JP2001015115A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JP2001015115A JP2001015115A JP11184431A JP18443199A JP2001015115A JP 2001015115 A JP2001015115 A JP 2001015115A JP 11184431 A JP11184431 A JP 11184431A JP 18443199 A JP18443199 A JP 18443199A JP 2001015115 A JP2001015115 A JP 2001015115A
- Authority
- JP
- Japan
- Prior art keywords
- active material
- amorphous silica
- material powder
- electrolyte
- capacity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はリチウム二次電池に
関し、特に活物質から成る電極間に電解質を挟持して外
装パッケージ内に封入するリチウム二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery in which an electrolyte is sandwiched between electrodes made of an active material and sealed in an outer package.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】近年
のノートパソコンや携帯電話等の携帯用電子機器の高性
能化と小型化にはめざましいものがあり、これら携帯機
器に使用される電池では、一層の高エネルギー密度化と
小型化が要求されている。2. Description of the Related Art In recent years, there has been a remarkable performance and miniaturization of portable electronic devices such as notebook personal computers and mobile phones. Further higher energy density and smaller size are required.
【0003】このような要求に応えるものとして、リチ
ウムイオンの脱挿入を利用したリチウム二次電池が盛ん
に研究されている。[0003] To meet such demands, lithium secondary batteries utilizing lithium ion insertion / removal have been actively studied.
【0004】このリチウム二次電池は、平均作動電圧が
3.6Vと高く、高エネルギー密度を有するものの、高
電圧であることと、高電圧下で分解しやすい非水電解液
および電解質を使用していることから、電解液の分解生
成物である有機物や電解質の分解生成物である酸化リチ
ウムや炭酸リチウムなどの活物質表面における析出が避
けられず、析出物がリチウムイオンの脱挿入を阻害する
ため、高容量化の妨げとなっている。また前記理由によ
り、高温保存特性やサイクル特性が十分とは言い難く、
更なる市場の拡大を図る上での障害となっている。Although this lithium secondary battery has a high average operating voltage of 3.6 V and a high energy density, it uses a high voltage and a non-aqueous electrolyte and an electrolyte which are easily decomposed at a high voltage. Therefore, precipitation on the surface of the active material such as an organic substance which is a decomposition product of the electrolytic solution and a lithium oxide or lithium carbonate which is a decomposition product of the electrolyte is inevitable, and the precipitate impedes lithium ion deintercalation. This hinders an increase in capacity. Also, for the above reasons, it is difficult to say that the high-temperature storage characteristics and the cycle characteristics are sufficient,
This is an obstacle to further market expansion.
【0005】このような問題を解決するために、活物質
の表面をリチウムイオン伝導性固体電解質層で被覆する
方法の開発が積極的に進められている。In order to solve such a problem, development of a method of coating the surface of an active material with a lithium ion conductive solid electrolyte layer has been actively promoted.
【0006】例えば特開平9−82360号では、正極
活物質となるリチウム複合酸化物粉体の表面を、ポリエ
チレンオキシド、ポリプロピレンオキシド、ポリエステ
ル、ポリイミン、ポリエーテル、ポリアクリロニトリ
ル、ポリビニルスルホン、ポリビニルクロライド等のリ
チウムイオン伝導性高分子化合物、または前記リチウム
イオン伝導性高分子化合物にLiClO4 等の電解質を
添加したもの、またはLiI、Li4 I、Li5 AlO
4 、Li5 FeO4 、Li−Na−β−アルミナ、Li
AlSiO4 、Li4 Zn(GeO4 )4 、Li11N
3 Cl2 、Li6NBr3 等のリチウムイオン伝導性無
機化合物で被覆することが提案されている。しかしなが
ら、特開平9−82360号の実施例の全てにおいて、
初期容量はむしろ低下していること、被覆材の膜厚を薄
くすることによって初期容量の低下を抑える必要がある
こと、被覆材の膜厚が0.06μm以下では高温雰囲気
でのサイクル特性が改善されないこと、といった問題が
残されており、さらに高分子自体も充放電の繰り返しに
より徐々に分解するため、高容量化しながら高温保存特
性やサイクル特性を向上するためには未だ不十分であ
る。For example, in Japanese Patent Application Laid-Open No. 9-82360, the surface of a lithium composite oxide powder serving as a positive electrode active material is coated with polyethylene oxide, polypropylene oxide, polyester, polyimine, polyether, polyacrylonitrile, polyvinyl sulfone, polyvinyl chloride, or the like. Lithium ion conductive polymer compound, or a material obtained by adding an electrolyte such as LiClO 4 to the lithium ion conductive polymer compound, or LiI, Li 4 I, Li 5 AlO
4 , Li 5 FeO 4 , Li-Na-β-alumina, Li
AlSiO 4 , Li 4 Zn (GeO 4 ) 4 , Li11N
It has been proposed to coat with a lithium ion conductive inorganic compound such as 3 Cl 2 and Li 6 NBr 3 . However, in all of the examples of JP-A-9-82360,
The initial capacity is rather reduced, the decrease in the initial capacity must be suppressed by reducing the thickness of the coating material, and the cycle characteristics in a high-temperature atmosphere are improved when the coating material thickness is 0.06 μm or less. However, since the polymer itself is gradually decomposed by repeated charge and discharge, it is still insufficient to improve the high-temperature storage characteristics and the cycle characteristics while increasing the capacity.
【0007】また、特開平9−171813号では、活
物質粉体の表面をリチウム・水酸化アルミニウム複合物
からなる無機イオン伝導膜で被覆することが提案されて
いる。リチウム・水酸化アルミニウム複合物からなる無
機イオン伝導膜は水酸化物から形成される場合と、アル
コキシドから形成される、いわゆるゾル−ゲル法で形成
されるものとが挙げられている。この方法では、リチウ
ムイオンだけが無機イオン伝導膜バルク中を拡散し、電
解液分子は無機イオン伝導膜中に入ってこないため、活
物質粉体表面が電解液と接することはなく、したがって
電解液分子が分解しない。したがって、初期容量も向上
する。また、被覆材の膜厚も50〜500オングストロ
ームと薄くできている。Japanese Patent Application Laid-Open No. 9-171813 proposes that the surface of an active material powder is coated with an inorganic ion conductive film composed of a lithium / aluminum hydroxide composite. The inorganic ion conductive membrane composed of the lithium / aluminum hydroxide composite is described as being formed from a hydroxide or formed from an alkoxide, which is formed by a so-called sol-gel method. In this method, since only lithium ions diffuse in the bulk of the inorganic ion conductive membrane and the electrolyte molecules do not enter the inorganic ion conductive membrane, the surface of the active material powder does not come into contact with the electrolyte. The molecule does not decompose. Therefore, the initial capacity is also improved. The thickness of the coating material is as thin as 50 to 500 Å.
【0008】しかしながら、特開平9−171813号
の方法では、活物質粉体の表面に強アルカリが存在する
ため、例えばポリビニリデンフルオライドのような高分
子粘着材が急激にゲル化し、成形が極めて困難になる。
また、成形できたとしても極めて多孔質な成形体になり
易い。However, in the method disclosed in Japanese Patent Application Laid-Open No. Hei 9-171813, since a strong alkali is present on the surface of the active material powder, a polymer adhesive such as polyvinylidene fluoride rapidly gels, and molding is extremely difficult. It becomes difficult.
Moreover, even if it can be molded, it tends to become a very porous molded body.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に、本発明に係るリチウム二次電池によれば、活物質か
ら成る電極間に電解質を挟持して外装パッケージ内に封
入したリチウム二次電池において、前記活物質粉体の表
面を非晶質シリカで被覆したことを特徴とする。According to the present invention, there is provided a lithium secondary battery according to the present invention, wherein an electrolyte is sandwiched between electrodes made of an active material and sealed in an outer package. In the battery, the surface of the active material powder is coated with amorphous silica.
【0010】上記リチウム二次電池では、前記活物質粉
体の表面を、この活物質表面積1m2 に対し1.4mg
以上の非晶質シリカで被覆することが望ましい。In the above lithium secondary battery, the surface of the active material powder is 1.4 mg per 1 m 2 of the active material surface area.
It is desirable to coat with the above amorphous silica.
【0011】また、上記リチウム二次電池では、活物質
粉体表面をゾル−ゲル法で形成した非晶質シリカで被覆
することが望ましい。In the above-mentioned lithium secondary battery, it is desirable that the surface of the active material powder is coated with amorphous silica formed by a sol-gel method.
【0012】[0012]
【作用】活物質粉体の表面を活物質表面積1m2 に対
し、1.4mg以上の非晶質シリカで被覆することによ
って、電解液分子と活物質粉体表面との接触が防げるた
め、電解液分子が分解せず、したがって容量を向上で
き、高温下におけるサイクル特性も向上する。また、特
開平9−171813号の方法とは異なり、リチウムア
ルコサイドは加えないことから、活物質粉体の表面に強
アルカリは存在せず、例えばポリビニリデンフルオライ
ドのような高分子粘着材が急激にゲル化することもな
く、成形も容易で、多孔質な成形体にもなりにくい。The surface of the active material powder is coated with at least 1.4 mg of amorphous silica per 1 m 2 of active material surface area, so that contact between the electrolyte solution molecules and the surface of the active material powder can be prevented. The liquid molecules are not decomposed, so that the capacity can be improved, and the cycle characteristics at high temperatures are also improved. Also, unlike the method of JP-A-9-171813, since no lithium alcohol is added, no strong alkali exists on the surface of the active material powder, and for example, a polymer adhesive such as polyvinylidene fluoride is used. It does not gel rapidly, is easy to mold, and hardly becomes a porous molded body.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施形態を説明す
る。図1は本発明のリチウム二次電池の構成例を示す断
面図であり、1は正極缶、2は正極集電層、3は正極、
4は絶縁パッキング、5は固体電解質または電解質を含
んだセパレータ、6は負極、7は負極集電層、8は負極
缶である。Embodiments of the present invention will be described below. FIG. 1 is a cross-sectional view showing a configuration example of a lithium secondary battery of the present invention, wherein 1 is a positive electrode can, 2 is a positive electrode current collecting layer, 3 is a positive electrode,
4 is an insulating packing, 5 is a solid electrolyte or a separator containing an electrolyte, 6 is a negative electrode, 7 is a negative electrode current collecting layer, and 8 is a negative electrode can.
【0014】正極3および負極6に用いる活物質として
は、次のような遷移金属酸化物が挙げられる。例えば、
リチウムマンガン複合酸化物、二酸化マンガン、リチウ
ムニッケル複合酸化物、リチウムコバルト複合酸化物、
リチウムニッケルコバルト複合酸化物、リチウムバナジ
ウム複合酸化物、リチウムチタン複合酸化物、酸化チタ
ン、酸化ニオブ、酸化バナジウム、酸化タングステンな
どとそれらの誘導体などである。ここで、正極3と負極
6とに用いる活物質には明確な区別はなく、2種類の遷
移金属酸化物の充放電電位を比較してより貴な電位を示
すものを正極3に、より卑な電位を示すものを負極6に
それぞれ用いて任意の電圧の電池を構成することができ
る。正極3のみに遷移金属酸化物を用い、負極6には炭
素材料や金属リチウムを用いてもよい。これらは、電気
化学的酸化還元反応に伴うリチウムイオンの脱挿入が可
能である。The active materials used for the positive electrode 3 and the negative electrode 6 include the following transition metal oxides. For example,
Lithium manganese composite oxide, manganese dioxide, lithium nickel composite oxide, lithium cobalt composite oxide,
Examples thereof include lithium nickel cobalt composite oxide, lithium vanadium composite oxide, lithium titanium composite oxide, titanium oxide, niobium oxide, vanadium oxide, tungsten oxide, and derivatives thereof. Here, the active materials used for the positive electrode 3 and the negative electrode 6 are not clearly distinguished, and those showing a more noble potential by comparing the charge and discharge potentials of the two types of transition metal oxides are given to the positive electrode 3 and the more negative ones. A battery having an arbitrary voltage can be formed by using each of the negative electrodes 6 having a high potential. A transition metal oxide may be used only for the positive electrode 3, and a carbon material or metallic lithium may be used for the negative electrode 6. These can remove and insert lithium ions accompanying the electrochemical redox reaction.
【0015】本発明における非晶質シリカで被覆した活
物質は、以下に示す方法で作成される。すなわち、
(1)活物質粉体をアルコールなどの有機溶剤の存在下
で攪拌しつつテトラアルコキシシランを滴下し、(2)
所定の時間攪拌した後、(3)水および酸触媒を所定量
滴下し、(4)所定の温度で、所定の時間かけて有機溶
剤を乾燥除去する。The active material coated with amorphous silica in the present invention is prepared by the following method. That is,
(1) Tetraalkoxysilane is added dropwise while stirring the active material powder in the presence of an organic solvent such as alcohol, and (2)
After stirring for a predetermined time, (3) a predetermined amount of water and an acid catalyst are dropped, and (4) the organic solvent is dried and removed at a predetermined temperature for a predetermined time.
【0016】非晶質材の添加量は、活物質表面積1m2
に対し1.4mg以上、望ましくは14mg以上が添加
される。1.4mg以上であれば、初期充電容量の向上
が既に見られるものの初期放電容量はごくわずかしか向
上しないのに対し、14mg以上では初期放電容量も大
幅に向上する。The amount of the amorphous material added is 1 m 2 of the active material surface area.
1.4 mg or more, preferably 14 mg or more. When the amount is 1.4 mg or more, the initial charge capacity is already improved, but the initial discharge capacity is only slightly increased, whereas when the amount is 14 mg or more, the initial discharge capacity is greatly improved.
【0017】正極3および負極6を作製するには、
(1)非晶質シリカを被覆した活物質と、電子伝導性付
与剤と、成形助剤とを溶解させた水または有機溶剤に分
散させてスラリーを調整し、このスラリーを集電層とな
るアルミ箔または銅箔に塗布して乾燥した後、裁断する
か、あるいは、(2)非晶質被覆材を被覆した活物質
と、電子伝導性付与剤とを直接あるいは成形助剤を加え
て造粒して金型に投入し、プレス機で加圧成形した後、
集電層に圧着する方法などが用いられる。To produce the positive electrode 3 and the negative electrode 6,
(1) An active material coated with amorphous silica, an electron conductivity imparting agent, and a molding aid are dispersed in water or an organic solvent to prepare a slurry, and the slurry is used as a current collecting layer. After coating and drying on an aluminum foil or a copper foil, it is cut, or (2) an active material coated with an amorphous coating material and an electron conductivity-imparting agent directly or by adding a molding aid. After being granulated and put into a mold, and pressed by a press machine,
A method such as pressure bonding to the current collecting layer is used.
【0018】ここで使用可能な成形助剤としては、例え
ば、ポリテトラフルオロエチレン、ポリアクリル酸、カ
ルボキシメチルセルロース、ポリフッ化ビニリデン、ポ
リビニルアルコール、ジアセチルセルロース、ヒドロキ
シプロピルセルロース、ポリブチラール、ポリビニルク
ロライド、ポリビニルピロリドンなどの1種もしくは2
種以上の混合物が挙げられる。Examples of the molding aid usable here include polytetrafluoroethylene, polyacrylic acid, carboxymethylcellulose, polyvinylidene fluoride, polyvinyl alcohol, diacetylcellulose, hydroxypropylcellulose, polybutyral, polyvinyl chloride, polyvinylpyrrolidone. One or two such as
Mixtures of more than one species.
【0019】電解質5には、有機溶媒に所要の電解質塩
を溶解させた有機電解液や、イオン伝導性高分子材料に
電解質塩を溶解させた高分子固体電解質、あるいはそれ
らを複合させたゲル電解質、無機材料からなる無機固体
電解質を用いることができる。電解質に有機電解液を用
いた場合、正極3と負極6を隔離するためのセパレータ
が必要である。The electrolyte 5 may be an organic electrolyte obtained by dissolving a required electrolyte salt in an organic solvent, a solid polymer electrolyte obtained by dissolving an electrolyte salt in an ion-conductive polymer material, or a gel electrolyte obtained by combining them. An inorganic solid electrolyte made of an inorganic material can be used. When an organic electrolyte is used as an electrolyte, a separator for separating the positive electrode 3 and the negative electrode 6 is required.
【0020】有機電解液に用いる有機溶媒には、例えば
エチレンカーボネート、プロピレンカーボネート、ブチ
レンカーボネート、ジメチルカーボネート、ジエチルカ
ーボネート、ガンマーブチロラクトン、スルホラン、
1,2−ジメトキシエタン、1,3−ジメトキシプロパ
ン、ジメチルエーテル、テトラヒドロフラン、2−メチ
ルテトラヒドロフラン、メチルエチルカーボネートから
選ばれる1種もしくは2種以上の混合系の溶媒がある。Examples of the organic solvent used for the organic electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyrolactone, sulfolane,
There is one or a mixture of two or more solvents selected from 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and methylethyl carbonate.
【0021】電解質塩としては、例えば、LiCl
O4 、LiBF4 、LiPF6 、LiCF3 SO3 、L
iN(CF3 SO2 )2 などのリチウム塩を挙げること
ができる。As the electrolyte salt, for example, LiCl
O 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , L
A lithium salt such as iN (CF 3 SO 2 ) 2 can be given.
【0022】セパレータには、例えばポリオレフィン繊
維製の不織布や、ポリオレフィン製の微多孔膜を用いる
ことができる。ここで、ポリオレフィンとしては例え
ば、ポリエチレン、ポリプロピレンなどがある。As the separator, for example, a nonwoven fabric made of polyolefin fiber or a microporous film made of polyolefin can be used. Here, examples of the polyolefin include polyethylene and polypropylene.
【0023】イオン伝導性高分子材料としては、例えば
ポリエチレンオキサイドや、ポリアクリロニトリル、ま
たそれらの混合物や共重合体などがある。Examples of the ion conductive polymer material include polyethylene oxide, polyacrylonitrile, and mixtures and copolymers thereof.
【0024】無機固体電解質としては、例えばLi1.3
Al0.3 Ti1.7 (PO4 )3 、Li3.6 Ge0.6 V
0.4 O4 などの酸化物系結晶質固体電解質、40Li2
O−35B2 O3 −25LiNbO3 、30LiI−4
1Li2 O−29P2 O5 などの酸化物系非晶質固体電
解質、1Li3 PO4 −63Li2 S−36SiS2 な
どの硫化物系非晶質固体電解質を挙げることができる。As the inorganic solid electrolyte, for example, Li 1.3
Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 3.6 Ge 0.6 V
Oxide crystalline solid electrolyte such as 0.4 O 4 , 40 Li 2
O-35B 2 O 3 -25LiNbO 3 , 30LiI-4
1Li 2 O-29P 2 O 5 oxide-based amorphous solid electrolytes such as, mention may be made of sulfide-based amorphous solid electrolytes such as 1Li 3 PO 4 -63Li 2 S- 36SiS 2.
【0025】正極集電層2および負極集電層7は、正極
缶1あるいは負極缶8と正極3あるいは負極6との接触
と集電のために配置され、例えばアルミ箔や銅箔からな
る。The positive electrode current collecting layer 2 and the negative electrode current collecting layer 7 are arranged for contact and current collection between the positive electrode can 1 or the negative electrode can 8 and the positive electrode 3 or the negative electrode 6, and are made of, for example, aluminum foil or copper foil.
【0026】[0026]
【実施例1】活物質粉体として、BET法で測定した比
表面積が2.1m2 /gであるLi[Li0.1 M
n1.9 ]O4 を用い、イソプロピルアルコールの存在下
でSi(OEt )4 を所定量添加して、所定の時間攪拌
した後、水と酸触媒とを所定量添加して加水分解重合さ
せた。その後、所定の温度で乾燥、熱処理を行い、非晶
質シリカで被覆した活物質粉体を得た。Example 1 Li [Li 0.1 M having a specific surface area of 2.1 m 2 / g measured by the BET method was used as the active material powder.
n 1.9 ] O 4 , a predetermined amount of Si (OE t ) 4 was added in the presence of isopropyl alcohol, and the mixture was stirred for a predetermined time, and then water and an acid catalyst were added in a predetermined amount to carry out hydrolysis polymerization. . Thereafter, drying and heat treatment were performed at a predetermined temperature to obtain an active material powder coated with amorphous silica.
【0027】こうして得た活物質粉体とアセチレンブラ
ックとテフロン系高分子粘着材とを82:11:7wt
%の割合でN−メチルピロリジノンを使って混合し、ア
ルミ箔上に塗布した後、乾燥したものを正極に用い、グ
ラファイトとテフロン系高分子粘着材を97:3wt%
の割合でN−メチルピロリジノンを使って混合し、アル
ミ箔上に塗布した後、乾燥したものを負極に用い、電解
液にはLiClO4 を1mol/l溶かしたプロピレン
カーボネート:ジメチルカーボネート=1:1溶液を、
セパレータにはポリプロピレン製微多孔膜を用い、容量
評価用のコインセルを組んだ。The active material powder thus obtained, acetylene black and a Teflon-based polymer adhesive were mixed in an amount of 82: 11: 7 wt.
%, Using N-methylpyrrolidinone, applying the mixture on an aluminum foil, and then using the dried product as a positive electrode, using graphite and a Teflon-based polymer adhesive material at 97: 3 wt%.
Of N-methylpyrrolidinone, applied on an aluminum foil, dried and used as a negative electrode, and propylene carbonate: dimethyl carbonate = 1: 1 with LiClO 4 dissolved at 1 mol / l as an electrolyte. The solution,
A microporous polypropylene membrane was used as a separator, and a coin cell for capacity evaluation was assembled.
【0028】このコインセルを用いて、3.0〜4.3
Vの間で、10mA/gの電流値で充放電容量の測定を
行った。Using this coin cell, 3.0 to 4.3
Between V, the charge / discharge capacity was measured at a current value of 10 mA / g.
【0029】[0029]
【比較例1】活物質をシリカで被覆していないことを除
けば、実施例1と同じ方法でコインセルを作製し、充放
電容量の評価を行った。その結果を表1に示す。Comparative Example 1 A coin cell was prepared in the same manner as in Example 1 except that the active material was not coated with silica, and the charge / discharge capacity was evaluated. Table 1 shows the results.
【0030】[0030]
【表1】 [Table 1]
【0031】この結果からわかる通り、活物質表面積1
m2 に対し1.4mg以上の非晶質シリカで被覆した活
物質を用いると、初期充電容量、60°サイクル特性が
向上しており、さらに活物質表面積1m2 に対し14m
g以上の非晶質シリカで被覆した活物質を用いると、初
期放電容量も大幅に向上している。As can be seen from the results, the active material surface area 1
When an active material coated with 1.4 mg or more of amorphous silica with respect to m 2 is used, the initial charge capacity and the 60 ° cycle characteristic are improved, and further, the active material surface area is 1 m 2 and 14 m 2.
When the active material coated with amorphous silica of g or more is used, the initial discharge capacity is greatly improved.
【0032】これは、活物質表面が非晶質シリカで被覆
されることにより、電解液分子と活物質粉体表面との接
触を防ぐことができるため、電解液分子が分解しないこ
とによる。This is because the surface of the active material is coated with amorphous silica, so that the contact between the electrolyte solution molecules and the surface of the active material powder can be prevented, so that the electrolyte solution molecules do not decompose.
【0033】ただ、特開平9−171813号の方法と
は異なり、リチウムイオンを添加していないシリカ単体
で被覆しているのにもかかわらず、リチウムイオン伝導
が阻害されていない理由は明確でないが、シリカが多孔
質であるとしても、電解液分子を通さず、リチウムイオ
ンだけを運ぶ理由は明らかでないが、おそらくイオン伝
導のメカニズムがバルク拡散以外のものを用いているも
のと考えられる。However, unlike the method disclosed in Japanese Patent Application Laid-Open No. 9-171813, it is not clear why lithium ion conduction is not hindered despite the fact that silica is coated with no lithium ion alone. Even though silica is porous, it is not clear why lithium ions do not pass through the electrolyte solution and carry only lithium ions. However, it is considered that the mechanism of ionic conduction is other than bulk diffusion.
【0034】[0034]
【発明の効果】以上のように、活物質粉体の表面を非晶
質シリカで被覆することによって、電解液分子と活物質
粉体表面との接触が防げるため、電解液分子が分解せ
ず、したがって容量を向上でき、高温下におけるサイク
ル特性も向上する。また、特開平9−171813号の
方法とは異なり、活物質粉体の表面に強アルカリは存在
しないため、例えばポリビニリデンフルオライドのよう
な高分子粘着材が急激にゲル化することもなく、成形も
容易で、多孔質な成形体にもなりにくい。As described above, by coating the surface of the active material powder with amorphous silica, contact between the electrolyte solution molecules and the surface of the active material powder can be prevented, so that the electrolyte solution molecules are not decomposed. Therefore, the capacity can be improved, and the cycle characteristics at high temperatures are also improved. Also, unlike the method of JP-A-9-171813, since a strong alkali does not exist on the surface of the active material powder, for example, a polymer adhesive such as polyvinylidene fluoride does not rapidly gel, Molding is easy, and it is difficult to produce a porous molded body.
【図1】本発明における電気化学素子を用いたコイン型
リチウムイオン電池の構成例を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration example of a coin-type lithium-ion battery using an electrochemical device according to the present invention.
1……正極缶、2……正極集電層、3……正極、4……
絶縁パッキング、5……固体電解質または電解質を含ん
だセパレータ、6……負極、7……負極集電層、8……
負極缶1 ... Positive electrode can, 2 ... Positive electrode current collecting layer, 3 ... Positive electrode, 4 ...
Insulation packing, 5 ... solid electrolyte or separator containing electrolyte, 6 ... negative electrode, 7 ... negative electrode current collecting layer, 8 ...
Negative electrode can
フロントページの続き (72)発明者 三島 洋光 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 馬込 伸二 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 大崎 誠 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 (72)発明者 樋口 永 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5H003 AA02 AA04 AA08 AA10 BA00 BC01 BC05 BC06 BD04 BD05 5H014 AA02 BB00 BB08 EE08 EE10 HH00 HH06 5H029 AJ03 AJ05 AJ07 AJ14 AK03 AL07 AM00 AM02 AM03 AM07 AM11 AM16 BJ03 CJ22 DJ02 DJ16 DJ18 EJ05 HJ01 HJ07Continuing from the front page (72) Inventor Yoko Mishima 3-5 Koikodai, Seika-cho, Soraku-gun, Kyoto Prefecture Inside the Central Research Laboratory, Sera Corporation (72) Inventor Shinji Magome 3-5 Koikodai, Seika-cho, Soraku-gun, Kyoto Kyoto Inside the Central Research Laboratory of Sera Corporation (72) Inventor Makoto Osaki 3-5 Koukodai, Seika-cho, Soraku-gun, Kyoto Prefecture Inside of Central Research Laboratory Kyoto Sera Corporation (72) Inventor Ei Higuchi 3-5-2 Kodaidai, Seika-cho, Kyoto Prefecture Address Kyocera Co., Ltd. Central Research Laboratory F-term (reference) EJ05 HJ01 HJ07
Claims (3)
て外装パッケージ内に封入したリチウム二次電池におい
て、前記活物質粉体の表面を非晶質シリカで被覆したこ
とを特徴とするリチウム二次電池。1. A lithium secondary battery in which an electrolyte is sandwiched between electrodes made of an active material and sealed in an outer package, wherein the surface of the active material powder is coated with amorphous silica. Rechargeable battery.
面積1m2 に対し、1.4mg以上の非晶質シリカで被
覆したことを特徴とする請求項1に記載のリチウム二次
電池。2. The lithium secondary battery according to claim 1, wherein the surface of the active material powder is coated with 1.4 mg or more of amorphous silica per 1 m 2 of the active material surface area. .
形成した非晶質シリカで被覆したことを特徴とする請求
項1に記載のリチウム二次電池。3. The lithium secondary battery according to claim 1, wherein the surface of the active material powder is coated with amorphous silica formed by a sol-gel method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11184431A JP2001015115A (en) | 1999-06-29 | 1999-06-29 | Lithium secondary battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11184431A JP2001015115A (en) | 1999-06-29 | 1999-06-29 | Lithium secondary battery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001015115A true JP2001015115A (en) | 2001-01-19 |
Family
ID=16153042
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11184431A Pending JP2001015115A (en) | 1999-06-29 | 1999-06-29 | Lithium secondary battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001015115A (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002352801A (en) * | 2001-05-25 | 2002-12-06 | Rikogaku Shinkokai | Lithium secondary cell, negative electrode material for it, and improving method therefor |
| KR100433002B1 (en) * | 2001-12-07 | 2004-05-24 | 삼성에스디아이 주식회사 | Electrode, lithium battery adopting the same, and method for manufacturing the same |
| JP2004214182A (en) * | 2002-12-17 | 2004-07-29 | Mitsubishi Chemicals Corp | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same |
| JP2006155979A (en) * | 2004-11-26 | 2006-06-15 | Central Res Inst Of Electric Power Ind | All solid-state battery |
| WO2007086289A1 (en) * | 2006-01-25 | 2007-08-02 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof |
| JP2009135112A (en) * | 2009-03-16 | 2009-06-18 | Kyocera Corp | Lithium battery |
| JP2009176741A (en) * | 2009-03-16 | 2009-08-06 | Kyocera Corp | Lithium battery |
| JP2010135329A (en) * | 2008-12-05 | 2010-06-17 | Samsung Sdi Co Ltd | Cathode and lithium battery adopting this |
| WO2012124048A1 (en) * | 2011-03-15 | 2012-09-20 | 株式会社日立製作所 | Lithium ion secondary battery |
| US20130316237A1 (en) * | 2011-02-02 | 2013-11-28 | Toyota Jidosha Kabushiki Kaisha | Composite active material, method for producing composite active material, and battery |
| US20200343554A1 (en) * | 2018-01-26 | 2020-10-29 | Panasonic Intellectual Property Management Co., Ltd. | Electrode material and battery |
| CN113745460A (en) * | 2021-08-31 | 2021-12-03 | 远景动力技术(江苏)有限公司 | Positive pole piece of high-energy-density lithium ion battery and preparation method and application thereof |
| CN114551887A (en) * | 2022-02-24 | 2022-05-27 | 蜂巢能源科技股份有限公司 | Cobalt-free lithium-rich cathode material, preparation method thereof, cathode plate and battery |
| CN114551843A (en) * | 2022-02-28 | 2022-05-27 | 蜂巢能源科技股份有限公司 | Positive electrode material and preparation method and application thereof |
-
1999
- 1999-06-29 JP JP11184431A patent/JP2001015115A/en active Pending
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002352801A (en) * | 2001-05-25 | 2002-12-06 | Rikogaku Shinkokai | Lithium secondary cell, negative electrode material for it, and improving method therefor |
| KR100433002B1 (en) * | 2001-12-07 | 2004-05-24 | 삼성에스디아이 주식회사 | Electrode, lithium battery adopting the same, and method for manufacturing the same |
| US7005211B2 (en) | 2001-12-07 | 2006-02-28 | Samsung Sdi Co., Ltd. | Electrode, lithium battery having the electrode, and method of manufacturing the same |
| CN1314151C (en) * | 2001-12-07 | 2007-05-02 | 三星Sdi株式会社 | Electrode, lithium cell with same and mfg. method thereof |
| JP2004214182A (en) * | 2002-12-17 | 2004-07-29 | Mitsubishi Chemicals Corp | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same |
| JP2006155979A (en) * | 2004-11-26 | 2006-06-15 | Central Res Inst Of Electric Power Ind | All solid-state battery |
| WO2007086289A1 (en) * | 2006-01-25 | 2007-08-02 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof |
| KR100870814B1 (en) * | 2006-01-25 | 2008-11-27 | 파나소닉 주식회사 | Nonaqueous eletrolyte secondary battery, and manufacturing method and mounting method thereof |
| JP2010135329A (en) * | 2008-12-05 | 2010-06-17 | Samsung Sdi Co Ltd | Cathode and lithium battery adopting this |
| US9172086B2 (en) | 2008-12-05 | 2015-10-27 | Samsung Sdi Co., Ltd. | Cathode and lithium battery using the same |
| JP2009135112A (en) * | 2009-03-16 | 2009-06-18 | Kyocera Corp | Lithium battery |
| JP2009176741A (en) * | 2009-03-16 | 2009-08-06 | Kyocera Corp | Lithium battery |
| US20130316237A1 (en) * | 2011-02-02 | 2013-11-28 | Toyota Jidosha Kabushiki Kaisha | Composite active material, method for producing composite active material, and battery |
| US9325001B2 (en) * | 2011-02-02 | 2016-04-26 | Toyota Jidosha Kabushiki Kaisha | Composite active material, method for producing composite active material, and battery |
| WO2012124048A1 (en) * | 2011-03-15 | 2012-09-20 | 株式会社日立製作所 | Lithium ion secondary battery |
| US20200343554A1 (en) * | 2018-01-26 | 2020-10-29 | Panasonic Intellectual Property Management Co., Ltd. | Electrode material and battery |
| US11777092B2 (en) * | 2018-01-26 | 2023-10-03 | Panasonic Intellectual Property Management Co., Ltd. | Electrode material and battery |
| US12183927B2 (en) | 2018-01-26 | 2024-12-31 | Panasonic Intellectual Property Management Co., Ltd. | Electrode material and battery |
| CN113745460A (en) * | 2021-08-31 | 2021-12-03 | 远景动力技术(江苏)有限公司 | Positive pole piece of high-energy-density lithium ion battery and preparation method and application thereof |
| CN113745460B (en) * | 2021-08-31 | 2023-06-16 | 远景动力技术(江苏)有限公司 | Positive pole piece of high-energy-density lithium ion battery, and preparation method and application thereof |
| CN114551887A (en) * | 2022-02-24 | 2022-05-27 | 蜂巢能源科技股份有限公司 | Cobalt-free lithium-rich cathode material, preparation method thereof, cathode plate and battery |
| CN114551887B (en) * | 2022-02-24 | 2024-01-26 | 蜂巢能源科技股份有限公司 | A cobalt-free lithium-rich cathode material and its preparation method, cathode sheet and battery |
| CN114551843A (en) * | 2022-02-28 | 2022-05-27 | 蜂巢能源科技股份有限公司 | Positive electrode material and preparation method and application thereof |
| CN114551843B (en) * | 2022-02-28 | 2024-02-13 | 蜂巢能源科技股份有限公司 | A kind of cathode material and its preparation method and application |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103038924B (en) | Method for preparing lithium battery or sodium battery | |
| KR101829528B1 (en) | Electrode, nonaqueous electrolyte battery and battery pack | |
| JP3822445B2 (en) | Electrochemical devices | |
| JP3831939B2 (en) | battery | |
| JPH1092444A (en) | Solid polymer electrolyte composite for electrochemical reactor and electrochemical reactor using the same | |
| JP2003249225A (en) | Electrode for lithium secondary battery and lithium secondary battery as well as manufacturing method of the same | |
| JP2004146361A (en) | Anode for lithium battery and lithium battery including the same | |
| JP2001126757A (en) | Lithium battery | |
| JP2001015115A (en) | Lithium secondary battery | |
| US10873079B2 (en) | Low resistance, multivalent metal anodes | |
| JP2000195499A (en) | Lithium battery | |
| US7901830B1 (en) | Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same | |
| CN116235310A (en) | Negative electrode active material for secondary battery, negative electrode for secondary battery, and secondary battery | |
| JP2002216744A (en) | Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery | |
| JP2000164217A (en) | Lithium battery | |
| JPH11283667A (en) | Lithium ion battery | |
| JP2000311692A (en) | Manufacturing method of electrochemical element | |
| JP2002042785A (en) | Lithium battery | |
| JP2000311708A (en) | Manufacturing method of all solid state lithium battery | |
| JP2002175836A (en) | Nonaqueous electrolyte battery | |
| JP2000285910A (en) | Lithium battery | |
| JP2000348729A (en) | A positive electrode plate for a lithium secondary battery, a method for producing the same, and a lithium secondary battery produced using the same. | |
| JPH10261437A (en) | Polymer electrolyte and lithium polymer battery using the same | |
| JP4670258B2 (en) | Electrode material for electrochemical device and electrochemical device provided with the same | |
| JP3722462B2 (en) | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same |