)。その後、カソード分極、アノード分極を
繰り返した。活物質1gあたりの初回放電容量を表1〜
2に示す。その後、試験セルを分解し、カソード分極後
およびカソード分極、アノード分極を10サイクル繰り
返した後の電極1を取り出し、観察したところ、電極表
面における金属リチウムの析出(デンドライト)はみら
れなかった。また、カソード分極後の電極をIPC分析
したところ、負極材料中のA相およびB相に吸蔵されて
いるリチウムの量は、先述の0.05≦(y/x)≦
0.25を満たす範囲であった。The test cell was cathode-polarized at a constant current of 0.5 mA until the electrode 1 became 0 V with respect to the lithium counter electrode 4 (corresponding to charging when the electrode 1 was viewed as a negative electrode). Then, the electrode was anodically polarized until the voltage of the electrode reached 1.5 V (this corresponds to discharge when the electrode 1 is viewed as a negative electrode). Thereafter, cathodic polarization and anodic polarization were repeated. Table 1 shows the initial discharge capacity per gram of active material.
It is shown in FIG. Thereafter, the test cell was disassembled, and the electrode 1 after cathode polarization and after repeating cathode polarization and anodic polarization for 10 cycles was taken out and observed. As a result, no deposition (dendrite) of metallic lithium on the electrode surface was observed. When the electrode after the cathode polarization was subjected to IPC analysis, the amount of lithium occluded in the A phase and the B phase in the negative electrode material was 0.05 ≦ (y / x) ≦
0.25 was satisfied.
【0035】[0035]
【表1】 [Table 1]
【0036】[0036]
【表2】 [Table 2]
【0037】次に、前記負極活物質を用いた電池のサイ
クル特性を評価するため、図2に示す円筒型電池を以下
の手順で作製した。正極活物質であるLiMn1.8Co
0.2O4は、Li2CO3とMn3O4とCoCO3とを所定
のモル比で混合し、900℃で加熱することによって合
成した。さらに、これを100メッシュ以下に分級した
ものを正極活物質とした。正極活物質100gに対し
て、導電剤として炭素粉末を10g、結着剤としてポリ
4フッ化エチレンの水性ディスパージョンを樹脂成分で
8gおよび純水を加え、ペースト状にし、チタンの芯材
に塗布し、乾燥、圧延して正極板11を得た。また、所
定の負極活物質、導電剤として黒鉛粉末および結着剤と
してテフロン(登録商標)バインダーを70:20:1
0の割合(重量比)で混合し、石油系溶剤を用いてペー
スト状としたものを銅の芯材に塗布後、100℃で乾燥
したものを負極板12とした。セパレータ13として
は、多孔性ポリプロピレンを用いた。Next, in order to evaluate the cycle characteristics of the battery using the negative electrode active material, a cylindrical battery shown in FIG. 2 was manufactured in the following procedure. LiMn 1.8 Co as the positive electrode active material
0.2 O 4 was synthesized by mixing Li 2 CO 3 , Mn 3 O 4, and CoCO 3 at a predetermined molar ratio and heating at 900 ° C. Furthermore, what classified this into 100 mesh or less was used as the positive electrode active material. To 100 g of the positive electrode active material, 10 g of carbon powder as a conductive agent, 8 g of an aqueous dispersion of polytetrafluoroethylene as a binder, and 8 g of pure water as a resin component are added to form a paste, which is applied to a titanium core material. Then, drying and rolling were performed to obtain a positive electrode plate 11. Also, a predetermined negative electrode active material, graphite powder as a conductive agent, and Teflon (registered trademark) binder as a binder are used in a ratio of 70: 20: 1.
The mixture was mixed at a ratio of 0 (weight ratio), made into a paste using a petroleum solvent, applied to a copper core material, and dried at 100 ° C. to obtain a negative electrode plate 12. As the separator 13, a porous polypropylene was used.
【0038】スポット溶接にて取り付けた芯材と同材質
の正極リード14を有する正極板11とスポット溶接に
て取り付けた芯材と同材質の負極リード15を有する負
極板12の間に両極板より幅の広い帯状のセパレータ1
3を介在させ、全体を渦巻状に捲回した。得られた電極
体の上下それぞれにポリプロピレン製の上部絶縁板16
および下部絶縁板17をそれぞれ配して電槽18に挿入
した。電槽18の上部に段部を形成させた後、非水電解
質として、1モル/リットルとなるように過塩素酸リチ
ウムを溶解させたエチレンカーボネートとジメトキシエ
タンとの等比体積混合溶液を注入し、封口板19で密閉
し、正極端子20を設けて電池とした。Between the positive electrode plate 11 having the positive electrode lead 14 of the same material as the core material attached by spot welding and the negative electrode plate 12 having the negative electrode lead 15 of the same material as the core material attached by spot welding, Wide band-shaped separator 1
3 and the whole was spirally wound. An upper insulating plate 16 made of polypropylene is provided on each of the upper and lower sides of the obtained electrode body.
And the lower insulating plate 17 were arranged and inserted into the battery case 18. After forming a step on the upper part of the battery case 18, a non-aqueous electrolyte is injected with an equispecific volume mixed solution of ethylene carbonate and dimethoxyethane in which lithium perchlorate is dissolved at a concentration of 1 mol / liter. The battery was sealed with a sealing plate 19 and provided with a positive electrode terminal 20.
【0039】得られた電池について、試験温度30℃
で、充放電電流1mA/cm2、充放電電圧範囲4.3
〜2.6Vで充放電サイクル試験を行い、1サイクル目
に対する200サイクル目の容量維持率を求めた。結果
を表1〜2に示す。The obtained battery was tested at a test temperature of 30 ° C.
, Charge / discharge current 1 mA / cm 2 , charge / discharge voltage range 4.3
A charge / discharge cycle test was performed at -2.6 V, and the capacity retention ratio at the 200th cycle relative to the first cycle was determined. The results are shown in Tables 1 and 2.
【0040】《比較例1〜7》比較例として、表1〜2
に示す材料組成および表1〜2に示す種類のA相を有す
る粒子を、B相を設けないで、そのまま負極活物質とし
て用いた場合の試験セルの初回放電容量および円筒型電
池の1サイクル目に対する200サイクル目の容量維持
率を実施例と同様に求めた。結果を表1〜2に示す。表
1〜2から、本発明の負極材料を用いた電池は、比較例
に比べてサイクル特性が格段に向上することがわかる。Comparative Examples 1 to 7 As comparative examples, Tables 1 and 2
The initial discharge capacity of the test cell and the first cycle of the cylindrical battery when the particles having the material composition shown in Table 1 and the particles having the type A shown in Tables 1 and 2 were used as the negative electrode active material without providing the phase B were used. The capacity retention ratio at the 200th cycle was determined in the same manner as in the example. The results are shown in Tables 1 and 2. Tables 1 and 2 show that the battery using the negative electrode material of the present invention has significantly improved cycle characteristics as compared with the comparative example.
【0041】なお、実施例では、円筒型電池について説
明したが、コイン型、角型および偏平型の二次電池にお
いても全く同様の傾向が見られた。また、実施例では、
正極活物質としてLiMn1.8Co0.2O4について説明
したが、LiMn2O4、LiCoO2、LiNiO2など
を用いた場合にも同様の効果が得られることはいうまで
もない。Although the cylindrical battery has been described in the examples, the same tendency was observed in coin-type, square-type and flat-type secondary batteries. In the embodiment,
It has been described LiMn 1.8 Co 0.2 O 4 as the positive electrode active material, LiMn 2 O 4, LiCoO 2 , LiNiO goes without saying that the same effect can be obtained when using 2 or the like.
【0042】[0042]
【発明の効果】本発明によれば、高容量でサイクル寿命
の極めて優れたデンドライトによる短絡のない信頼性の
高い高エネルギー密度の非水電解質二次電池を得ること
ができる。According to the present invention, a high-density non-aqueous electrolyte secondary battery having a high capacity and an extremely excellent cycle life without a short circuit due to dendrite can be obtained.
【図1】本発明の負極材料の特性を評価するために実施
例で用いた試験セルの断面概略図である。FIG. 1 is a schematic cross-sectional view of a test cell used in an example for evaluating characteristics of a negative electrode material of the present invention.
【図2】本発明の負極材料の特性を評価するために実施
例で用いた円筒型電池の断面概略図である。FIG. 2 is a schematic cross-sectional view of a cylindrical battery used in an example to evaluate characteristics of a negative electrode material of the present invention.
1 電極 2 電極1の集電体 3 ケース 4 金属リチウム 5 金属リチウムの集電体 6 封口板 7 セパレータ 8 ガスケット 11 正極板 12 負極板 13 セパレータ 14 正極リード 15 負極リード 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 DESCRIPTION OF SYMBOLS 1 Electrode 2 Current collector of electrode 1 3 Case 4 Metallic lithium 5 Metallic lithium current collector 6 Sealing plate 7 Separator 8 Gasket 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive electrode terminal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武澤 秀治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松田 宏夢 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H003 AA02 AA04 BA00 BA01 BA03 BA07 BA09 BB02 BC01 BC05 BD02 BD03 5H029 AJ03 AJ05 AK03 AL07 AL11 AM03 AM04 AM05 AM07 CJ01 CJ02 CJ08 CJ11 CJ14 CJ24 CJ28 DJ16 HJ01 HJ02 HJ05 HJ07 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hideharu Takezawa 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (Reference) 5H003 AA02 AA04 BA00 BA01 BA03 BA07 BA09 BB02 BC01 BC05 BD02 BD03 5H029 AJ03 AJ05 AK03 AL07 AL11 AM03 AM04 AM05 AM07 CJ01 CJ02 CJ08 CJ11 CJ14 CJ24 CJ28 DJ16 HJ01 HJ02 HJ05 H07
Claims (10)
5を満たす組成のA相を有する粒子の表面の全部または
一部が、式(2):M1'bM2'cで示され、c=1または
c=0であって、c=1のときはa<bを満たす組成の
B相で被覆されている材料であって、式(1)中のM1
および式(2)中のM1'は、Na、K、Rb、Cs、C
e、Ti、Zr、Hf、V、Nb、Ta、Ca、Sr、
Ba、Y、La、Cr、Mo、W、Mn、Tc、Ru、
Os、Co、Rh、Ir、Ni、Pd、Cu、Agおよ
びFeよりなる(m1)群から選択された少なくとも1
種の元素であり、式(1)中のM2および式(2)中の
M2'は、Al、Ga、In、Si、Ge、Sn、Pb、
SbおよびBiよりなる(m2)群から選択された少な
くとも1種の元素である非水電解質二次電池用負極材
料。1. Formula (1): represented by M 1 a M 2 and 0 ≦ a ≦
The whole or a part of the surface of the particles having the phase A having the composition satisfying Formula 5 is represented by Formula (2): M 1 ′ b M 2 ′ c , where c = 1 or c = 0 and c = 1 Is a material coated with a B phase having a composition satisfying a <b, and M 1 in the formula (1)
And M 1 ′ in the formula (2) is Na, K, Rb, Cs, C
e, Ti, Zr, Hf, V, Nb, Ta, Ca, Sr,
Ba, Y, La, Cr, Mo, W, Mn, Tc, Ru,
At least one selected from the group (m 1 ) consisting of Os, Co, Rh, Ir, Ni, Pd, Cu, Ag and Fe
M 2 in the formula (1) and M 2 ′ in the formula (2) are Al, Ga, In, Si, Ge, Sn, Pb,
A negative electrode material for a non-aqueous electrolyte secondary battery, which is at least one element selected from the group (m 2 ) consisting of Sb and Bi.
が、B相で被覆されていることを特徴とする請求項1記
載の非水電解質二次電池用負極材料。2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein 50% or more of the surface of the particles having the A phase is coated with the B phase.
種の元素の濃度が、表面から内部に向かって傾斜的に減
少している請求項1記載の非水電解質二次電池用負極材
料。3. At least one member selected from the group (m 1 )
The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the concentration of the species element decreases in a gradient from the surface toward the inside.
蔵した相の組成を、 式(2'):LiyM1'bM2'cで示したとき、0≦(y/
x)≦0.5を満たす請求項1記載の非水電解質二次電
池用負極材料。The composition of claim 4] phase A phase was absorb lithium, the formula (1 '): shown in Li x M 1 a M 2, the composition of the phase B phase has occluded a lithium, Formula (2') : when shown by Li y M 1 'b M 2 ' c, 0 ≦ (y /
2. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein x) ≦ 0.5.
1〜4記載の非水電解質二次電池用負極材料。5. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, which has an average particle size of 45 μm or less.
(i)(m1)群から選択された少なくとも1種の元素
をメッキする工程、(ii)メカニカルアロイ法により、
(m1)群から選択された少なくとも1種の元素を複合
化させる工程、および(iii)メカノケミカル法によ
り、(m1)群から選択された少なくとも1種の元素を
複合化させる工程のいずれかを行うことを特徴とする請
求項1〜5のいずれかに記載の非水電解質二次電池用負
極材料の製造法。6. The surface layer of the particles having the phase A,
(I) a step of plating at least one element selected from the group (m 1 ), (ii) a mechanical alloy method,
( I ) combining at least one element selected from the (m 1 ) group and (iii) combining at least one element selected from the (m 1 ) group by a mechanochemical method. The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein
または不活性ガス雰囲気下で加熱処理する請求項6記載
の非水電解質二次電池用負極材料の製造法。7. The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 6, wherein after the step, the particles are further heat-treated in a reducing atmosphere or an inert gas atmosphere.
された少なくとも1種の元素を含む有機化合物とを、還
元雰囲気下で、混合し、加熱処理する請求項1〜5のい
ずれかに記載の非水電解質二次電池用負極材料の製造
法。8. The method according to claim 1, wherein the particles having phase A and an organic compound containing at least one element selected from the group (m 1 ) are mixed and heat-treated in a reducing atmosphere. A method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to any of the above items.
ラズマ法またはイオン注入法により、(m1)群から選
択された少なくとも1種の元素を導入する工程を有する
請求項1〜5のいずれかに記載の非水電解質二次電池用
負極材料の製造法。9. The method according to claim 1, further comprising the step of introducing at least one element selected from the group (m 1 ) into the surface layer of the particles having the phase A by a plasma method or an ion implantation method. The method for producing a negative electrode material for a nonaqueous electrolyte secondary battery according to any one of the above.
請求項1〜5のいずれかに記載の負極材料からなる負極
とを具備した非水電解質二次電池。10. A chargeable / dischargeable positive electrode, a non-aqueous electrolyte,
A non-aqueous electrolyte secondary battery comprising a negative electrode made of the negative electrode material according to claim 1.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24627399A JP4056181B2 (en) | 1999-08-31 | 1999-08-31 | Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
| PCT/JP1999/005805 WO2000024070A1 (en) | 1998-10-22 | 1999-10-20 | Secondary cell having non-aqueous electrolyte |
| EP99949336A EP1043789B1 (en) | 1998-10-22 | 1999-10-20 | Secondary cell having non-aqueous electrolyte |
| US09/598,206 US6265111B1 (en) | 1998-10-22 | 2000-06-21 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24627399A JP4056181B2 (en) | 1999-08-31 | 1999-08-31 | Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2001076719A true JP2001076719A (en) | 2001-03-23 |
| JP4056181B2 JP4056181B2 (en) | 2008-03-05 |
Family
ID=17146093
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP24627399A Expired - Lifetime JP4056181B2 (en) | 1998-10-22 | 1999-08-31 | Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4056181B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002216762A (en) * | 2000-11-15 | 2002-08-02 | Matsushita Electric Ind Co Ltd | Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same |
| US7763387B2 (en) | 2002-05-24 | 2010-07-27 | Nec Corporation | Negative electrode for secondary cell and secondary cell using the same |
| JP2013084545A (en) * | 2011-01-20 | 2013-05-09 | Mitsubishi Materials Corp | Negative electrode composition for lithium ion secondary battery, and negative electrode of lithium ion secondary battery |
| KR20150101922A (en) * | 2014-02-27 | 2015-09-04 | 소니 주식회사 | Negative electrode active material, battery, battery pack, electronic apparatus, electric vehicle, electrical storage apparatus and electricity system |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63274060A (en) * | 1987-05-01 | 1988-11-11 | Fuji Elelctrochem Co Ltd | Negative electrode for lithium secondary battery |
| JPH0547381A (en) * | 1991-08-20 | 1993-02-26 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
| JPH0878011A (en) * | 1994-09-08 | 1996-03-22 | Agency Of Ind Science & Technol | Method of manufacturing lithium battery and negative electrode carrier thereof |
| JPH0963651A (en) * | 1995-06-12 | 1997-03-07 | Hitachi Ltd | Non-aqueous secondary battery and negative electrode material thereof |
| JPH1186853A (en) * | 1997-09-11 | 1999-03-30 | Hitachi Ltd | Lithium secondary battery |
| JP2000030703A (en) * | 1997-06-03 | 2000-01-28 | Matsushita Electric Ind Co Ltd | Negative electrode materials for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries using these negative electrode materials |
| JP2000173616A (en) * | 1998-12-02 | 2000-06-23 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
| JP2000173670A (en) * | 1998-12-02 | 2000-06-23 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery charging method |
| JP2000173590A (en) * | 1998-12-02 | 2000-06-23 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
-
1999
- 1999-08-31 JP JP24627399A patent/JP4056181B2/en not_active Expired - Lifetime
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63274060A (en) * | 1987-05-01 | 1988-11-11 | Fuji Elelctrochem Co Ltd | Negative electrode for lithium secondary battery |
| JPH0547381A (en) * | 1991-08-20 | 1993-02-26 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
| JPH0878011A (en) * | 1994-09-08 | 1996-03-22 | Agency Of Ind Science & Technol | Method of manufacturing lithium battery and negative electrode carrier thereof |
| JPH0963651A (en) * | 1995-06-12 | 1997-03-07 | Hitachi Ltd | Non-aqueous secondary battery and negative electrode material thereof |
| JP2000030703A (en) * | 1997-06-03 | 2000-01-28 | Matsushita Electric Ind Co Ltd | Negative electrode materials for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries using these negative electrode materials |
| JPH1186853A (en) * | 1997-09-11 | 1999-03-30 | Hitachi Ltd | Lithium secondary battery |
| JP2000173616A (en) * | 1998-12-02 | 2000-06-23 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
| JP2000173670A (en) * | 1998-12-02 | 2000-06-23 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery charging method |
| JP2000173590A (en) * | 1998-12-02 | 2000-06-23 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002216762A (en) * | 2000-11-15 | 2002-08-02 | Matsushita Electric Ind Co Ltd | Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same |
| US7763387B2 (en) | 2002-05-24 | 2010-07-27 | Nec Corporation | Negative electrode for secondary cell and secondary cell using the same |
| US8034475B2 (en) | 2002-05-24 | 2011-10-11 | Nec Corporation | Anode for secondary battery and secondary battery using the same |
| JP2013084545A (en) * | 2011-01-20 | 2013-05-09 | Mitsubishi Materials Corp | Negative electrode composition for lithium ion secondary battery, and negative electrode of lithium ion secondary battery |
| KR20150101922A (en) * | 2014-02-27 | 2015-09-04 | 소니 주식회사 | Negative electrode active material, battery, battery pack, electronic apparatus, electric vehicle, electrical storage apparatus and electricity system |
| JP2015162364A (en) * | 2014-02-27 | 2015-09-07 | ソニー株式会社 | Negative electrode active material, battery, battery pack, electronic device, electric vehicle, power storage device, and power system |
| US10164248B2 (en) | 2014-02-27 | 2018-12-25 | Murata Manufacturing Co., Ltd. | Negative electrode active material comprising silicon and at least one metal element, and battery, battery pack, electronic apparatus, electric vehicle, electrical storage apparatus and electricity system using same |
| KR102170004B1 (en) * | 2014-02-27 | 2020-10-26 | 가부시키가이샤 무라타 세이사쿠쇼 | Negative electrode active material, battery, battery pack, electronic apparatus, electric vehicle, electrical storage apparatus and electricity system |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4056181B2 (en) | 2008-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1043789B1 (en) | Secondary cell having non-aqueous electrolyte | |
| US7108944B2 (en) | Active material having surface treatment layer for battery and method of preparing the same | |
| EP1787341B1 (en) | Electrode active material with multi -element based oxide layers and preparation method thereof | |
| JP5143852B2 (en) | Nonaqueous electrolyte secondary battery | |
| JPH07230800A (en) | Nonaqueous electrolyte secondary battery and manufacture thereof | |
| JP4368139B2 (en) | Anode material for non-aqueous electrolyte secondary battery | |
| JP2001148248A (en) | Manufacturing method of negative electrode material and a manufacturing method of secondary battery | |
| JP4056183B2 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
| JP2004319469A (en) | Negative electrode active material and non-aqueous electrolyte secondary battery using the same | |
| JP2001015102A (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
| JP4379971B2 (en) | Electrical energy storage element | |
| JP2004047437A (en) | Positive active material for non-aqueous electrolyte secondary battery and method for producing the same | |
| JP4608743B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP4439660B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP4056181B2 (en) | Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
| JP2002216762A (en) | Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same | |
| US20200321609A1 (en) | Battery | |
| JP3136679B2 (en) | Non-aqueous electrolyte secondary battery | |
| JP2004146296A (en) | Lithium ion secondary battery | |
| JP2003282053A (en) | Negative electrode material for non-aqueous electrolyte battery, negative electrode and non-aqueous electrolyte battery | |
| JP2004103478A (en) | Anode materials for non-aqueous electrolyte secondary batteries | |
| US6329100B1 (en) | Hydrogen absorbing alloy electrode and process for producing same | |
| JP2000133261A (en) | Non-aqueous electrolyte secondary battery and its manufacturing method | |
| JP2004185881A (en) | Electrode material for non-aqueous electrolyte battery, electrode and non-aqueous electrolyte battery | |
| US12381205B2 (en) | Positive electrode active material for lithium secondary battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040427 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070823 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071019 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071115 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071211 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4056181 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 6 |
|
| EXPY | Cancellation because of completion of term |