JP2001031484A - Corrosion-resistant composite member - Google Patents
Corrosion-resistant composite memberInfo
- Publication number
- JP2001031484A JP2001031484A JP20716199A JP20716199A JP2001031484A JP 2001031484 A JP2001031484 A JP 2001031484A JP 20716199 A JP20716199 A JP 20716199A JP 20716199 A JP20716199 A JP 20716199A JP 2001031484 A JP2001031484 A JP 2001031484A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- support
- thermal expansion
- dielectric loss
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5045—Rare-earth oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00844—Uses not provided for elsewhere in C04B2111/00 for electronic applications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体デバイス製
造工程および液晶表示装置製造工程に好適な、ハロゲン
系腐蝕ガスまたはハロゲンガスプラズマに対する耐性の
高い耐食性複合部材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant composite member having high resistance to a halogen-based corrosive gas or a halogen gas plasma, which is suitable for a semiconductor device manufacturing process and a liquid crystal display device manufacturing process.
【0002】[0002]
【従来の技術】半導体デバイス製造工程に代表される化
学的腐蝕性の高い環境下で用いられる部材には、石英ガ
ラスやセラミックス焼結体が多く用いられている。この
ような部材としては、例えば、ベルジャー、チャンバ
ー、サセプター、クランプリング、フォーカスリング等
を挙げることができ、これらは例えば腐蝕性の高いハロ
ゲン系ガスによるドライエッチング工程で使用される。2. Description of the Related Art Quartz glass and sintered ceramics are often used as members used in an environment having a high chemical corrosivity typified by a semiconductor device manufacturing process. Examples of such a member include a bell jar, a chamber, a susceptor, a clamp ring, a focus ring, and the like, which are used, for example, in a dry etching process using a highly corrosive halogen-based gas.
【0003】ところで、半導体デバイスおよび液晶表示
装置の製造工程においては、コスト低減の観点から、基
板の大型化が図られ、半導体ウエハでは300mmφ、
液晶表示装置基板では1m□という極めて大型のものへ
の対応が要望され、これに伴って製造装置の大型化が必
要になってきている。In the manufacturing process of semiconductor devices and liquid crystal display devices, the size of the substrate is increased from the viewpoint of cost reduction.
There is a demand for a liquid crystal display device substrate of a very large size of 1 m □, and accordingly, it is necessary to increase the size of a manufacturing apparatus.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来使
用されてきた石英ガラスでは強度、剛性率の点から大型
部品への対応は制限されざるを得ない。また、アルミナ
セラミックスの大型部品製造では粗大ポアに代表される
組織の不均一が問題であり、特に腐蝕性の高い環境下で
はこのポアが腐蝕起点になるため、パーティクル発生お
よび腐蝕の促進等の問題が懸念される。特に耐腐蝕性の
高い材料としてサファイアがあるが、これも単結晶製造
サイズの問題から上記大型部品への対応には限度があ
る。However, in the case of quartz glass which has been used in the past, it is inevitably limited to deal with large parts in terms of strength and rigidity. In addition, in the production of large parts of alumina ceramics, there is a problem of non-uniform structure represented by coarse pores. Particularly in an environment having high corrosiveness, these pores serve as a starting point of corrosion. Is concerned. In particular, sapphire is a material having high corrosion resistance, but this also has a limitation in handling large-sized components due to the problem of single crystal production size.
【0005】本発明はかかる事情に鑑みてなされたもの
であって、ハロゲン系腐蝕ガスまたはハロゲンガスプラ
ズマに対する耐性が高く、しかも大型部品に適した耐食
性複合部材を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a corrosion-resistant composite member having high resistance to a halogen-based corrosive gas or a halogen gas plasma and suitable for large-sized parts.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、熱膨張率が7×10−6〜12×10
−6で誘電損失が5×10−3以下の支持体と、その上
に形成され、希土類酸化物を50重量%以上含み、ハロ
ゲン系腐蝕ガスあるいはそれらのプラズマに曝される部
位を構成する耐食性膜とを有することを特徴とする耐食
性複合部材を提供する。[MEANS FOR SOLVING THE PROBLEMS]
The present invention has a coefficient of thermal expansion of 7 × 10-6~ 12 × 10
-6And dielectric loss is 5 × 10-3The following supports and above
And containing at least 50% by weight of rare earth oxides,
Exposed to gen-based corrosive gas or their plasma
Corrosion resistance characterized by having a corrosion resistant film constituting
A composite composite member is provided.
【0007】本発明によれば、熱膨張率が7×10−6
〜12×10−6で比較的小さく、かつ誘電損失が5×
10−3以下の支持体を用い、その上に希土類酸化物を
50重量%以上含む耐食性膜を形成して、その耐食性膜
をハロゲン系腐蝕ガスあるいはそれらのプラズマに曝さ
れる部位とするので、ハロゲン系腐蝕ガスまたはハロゲ
ンガスプラズマに対する耐性が高く、しかも大型化した
場合でも熱膨張差や誘電損失が大きいことに起因するク
ラックや膜の剥がれが生じ難い。According to the present invention, the coefficient of thermal expansion is 7 × 10 −6.
~ 12 × 10 -6 which is relatively small and dielectric loss is 5 ×
Since a corrosion-resistant film containing 50% by weight or more of a rare-earth oxide is formed on a support having a size of 10 −3 or less, and the corrosion-resistant film is formed as a portion exposed to a halogen-based corrosive gas or a plasma thereof, It has high resistance to halogen-based corrosive gas or halogen gas plasma, and even when it is large-sized, cracks and film peeling due to large thermal expansion difference and large dielectric loss hardly occur.
【0008】[0008]
【発明の実施の形態】以下、本発明について具体的に説
明する。本発明の耐食性複合部材は、熱膨張率が7×1
0−6〜12×10−6で誘電損失が5×10−3以下
の支持体と、その上に形成され、希土類酸化物を50重
量%以上含み、ハロゲン系腐蝕ガスあるいはそれらのプ
ラズマに曝される部位を構成する耐食性膜とを有する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The corrosion-resistant composite member of the present invention has a coefficient of thermal expansion of 7 × 1.
0 and -6 to 12 × 10 -6 in dielectric loss 5 × 10 -3 or less of a support, formed thereon, a rare earth oxide comprises 50 wt% or more,曝the halogen-based corrosive gas or their plasma And a corrosion-resistant film constituting a portion to be formed.
【0009】希土類酸化物を50重量%以上含む材料
は、ハロゲン系腐蝕ガスあるいはそれらのプラズマに対
する耐性が高いため、このような材料からなる膜でハロ
ゲン系腐蝕ガスあるいはそれらのプラズマに曝される部
位を構成する。希土類酸化物の量が50重量%未満であ
ると耐食性が不十分である。希土類酸化物としては、Y
2O3、Dy2O3、Er2O3等を挙げることができ
る。これらの中ではY2O3が好ましい。耐食性膜はこ
のような希土類酸化物単独であってもよいし、他の成分
を含んでいてもよい。また、2成分以上の酸化物を含む
場合にはX線的に複合酸化物を形成していることが好ま
しい。このような複合酸化物としては、Y 2O3−Al
2O3系のものが好ましく、例えばYAlO3、Y4A
l2O9、Y3Al5O12(イットリウム−アルミニ
ウム−ガーネット)等を挙げることができる。Material containing at least 50% by weight of rare earth oxide
Is resistant to halogen-based corrosive gases or their plasma.
The film made of such materials has high resistance to halo.
Exposed to gen-based corrosive gas or their plasma
Configure the rank. The amount of rare earth oxide is less than 50% by weight
If so, the corrosion resistance is insufficient. As rare earth oxides, Y
2O3, Dy2O3, Er2O3Etc.
You. Of these, Y2O3Is preferred. Corrosion resistant film
The rare earth oxide alone may be used, or other components may be used.
May be included. Also contains two or more oxides
In this case, it is preferable that the composite oxide is formed X-ray.
New As such a composite oxide, Y 2O3-Al
2O3Type is preferable, for example, YAlO3, Y4A
l2O9, Y3Al5O12(Yttrium-Alumini
Um-garnet) and the like.
【0010】耐食性膜の形成方法は、溶射法やスパッタ
リング法等の従来から用いられている成膜技術を採用す
ることができ、特に限定されるものではないが、溶射法
で成膜する場合には、減圧下で原料および成膜装置の水
分パージを十分に行うことが望ましい。これにより気孔
率の少ない膜を形成することができる。The method for forming the corrosion-resistant film may be a conventional film forming technique such as a thermal spraying method or a sputtering method, and is not particularly limited. In this case, it is desirable to sufficiently purge the raw materials and the film formation apparatus with water under reduced pressure. Thereby, a film having a low porosity can be formed.
【0011】耐食性膜を支持する支持体は、熱膨張率が
7×10−6〜12×10−6で誘電損失が5×10
−3以下であれば、その材料は特に限定されないが、ア
ルミナ、ジルコニア等のセラミックス焼結体が好適であ
る。支持体の熱膨張率を7×10−6〜12×10−6
としたのは、この範囲外であると耐食性膜との熱膨張差
により膜の剥がれ、クラック等が発生しやすくなるから
である。また、支持体の誘電損失を5×10−3以下と
したのは、これ以上であるとGHz帯域での使用に際し
て支持体が発熱し、支持体と耐食性膜との間で熱応力に
よる剥がれやクラックが生じやすくなるからである。The support for supporting the corrosion-resistant film has a coefficient of thermal expansion of 7 × 10 −6 to 12 × 10 −6 and a dielectric loss of 5 × 10 −6.
The material is not particularly limited as long as it is −3 or less, but a ceramic sintered body such as alumina and zirconia is preferable. The coefficient of thermal expansion of the support is 7 × 10 −6 to 12 × 10 −6.
The reason for this is that if it is out of this range, the film is likely to be peeled off or cracked due to a difference in thermal expansion from the corrosion-resistant film. Further, the reason why the dielectric loss of the support is set to 5 × 10 −3 or less is that if the dielectric loss is more than 5 × 10 −3 , the support generates heat when used in the GHz band, and peeling between the support and the corrosion-resistant film due to thermal stress is caused. This is because cracks are likely to occur.
【0012】支持体の耐食性膜を形成する側の表面粗さ
は特に限定されないが、中心線平均表面粗さRaが2μ
m以上であることが望ましい。これにより、より強固な
接合界面を得ることができる。さらに好ましくはRaが
5μm以上である。The surface roughness of the support on which the corrosion-resistant film is formed is not particularly limited, but the center line average surface roughness Ra is 2 μm.
m or more. Thereby, a stronger bonding interface can be obtained. More preferably, Ra is 5 μm or more.
【0013】以上のように、熱膨張率が7×10−6〜
12×10−6で誘電損失が5×10−3以下の支持体
の上に、希土類酸化物を50重量%以上含む耐食性膜を
形成して、その膜がハロゲン系腐蝕ガスあるいはそれら
のプラズマに曝される部位を構成することにより、ハロ
ゲン系腐蝕ガスまたはハロゲンガスプラズマに対する耐
性が高く、しかも大型部品に適した耐食性複合部材が得
られる。As described above, the coefficient of thermal expansion is 7 × 10 −6 to
A corrosion resistant film containing at least 50% by weight of a rare earth oxide is formed on a support having a dielectric loss of 5 × 10 −3 or less with a dielectric loss of 12 × 10 −6 , and the film is exposed to a halogen-based corrosive gas or a plasma thereof. By configuring the exposed portion, a corrosion-resistant composite member having high resistance to halogen-based corrosive gas or halogen gas plasma and suitable for large-sized components can be obtained.
【0014】[0014]
【実施例】以下、本発明の実施例について説明する。純
度99.9%の酸化イットリウム(Y2O3)と純度9
9.9%以上の酸化アルミニウム(Al2O3)を用
い、プラズマ溶射装置により150mm□のセラミック
ス支持体の表面に厚さ100μm程度の耐腐食性膜を成
膜し、表1のNo.1〜5の複合部材を得た。支持体と
しては、No.1,2,3,5では熱膨張率が8×10
−6/℃の酸化アルミニウム(アルミナ)を用い、N
o.4では熱膨張率が5×10−6/℃のムライトを用
いた。No.5の支持体は原料としてアルカリ金属を多
く含む低純度品を用いて誘電損失を大きくした。また、
耐食性膜としては、No.1,4ではY2O3のみ、N
o.2,5ではイットリウム−アルミニウム−ガーネッ
ト(YAG)、No.3ではY2O3とAl2O3の混
合物(Y2O330%)を用いた。Embodiments of the present invention will be described below. 99.9% pure yttrium oxide (Y 2 O 3 ) and 9 pure
Using 9.9% or more of aluminum oxide (Al 2 O 3 ), a corrosion-resistant film having a thickness of about 100 μm was formed on the surface of a 150 mm square ceramic support by a plasma spraying apparatus. 1 to 5 composite members were obtained. As the support, For 1, 2, 3, 5 the coefficient of thermal expansion is 8 × 10
-6 / ° C aluminum oxide (alumina)
o. In No. 4, mullite having a coefficient of thermal expansion of 5 × 10 −6 / ° C. was used. No. For the support of No. 5, the dielectric loss was increased by using a low-purity product containing a large amount of alkali metal as a raw material. Also,
As the corrosion resistant film, In 1 and 4, only Y 2 O 3 , N
o. Nos. 2 and 5, yttrium-aluminum-garnet (YAG); In No. 3, a mixture of Y 2 O 3 and Al 2 O 3 (Y 2 O 3 30%) was used.
【0015】このようにして得られた複合部材を平行平
板型RIEエッチング装置のチャンバー内に装入し、C
F4+O2のプラズマによる腐蝕試験を行った。その
際、研磨面の一部をポリイミドテープでマスクし、マス
クのある部分とない部分の段差を測定することによりエ
ッチング速度を算出した。表1にこれらの結果を示す。The composite member obtained in this manner is charged into a chamber of a parallel plate type RIE etching apparatus, and C
A corrosion test was performed using F 4 + O 2 plasma. At this time, a part of the polished surface was masked with a polyimide tape, and the etching rate was calculated by measuring the level difference between the portion with and without the mask. Table 1 shows these results.
【0016】表1に示すように、本発明の範囲内の実施
例であるNo.1,2は、エッチング速度が3nm/m
inと極めて小さな値を示し、支持体と耐食性膜との界
面の異常も発生しなかった。As shown in Table 1, No. 1 was an embodiment within the scope of the present invention. 1 and 2 have an etching rate of 3 nm / m
in and a very small value, and no abnormality occurred at the interface between the support and the corrosion-resistant film.
【0017】これに対して、耐食性膜の希土類元素(Y
2O3)含有率を本発明の範囲外としたNo.3ではエ
ッチング速度が8nm/minと耐エッチング性(耐食
性)が低下した。また、支持体の熱膨張率が本発明の範
囲から外れるNo.4は、支持体と耐食性膜との界面で
クラックが確認された。さらに、支持体の誘電損失が本
発明の範囲を外れるNo.5は、同様に支持体と耐食性
膜との界面でクラックが確認された。On the other hand, the rare earth element (Y
No. 2 O 3 ) content was out of the range of the present invention. In No. 3, the etching rate was 8 nm / min, and the etching resistance (corrosion resistance) was reduced. In addition, the thermal expansion coefficient of the support was out of the range of the present invention. In No. 4, cracks were observed at the interface between the support and the corrosion-resistant film. Further, the dielectric loss of the support was out of the range of the present invention. In No. 5, cracks were similarly observed at the interface between the support and the corrosion-resistant film.
【0018】次に、酸化アルミニウム(アルミナ)から
なる内径400mmの半球状ドーム形状品を作製し、こ
れを支持体としてその内面にプラズマ溶射法によりYA
G層をコーティングして、上記No.2と同様の組合せ
の複合部材評価品を得た。この複合部材評価品をプラズ
マチャンバー内にセッティングし、上述の実施例と同様
にしてプラズマによるエッチングテストを行った。その
結果、エッチング速度は4nm/minであり、支持体
と耐食膜との界面には異常は観察されなかった。Next, a hemispherical dome-shaped product having an inner diameter of 400 mm made of aluminum oxide (alumina) was prepared, and this was used as a support, and YA was formed on the inner surface thereof by plasma spraying.
G layer, and A composite member evaluation product having the same combination as in Example 2 was obtained. This composite member evaluation product was set in a plasma chamber, and an etching test using plasma was performed in the same manner as in the above-described embodiment. As a result, the etching rate was 4 nm / min, and no abnormality was observed at the interface between the support and the corrosion-resistant film.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【発明の効果】以上説明したように、本発明によれば、
熱膨張率が7×10−6〜12×10 −6で誘電損失が
5×10−3以下の支持体と、その上に形成され、希土
類酸化物を50重量%以上含む耐食性膜を形成し、この
膜がハロゲン系腐蝕ガスあるいはそれらのプラズマに曝
される部位を構成するので、ハロゲン系腐蝕ガスまたは
ハロゲンガスプラズマに対する耐性が高く、しかも大型
部品に適した耐食性複合部材を得ることができる。As described above, according to the present invention,
Thermal expansion coefficient is 7 × 10-6~ 12 × 10 -6The dielectric loss
5 × 10-3The following support and the rare earth formed on it
Forming a corrosion-resistant film containing at least 50% by weight of oxides
The film is exposed to halogen-based corrosive gases or their plasma.
To form a part that is
High resistance to halogen gas plasma and large
A corrosion-resistant composite member suitable for a part can be obtained.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大滝 浩通 宮城県仙台市泉区明通三丁目5番 株式会 社日本セラテック本社工場内 (72)発明者 岸 幸男 宮城県仙台市泉区明通三丁目5番 株式会 社日本セラテック本社工場内 Fターム(参考) 4K057 DD01 DE01 DE06 DE11 DM01 DM35 DM40 DN01 5F004 AA16 BB29 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiromichi Otaki 3-5, Akimitsu, Izumi-ku, Sendai-shi, Miyagi Japan Inside the Ceratech headquarters plant of Japan Co., Ltd. (72) Yukio Kishi Meiji-san, Izumi-ku, Sendai-shi, Miyagi F-term (reference) in the Japan Ceratech headquarters factory at No. 5 Co., Ltd. 4K057 DD01 DE01 DE06 DE11 DM01 DM35 DM40 DN01 5F004 AA16 BB29
Claims (1)
−6で誘電損失が5×10−3以下の支持体と、その上
に形成され、希土類酸化物を50重量%以上含み、ハロ
ゲン系腐蝕ガスあるいはそれらのプラズマに曝される部
位を構成する耐食性膜とを有することを特徴とする耐食
性複合部材。1. The thermal expansion coefficient is from 7 × 10 −6 to 12 × 10
-6 and a support having a dielectric loss of 5 × 10 −3 or less and a corrosion resistance formed on the support and containing a rare earth oxide in an amount of 50% by weight or more and exposed to a halogen-based corrosive gas or a plasma thereof. A corrosion-resistant composite member having a film.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20716199A JP2001031484A (en) | 1999-07-22 | 1999-07-22 | Corrosion-resistant composite member |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20716199A JP2001031484A (en) | 1999-07-22 | 1999-07-22 | Corrosion-resistant composite member |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001031484A true JP2001031484A (en) | 2001-02-06 |
Family
ID=16535245
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP20716199A Pending JP2001031484A (en) | 1999-07-22 | 1999-07-22 | Corrosion-resistant composite member |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001031484A (en) |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002097154A1 (en) * | 2001-05-25 | 2002-12-05 | Tokyo Electron Limited | Plasma treatment container internal member, and plasma treatment device having the plasma treatment container internal member |
| US6783863B2 (en) | 1999-12-10 | 2004-08-31 | Tocalo Co., Ltd. | Plasma processing container internal member and production method thereof |
| WO2005021830A3 (en) * | 2003-08-22 | 2005-07-14 | Saint Gobain Ceramics | Ceramic article having corrosion-resistant layer and method for forming same |
| JP2006144123A (en) * | 2004-10-18 | 2006-06-08 | Nihon Ceratec Co Ltd | Corrosion-resistant member and its manufacturing method |
| US7137353B2 (en) | 2002-09-30 | 2006-11-21 | Tokyo Electron Limited | Method and apparatus for an improved deposition shield in a plasma processing system |
| US7147749B2 (en) | 2002-09-30 | 2006-12-12 | Tokyo Electron Limited | Method and apparatus for an improved upper electrode plate with deposition shield in a plasma processing system |
| US7163585B2 (en) | 2002-09-30 | 2007-01-16 | Tokyo Electron Limited | Method and apparatus for an improved optical window deposition shield in a plasma processing system |
| US7166166B2 (en) | 2002-09-30 | 2007-01-23 | Tokyo Electron Limited | Method and apparatus for an improved baffle plate in a plasma processing system |
| US7166200B2 (en) | 2002-09-30 | 2007-01-23 | Tokyo Electron Limited | Method and apparatus for an improved upper electrode plate in a plasma processing system |
| US7204912B2 (en) | 2002-09-30 | 2007-04-17 | Tokyo Electron Limited | Method and apparatus for an improved bellows shield in a plasma processing system |
| JP2007107100A (en) * | 2006-11-30 | 2007-04-26 | Tocalo Co Ltd | Composite film-covered member in plasma treatment container and method for manufacturing the same |
| JP2007119924A (en) * | 2006-11-30 | 2007-05-17 | Tocalo Co Ltd | High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same |
| JP2007126752A (en) * | 2006-12-08 | 2007-05-24 | Tocalo Co Ltd | Member in plasma treatment vessel and its production method |
| US7282112B2 (en) | 2002-09-30 | 2007-10-16 | Tokyo Electron Limited | Method and apparatus for an improved baffle plate in a plasma processing system |
| US7291566B2 (en) | 2003-03-31 | 2007-11-06 | Tokyo Electron Limited | Barrier layer for a processing element and a method of forming the same |
| JP2007291528A (en) * | 1999-12-10 | 2007-11-08 | Tokyo Electron Ltd | Treating apparatus |
| US7494723B2 (en) | 2005-07-29 | 2009-02-24 | Tocalo Co., Ltd. | Y2O3 spray-coated member and production method thereof |
| US7552521B2 (en) | 2004-12-08 | 2009-06-30 | Tokyo Electron Limited | Method and apparatus for improved baffle plate |
| US7560376B2 (en) | 2003-03-31 | 2009-07-14 | Tokyo Electron Limited | Method for adjoining adjacent coatings on a processing element |
| US7582367B2 (en) | 2004-09-30 | 2009-09-01 | Ngk Insulators, Ltd. | Ceramic member and manufacturing method for the same |
| US7601242B2 (en) | 2005-01-11 | 2009-10-13 | Tokyo Electron Limited | Plasma processing system and baffle assembly for use in plasma processing system |
| US7648782B2 (en) | 2006-03-20 | 2010-01-19 | Tokyo Electron Limited | Ceramic coating member for semiconductor processing apparatus |
| US7767268B2 (en) | 2005-09-08 | 2010-08-03 | Tocalo Co., Ltd. | Spray-coated member having an excellent resistance to plasma erosion and method of producing the same |
| JP2010174325A (en) * | 2009-01-29 | 2010-08-12 | Kyocera Corp | Discharge electrode unit, discharge electrode assembly and discharge treatment apparatus |
| US7780786B2 (en) | 2002-11-28 | 2010-08-24 | Tokyo Electron Limited | Internal member of a plasma processing vessel |
| US8017062B2 (en) | 2004-08-24 | 2011-09-13 | Yeshwanth Narendar | Semiconductor processing components and semiconductor processing utilizing same |
| US8231986B2 (en) | 2005-08-22 | 2012-07-31 | Tocalo Co., Ltd. | Spray coating member having excellent injury resistance and so on and method for producing the same |
| CN112111784A (en) * | 2019-06-20 | 2020-12-22 | 安达满纳米奇精密宝石有限公司 | Heater bracket and heater unit |
-
1999
- 1999-07-22 JP JP20716199A patent/JP2001031484A/en active Pending
Cited By (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6783863B2 (en) | 1999-12-10 | 2004-08-31 | Tocalo Co., Ltd. | Plasma processing container internal member and production method thereof |
| US6884516B2 (en) * | 1999-12-10 | 2005-04-26 | Tocalo Co., Ltd. | Internal member for plasma-treating vessel and method of producing the same |
| JP2012018928A (en) * | 1999-12-10 | 2012-01-26 | Tokyo Electron Ltd | Processing unit, corrosion resistant member and method of manufacturing corrosion resistant member |
| US7879179B2 (en) | 1999-12-10 | 2011-02-01 | Tokyo Electron Limited | Processing apparatus with a chamber having therein a high-corrosion-resistant sprayed film |
| US7846291B2 (en) | 1999-12-10 | 2010-12-07 | Tokyo Electron Limited | Processing apparatus with a chamber having therein a high-corrosion-resistant sprayed film |
| US7364798B2 (en) | 1999-12-10 | 2008-04-29 | Tocalo Co., Ltd. | Internal member for plasma-treating vessel and method of producing the same |
| JP2007291528A (en) * | 1999-12-10 | 2007-11-08 | Tokyo Electron Ltd | Treating apparatus |
| WO2002097154A1 (en) * | 2001-05-25 | 2002-12-05 | Tokyo Electron Limited | Plasma treatment container internal member, and plasma treatment device having the plasma treatment container internal member |
| US8739732B2 (en) | 2001-05-25 | 2014-06-03 | Tokyo Electron Limited | Plasma treatment container internal member, and plasma treatment apparatus having the plasma treatment container internal member |
| US7204912B2 (en) | 2002-09-30 | 2007-04-17 | Tokyo Electron Limited | Method and apparatus for an improved bellows shield in a plasma processing system |
| US8118936B2 (en) | 2002-09-30 | 2012-02-21 | Tokyo Electron Limited | Method and apparatus for an improved baffle plate in a plasma processing system |
| US7166200B2 (en) | 2002-09-30 | 2007-01-23 | Tokyo Electron Limited | Method and apparatus for an improved upper electrode plate in a plasma processing system |
| US7147749B2 (en) | 2002-09-30 | 2006-12-12 | Tokyo Electron Limited | Method and apparatus for an improved upper electrode plate with deposition shield in a plasma processing system |
| US7678226B2 (en) | 2002-09-30 | 2010-03-16 | Tokyo Electron Limited | Method and apparatus for an improved bellows shield in a plasma processing system |
| US7137353B2 (en) | 2002-09-30 | 2006-11-21 | Tokyo Electron Limited | Method and apparatus for an improved deposition shield in a plasma processing system |
| US7282112B2 (en) | 2002-09-30 | 2007-10-16 | Tokyo Electron Limited | Method and apparatus for an improved baffle plate in a plasma processing system |
| US8057600B2 (en) | 2002-09-30 | 2011-11-15 | Tokyo Electron Limited | Method and apparatus for an improved baffle plate in a plasma processing system |
| US7166166B2 (en) | 2002-09-30 | 2007-01-23 | Tokyo Electron Limited | Method and apparatus for an improved baffle plate in a plasma processing system |
| US7566368B2 (en) | 2002-09-30 | 2009-07-28 | Tokyo Electron Limited | Method and apparatus for an improved upper electrode plate in a plasma processing system |
| US7163585B2 (en) | 2002-09-30 | 2007-01-16 | Tokyo Electron Limited | Method and apparatus for an improved optical window deposition shield in a plasma processing system |
| US7566379B2 (en) | 2002-09-30 | 2009-07-28 | Tokyo Electron Limited | Method and apparatus for an improved upper electrode plate with deposition shield in a plasma processing system |
| US8117986B2 (en) | 2002-09-30 | 2012-02-21 | Tokyo Electron Limited | Apparatus for an improved deposition shield in a plasma processing system |
| US7780786B2 (en) | 2002-11-28 | 2010-08-24 | Tokyo Electron Limited | Internal member of a plasma processing vessel |
| US8449715B2 (en) | 2002-11-28 | 2013-05-28 | Tokyo Electron Limited | Internal member of a plasma processing vessel |
| US8877002B2 (en) | 2002-11-28 | 2014-11-04 | Tokyo Electron Limited | Internal member of a plasma processing vessel |
| US7560376B2 (en) | 2003-03-31 | 2009-07-14 | Tokyo Electron Limited | Method for adjoining adjacent coatings on a processing element |
| US7291566B2 (en) | 2003-03-31 | 2007-11-06 | Tokyo Electron Limited | Barrier layer for a processing element and a method of forming the same |
| US7329467B2 (en) | 2003-08-22 | 2008-02-12 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same |
| JP2007503374A (en) * | 2003-08-22 | 2007-02-22 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Ceramic article having a corrosion-resistant layer, semiconductor processing apparatus incorporating the same, and method of forming the same |
| WO2005021830A3 (en) * | 2003-08-22 | 2005-07-14 | Saint Gobain Ceramics | Ceramic article having corrosion-resistant layer and method for forming same |
| US8017062B2 (en) | 2004-08-24 | 2011-09-13 | Yeshwanth Narendar | Semiconductor processing components and semiconductor processing utilizing same |
| US7582367B2 (en) | 2004-09-30 | 2009-09-01 | Ngk Insulators, Ltd. | Ceramic member and manufacturing method for the same |
| JP2006144123A (en) * | 2004-10-18 | 2006-06-08 | Nihon Ceratec Co Ltd | Corrosion-resistant member and its manufacturing method |
| US7552521B2 (en) | 2004-12-08 | 2009-06-30 | Tokyo Electron Limited | Method and apparatus for improved baffle plate |
| US7601242B2 (en) | 2005-01-11 | 2009-10-13 | Tokyo Electron Limited | Plasma processing system and baffle assembly for use in plasma processing system |
| US7494723B2 (en) | 2005-07-29 | 2009-02-24 | Tocalo Co., Ltd. | Y2O3 spray-coated member and production method thereof |
| US8231986B2 (en) | 2005-08-22 | 2012-07-31 | Tocalo Co., Ltd. | Spray coating member having excellent injury resistance and so on and method for producing the same |
| US8053058B2 (en) | 2005-09-08 | 2011-11-08 | Tocalo Co., Ltd. | Spray-coated member having an excellent resistance to plasma erosion and method of producing the same |
| US7767268B2 (en) | 2005-09-08 | 2010-08-03 | Tocalo Co., Ltd. | Spray-coated member having an excellent resistance to plasma erosion and method of producing the same |
| US7648782B2 (en) | 2006-03-20 | 2010-01-19 | Tokyo Electron Limited | Ceramic coating member for semiconductor processing apparatus |
| JP2007119924A (en) * | 2006-11-30 | 2007-05-17 | Tocalo Co Ltd | High-purity spray-coated member to be installed inside plasma treatment container and method for manufacturing the same |
| JP2007107100A (en) * | 2006-11-30 | 2007-04-26 | Tocalo Co Ltd | Composite film-covered member in plasma treatment container and method for manufacturing the same |
| JP2007126752A (en) * | 2006-12-08 | 2007-05-24 | Tocalo Co Ltd | Member in plasma treatment vessel and its production method |
| JP2010174325A (en) * | 2009-01-29 | 2010-08-12 | Kyocera Corp | Discharge electrode unit, discharge electrode assembly and discharge treatment apparatus |
| CN112111784A (en) * | 2019-06-20 | 2020-12-22 | 安达满纳米奇精密宝石有限公司 | Heater bracket and heater unit |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2001031484A (en) | Corrosion-resistant composite member | |
| US6645585B2 (en) | Container for treating with corrosive-gas and plasma and method for manufacturing the same | |
| US8247080B2 (en) | Coating structure and method | |
| US6902814B2 (en) | Quartz glass parts, ceramic parts and process of producing those | |
| TWI795981B (en) | Plasma erosion resistant rare-earth oxide based thin film coatings | |
| JP3164559B2 (en) | Processing container material | |
| JPH104083A (en) | Corrosion resistant materials for semiconductor manufacturing | |
| JP2003146751A (en) | Plasma resistant member and method of manufacturing the same | |
| JP2003277051A (en) | Multilayer body having yttria - alumina compound oxide film, yttria - alumina compound oxide film, corrosion- resistant member, corrosion-resistant film and method for manufacturing yttria - alumina compound oxide film | |
| JP5046480B2 (en) | Corrosion resistant member, manufacturing method thereof, and semiconductor / liquid crystal manufacturing apparatus member using the same | |
| KR20050039565A (en) | Plasma resistant member, manufacturing method for the same and method of forming a thermal spray coat | |
| JP2002249864A (en) | Halogen gas plasma resistant member and production method therefor | |
| TWI785577B (en) | Air-permeable member, member for semiconductor manufacturing apparatus, plug and sucking member | |
| JP4651166B2 (en) | Corrosion resistant material | |
| WO2007111058A1 (en) | Structural member for plasma treatment system and method for manufacture thereof | |
| JP2000103689A (en) | Alumina sintered body, method for producing the same, and plasma-resistant member | |
| JP5789177B2 (en) | Polycrystalline ceramic joined body and method for producing the same | |
| JP2001179080A (en) | Member for treating substrate contaminated with metallic substance at low degree | |
| JPH1067554A (en) | Corrosion resistant ceramic members | |
| JP2001240482A (en) | Plasma-resistant member, high-frequency transmission member, and plasma device | |
| JP3784180B2 (en) | Corrosion resistant material | |
| JP3037669B1 (en) | Joint of ceramic member and metal member and wafer support member using the same | |
| JP4601136B2 (en) | Corrosion resistant material | |
| TW200936504A (en) | Corrosion-resistant member | |
| JP2000247726A (en) | Member for semiconductor producing apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040416 |
|
| A871 | Explanation of circumstances concerning accelerated examination |
Effective date: 20040506 Free format text: JAPANESE INTERMEDIATE CODE: A871 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040817 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041001 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041124 |