JP2001012970A - Optical strain sensor cable - Google Patents
Optical strain sensor cableInfo
- Publication number
- JP2001012970A JP2001012970A JP11183341A JP18334199A JP2001012970A JP 2001012970 A JP2001012970 A JP 2001012970A JP 11183341 A JP11183341 A JP 11183341A JP 18334199 A JP18334199 A JP 18334199A JP 2001012970 A JP2001012970 A JP 2001012970A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- optical
- sensor cable
- wire
- strain sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 31
- 239000013307 optical fiber Substances 0.000 claims abstract description 44
- 238000001514 detection method Methods 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 229910001374 Invar Inorganic materials 0.000 abstract description 12
- 239000011435 rock Substances 0.000 abstract description 9
- 230000008602 contraction Effects 0.000 abstract description 7
- 238000000253 optical time-domain reflectometry Methods 0.000 abstract description 4
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Optical Transform (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
(57)【要約】
【課題】 観測現場で電源を必要とせず、長手方向全長
にわたって検知可能で、光ファイバが断線しにくく、し
かも温度変化による伸縮の少ない光歪センサケーブル
と、このケーブルを用いた歪検知システムとを提供す
る。
【解決手段】 光ファイバ2と低熱膨張線材(インバー
線3)とを被覆材4で被覆した。光ファイバ2の直径より
低熱膨張線材の直径を大きくすることが光ファイバ保護
の点で好ましい。この光歪センサケーブルを岩盤などの
検知対象物に埋設し、OTDRなどの歪測定装置を接続し
て、落盤の予兆となる歪を光ファイバの歪増加としてと
らえる。インバー線3は温度変化に伴う伸縮が極めて少
なく、検知対象の歪をインバー線の伸縮に伴う歪と区別
しやすいため、検知精度を向上できる。
(57) [Problem] To use an optical strain sensor cable which does not require a power source at the observation site, can be detected over the entire length in the longitudinal direction, hardly breaks the optical fiber, and has little expansion and contraction due to temperature change, and this cable And a distortion detection system. SOLUTION: An optical fiber 2 and a low thermal expansion wire (invar wire 3) are covered with a covering material 4. It is preferable to make the diameter of the low thermal expansion wire larger than the diameter of the optical fiber 2 from the viewpoint of protecting the optical fiber. The optical strain sensor cable is buried in a detection target such as a rock, and a strain measuring device such as an OTDR is connected. The invar wire 3 has very little expansion and contraction due to a temperature change, and it is easy to distinguish the distortion of the detection target from the distortion due to the expansion and contraction of the invar wire, so that the detection accuracy can be improved.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、岩壁に布設したり
あるいは地盤、道路、堤防、大型建造物等に埋設して、
これらに生ずる歪を検知する光歪センサケーブルと、こ
のケーブルを利用した歪検知システムに関するものであ
る。BACKGROUND OF THE INVENTION The present invention relates to a method of laying on a rock wall or embedding in the ground, a road, a dike, a large building, or the like.
The present invention relates to an optical distortion sensor cable for detecting distortion generated in these cables, and a distortion detection system using the cable.
【0002】[0002]
【従来の技術】岩壁、地盤、堤防、大型建造物等におい
て発生する、岩石崩落、地盤沈下、地滑り、陥没等の異
常事態の予兆として生じる械械的歪を観測検知する方式
としてポイントセンサ方式が従来から知られている。こ
れは、歪の発生を電気抵抗値や静電容量の変化等として
検知するセンサを検知対象物に点在的に設置する方式で
ある。2. Description of the Related Art A point sensor method is used to observe and detect mechanical distortion that occurs on rock walls, ground, embankments, large buildings, and the like, which is a sign of an abnormal situation such as rock collapse, land subsidence, landslide, or depression. Is conventionally known. This is a method in which sensors that detect the occurrence of distortion as changes in electrical resistance or capacitance are scatteredly installed on a detection target.
【0003】また、最近では検知対象の長手方向全長に
わたって観測検知できるように光ファイバを布設や埋設
して光ファイバの歪計測技術を使うことが考えられてい
る。Recently, it has been considered to use an optical fiber strain measuring technique by laying or burying an optical fiber so that observation and detection can be performed over the entire length of the detection object in the longitudinal direction.
【0004】[0004]
【発明が解決しようとする課題】しかし、ポイントセン
サ方式によると、センサ相互間に検知不可能な範囲が生
じ、検知対象の長手方向全長にわたる均一な観測検知が
できない。また、観測検知する現場にセンサ駆動用の電
源や検知情報の伝送装置が必要であり、保守・管理が大
変であるなどの問題があった。However, according to the point sensor method, an undetectable range occurs between the sensors, and uniform observation detection over the entire length of the detection target in the longitudinal direction cannot be performed. Further, a power source for driving the sensor and a transmission device for the detection information are required at the site where the observation and detection are performed, and there is a problem that maintenance and management are difficult.
【0005】さらに、光ファイバを布設あるいは埋設
し、歪み計測技術を使って長手方向全長にわたって均一
に観測検知する場合には、使用する光ファイバだけのケ
ーブルでは断線しやすく、観測検知できない場合が多い
と言う問題がある。一方、断線を防止することを目的と
して、光ファイバと鋼線を一体にしたケーブルもある。
しかし、鋼線は温度による伸縮が大きいため、検知対象
物でなく鋼線の伸縮で光ファイバに歪が生じ、検知対象
物の正確な歪検知ができない。Further, when an optical fiber is laid or buried and the strain is measured and detected uniformly over the entire length in the longitudinal direction, the cable using only the used optical fiber is liable to be disconnected and cannot be detected in many cases. There is a problem to say. On the other hand, there is a cable in which an optical fiber and a steel wire are integrated for the purpose of preventing disconnection.
However, since the steel wire greatly expands and contracts due to temperature, distortion occurs in the optical fiber due to expansion and contraction of the steel wire, not the detection target, and accurate detection of distortion of the detection target cannot be performed.
【0006】図4は鋼線6と光ファイバ5を一体にして被
覆材7で一体化した光通信用ケーブルで、電柱から家庭
に引き込む部分に使用されている。このケーブルは光通
信用であるため、温度により鋼線6が伸縮して歪が生じ
ても通信にはあまり影響しないが、前記の理由により歪
計測用には到底使用できない。FIG. 4 shows an optical communication cable in which a steel wire 6 and an optical fiber 5 are integrated with a covering material 7 and is used for a part drawn from a telephone pole into a home. Since this cable is used for optical communication, even if the steel wire 6 expands and contracts due to temperature and causes distortion, it has little effect on communication, but for the above-mentioned reason, it cannot be used for strain measurement at all.
【0007】従って、本発明の主目的は、光ファイバの
歪計測技術を使い、観測現場で電源を必要とせず、長手
方向全長にわたって観測検知可能で、光ファイバが断線
しにくく、しかも温度変化による伸縮の少ない光歪セン
サケーブルと、このケーブルを用いた歪検知システムと
を提供することにある。Accordingly, it is a primary object of the present invention to use an optical fiber strain measurement technique, observing over the entire length in the longitudinal direction without requiring a power source at an observation site, and making it possible to prevent the optical fiber from being disconnected, and furthermore, due to a temperature change. An object of the present invention is to provide an optical distortion sensor cable with little expansion and contraction and a distortion detection system using the cable.
【0008】[0008]
【課題を解決するための手段】本発明は、光ファイバと
低熱膨張線材とを複合することで上記の目的を達成す
る。The present invention achieves the above object by combining an optical fiber and a low thermal expansion wire.
【0009】すなわち、本発明光歪センサケーブルは、
光ファイバと低熱膨張線材を被覆材で一括被覆したこと
を特徴とする。That is, the optical strain sensor cable of the present invention comprises:
The optical fiber and the low-thermal-expansion wire are collectively covered with a covering material.
【0010】ここで、低熱膨張線材とは、線膨張係数の
小さい材料からなる線材を言う。ほとんどの金属材料の
線膨張係数は10-5m/m℃であるが、この半分程度、よ
り好ましくは1/10程度の線膨張係数を持つ材料が利用
できる。例えば、線膨張係数が鉄やニッケルの約1/10
であるインバーなどが最適である。インバーにはFe-Ni
系、Fe-Pt系、Fe-Pd系があり、いずれでも良い。代表的
なFe-Ni系における一般的な標準組成はMn:0.4、C:0.
2、Ni:36、残部Fe(wt%)である。Here, the low thermal expansion wire is a wire made of a material having a small coefficient of linear expansion. Most metallic materials have a linear expansion coefficient of 10 −5 m / m ° C., but a material having a linear expansion coefficient of about half, more preferably about 1/10 can be used. For example, the coefficient of linear expansion is about 1/10 that of iron or nickel.
Is best. Fe-Ni for Invar
System, Fe-Pt system, Fe-Pd system, and any of them may be used. Typical standard composition in a typical Fe-Ni system is Mn: 0.4, C: 0.
2, Ni: 36, balance Fe (wt%).
【0011】また、光ファイバと低熱膨張線材の本数は
特に限定されない。少なくとも一本づつが組み合わされ
ていれば良い。さらに、光ファイバと低熱膨張線材との
配置は特に限定されないが、光ファイバを低熱膨張線材
で挟むようにすることが好適である。これにより、光フ
ァイバの断線を効果的に抑制する。特に、低熱膨張線材
の径を光ファイバの径よりも大きくすることで光ファイ
バに外部からの荷重がかかり難い構造とでき、一層望ま
しい。The number of optical fibers and low thermal expansion wires is not particularly limited. It is sufficient that at least one of them is combined. Furthermore, the arrangement of the optical fiber and the low thermal expansion wire is not particularly limited, but it is preferable that the optical fiber is sandwiched between the low thermal expansion wires. Thereby, disconnection of the optical fiber is effectively suppressed. In particular, by making the diameter of the low-thermal-expansion wire larger than the diameter of the optical fiber, a structure in which an external load is hardly applied to the optical fiber can be obtained, which is more preferable.
【0012】一方、被覆材は特に限定されない。例え
ば、ポリエチレンやポリプロピレンなど、ポリオレフィ
ン系プラスチックが利用できる。On the other hand, the coating material is not particularly limited. For example, polyolefin-based plastics such as polyethylene and polypropylene can be used.
【0013】このようなケーブルは検知対象物に埋設
し、さらに歪測定装置に接続することで歪検知システム
を構築できる。検知対象物には、岩壁、地盤、堤防の
他、ビル、橋梁などの大型建造物が挙げられる。そし
て、これら検知対象物に岩石崩落、地盤沈下、地滑り、
陥没、ひび割れ等の異常事態の予兆として生じる械械的
歪が生じたことを検知する。歪測定装置としては、OTDR
(Optical Time-Domain Reflectometer)やBOTDA
(Brillouin Optical-Fiber Time Domain Analysis)が
挙げられる。Such a cable is buried in an object to be detected, and further connected to a strain measuring device, whereby a strain detecting system can be constructed. Examples of the detection target include large structures such as buildings and bridges, in addition to rock walls, ground and embankments. And, rock detection, land subsidence, landslide,
Detects the occurrence of mechanical distortion that is a sign of an abnormal situation such as depression or cracking. OTDR as a strain measurement device
(Optical Time-Domain Reflectometer) and BOTDA
(Brillouin Optical-Fiber Time Domain Analysis).
【0014】OTDRは光ファイバの一端から光パルスを入
射し、伝送損失の変化から光ファイバに生じた歪を検出
し、さらに光パルスの後方散乱光が入射端に戻ってくる
までの時間から歪の生じた位置を検出する装置である。The OTDR applies an optical pulse from one end of an optical fiber, detects distortion generated in the optical fiber from a change in transmission loss, and further detects distortion from the time until the backscattered light of the optical pulse returns to the incident end. This is a device for detecting the position where the occurrence has occurred.
【0015】BOTDAは、ブリルアン散乱を利用した
もので、光ファイバの一端から光パルスを送出し、光フ
ァイバの途中から戻ってくるブリルアン散乱光の周波数
のずれを測定して、光ファイバ長手方向の歪み変化及び
変化点までの距離を計測する装置である。BOTDA utilizes Brillouin scattering, sends out an optical pulse from one end of an optical fiber, measures the frequency shift of Brillouin scattered light returning from the middle of the optical fiber, and measures the shift in the longitudinal direction of the optical fiber. This is a device for measuring a change in distortion and a distance to a change point.
【0016】光ファイバに光パルスを入射すると、後方
散乱光として、入射光と同一周波数のレーリ散乱光と、
格子間振動の影響を受けた分だけ周波数のずれたブリル
アン散乱光が観測される。従って、歪みの影響を受ける
と格子間振動が変化してブリルアン散乱の周波数が変化
するので、基本的にはこの周波数のずれを観測すること
で歪みがわかる。後はOTDRの原理を用いて時間波形
を観測すれば、どの位置での歪みが生じたかを検知する
ことができる。When an optical pulse is incident on an optical fiber, Rayleigh scattered light having the same frequency as the incident light is generated as backscattered light;
Brillouin scattered light whose frequency is shifted by the influence of the interstitial vibration is observed. Therefore, under the influence of the distortion, the interstitial vibration changes and the frequency of Brillouin scattering changes, so that the distortion can be basically determined by observing the frequency shift. Then, by observing the time waveform using the OTDR principle, it is possible to detect at which position the distortion has occurred.
【0017】[0017]
【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明ケーブルの外観図、図2は同横断面図
である。Embodiments of the present invention will be described below. FIG. 1 is an external view of a cable of the present invention, and FIG. 2 is a cross-sectional view of the same.
【0018】この光歪センサケーブル1は1本の光ファ
イバ2と2本のインバー線3とを被覆材4で一体化した構
造である。ここではインバー線3としてNi36%のFe-Ni合
金を使用している。被覆材4はポリ塩化ビニルを使用し
た。This optical strain sensor cable 1 has a structure in which one optical fiber 2 and two Invar wires 3 are integrated with a coating material 4. Here, a 36% Fe-Ni alloy is used as the invar wire 3. The coating material 4 used polyvinyl chloride.
【0019】ほとんどの金属材料の熱膨張係数は10−5
m/m℃で、温度1℃の上昇で1mの物質は0.01mm伸びる。本
例で用いたインバー線(Ni36%のFe-Ni合金)では熱膨
張係数は10−6m/m℃で、伸びは従来の金属の1/10とな
る。Most metallic materials have a coefficient of thermal expansion of 10 −5.
At m / m ° C, a 1m rise in temperature at 1 ° C will stretch 0.01mm for a 1m substance. The thermal expansion coefficient of the Invar wire (Ni-36% Fe-Ni alloy) used in this example is 10 −6 m / m ° C., and the elongation is 1/10 of that of a conventional metal.
【0020】たとえば、岩壁に100mの光歪センサケーブ
ルを布設した場合、1日の温度差が10℃とすると、図4の
ケーブルを使った場合には鋼線に10mmの伸縮があり、岸
壁にずれが生じた場合の歪と鋼線の伸縮に伴うひずみと
を区別できない。本発明の光歪センサケーブルを使用す
る伸縮は1/10で、より正確な観測監視ができる。For example, if a 100 m optical strain sensor cable is laid on a rock wall and the temperature difference per day is 10 ° C., when the cable shown in FIG. 4 is used, the steel wire will expand and contract by 10 mm, and Cannot be distinguished from the strain caused by the displacement of the steel wire due to the expansion and contraction of the steel wire. The expansion and contraction using the optical strain sensor cable of the present invention is 1/10, which enables more accurate observation and monitoring.
【0021】また、インバー線の直径を光ファイバより
大きくすると、光ファイバに荷重がかかるのを防止する
ため、より光ファイバの保護に効果がある。さらに、光
ファイバとインバー線の並べ方は限定されないが、図2
のように、光ファイバをインバー線で挟む構成が望まし
い。なお、ここでは光ファイバ1本とインバー線2本の例
を示したが、それぞれ1本づつ或いは複数本づつでもよ
い。When the diameter of the invar wire is larger than that of the optical fiber, a load is prevented from being applied to the optical fiber, which is more effective in protecting the optical fiber. Furthermore, the arrangement of the optical fiber and the Invar wire is not limited, but FIG.
It is desirable that the optical fiber be sandwiched between invar wires as shown in FIG. Here, an example of one optical fiber and two Invar wires is shown, but one or a plurality of each may be used.
【0022】次に、図3に本発明光歪センサケーブルを
使用した歪監視システムの構成を示す。法面10の下方に
沿って道路11が走っているところで、法面10の盛り土が
崩れ落ちるのを監視する。法面10に本発明の光歪センサ
ケーブル12を埋設し、盛り土が落下した際、光歪センサ
ケーブルに歪が生じ、歪測定装置(例えばBOTDA)
13で歪量を測定し、パソコン14で警報等の処理を行うも
のである。Next, FIG. 3 shows a configuration of a strain monitoring system using the optical strain sensor cable of the present invention. While the road 11 runs along the lower side of the slope 10, it is monitored that the embankment of the slope 10 has collapsed. The optical strain sensor cable 12 of the present invention is buried in the slope 10 and when the embankment falls, a strain is generated in the optical strain sensor cable, and a strain measuring device (for example, BOTDA)
The amount of distortion is measured by 13 and processing such as an alarm is performed by the personal computer 14.
【0023】[0023]
【発明の効果】以上説明したように、本発明光歪センサ
ケーブルによれば、岩壁、地盤、堤防、大型建造物等で
発生する岩石崩落、地盤沈下、地滑り、陥没等の異常事
態の予兆として生じる機械的歪を観測検知する際、設置
個所に駆動用の電源を用いることなく、長手方向全長に
わたって観測検知できる。また、光ファイバが断線し難
く、温度変化が大きい環境でもより正確な歪検知ができ
る。As described above, according to the optical strain sensor cable of the present invention, a sign of an abnormal situation such as a rock collapse, a land subsidence, a landslide, or a collapse that occurs on a rock wall, a ground, a levee, a large building, or the like. When observing and detecting the mechanical strain generated as above, it is possible to observe and detect over the entire length in the longitudinal direction without using a driving power source at the installation location. Further, more accurate strain detection can be performed even in an environment where the optical fiber is hardly broken and the temperature change is large.
【図1】本発明光歪センサケーブルの外観図である。FIG. 1 is an external view of an optical strain sensor cable of the present invention.
【図2】本発明光歪センサケーブルの横断面図である。FIG. 2 is a cross-sectional view of the optical strain sensor cable of the present invention.
【図3】本発明光歪センサケーブルを使用した歪検知シ
ステムの構成図である。FIG. 3 is a configuration diagram of a strain detection system using the optical strain sensor cable of the present invention.
【図4】従来の通信用光ファイバケーブルの断面図であ
る。FIG. 4 is a sectional view of a conventional optical fiber cable for communication.
1 光歪センサケーブル 2 光ファイバ 3 インバー線 4 被覆材 5 光ファイバ 6 鋼線 7 被覆材 10 法面 11 道路 12 光歪センサケーブル 13 歪測定装置 14 パソコン DESCRIPTION OF SYMBOLS 1 Optical strain sensor cable 2 Optical fiber 3 Invar wire 4 Coating material 5 Optical fiber 6 Steel wire 7 Coating material 10 Slope 11 Road 12 Optical strain sensor cable 13 Strain measuring device 14 Personal computer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 向瀬 光雄 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 宮内 将和 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 Fターム(参考) 2F065 AA65 CC00 CC14 CC40 DD16 EE02 FF12 FF46 LL02 SS09 2F076 BA11 BB08 BB09 BD01 BD06 2F103 BA00 BA02 EC09 GA14 2H038 AA05 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Mitsuo Mukase 1-3-1 Shimaya, Konohana-ku, Osaka-shi Inside the Osaka Works, Sumitomo Electric Industries, Ltd. (72) Masakazu Miyauchi 1-chome, Shimaya, Konohana-ku, Osaka-shi No. 1-3 F-term in Sumitomo Electric Industries, Ltd. Osaka Works (reference) 2F065 AA65 CC00 CC14 CC40 DD16 EE02 FF12 FF46 LL02 SS09 2F076 BA11 BB08 BB09 BD01 BD06 2F103 BA00 BA02 EC09 GA14 2H038 AA05
Claims (4)
被覆したことを特徴とする光歪センサケーブル。1. An optical strain sensor cable, wherein an optical fiber and a low thermal expansion wire are coated with a coating material.
径を大きくしたことを特徴とする請求項1記載の光歪セ
ンサケーブル。2. The optical strain sensor cable according to claim 1, wherein the diameter of the low thermal expansion wire is larger than the diameter of the optical fiber.
むように配置したことを特徴とする請求項1または2記載
の光歪センサケーブル。3. The optical strain sensor cable according to claim 1, wherein the optical fiber is disposed so as to be sandwiched between a plurality of low thermal expansion wires.
ブルと、 この光センサケーブルに接続された歪測定装置とを具
え、 前記光歪センサケーブルは、光ファイバと、低熱膨張線
材と、これら光ファイバ及び線材を一括被覆する被覆材
とを具えることを特徴とする歪検知システム。4. An optical strain sensor cable embedded in a detection target, and a strain measuring device connected to the optical sensor cable, wherein the optical strain sensor cable includes an optical fiber, a low thermal expansion wire, A strain detection system, comprising: a coating material for collectively coating an optical fiber and a wire.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11183341A JP2001012970A (en) | 1999-06-29 | 1999-06-29 | Optical strain sensor cable |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11183341A JP2001012970A (en) | 1999-06-29 | 1999-06-29 | Optical strain sensor cable |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001012970A true JP2001012970A (en) | 2001-01-19 |
Family
ID=16134039
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11183341A Pending JP2001012970A (en) | 1999-06-29 | 1999-06-29 | Optical strain sensor cable |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001012970A (en) |
-
1999
- 1999-06-29 JP JP11183341A patent/JP2001012970A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Rajeev et al. | Distributed optical fibre sensors and their applications in pipeline monitoring | |
| Mohamad et al. | Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement | |
| US6647161B1 (en) | Structural monitoring sensor system | |
| US20030081917A1 (en) | Method and apparatus for fiber optic monitoring of downhole power and communication conduits | |
| Komatsu et al. | Application of optical sensing technology to the civil engineering field with optical fiber strain measurement device (BOTDR) | |
| JP2009020016A (en) | Fiber optic sensor cable | |
| Kihara et al. | Distributed optical fiber strain sensor for detecting river embankment collapse | |
| JPH10197298A (en) | Deformation measurement method for rock mass, slope, earth structure, and civil structure | |
| Kuang et al. | Monitoring of large strains in submerged geotextile tubes using plastic optical fibre sensors | |
| JP2001304822A (en) | Optical fiber sensor and monitoring system | |
| KR101437959B1 (en) | Extensometer Using Distributed Time Domain Reflectometery Sensor | |
| JP3725513B2 (en) | Structure displacement / deformation detector using optical fiber cable | |
| JP2001012970A (en) | Optical strain sensor cable | |
| JP4105123B2 (en) | Structure displacement / deformation detection system using optical fiber sensor | |
| JP2000046528A (en) | Strain measurement method using optical fiber sensor | |
| JPH11325822A (en) | Crack monitoring equipment | |
| JPH076883B2 (en) | Subsidence control method for buried piping | |
| JP2001324358A (en) | Optical fiber sensor | |
| JPH10176965A (en) | Underground anomaly observation sensor and observation system | |
| JP7075961B2 (en) | How to measure internal stress or temperature of concrete structure | |
| Krebber et al. | Distributed fiber optic sensors embedded in technical textiles for structural health monitoring | |
| Wosniok et al. | Smart Geosynthetics based on Distributed Fiber-optic Sensors in Geotechnical Engineering | |
| Imai et al. | Stress distribution monitoring of ground anchor using optical fiber-embedded strand | |
| JP3653549B2 (en) | Optical fiber sensor for investigation of landslide behavior | |
| RU2825018C1 (en) | Fibre-optic cable for distributed monitoring of change in shape of extended objects |