[go: up one dir, main page]

JP2001015162A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JP2001015162A
JP2001015162A JP11183608A JP18360899A JP2001015162A JP 2001015162 A JP2001015162 A JP 2001015162A JP 11183608 A JP11183608 A JP 11183608A JP 18360899 A JP18360899 A JP 18360899A JP 2001015162 A JP2001015162 A JP 2001015162A
Authority
JP
Japan
Prior art keywords
solid electrolyte
active material
electrode active
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11183608A
Other languages
Japanese (ja)
Other versions
JP4505886B2 (en
Inventor
Kazuhiro Noda
和宏 野田
Toshikazu Yasuda
壽和 安田
Takeshi Horie
毅 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP18360899A priority Critical patent/JP4505886B2/en
Publication of JP2001015162A publication Critical patent/JP2001015162A/en
Application granted granted Critical
Publication of JP4505886B2 publication Critical patent/JP4505886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve ionic conductivity of electrodes, to prevent the deterioration of cycle characteristic caused by increase in the internal impedance, and to provide a battery with superior load characteristic by providing a negative electrode active material layer including a negative electrode active material, a positive electrode active material layer including a positive electrode active material, and a polymer electrolyte and by including inorganic solid electrolyte powder in the negative electrode active layer and the positive electrode active layer. SOLUTION: Preferably, this solid electrolyte battery is so formed that inorganic solid electrolyte powder is lithium ionic conductor with ionic conductivity at 25 deg.C 1.0×10-4 S/cm or more and the content of the inorganic solid electrolyte powders is within a range not less than 1 wt.% and not more than 50 wt.% relative to a negative electrode active material or a positive electrode active material. This battery is provided with a negative electrode 2, a positive electrode 3, and a polymer solid electrolyte 4 arranged therebetween, and is sealed by an external case 5 of an insulating material. A negative electrode terminal 6 and a positive electrode terminal are connected to the negative electrode 2 and the positive electrode 3 respectively, the negative electrode 2 comprises a negative electrode active material layer 2a and a negative electrode current collecting element 2b, and the positive electrode 3 comprises a positive electrode active material layer 3 and a positive electrode current collecting element 3b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質を備え
る固体電解質電池に関する。
The present invention relates to a solid electrolyte battery provided with a solid electrolyte.

【0002】[0002]

【従来の技術】ビデオテープレコーダをはじめとする通
信機器等の電子機器の小型化や軽量化に伴い、それらの
電源としての電池に対しても、より軽量であり、より小
型であり、より薄型であること等が求められている。
2. Description of the Related Art As electronic devices such as video tape recorders and other communication devices, such as communication devices, have become smaller and lighter, the batteries used as their power sources are lighter, smaller and thinner. Is required.

【0003】それに伴い、ポリエチレンオキシドやポリ
フォスファゼン等を電解質材料に用いた高分子固体電解
質電池の研究が盛んに行われている。この高分子固体電
解質電池は、電解質が固体であり漏液の心配が無いた
め、電解液系電池のように外装材を金属製の電池缶にす
る必要もなく、比較的軽量にできる上、耐熱性に優れる
こと、電池構成が簡素化できること等の利点を有する。
[0003] Accordingly, a solid polymer electrolyte battery using polyethylene oxide, polyphosphazene or the like as an electrolyte material has been actively studied. This polymer solid electrolyte battery has a solid electrolyte and does not have to worry about liquid leakage, so there is no need to use a metal battery can for the exterior material unlike an electrolyte battery, and it can be made relatively lightweight and heat resistant. It has advantages such as excellent performance and simplification of the battery configuration.

【0004】例えば、高分子固体電解質、特にポリマー
マトリクス中に電解液を全く含まない固体電解質を電池
に用いる場合、その負極及び正極の両電極と電解質との
間の接触は固体同士の接触であるため、電極と高分子固
体電解質とが互いの表面で接するのみである。それに対
し、電解液系電池は、電解質が液体であるため、電極の
内部まで電解質が浸透する。そのため、電解質が液体で
ある電解液系電池と比べ、高分子固体電解質電池は、電
極内部まで均一且つ十分にイオン伝導性を確保すること
が難しく、電池の内部インピーダンスが高くなり、十分
な電極利用率及び十分な負荷特性を得ることが困難であ
る。
For example, when a polymer solid electrolyte, particularly a solid electrolyte containing no electrolyte solution in a polymer matrix, is used in a battery, the contact between the negative electrode and the positive electrode and the electrolyte is a solid-to-solid contact. Therefore, only the electrode and the solid polymer electrolyte are in contact with each other on their surfaces. On the other hand, in the electrolyte battery, since the electrolyte is a liquid, the electrolyte permeates into the inside of the electrode. For this reason, it is more difficult for the solid polymer electrolyte battery to ensure uniform and sufficient ionic conductivity to the inside of the electrode, and the internal impedance of the battery becomes higher than for the electrolyte-based battery in which the electrolyte is a liquid. It is difficult to obtain the rate and sufficient load characteristics.

【0005】そのため、固体電解質を用いた二次電池
は、負極活物質層と正極活物質層の両方、或いはどちら
か一方に、予め、電解質として用いる固体電解質を一定
量含有させている。この場合、高分子固体電解質電池で
あれば高分子固体電解質を、無機固体電解質電池であれ
ば無機固体電解質を、それぞれ電極用合剤中に混練する
ことで負極活物質及び/又は正極活物質とイオン導電体
との接触面積を向上させて、イオン伝導性を確保してい
る。
[0005] Therefore, in a secondary battery using a solid electrolyte, a certain amount of a solid electrolyte to be used as an electrolyte is previously contained in both or either of the anode active material layer and the cathode active material layer. In this case, a polymer solid electrolyte is used for a polymer solid electrolyte battery, and an inorganic solid electrolyte is used for an inorganic solid electrolyte battery. The contact area with the ionic conductor is improved to ensure ionic conductivity.

【0006】[0006]

【発明が解決しようとする課題】イオン導電性は、負極
活物質層又は正極活物質層に固体電解質を含有させるこ
とによって向上することができる。しかし一方で、電極
活物質層内における固体電解質の含有量が多くなると、
電極中の活物質密度は相対的に低くなり、実質的な電池
容量は低下するという問題がある。
The ionic conductivity can be improved by including a solid electrolyte in the negative electrode active material layer or the positive electrode active material layer. However, on the other hand, when the content of the solid electrolyte in the electrode active material layer increases,
There is a problem that the active material density in the electrode is relatively low, and the actual battery capacity is low.

【0007】本発明は、このような従来の実情に鑑みて
提案されたものであり、固体電解質電池の電極のイオン
導電性を向上させ、内部インピーダンスの上昇に伴うサ
イクル特性等の劣化を防止し、負荷特性に優れた固体電
解質電池を提供することを目的とする。
The present invention has been proposed in view of such a conventional situation, and has been proposed to improve the ionic conductivity of electrodes of a solid electrolyte battery and prevent deterioration of cycle characteristics and the like due to an increase in internal impedance. It is another object of the present invention to provide a solid electrolyte battery having excellent load characteristics.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成する本
発明に係る固体電解質電池は、負極活物質を含む負極活
物質層と、正極活物質を含む正極活物質層と、高分子固
体電解質とを備え、上記負極活物質層又は上記正極活物
質層に無機固体電解質粉末を含有する。
A solid electrolyte battery according to the present invention, which achieves the above objects, comprises a negative electrode active material layer containing a negative electrode active material, a positive electrode active material layer containing a positive electrode active material, and a polymer solid electrolyte. Wherein the negative electrode active material layer or the positive electrode active material layer contains an inorganic solid electrolyte powder.

【0009】以上のように構成された本発明に係る固体
電解質電池は、実質的な電池容量を低下することなく十
分なイオン伝導性を確保し、内部インピーダンスが上昇
して起こるサイクル特性の劣化を低減し、優れた負荷特
性を実現する。
The solid electrolyte battery according to the present invention having the above-described structure ensures sufficient ion conductivity without substantially lowering the battery capacity, and suppresses deterioration of cycle characteristics caused by an increase in internal impedance. Reduce and achieve excellent load characteristics.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を用いて詳細に説明する。図1は本発明を適用
した固体電解質電池の一構成例を示すものである。本発
明に係る固体電解質電池1は、負極2と、負極2と対向
して配された正極3と、負極2と正極3との間に配され
た高分子固体電解質4とを備え、絶縁材料からなる外装
ケース5により覆われて密閉されている。そして、負極
2には負極端子6が、正極3には正極端子7がそれぞれ
接続されており、これら負極端子6と正極端子7とは、
外装ケース5の周縁部である封口部に挟み込まれてい
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a configuration example of a solid electrolyte battery to which the present invention is applied. A solid electrolyte battery 1 according to the present invention includes a negative electrode 2, a positive electrode 3 disposed opposite to the negative electrode 2, a polymer solid electrolyte 4 disposed between the negative electrode 2 and the positive electrode 3, and an insulating material. And is hermetically sealed. A negative electrode terminal 6 is connected to the negative electrode 2, and a positive electrode terminal 7 is connected to the positive electrode 3, respectively.
The outer case 5 is sandwiched between sealing portions, which are peripheral portions.

【0011】負極2は、負極活物質を含有する負極活物
質層2aが、負極集電体2b上に形成されてなるもので
ある。この負極集電体2bとしては、例えば銅箔等の金
属箔が用いられる。負極活物質層2aに含有される負極
活物質としては、作製する電池の種類により異なり、特
に限定されるものではない。例えば、リチウム電池或い
はリチウムイオン電池を作製する場合、負極活物質とし
ては、リチウム金属やリチウム金属を含む合金、並び
に、リチウム金属の吸蔵放出が可能な炭素質材料や、リ
チウム金属の吸蔵放出が可能な無機材料が用いられる。
The negative electrode 2 is formed by forming a negative electrode active material layer 2a containing a negative electrode active material on a negative electrode current collector 2b. As the negative electrode current collector 2b, for example, a metal foil such as a copper foil is used. The negative electrode active material contained in the negative electrode active material layer 2a differs depending on the type of battery to be manufactured, and is not particularly limited. For example, when manufacturing a lithium battery or a lithium ion battery, as a negative electrode active material, lithium metal or an alloy containing lithium metal, a carbonaceous material capable of inserting and extracting lithium metal, and an insertion and extraction of lithium metal are possible. Inorganic materials are used.

【0012】リチウム合金としては、リチウム−アルミ
ニウム合金、リチウム−亜鉛合金、リチウム−スズ合
金、リチウム−鉛合金、リチウム−インジウム合金等が
挙げられる。
Examples of the lithium alloy include a lithium-aluminum alloy, a lithium-zinc alloy, a lithium-tin alloy, a lithium-lead alloy, and a lithium-indium alloy.

【0013】また、リチウム等のアルカリ金属の吸蔵放
出が可能な炭素質材料としては、例えば、ポリアセチレ
ンやポリピロール等の導電性ポリマ、熱分解炭素類、コ
ークス類(ピッチコークス、ニードルコークス、石油コ
ークス等)、黒鉛類、難黒鉛化炭素類、ガラス状炭素
類、有機高分子化合物焼成体(有機高分子材料を500
℃以上の適温にて、真空下或いは不活性ガス気流下で焼
成したもの。)、炭素繊維、活性炭等が例示される。ま
た、リチウムの吸蔵放出が可能な無機材料としては酸化
スズ、酸化鉄、酸化チタン等の酸化物、ケイ素質材料ま
たはその化合物、スズ化合物等が挙げられる。
Examples of the carbonaceous material capable of inserting and extracting an alkali metal such as lithium include conductive polymers such as polyacetylene and polypyrrole, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.). ), Graphites, non-graphitizable carbons, glassy carbons, organic polymer compound fired bodies (500
Fired under vacuum or inert gas flow at an appropriate temperature of ℃ or more. ), Carbon fiber, activated carbon and the like. Inorganic materials capable of inserting and extracting lithium include oxides such as tin oxide, iron oxide, and titanium oxide, siliconaceous materials or compounds thereof, and tin compounds.

【0014】正極3は、正極活物質を含有する正極活物
質層3aが、正極集電体3b上に形成されてなるもので
ある。この正極集電体3bとしては、例えばアルミニウ
ム箔等の金属箔が用いられる。正極活物質は、作製する
電池の種類によって異なり、特に限定さるものではな
い。
The positive electrode 3 has a structure in which a positive electrode active material layer 3a containing a positive electrode active material is formed on a positive electrode current collector 3b. As the positive electrode current collector 3b, for example, a metal foil such as an aluminum foil is used. The positive electrode active material depends on the type of battery to be manufactured, and is not particularly limited.

【0015】例えば、正極活物質は、リチウム電池、あ
るいはリチウムイオン電池を作製する場合、リチウムの
吸蔵放出が可能な材料であればよく特に限定されない。
例えば、正極活物質は、目的とする電池の種類に応じ
て、TiS2,MoS2,NbSe2,V25等のリチウ
ムを含有しない金属酸化物や金属硫化物、または一般式
LixMO2(但しMは、Co,Ni,Mn等の遷移金
属を表し、0.05≦x≦1.10である。)、または
LiNipM1qM2r2(但しM1及びM2は、Al,
Mn,Fe,Co,Ni,Cr,Ti,Znから選ばれ
る少なくとも1種の元素であるか、またはP,B等の非
金属元素でも良い。また、p+q+r=1である。)で
表すことのできるリチウム遷移金属複合酸化物が用いら
れる。特に、正極活物質としては、高電圧及び高エネル
ギー密度が得られ、サイクル特性に優れる点から、リチ
ウムコバルト酸化物やリチウムニッケル酸化物を用いる
ことが好ましい。
For example, the cathode active material is not particularly limited as long as it is a material capable of inserting and extracting lithium when a lithium battery or a lithium ion battery is manufactured.
For example, the positive electrode active material may be a lithium-free metal oxide or metal sulfide such as TiS 2 , MoS 2 , NbSe 2 , V 2 O 5 , or a general formula LixMO 2 ( Here, M represents a transition metal such as Co, Ni, and Mn, and 0.05 ≦ x ≦ 1.10.) Or LiNi p M1 q M2 r O 2 (where M1 and M2 are Al,
It may be at least one element selected from Mn, Fe, Co, Ni, Cr, Ti and Zn, or may be a nonmetallic element such as P or B. Also, p + q + r = 1. ) Is used. In particular, as the positive electrode active material, it is preferable to use lithium cobalt oxide or lithium nickel oxide from the viewpoint that a high voltage and a high energy density can be obtained and cycle characteristics are excellent.

【0016】高分子固体電解質4は、ポリマとリチウム
塩との複合体で且つイオン導電性を示す化合物であれば
特に限定されないが、高いイオン伝導性を示すポリエチ
レンオキシドに代表されるポリエーテル系高分子固体電
解質及びそれらの誘導体、または、ポリフォスファゼン
やポリシロキサンとポリエーテルとの共重合体を用いる
ことが好ましい。
The solid polymer electrolyte 4 is not particularly limited as long as it is a compound of a polymer and a lithium salt and exhibits ionic conductivity. However, the polymer solid electrolyte 4 is a polyether-based polymer represented by polyethylene oxide exhibiting high ionic conductivity. It is preferable to use a molecular solid electrolyte and a derivative thereof, or a copolymer of polyphosphazene, polysiloxane, and polyether.

【0017】リチウム塩は、電解質塩自体が上記ポリエ
ーテル共重合体に溶解して、イオン伝導性を示すもので
あれば良く、特に限定されるものではない。例えば、六
フッ化リン酸リチウム(LiPF6)、過塩素酸リチウ
ム(LiClO4)、六フッ化ヒ素リチウム(LiAs
6)、四フッ化ホウ酸リチウム(LiBF4)、トリフ
ルオロメタンスルホン酸リチウム(LiCF3SO3)、
ビストリフルオロメチルスルホニルイミドリチウム
([LiN(CF3SO22])等の従来公知のリチウ
ム塩を用いることができる。
The lithium salt is not particularly limited as long as the electrolyte salt itself dissolves in the polyether copolymer and exhibits ionic conductivity. For example, lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), arsenic hexafluoride (LiAs)
F 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ),
A conventionally known lithium salt such as lithium bistrifluoromethylsulfonylimide ([LiN (CF 3 SO 2 ) 2 ]) can be used.

【0018】そして、本実施の形態に係る固体電解質電
池では、上述の負極活物質層2a又は正極活物質層3a
に、無機固体電解質粉末が混練されている。無機固体電
解質粉末は、リチウムイオン伝導性を示し、25℃にお
けるイオン伝導度が、1.0×10-4S/cm以上のリ
チウムイオン導電体である。25℃におけるイオン伝導
性が1.0×10-4S/cmを下回ると、電池として機
能できるイオン伝導度の確保が困難となり、電池として
十分な負荷特性を得ることができないためである。
In the solid electrolyte battery according to the present embodiment, the above-described negative electrode active material layer 2a or positive electrode active material layer 3a
, An inorganic solid electrolyte powder is kneaded. The inorganic solid electrolyte powder is a lithium ion conductor having lithium ion conductivity and an ion conductivity at 25 ° C. of 1.0 × 10 −4 S / cm or more. If the ionic conductivity at 25 ° C. is less than 1.0 × 10 −4 S / cm, it is difficult to secure ionic conductivity that can function as a battery, and sufficient load characteristics cannot be obtained as a battery.

【0019】無機固体電解質粉末は、上述の条件を満た
す物質であれば特に限定することなく使用できる。例え
ば、無機固体電解質粉末としては、Li2O−SiO2
Li2O−Al23,Li2O−P25等を主成分とする
酸化物ガラスセラミクス、La0.51Li0.34TiO2.94
或いはこれらに異種元素を添加したペロヴスカイト系セ
ラミクス、Li2S−SiS2,Li2S−GeS2等を主
成分とする硫化物系ガラス等が挙げられる。
The inorganic solid electrolyte powder can be used without any particular limitation as long as it meets the above conditions. For example, as the inorganic solid electrolyte powder, Li 2 O—SiO 2 ,
Li 2 O-Al 2 O 3 , Li 2 O-P 2 oxide glass ceramics which O 5 or the like as main components, La 0.51 Li 0.34 TiO 2.94
Or perovskite-based ceramics which these were added to different element, sulfide glass mainly composed of Li 2 S-SiS 2, Li 2 S-GeS 2 , and the like.

【0020】また、無機固体電解質粉末の含有量は、負
極活物質層2a又は正極活物質層3aに対して、1重量
%より大きく50重量%以下であるとする。無機固体電
解質粉末の含有量が1重量%以下の場合、負極及び/又
は正極内におけるイオン伝導体の占める割合が小さすぎ
るために、イオン伝導度の確保が困難となり、十分な負
荷特性を得ることができない。逆に、無機固体電解質粉
末の含有量が50重量%を上回る場合、イオン伝導度は
高くなるが、無機固体電解質粉末の増加に伴って、負極
2に含まれる負極活物質密度及び/又は正極3に含まれ
る正極活物質密度が小さくなるため、電池容量が低下す
る。
It is assumed that the content of the inorganic solid electrolyte powder is more than 1% by weight and 50% by weight or less based on the anode active material layer 2a or the cathode active material layer 3a. When the content of the inorganic solid electrolyte powder is 1% by weight or less, the proportion of the ionic conductor in the negative electrode and / or the positive electrode is too small, so that it is difficult to secure the ionic conductivity and obtain sufficient load characteristics. Can not. Conversely, when the content of the inorganic solid electrolyte powder exceeds 50% by weight, the ionic conductivity increases, but as the inorganic solid electrolyte powder increases, the density of the negative electrode active material contained in the negative electrode 2 and / or the positive electrode 3 increases. , The density of the positive electrode active material contained in the battery decreases, and the battery capacity decreases.

【0021】更に、無機固体電解質粉末の粒径は、負極
活物質及び正極活物質の粒径よりも小さいこととする。
無機固体電解質粉末は、均一に分散されているほど電極
活物質とイオン伝導体との接触面積が大きくなり、良好
なイオン伝導性が確保できる。また、無機固体電解質粉
末の粒径が電極活物質の粒径よりも小さいと、無機固体
電解質粉末が、電極活物質の隙間に入り込み、イオン伝
導性が向上する。
Further, the particle diameter of the inorganic solid electrolyte powder is smaller than the particle diameters of the negative electrode active material and the positive electrode active material.
The more uniformly the inorganic solid electrolyte powder is dispersed, the larger the contact area between the electrode active material and the ionic conductor, and the better the ionic conductivity can be secured. When the particle diameter of the inorganic solid electrolyte powder is smaller than the particle diameter of the electrode active material, the inorganic solid electrolyte powder enters gaps between the electrode active materials, and the ionic conductivity is improved.

【0022】なお、電解質は、膨潤溶媒を含有しない固
体電解質に限定されず、膨潤溶媒を必要とするゲル電解
質であっても良い。また、電池の形状は、特に限定され
ることなく、例えばフィルム型,巻回型,積層型,円筒
型,角型,コイン型,ボタン型等の種々の形状で用いる
ことができる。更に、上述の固体電解質電池は、一次電
池であっても二次電池であっても良い。
The electrolyte is not limited to a solid electrolyte containing no swelling solvent, but may be a gel electrolyte requiring a swelling solvent. Further, the shape of the battery is not particularly limited, and can be used in various shapes such as a film type, a wound type, a laminated type, a cylindrical type, a square type, a coin type, a button type and the like. Further, the above-described solid electrolyte battery may be a primary battery or a secondary battery.

【0023】[0023]

【実施例】発明の実施例及び比較例について詳細に説明
するが、本発明はこれら実施例に限定されるものではな
い。以下のようにして、固体電解質電池を作製した。
EXAMPLES Examples of the present invention and comparative examples will be described in detail, but the present invention is not limited to these examples. A solid electrolyte battery was manufactured as follows.

【0024】実施例1 LiCoO2粉末と、グラファイト粉末と、ポリフッ化
ビニリデン(以下PVdFと記す)と、La0.51Li
0.34TiO2.94粉末との混合量を、重量比で80:6:
3:11となるように秤量し、これら粉末を混練して正
極用合剤を調製した。この正極用合剤をN−メチル−2
−ピロリドン中で分散させてスラリー状液とし、このス
ラリー状液をアルミニウム集電体上に塗布し乾燥した
後、プレス加工を行った。以上の工程を経ることによっ
て得られたものを正極3として用いた。
Example 1 LiCoO 2 powder, graphite powder, polyvinylidene fluoride (hereinafter referred to as PVdF), La 0.51 Li
The mixing amount with 0.34 TiO 2.94 powder is 80: 6:
The mixture was weighed so as to be 3:11, and these powders were kneaded to prepare a positive electrode mixture. This positive electrode mixture was mixed with N-methyl-2.
-Dispersed in pyrrolidone to form a slurry-like liquid. This slurry-like liquid was applied on an aluminum current collector, dried, and then pressed. The one obtained through the above steps was used as the positive electrode 3.

【0025】この正極3を2cm×4cmの長方形に切
り出した後、この正極3上に、オリゴアルキルエーテル
側鎖を有するポリエチレンオキシド共重合体(分子量8
0万)とLiBF4複合体とを溶解させたアセトニトリ
ル溶液を塗布した後、溶媒であるアセトニトリルを乾燥
除去し、厚さ50μmの膜状の高分子固体電解質4を得
た。次に、この高分子固体電解質4上に厚さ30μmの
リチウム金属を負極2として配設した。負極2に負極端
子を、正極3に正極端子をそれぞれ接続し電極積層体と
した。最後に、この電極積層体を外装ケースに収納し、
外装ケースを封印した。このとき、外装ケースにはアル
ミ箔の両面にポリオレフィン系ポリマがコートされたラ
ミネート材を用いた。さらに、この外装ケースの封口部
に正極端子と負極端子とを挟み込んで薄型の固体電解質
電池1とした。
After this positive electrode 3 was cut into a rectangle of 2 cm × 4 cm, a polyethylene oxide copolymer having an oligoalkyl ether side chain (molecular weight: 8
After the application of an acetonitrile solution in which (0000,000) and the LiBF 4 complex were dissolved, acetonitrile as a solvent was removed by drying to obtain a 50-μm-thick film-shaped polymer solid electrolyte 4. Next, a lithium metal having a thickness of 30 μm was provided on the solid polymer electrolyte 4 as the negative electrode 2. A negative electrode terminal was connected to the negative electrode 2, and a positive electrode terminal was connected to the positive electrode 3, to obtain an electrode laminate. Finally, store this electrode laminate in an outer case,
The outer case was sealed. At this time, a laminate material in which a polyolefin-based polymer was coated on both sides of an aluminum foil was used for the outer case. Further, a positive electrode terminal and a negative electrode terminal were sandwiched between the sealing portions of the outer case to obtain a thin solid electrolyte battery 1.

【0026】実施例2 LiCoO2粉末と、グラファイト粉末と、PVdF
と、La0.51Li0.34TiO2.94粉末との混合量を、重
量比で70:6:3:21とする以外は実施例1と同様
に正極3を作製し、同様の方法にて固体電解質電池1を
作製した。
Example 2 LiCoO 2 powder, graphite powder, PVdF
And a cathode 0.5 was prepared in the same manner as in Example 1, except that the mixing amount of La 0.51 Li 0.34 TiO 2.94 powder was 70: 6: 3: 21 by weight, and the solid electrolyte battery 1 was produced in the same manner. Was prepared.

【0027】実施例3 LiCoO2粉末と、グラファイト粉末と、PVdF
と、La0.51Li0.34TiO2.94粉末との混合量を、重
量比で41:6:3:50とする以外は実施例1と同様
に正極3を作製し、同様の方法にて固体電解質電池1を
作製した。
Example 3 LiCoO 2 powder, graphite powder, PVdF
And a cathode 0.5 was prepared in the same manner as in Example 1 except that the mixing amount of La 0.51 Li 0.34 TiO 2.94 powder was 41: 6: 3: 50 by weight, and the solid electrolyte battery 1 was manufactured in the same manner. Was prepared.

【0028】実施例4 La0.51Li0.34TiO2.94粉末の代わりにLi2O−
Al23−TiO2−P 25粉末を用いて、LiCoO2
粉末と、グラファイト粉末と、PVdFと、Li2O−
Al23−TiO2−P25粉末との混合量を、重量比
で90:6:3:1とする以外は、実施例1と同様に正
極3を作製し、同様の方法にて固体電解質電池1を作製
した。
[0028]Example 4 La0.51Li0.34TiO2.94Li instead of powderTwoO-
AlTwoOThree-TiOTwo−P TwoOFiveUsing powder, LiCoOTwo
Powder, graphite powder, PVdF, and LiTwoO-
AlTwoOThree-TiOTwo−PTwoOFiveMix the amount of powder and
Except that the ratio is 90: 6: 3: 1.
A pole 3 is prepared, and a solid electrolyte battery 1 is prepared in the same manner.
did.

【0029】実施例5 La0.51Li0.34TiO2.94粉末の代わりにLi2O−
Al23−TiO2−P25粉末を用いて、LiCoO2
粉末と、グラファイト粉末と、PVdFと、Li2O−
Al23−TiO2−P25粉末との混合量を、重量比
で80:6:3:11とする以外は実施例1と同様に正
極3を作製し、同様の方法にて固体電解質電池1を作製
した。
EXAMPLE 5 Instead of La 0.51 Li 0.34 TiO 2.94 powder, Li 2 O—
With Al 2 O 3 -TiO 2 -P 2 O 5 powder, LiCoO 2
Powder, graphite powder, PVdF, and Li 2 O—
A positive electrode 3 was prepared in the same manner as in Example 1, except that the mixing amount with the Al 2 O 3 —TiO 2 —P 2 O 5 powder was 80: 6: 3: 11 by weight, and the same method was used. A solid electrolyte battery 1 was produced.

【0030】実施例6 La0.51Li0.34TiO2.94粉末の代わりにLi2O−
Al23−TiO2−P25粉末を用いて、LiCoO2
粉末と、グラファイト粉末と、PVdFと、Li2O−
Al23−TiO2−P25粉末との混合量を、重量比
で70:6:3:21とする以外は、実施例1と同様に
正極3を作製し、同様の方法にて固体電解質電池1を作
製した。
EXAMPLE 6 Instead of La 0.51 Li 0.34 TiO 2.94 powder, Li 2 O—
With Al 2 O 3 -TiO 2 -P 2 O 5 powder, LiCoO 2
Powder, graphite powder, PVdF, and Li 2 O—
A positive electrode 3 was prepared in the same manner as in Example 1, except that the mixing amount with the Al 2 O 3 —TiO 2 —P 2 O 5 powder was 70: 6: 3: 21 by weight ratio, and the same method was used. Thus, a solid electrolyte battery 1 was produced.

【0031】実施例7 La0.51Li0.34TiO2.94粉末の代わりにLi2O−
Al23−TiO2−P25粉末を用いて、LiCoO2
粉末と、グラファイト粉末と、PVdFと、Li2O−
Al23−TiO2−P25粉末との混合量を、重量比
で41:6:3:50とする以外は実施例1と同様にし
た。
EXAMPLE 7 Instead of La 0.51 Li 0.34 TiO 2.94 powder, Li 2 O—
With Al 2 O 3 -TiO 2 -P 2 O 5 powder, LiCoO 2
Powder, graphite powder, PVdF, and Li 2 O—
The procedure was the same as in Example 1 except that the mixing ratio with the Al 2 O 3 —TiO 2 —P 2 O 5 powder was 41: 6: 3: 50 by weight.

【0032】実施例8 La0.51Li0.34TiO2.94粉末の代わりにLi2O−
Al23−TiO2−P25粉末を用いて、LiCoO2
粉末と、グラファイト粉末と、PVdFと、Li2O−
Al23−TiO2−P25粉末との混合量を、重量比
で40:6:3:51とする以外は、実施例1と同様に
正極3を作製し、同様の方法にて固体電解質電池1を作
製した。
Example 8 Instead of La 0.51 Li 0.34 TiO 2.94 powder, Li 2 O—
With Al 2 O 3 -TiO 2 -P 2 O 5 powder, LiCoO 2
Powder, graphite powder, PVdF, and Li 2 O—
A positive electrode 3 was prepared in the same manner as in Example 1, except that the mixing amount with the Al 2 O 3 —TiO 2 —P 2 O 5 powder was 40: 6: 3: 51 by weight ratio, and the same method was used. Thus, a solid electrolyte battery 1 was produced.

【0033】比較例 正極用合剤中にLa0.51Li0.34TiO2.94粉末、Li
2O−Al23−TiO2−P25粉末等の無機固体電解
質粉末を含有させず、LiCoO2粉末と、グラファイ
ト粉末と、PVdF粉末との混合量を、重量比で91:
6:3とする以外は実施例1と同様に正極3を作製し、
同様の方法にて固体電解質電池1を作製した。
Comparative Example In a positive electrode mixture, La 0.51 Li 0.34 TiO 2.94 powder, Li
Without containing an inorganic solid electrolyte powder such as 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 powder, the mixing amount of the LiCoO 2 powder, the graphite powder and the PVdF powder was 91:
A positive electrode 3 was prepared in the same manner as in Example 1 except that the ratio was 6: 3.
The solid electrolyte battery 1 was produced in the same manner.

【0034】以上のようにして製作された固体電解質電
池1について、放電試験を行った。放電試験としては、
まず、それぞれの固体電解質電池を50℃の空気中で、
0.1mAで定電流充電し、電池電圧が4.2Vに達し
た後、4.2Vで定電圧充電し、電流値が10μAにな
った時点を満充電とした。その後、3.0Vまで0.1
mAで定電流放電を行った。0.1mAでの定電流放電
を、電流電圧が3.0Vとなるまで行ったときの放電容
量を定格容量とする。
The solid electrolyte battery 1 manufactured as described above was subjected to a discharge test. As a discharge test,
First, each solid electrolyte battery is placed in air at 50 ° C.
The battery was charged at a constant current of 0.1 mA, and after the battery voltage reached 4.2 V, the battery was charged at a constant voltage of 4.2 V. When the current value reached 10 μA, the battery was fully charged. After that, it is 0.1 to 3.0V
Constant current discharge was performed at mA. The rated capacity is defined as the discharge capacity when the constant current discharge at 0.1 mA is performed until the current voltage reaches 3.0 V.

【0035】また、0.3mA、0.75mA、1.5
mAで同様に定電流放電を行い、そのときの放電容量
の、上記定格容量に対する割合(%)を求めた。
In addition, 0.3 mA, 0.75 mA, 1.5
Similarly, constant current discharge was performed at mA, and the ratio (%) of the discharge capacity to the rated capacity at that time was determined.

【0036】実施例1乃至実施例8及び比較例の固体電
解質電池について、定格容量と、各電流での放電時にお
ける放電容量の定格容量に対する割合とを、無機固体電
解質粉末の添加量と併せて表1に示す。
With respect to the solid electrolyte batteries of Examples 1 to 8 and Comparative Example, the rated capacity and the ratio of the discharge capacity to the rated capacity at the time of discharging at each current, together with the amount of the inorganic solid electrolyte powder, were added. It is shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1によると、固体電解質電池1の放電容
量は、放電電流が大きくなるにつれ、基準とする定格容
量と比較して低下していく。また、比較例1の固体電解
質電池1は、無機固体電解質粉末を含有している実施例
1乃至実施例8の固体電解質電池1に比べて、定格容量
が低い。無機固体電解質粉末を全く含有していない比較
例1の固体電解質電池1は、放電電流値が大きくなると
放電容量が極端に低下し、測定不可能な値まで低下す
る。
According to Table 1, the discharge capacity of the solid electrolyte battery 1 decreases as the discharge current increases, as compared with the reference rated capacity. Further, the solid electrolyte battery 1 of Comparative Example 1 has a lower rated capacity than the solid electrolyte batteries 1 of Examples 1 to 8 containing the inorganic solid electrolyte powder. In the solid electrolyte battery 1 of Comparative Example 1, which does not contain any inorganic solid electrolyte powder, when the discharge current value is large, the discharge capacity is extremely reduced, and is reduced to a value that cannot be measured.

【0039】一方、正極3に無機固体電解質粉末を含有
する固体電解質電池1では、無機固体電解質粉末の含有
量が多い方が、定電流放電時における放電容量が大きく
なっている。しかし、実施例8のように無機固体電解質
粉末の含有量が50重量%を上回ると放電容量の値は著
しく低下している。また、実施例4のように無機固体電
解質粉末の含有量が1重量%を下回る場合も放電容量の
値は極端に低下している。無機固体電解質粉末の含有量
が1重量%と50重量%の中間付近の値である実施例2
及び実施例5は、最も良好な負荷特性を示す。
On the other hand, in the solid electrolyte battery 1 in which the positive electrode 3 contains the inorganic solid electrolyte powder, the larger the content of the inorganic solid electrolyte powder, the larger the discharge capacity at the time of constant current discharge. However, when the content of the inorganic solid electrolyte powder exceeds 50% by weight as in Example 8, the value of the discharge capacity is significantly reduced. Also, when the content of the inorganic solid electrolyte powder is less than 1% by weight as in Example 4, the value of the discharge capacity is extremely reduced. Example 2 in which the content of the inorganic solid electrolyte powder is a value near the middle between 1 wt% and 50 wt%
And Example 5 shows the best load characteristics.

【0040】以上より、無機固体電解質粉末の含有量
が、1重量%よりも大きく50重量%以下である時に良
好な負荷特性が得られることが判る。
From the above, it can be seen that good load characteristics can be obtained when the content of the inorganic solid electrolyte powder is more than 1% by weight and 50% by weight or less.

【0041】なお、本発明の実施の形態では、正極に無
機固体電解質粉末を含有する例を示したが、負極に含有
させても良い。また、負極及び正極の両方に無機固体電
解質粉末を含有させても良い。
In the embodiment of the present invention, an example is shown in which the positive electrode contains the inorganic solid electrolyte powder, but it may be contained in the negative electrode. Further, both the negative electrode and the positive electrode may contain an inorganic solid electrolyte powder.

【0042】また、本発明で用いることのできる無機固
体電解質粉末は、正極活物質及び負極活物質との反応性
或いは耐酸化性等を考慮し、電気化学的に安定であるこ
と,固体電解質のイオン伝導度が高いこと等の条件を満
たす物質であればよく、La0.51Li0.34TiO2.94
末及びLi2O−Al23−TiO2−P25粉末に何ら
限定されない。
The inorganic solid electrolyte powder that can be used in the present invention must be electrochemically stable in consideration of the reactivity with the positive electrode active material and the negative electrode active material, oxidation resistance, and the like. may be a satisfying substance such as the high ionic conductivity, La 0.51 Li 0.34 TiO 2.94 powder and Li 2 O-Al 2 O 3 -TiO 2 -P 2 O in no way limited to 5 powder.

【0043】[0043]

【発明の効果】以上詳細に説明したように本発明に係る
固体電解質電池によれば、固体電解質電池の電極のイオ
ン伝導性が向上され、内部インピーダンスが上昇して起
こるサイクル特性の劣化が低減され、優れた負荷特性を
実現することができる。
As described above in detail, according to the solid electrolyte battery of the present invention, the ion conductivity of the electrodes of the solid electrolyte battery is improved, and the deterioration of the cycle characteristics caused by the increase of the internal impedance is reduced. And excellent load characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した固体電解質電池の一構成例を
示す要部概略断面図である。
FIG. 1 is a schematic cross-sectional view of a main part showing one configuration example of a solid electrolyte battery to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 固体電解質電池、2 負極、2a 負極活物質層、
2b 負極集電体、3正極、3a 正極活物質、3b
正極集電体、4 高分子固体電解質、5 外装ケース
1 solid electrolyte battery, 2 negative electrode, 2a negative electrode active material layer,
2b negative electrode current collector, 3 positive electrode, 3a positive electrode active material, 3b
Cathode current collector, 4 solid polymer electrolyte, 5 outer case

フロントページの続き (72)発明者 堀江 毅 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 5H029 AJ02 AJ05 AJ06 AK02 AK03 AK05 AL02 AL06 AL07 AL08 AL11 AL12 AL16 AM07 AM12 AM16 BJ04 CJ08 DJ09 DJ16 EJ05 EJ07 HJ01 HJ05 HJ14 HJ20 Continued on the front page (72) Inventor Takeshi Horie 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation F-term (reference) 5H029 AJ02 AJ05 AJ06 AK02 AK03 AK05 AL02 AL06 AL07 AL08 AL11 AL12 AL16 AM07 AM12 AM16 BJ04 CJ08 DJ09 DJ16 EJ05 EJ07 HJ01 HJ05 HJ14 HJ20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質を含む負極活物質層と、 正極活物質を含む正極活物質層と、 高分子固体電解質とを備える固体電解質電池において、 上記負極活物質層又は上記正極活物質層に無機固体電解
質粉末を含有することを特徴とする固体電解質電池。
1. A solid electrolyte battery comprising a negative electrode active material layer containing a negative electrode active material, a positive electrode active material layer containing a positive electrode active material, and a polymer solid electrolyte, wherein the negative electrode active material layer or the positive electrode active material layer is provided. A solid electrolyte battery characterized by containing an inorganic solid electrolyte powder therein.
【請求項2】 上記無機固体電解質粉末は、25℃にお
けるイオン伝導度が1.0×10-4S/cm以上のリチ
ウムイオン導電体であることを特徴とする請求項1記載
の固体電解質電池。
2. The solid electrolyte battery according to claim 1, wherein the inorganic solid electrolyte powder is a lithium ion conductor having an ion conductivity of 1.0 × 10 −4 S / cm or more at 25 ° C. .
【請求項3】 上記無機固体電解質粉末の含有量は、上
記負極活物質又は上記正極活物質に対して、1重量%よ
り大きく50重量%以下の範囲であることを特徴とする
請求項1記載の固体電解質電池。
3. The method according to claim 1, wherein the content of the inorganic solid electrolyte powder is in the range of more than 1% by weight and 50% by weight or less based on the negative electrode active material or the positive electrode active material. Solid electrolyte battery.
【請求項4】 上記無機固体電解質粉末の粒径は、上記
負極活物質及び上記正極活物質の粒径よりも小さいこと
を特徴とする請求項1記載の固体電解質電池。
4. The solid electrolyte battery according to claim 1, wherein the particle diameter of the inorganic solid electrolyte powder is smaller than the particle diameters of the negative electrode active material and the positive electrode active material.
JP18360899A 1999-06-29 1999-06-29 Solid electrolyte battery Expired - Fee Related JP4505886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18360899A JP4505886B2 (en) 1999-06-29 1999-06-29 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18360899A JP4505886B2 (en) 1999-06-29 1999-06-29 Solid electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001015162A true JP2001015162A (en) 2001-01-19
JP4505886B2 JP4505886B2 (en) 2010-07-21

Family

ID=16138784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18360899A Expired - Fee Related JP4505886B2 (en) 1999-06-29 1999-06-29 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP4505886B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348711A (en) * 1999-04-07 2000-12-15 Hydro Quebec Composite coating LiPO3
WO2002089236A1 (en) * 2001-04-24 2002-11-07 Matsushita Electric Industrial Co., Ltd. Secondary cell and production method thereof
KR100470594B1 (en) * 2001-09-14 2005-02-07 주식회사 엠에프에스컴퍼니 Rechargeable Lithium Polymer Battery and Method for Making the Same
JP2008117542A (en) * 2006-10-31 2008-05-22 Ohara Inc Lithium secondary battery and electrode for lithium secondary battery
JP2011065982A (en) * 2009-08-18 2011-03-31 Seiko Epson Corp Lithium battery electrode body and lithium battery
JP2012014892A (en) * 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
CN102947976A (en) * 2010-06-07 2013-02-27 无穷动力解决方案股份有限公司 Rechargeable, high-density electrochemical devices
JP2018518803A (en) * 2015-05-20 2018-07-12 シオン・パワー・コーポレーション Protective layer for electrodes
WO2018180768A1 (en) * 2017-03-31 2018-10-04 倉敷紡績株式会社 Electrode sheet, all-solid battery, manufacturing method for electrode sheet, and manufacturing method for all-solid battery
JP2018537836A (en) * 2015-12-11 2018-12-20 ブルー・ソリューションズ・カナダ・インコーポレイテッド Batteries having electrochemical cells with variable impedance
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device
US10879527B2 (en) 2016-05-20 2020-12-29 Sion Power Corporation Protective layers for electrodes and electrochemical cells
US20210313562A1 (en) * 2020-04-07 2021-10-07 Nanostar Inc. Amorphous Silicon in Solid Electrolytes, Compositions and Anodes
JP2022125921A (en) * 2021-02-17 2022-08-29 株式会社Gsユアサ Electrode material, electrode, storage element, and method for producing electrode material
US20220320590A1 (en) * 2019-12-27 2022-10-06 Murata Manufacturing Co., Ltd. Solid state battery
JP7753641B2 (en) 2021-02-17 2025-10-15 株式会社Gsユアサ Electrode material, electrode, energy storage element, and method for manufacturing electrode material

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298980A (en) * 1987-05-28 1988-12-06 Yuasa Battery Co Ltd Solid electrolyte battery
JPH04315775A (en) * 1991-01-23 1992-11-06 Sanyo Electric Co Ltd Battery
JPH05266891A (en) * 1992-03-23 1993-10-15 Ricoh Co Ltd Electrochemically active composite fine particles and secondary battery electrode using the same
JPH09102320A (en) * 1995-10-03 1997-04-15 Sanyo Electric Co Ltd Solid electrolyte battery and its manufacture
JPH09142874A (en) * 1995-11-15 1997-06-03 Ohara Inc Lithium ion conductive glass ceramic and its production
JPH09171813A (en) * 1995-12-21 1997-06-30 Sony Corp Nonaqueous electrolyte battery
JPH1092445A (en) * 1996-09-19 1998-04-10 Kaageo P-Shingu Res Lab:Kk All-solid-state lithium battery
JPH1197027A (en) * 1997-09-18 1999-04-09 Ricoh Co Ltd Non-aqueous electrolyte secondary battery
JPH11111266A (en) * 1997-09-30 1999-04-23 Yuasa Corp High polymer electrolyte secondary battery
JPH11120992A (en) * 1997-10-08 1999-04-30 Ricoh Co Ltd Non-aqueous electrolyte secondary battery
JP2000294291A (en) * 1999-02-03 2000-10-20 Sanyo Electric Co Ltd Polymer electrolyte battery
JP2000340261A (en) * 1999-04-07 2000-12-08 Hydro Quebec Combined treatment with LiPO3
JP2000348711A (en) * 1999-04-07 2000-12-15 Hydro Quebec Composite coating LiPO3

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298980A (en) * 1987-05-28 1988-12-06 Yuasa Battery Co Ltd Solid electrolyte battery
JPH04315775A (en) * 1991-01-23 1992-11-06 Sanyo Electric Co Ltd Battery
JPH05266891A (en) * 1992-03-23 1993-10-15 Ricoh Co Ltd Electrochemically active composite fine particles and secondary battery electrode using the same
JPH09102320A (en) * 1995-10-03 1997-04-15 Sanyo Electric Co Ltd Solid electrolyte battery and its manufacture
JPH09142874A (en) * 1995-11-15 1997-06-03 Ohara Inc Lithium ion conductive glass ceramic and its production
JPH09171813A (en) * 1995-12-21 1997-06-30 Sony Corp Nonaqueous electrolyte battery
JPH1092445A (en) * 1996-09-19 1998-04-10 Kaageo P-Shingu Res Lab:Kk All-solid-state lithium battery
JPH1197027A (en) * 1997-09-18 1999-04-09 Ricoh Co Ltd Non-aqueous electrolyte secondary battery
JPH11111266A (en) * 1997-09-30 1999-04-23 Yuasa Corp High polymer electrolyte secondary battery
JPH11120992A (en) * 1997-10-08 1999-04-30 Ricoh Co Ltd Non-aqueous electrolyte secondary battery
JP2000294291A (en) * 1999-02-03 2000-10-20 Sanyo Electric Co Ltd Polymer electrolyte battery
JP2000340261A (en) * 1999-04-07 2000-12-08 Hydro Quebec Combined treatment with LiPO3
JP2000348711A (en) * 1999-04-07 2000-12-15 Hydro Quebec Composite coating LiPO3

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348711A (en) * 1999-04-07 2000-12-15 Hydro Quebec Composite coating LiPO3
WO2002089236A1 (en) * 2001-04-24 2002-11-07 Matsushita Electric Industrial Co., Ltd. Secondary cell and production method thereof
US7094500B2 (en) 2001-04-24 2006-08-22 Matsushita Electric Industrial Co., Ltd. Secondary battery
KR100827911B1 (en) * 2001-04-24 2008-05-07 마쯔시다덴기산교 가부시키가이샤 Secondary Battery and Manufacturing Method
KR100470594B1 (en) * 2001-09-14 2005-02-07 주식회사 엠에프에스컴퍼니 Rechargeable Lithium Polymer Battery and Method for Making the Same
JP2008117542A (en) * 2006-10-31 2008-05-22 Ohara Inc Lithium secondary battery and electrode for lithium secondary battery
JP2011065982A (en) * 2009-08-18 2011-03-31 Seiko Epson Corp Lithium battery electrode body and lithium battery
US9005817B2 (en) 2009-08-18 2015-04-14 Seiko Epson Corporation Electrode for lithium battery comprising solid electrolyte nanoparticles and lithium battery
CN102947976A (en) * 2010-06-07 2013-02-27 无穷动力解决方案股份有限公司 Rechargeable, high-density electrochemical devices
JP2013528912A (en) * 2010-06-07 2013-07-11 インフィニット パワー ソリューションズ, インコーポレイテッド Rechargeable high density electrochemical device
JP2015228373A (en) * 2010-06-07 2015-12-17 インフィニット パワー ソリューションズ, インコーポレイテッド Rechargeable high density electrochemical element
KR101930561B1 (en) * 2010-06-07 2018-12-18 사푸라스트 리써치 엘엘씨 Rechargeable high-density electrochemical device
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
JP2012014892A (en) * 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JP2018518803A (en) * 2015-05-20 2018-07-12 シオン・パワー・コーポレーション Protective layer for electrodes
US11239504B2 (en) 2015-05-20 2022-02-01 Sion Power Corporation Protective layers for electrochemical cells
JP2018537836A (en) * 2015-12-11 2018-12-20 ブルー・ソリューションズ・カナダ・インコーポレイテッド Batteries having electrochemical cells with variable impedance
US10879527B2 (en) 2016-05-20 2020-12-29 Sion Power Corporation Protective layers for electrodes and electrochemical cells
US11581530B2 (en) 2016-05-20 2023-02-14 Sion Power Corporation Protective layers for electrodes and electrochemical cells
US11742477B2 (en) 2016-05-20 2023-08-29 Sion Power Corporation Protective layers for electrodes and electrochemical cells
WO2018180768A1 (en) * 2017-03-31 2018-10-04 倉敷紡績株式会社 Electrode sheet, all-solid battery, manufacturing method for electrode sheet, and manufacturing method for all-solid battery
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device
JP7237296B2 (en) 2018-07-03 2023-03-13 川上 総一郎 storage device
US20220320590A1 (en) * 2019-12-27 2022-10-06 Murata Manufacturing Co., Ltd. Solid state battery
US20210313562A1 (en) * 2020-04-07 2021-10-07 Nanostar Inc. Amorphous Silicon in Solid Electrolytes, Compositions and Anodes
JP2022125921A (en) * 2021-02-17 2022-08-29 株式会社Gsユアサ Electrode material, electrode, storage element, and method for producing electrode material
JP7753641B2 (en) 2021-02-17 2025-10-15 株式会社Gsユアサ Electrode material, electrode, energy storage element, and method for manufacturing electrode material

Also Published As

Publication number Publication date
JP4505886B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US7326493B2 (en) Lithium electrochemical generator comprising at least a bipolar electrode with conductive aluminium or aluminium alloy substrates
EP1777761B1 (en) Lithium Rechargeable Battery
US7709142B2 (en) Electrolytic solution containing 4-fluoro-1, 3-dioxolane-2-one solvent
EP1030398B1 (en) Gel electrolyte and gel electrolyte battery
EP1309018A2 (en) Electrochemical cell having a multiplate electrode assembly housed in an irregularly shaped casing
JP4905267B2 (en) Positive electrode mixture and non-aqueous electrolyte battery
KR19990037490A (en) Solid electrolyte cell and manufacturing method thereof
US8431265B2 (en) Electric cell
CN102593528A (en) Battery with a battery cell
KR20130129350A (en) Thermoelectric generator
JP2001283913A (en) Lithium battery
US8808884B2 (en) Electrode assembly and secondary battery including the same
JP3507926B2 (en) Solid-state battery
EP1318555B1 (en) Double current collector positive electrode for alkali metal ion electrochemical cells
JP4505886B2 (en) Solid electrolyte battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
KR100619653B1 (en) Nonaqueous electrolyte battery
KR20200050627A (en) Composite Electrode Including Gel-Type Polymer Electrolyte for All-Solid-State Battery, Method Of Manufacturing The Same, And All-Solid-State Lithium Battery Comprising The Same
JP4845245B2 (en) Lithium battery
US20230207889A1 (en) Lithium ion secondary battery
CN100444458C (en) Battery
JP2000149996A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2001015125A (en) Lithium battery
US20240413340A1 (en) Battery
KR20240006382A (en) Electrode assembly and method of preparing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees