JP2001141944A - Optical wavelength multiplexer / demultiplexer - Google Patents
Optical wavelength multiplexer / demultiplexerInfo
- Publication number
- JP2001141944A JP2001141944A JP32124699A JP32124699A JP2001141944A JP 2001141944 A JP2001141944 A JP 2001141944A JP 32124699 A JP32124699 A JP 32124699A JP 32124699 A JP32124699 A JP 32124699A JP 2001141944 A JP2001141944 A JP 2001141944A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- input
- wavelength
- demultiplexer
- band
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 43
- 239000013307 optical fiber Substances 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000010453 quartz Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
(57)【要約】
【課題】 広い帯域で平坦化が図れ、中心波長の設定を
精度善く行うことができ、低クロストークの光波長合分
波器を提供する。
【解決手段】 入力光ファイバ2と入力側スラブ導波路
10との間に帯域調整用導波路素子11を設け、その帯
域調整用導波路素子11の位置及び形状を最適化するこ
とによって、広帯域化等の波形調整を行うことができ
る。帯域調整用導波路素子11及び出力側導波路7にそ
れぞれ付加導波路7a、13aを配置することにより、
これらの素子固定時に若干の軸ずれが生じても、導波路
の組み合わせにより、中心波長設定を精度よく行うこと
ができる。
(57) [Problem] To provide a low crosstalk optical wavelength multiplexer / demultiplexer that can achieve flattening over a wide band, can set the center wavelength with high accuracy, and can achieve low crosstalk. SOLUTION: A band adjusting waveguide element 11 is provided between an input optical fiber 2 and an input side slab waveguide 10, and a position and a shape of the band adjusting waveguide element 11 are optimized to widen a band. And other waveform adjustments. By arranging additional waveguides 7a and 13a on the band adjustment waveguide element 11 and the output side waveguide 7, respectively,
Even if a slight axis shift occurs when these elements are fixed, the center wavelength can be accurately set by combining the waveguides.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光通信の分野にお
いて使用される光波長合分波器に関し、特に波長分割多
重伝送方式で使用されるアレイ導波路回折格子型の光波
長合分波器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength multiplexer / demultiplexer used in the field of optical communication, and more particularly to an arrayed waveguide diffraction grating type optical wavelength multiplexer / demultiplexer used in a wavelength division multiplex transmission system. About.
【0002】[0002]
【従来の技術】光通信の分野において、複数の信号を別
々の波長の光にのせ、1本の光ファイバで伝送し、情報
容量を拡大する方法(波長分割多重方式)が実用化され
ている。この方法においては、異なる波長の光を合波す
るか、あるいは分波する合分波器が重要な役割を果たし
ている。2. Description of the Related Art In the field of optical communication, a method (wavelength division multiplexing) in which a plurality of signals are put on light of different wavelengths and transmitted through one optical fiber to increase the information capacity has been put to practical use. . In this method, a multiplexer / demultiplexer that multiplexes or demultiplexes light having different wavelengths plays an important role.
【0003】なかでも、アレイ導波路型回折格子は、チ
ャネル数によらず同一プロセス、同一工程数で作製で
き、原理的にも損失増加等の特性劣化が無いので、チャ
ネル数がより多チャネル化になった場合に、波長多重伝
送のキーデバイスとして有望視されている。In particular, an arrayed waveguide type diffraction grating can be manufactured by the same process and the same number of steps regardless of the number of channels, and there is no characteristic deterioration such as an increase in loss in principle. In this case, it is considered promising as a key device for wavelength multiplex transmission.
【0004】図5は波長合分波器の従来例を示す平面図
である。FIG. 5 is a plan view showing a conventional example of a wavelength multiplexer / demultiplexer.
【0005】同図に示す波長合分波器は、基板1と、基
板1上に形成され入力光ファイバ2aからの波長分割多
重光信号を入力する入力側スラブ導波路3と、入力側ス
ラブ導波路3に接続され所定の導波路長差ΔLを有する
複数本の導波路4aからなり、入力光ファイバ2aに入
力された波長分割多重光信号を分波するアレイ導波路4
と、アレイ導波路4に接続された出力側スラブ導波路5
と、出力側スラブ導波路5に接続され分波された光信号
をそれぞれ出力光ファイバ6に出力する複数の出力側導
波路7とで構成されている。The wavelength multiplexer / demultiplexer shown in FIG. 1 includes a substrate 1, an input-side slab waveguide 3 formed on the substrate 1, for inputting a wavelength division multiplexed optical signal from an input optical fiber 2a, and an input-side slab waveguide. An arrayed waveguide 4 which is connected to the waveguide 3 and has a plurality of waveguides 4a having a predetermined waveguide length difference ΔL, and which demultiplexes the wavelength division multiplexed optical signal input to the input optical fiber 2a.
And an output slab waveguide 5 connected to the array waveguide 4
And a plurality of output waveguides 7 connected to the output slab waveguide 5 and outputting the demultiplexed optical signals to the output optical fiber 6, respectively.
【0006】この波長合分波器における透過波長は、国
際標準化規格に法って、0.8nm(約100GHz)
か、あるいはその倍数でチャネル間隔及び透過中心波長
を設定するのが一般的である。The transmission wavelength of this wavelength multiplexer / demultiplexer is 0.8 nm (about 100 GHz) according to the international standard.
In general, the channel interval and the transmission center wavelength are set by the above or a multiple thereof.
【0007】ここで、アレイ導波路型回折格子では、例
えば石英を用いた場合、約0.01nm/℃の温度係数
を持つため、ヒータか、あるいはペルチェ素子により、
光素子の温度を一定に保ち、透過波長を固定する方式が
とられている。Here, in the case of using an arrayed waveguide type diffraction grating, for example, when quartz is used, it has a temperature coefficient of about 0.01 nm / .degree.
A method of keeping the temperature of the optical element constant and fixing the transmission wavelength is adopted.
【0008】しかし、ヒータやペルチェ素子を用いて中
心波長を設定するアクティブ制御方式では、電力供給が
必要であり、さらにコスト的にも高価なものであった。However, in the active control system in which the center wavelength is set by using a heater or a Peltier element, power supply is required, and the cost is high.
【0009】そこで、近年、温度無依存アレイ導波路回
折格子型光合分波器の検討が進められている(井上他、
1998年信学会総合大会C−3−117)。この方式
ではエッチングによりアレイ導波路部に溝を形成し、そ
の溝に石英ガラスとは逆の温度係数をもつ樹脂を挿入
し、透過波長の温度無依存化を図るものである。この方
式では導波路が温度無依存となっているため、従来行わ
れていたヒータか、あるいはペルチェ素子による中心波
長設定の微調節が行えない。In recent years, studies have been made on a temperature-independent array waveguide diffraction grating type optical multiplexer / demultiplexer (Inoue et al.,
1998 IEICE General Conference C-3-117). In this method, a groove is formed in the arrayed waveguide portion by etching, and a resin having a temperature coefficient opposite to that of quartz glass is inserted into the groove to make the transmission wavelength independent of temperature. In this method, since the waveguide is temperature-independent, fine adjustment of the center wavelength setting using a heater or a Peltier element, which has been conventionally performed, cannot be performed.
【0010】このため、単芯側光ファイバを直接スラブ
導波路端面に接続し、このファイバ接着位置を調節する
ことにより、中心波長制御を行う方式をとっていた。For this reason, a system has been adopted in which the single-core optical fiber is directly connected to the end face of the slab waveguide, and the center wavelength is controlled by adjusting the bonding position of the fiber.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、光ファ
イバを直接スラブ導波路端面に接続すると、従来行われ
てきたスラブ導波路前にY分岐構造やパラボリックホー
ン構造か、あるいはテーパ導波路等を導入して、電界分
布を適性化し、広帯域・平坦化か、あるいは低クロスト
ーク化を図るという手法がとれないという問題があっ
た。また、中心波長設定を精度良く行うためには、光フ
ァイバをスラブ導波路端面に固定する際、軸ずれをサブ
μm〜数μm以内で行う必要があるという問題があっ
た。However, when an optical fiber is directly connected to an end face of a slab waveguide, a Y-branch structure, a parabolic horn structure, or a tapered waveguide is introduced before the slab waveguide conventionally used. Thus, there has been a problem that it is not possible to take a method of optimizing the electric field distribution and achieving broadband / flattening or low crosstalk. In addition, in order to accurately set the center wavelength, there is a problem that when the optical fiber is fixed to the end face of the slab waveguide, it is necessary to shift the axis within a range of sub μm to several μm.
【0012】そこで、本発明の目的は、上記課題を解決
し、広い帯域で平坦化が図れ、中心波長の設定を精度よ
く行うことができ、低クロストークの光波長合分波器を
提供することにある。Accordingly, an object of the present invention is to provide an optical wavelength multiplexer / demultiplexer which solves the above-mentioned problems, can achieve flattening in a wide band, can accurately set a center wavelength, and has low crosstalk. It is in.
【0013】[0013]
【課題を解決するための手段】上記目的を達成するため
に本発明の光波長合分波器は、基板と、基板上に形成さ
れ入力光ファイバからの波長分割多重光信号を入力する
入力側スラブ導波路と、入力側スラブ導波路に接続され
所定の導波路長差ΔLを有する複数本の導波路からな
り、入力光ファイバに入力された波長分割多重光信号を
分波するアレイ導波路と、アレイ導波路に接続された出
力側スラブ導波路と、出力側スラブ導波路に接続され分
波された光信号をそれぞれ出力光ファイバに出力する複
数の出力側導波路とを備えた光波長合分波器において、
入力光ファイバと入力側スラブ導波路との間に帯域調整
用導波路素子を設けたものである。In order to achieve the above object, an optical wavelength multiplexer / demultiplexer according to the present invention comprises a substrate and an input side for receiving a wavelength division multiplexed optical signal from an input optical fiber formed on the substrate. A slab waveguide, an arrayed waveguide connected to the input side slab waveguide and comprising a plurality of waveguides having a predetermined waveguide length difference ΔL, for demultiplexing the wavelength division multiplexed optical signal input to the input optical fiber; An optical slab waveguide comprising: an output-side slab waveguide connected to the arrayed waveguide; and a plurality of output-side waveguides connected to the output-side slab waveguide and each outputting a demultiplexed optical signal to an output optical fiber. In the duplexer,
A band adjusting waveguide element is provided between an input optical fiber and an input side slab waveguide.
【0014】上記構成に加え本発明の波長合分波器は、
帯域調整用導波路素子及び出力側導波路の近傍にそれぞ
れ複数の付加導波路が配置されているのが好ましい。In addition to the above configuration, the wavelength multiplexer / demultiplexer according to the present invention comprises:
It is preferable that a plurality of additional waveguides are arranged near the band adjusting waveguide element and the output side waveguide, respectively.
【0015】上記構成に加え本発明の波長合分波器は、
各導波路が温度無依存型導波路であるのが好ましい。In addition to the above configuration, the wavelength multiplexer / demultiplexer of the present invention comprises:
Preferably, each waveguide is a temperature independent waveguide.
【0016】本発明によれば、入力光ファイバと入力側
スラブ導波路との間に帯域調整用導波路素子を設け、そ
の帯域調整用導波路素子の位置及び形状を最適化するこ
とによって、広帯域化等の波形調整を行うことができ
る。帯域調整用導波路及び出力側導波路にそれぞれ付加
導波路を配置することにより、これらの素子固定時に若
干の軸ずれが生じても、導波路の組み合わせにより、中
心波長設定を精度よく行うことができる。According to the present invention, a band adjusting waveguide element is provided between an input optical fiber and an input side slab waveguide, and the position and shape of the band adjusting waveguide element are optimized to provide a wide band. Waveform adjustment such as conversion can be performed. By arranging the additional waveguides in the band adjusting waveguide and the output side waveguide, even if a slight axis shift occurs when these elements are fixed, the center wavelength can be accurately set by the combination of the waveguides. it can.
【0017】[0017]
【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
【0018】図1(a)は本発明の光波長合分波器の一
実施の形態を示す平面図、図1(b)は図1(a)に示
した光波長合分波器の帯域調整用導波路素子の拡大平面
図、図1(c)は図1(a)の領域Aの拡大図、図1
(d)は図1(a)の領域Bの部分拡大図、図1(e)
は図1(a)の領域Cの部分拡大図、図1(f)は図1
(a)のD−D線断面図である。尚、図5に示した従来
例と同様の部材には共通の符号を用いた。FIG. 1A is a plan view showing an embodiment of the optical wavelength multiplexer / demultiplexer according to the present invention, and FIG. 1B is a band diagram of the optical wavelength multiplexer / demultiplexer shown in FIG. FIG. 1C is an enlarged plan view of a region A in FIG. 1A, and FIG.
FIG. 1D is a partially enlarged view of a region B in FIG.
1 is a partially enlarged view of a region C in FIG. 1A, and FIG.
It is DD sectional drawing of (a). Note that the same members as those in the conventional example shown in FIG.
【0019】本光波長合分波器は、基板(例えば石英基
板)1と、基板1上に形成され入力光ファイバ2からの
波長分割多重光信号を入力するための入力側スラブ導波
路10と、入力側スラブ導波路10に接続され所定の導
波路長差ΔLを有する複数本の導波路4aからなり、入
力光ファイバ2に入力された波長分割多重光信号を分波
するアレイ導波路4と、アレイ導波路4に接続された出
力側スラブ導波路5と、出力側スラブ導波路5に接続さ
れ分波された光信号をそれぞれ出力光ファイバ6に出力
する複数の出力側導波路7bと、入力光ファイバ2と入
力側スラブ導波路10との間に設けられた帯域調整用導
波路素子11と、帯域調整用導波路素子11及び出力側
導波路7bの近傍にそれぞれ配置された付加導波路7
a、13aとで構成されたものである。各導波路は温度
無依存型の導波路である。尚、15はバッファ層、16
は導波路コア、17はクラッド層である。This optical wavelength multiplexer / demultiplexer comprises a substrate (for example, a quartz substrate) 1, an input-side slab waveguide 10 formed on the substrate 1 for inputting a wavelength division multiplexed optical signal from an input optical fiber 2. An array waveguide 4 which is connected to the input side slab waveguide 10 and has a plurality of waveguides 4a having a predetermined waveguide length difference ΔL, and which demultiplexes the wavelength division multiplexed optical signal input to the input optical fiber 2; An output-side slab waveguide 5 connected to the arrayed waveguide 4, a plurality of output-side waveguides 7b connected to the output-side slab waveguide 5, and outputting the demultiplexed optical signals to the output optical fiber 6, respectively; A band-adjusting waveguide element 11 provided between the input optical fiber 2 and the input-side slab waveguide 10, and additional waveguides disposed near the band-adjusting waveguide element 11 and the output-side waveguide 7b, respectively. 7
a and 13a. Each waveguide is a temperature-independent waveguide. 15 is a buffer layer, 16
Is a waveguide core, and 17 is a cladding layer.
【0020】入力側スラブ導波路10は出力端面(図で
は右側端面)が円弧状に形成されているのに対し、入力
端面(図では左側端面)が基板1の端面と同一になるよ
うに直線状に形成されている。The input side slab waveguide 10 has an output end face (right end face in the figure) formed in an arc shape, whereas the input end face (left end face in the figure) has a straight line so as to be the same as the end face of the substrate 1. It is formed in a shape.
【0021】帯域調整用導波路素子11は、基板1と同
様の材質からなる基板12と、基板12上に形成され一
端(図では左端)が入力光ファイバ2に接続される付加
導波路13a及び入力側導波路13bと、付加導波路1
3a及び入力側導波路13bの他端(図では右端)に接
続されたスラブ導波路14とで構成されている。このス
ラブ導波路14は入力端面が円弧状に形成されているの
に対し、出力端面は基板12の端面と同一になるように
直線状に形成されている。帯域調整用導波路素子11
は、スラブ導波路14の出力端面に露出した導波路コア
が、基板1の入力側スラブ導波路10の入力端面に露出
した導波路コアと光学的に接続されるように形成されて
いる。The band adjusting waveguide element 11 includes a substrate 12 made of the same material as the substrate 1, an additional waveguide 13 a formed on the substrate 12, and having one end (the left end in the figure) connected to the input optical fiber 2. Input side waveguide 13b and additional waveguide 1
3a and a slab waveguide 14 connected to the other end (right end in the figure) of the input side waveguide 13b. The input end face of the slab waveguide 14 is formed in an arc shape, while the output end face is formed linearly so as to be the same as the end face of the substrate 12. Bandwidth adjusting waveguide element 11
Is formed so that the waveguide core exposed at the output end face of the slab waveguide 14 is optically connected to the waveguide core exposed at the input end face of the input side slab waveguide 10 of the substrate 1.
【0022】本光波長合分波器は、入力光ファイバ2と
入力側スラブ導波路10との間に帯域調整用導波路素子
11を設け、その帯域調整用導波路素子11の位置及び
形状を最適化することによって、広帯域化等の波形調整
を行うことができる。また、中心波長設定を精度良く行
うため、帯域調整用導波路素子11及び出力側導波路7
bの近傍にそれぞれ付加導波路を配置し、これらの素子
固定時に若干の軸ずれが生じても、導波路の組み合わせ
により、中心波長設定を精度よく行うことができる。In this optical wavelength multiplexer / demultiplexer, a band adjusting waveguide element 11 is provided between the input optical fiber 2 and the input side slab waveguide 10, and the position and shape of the band adjusting waveguide element 11 are changed. By optimizing, it is possible to perform waveform adjustment such as widening of the bandwidth. In addition, in order to accurately set the center wavelength, the band adjustment waveguide element 11 and the output side waveguide 7 are used.
The additional waveguides are arranged in the vicinity of b, and even if a slight axis shift occurs when these elements are fixed, the center wavelength can be set accurately by the combination of the waveguides.
【0023】[0023]
【実施例】次に具体的な数値を挙げ説明するが限定され
るものではない。Next, specific numerical values will be described, but the present invention is not limited to them.
【0024】この温度無依存型の光波長合分波器の設計
パラメータは、分波間隔を0.8nm(100GHz)
とし、チャネル数を16とした。帯域調整用導波路素子
11と入力側スラブ導波路10との境界部における導波
路ピッチΔX1を21μmとし、出力側スラブ導波路5
と出力側導波路7bとの境界部における導波路ピッチΔ
X2を約20μmとした。本設計パラメータでは、帯域
調整用導波路素子11を入力側スラブ導波路10に接続
する際、X方向に例えば1μmの位置ずれがあったとす
ると、周波数で約5GHz(波長0.04nm)の分波
波長ずれが生じてしまう。The design parameter of the temperature-independent type optical wavelength multiplexer / demultiplexer is such that the demultiplexing interval is 0.8 nm (100 GHz).
And the number of channels was set to 16. The waveguide pitch ΔX1 at the boundary between the band adjusting waveguide element 11 and the input side slab waveguide 10 is set to 21 μm, and the output side slab waveguide 5
Pitch Δ at the boundary between the waveguide and the output side waveguide 7b
X2 was about 20 μm. According to this design parameter, when connecting the band adjustment waveguide element 11 to the input side slab waveguide 10, if there is a displacement of, for example, 1 μm in the X direction, the demultiplexing at a frequency of about 5 GHz (wavelength 0.04 nm). A wavelength shift occurs.
【0025】しかし、入力側導波路13bの導波路ピッ
チΔX1は出力側導波路7bのピッチの1.05倍であ
るため、入力側導波路13bを1ポートずらすことによ
り、出力側導波路7bに分波される光の周波数は約10
5GHz(波長約0.84nm)シフトする。このた
め、複数の入力側導波路13bと出力側導波路7bとを
適切に組み合わせることにより、周波数で数GHz(波
長で数十pm)の分波波長の微調整を行うことができ
る。However, since the waveguide pitch ΔX1 of the input side waveguide 13b is 1.05 times the pitch of the output side waveguide 7b, shifting the input side waveguide 13b by one port allows the output side waveguide 7b to be shifted. The frequency of the split light is about 10
Shift by 5 GHz (wavelength: about 0.84 nm). Therefore, by appropriately combining the plurality of input-side waveguides 13b and the output-side waveguides 7b, fine adjustment of the demultiplexed wavelength of several GHz (several tens of pm in frequency) can be performed.
【0026】本実施例では、入力側導波路7bと付加導
波路7aとの数を13本とし、出力側の付加導波路7a
を両側に6本ずつ、計12本とした。すなわち、出力側
に引き伸ばされる付加導波路7a及び出力側導波路7b
の本数は28本である。In this embodiment, the number of the input side waveguides 7b and the number of the additional waveguides 7a is set to 13, and the number of the output side additional waveguides 7a
, Six on each side, for a total of twelve. That is, the additional waveguide 7a and the output waveguide 7b extended to the output side
Are 28.
【0027】帯域調整用導波路素子11は、広帯域化を
目的とし、Y分岐構造を導入した。帯域調整用導波路素
子11は、温度無依存アレイ導波路型の光波長合分波器
本体の入力側スラブ導波路10に接続されている。透過
波長を国際標準化規格に合致させるため、帯域調整用導
波路素子11の接続は、X方向に微動させて調節した。
入力光ファイバ2と帯域調整用導波路素子11との間、
帯域調整用導波路素子11と入力側スラブ導波路10と
の間及び出力側導波路7bと出力光ファイバ6との間の
接続端面は反射減衰量低減のため、8°に斜め研磨され
ている。The band adjusting waveguide element 11 has a Y-branch structure for the purpose of broadening the band. The band adjusting waveguide element 11 is connected to the input side slab waveguide 10 of the temperature independent array waveguide type optical wavelength multiplexer / demultiplexer main body. In order to match the transmission wavelength with the international standard, the connection of the band adjusting waveguide element 11 was adjusted by slightly moving in the X direction.
Between the input optical fiber 2 and the band adjusting waveguide element 11;
The connection end faces between the band adjustment waveguide element 11 and the input side slab waveguide 10 and between the output side waveguide 7b and the output optical fiber 6 are obliquely polished at 8 ° to reduce the return loss. .
【0028】帯域調整用導波路素子11及び光波長合分
波器本体は、基板1、12に石英を用い、導波路コア1
6の屈折率1.4692、クラッド層17の屈折率1.
4574である。フォトリソグラフィ技術及びエッチン
グ技術により導波路コア16を形成し、その後火炎堆積
技術によりクラッチを堆積させた。尚、基板1、12が
石英の場合にはバッファ層15は堆積しなくてもよい。The band adjustment waveguide element 11 and the optical wavelength multiplexer / demultiplexer main body use quartz for the substrates 1 and 12,
6, the refractive index of 1.4692, and the refractive index of the cladding layer 17 of 1.4692.
4574. The waveguide core 16 was formed by a photolithography technique and an etching technique, and then a clutch was deposited by a flame deposition technique. When the substrates 1 and 12 are made of quartz, the buffer layer 15 need not be deposited.
【0029】図2は図1(a)〜(f)に示した光波長
合分波器の分波波長特性を示す図であり、横軸が入力ポ
ート番号軸であり、縦軸が分波波長軸である。FIG. 2 is a diagram showing the demultiplexing wavelength characteristics of the optical wavelength multiplexer / demultiplexer shown in FIGS. 1 (a) to 1 (f). The horizontal axis is the input port number axis, and the vertical axis is the demultiplexing. It is a wavelength axis.
【0030】入出力ポートの組み合わせを選択すること
により、約0.04nmステップで透過波長が変化し、
従来困難であった中心波長の微調整が可能となった。By selecting a combination of input and output ports, the transmission wavelength changes in steps of about 0.04 nm,
Fine adjustment of the center wavelength, which was difficult in the past, has become possible.
【0031】図3は図1(a)〜(f)に示した光波長
合分波器の波長損失特性を示す図であり、横軸が波長軸
であり、縦軸が損失軸である。FIG. 3 is a diagram showing the wavelength loss characteristics of the optical wavelength multiplexer / demultiplexer shown in FIGS. 1 (a) to 1 (f). The horizontal axis is the wavelength axis, and the vertical axis is the loss axis.
【0032】帯域調整用導波路素子にY分岐構造を用い
たことにより、従来の光ファイバを直接スラブ導波路端
面へ接続する方式では行えなかった広帯域・平坦化され
た波形が得られた。得られた波形は従来のヒータ温度調
節方式で試作した帯域調整用導波路素子とアレイ導波路
型合分波素子とが一体となっている合分波器と同等であ
った。By using the Y-branch structure for the band adjusting waveguide element, a broadband and flattened waveform which cannot be obtained by the conventional method of directly connecting the optical fiber to the end face of the slab waveguide is obtained. The obtained waveform was equivalent to that of a multiplexer / demultiplexer in which a band-adjusting waveguide element and an arrayed waveguide type multiplexer / demultiplexer, which were prototyped by a conventional heater temperature control method, were integrated.
【0033】なお、本実施の形態では分波間隔100G
Hz、チャネル数16の光波長合分波器について説明し
たが、これに限定されるものではなく、分波間隔、チャ
ネル数等、任意に設定することができる。また、帯域調
整用導波路素子としてのY分岐構造の他、パラボリック
ホーン構造(図4(a))、MMI構造(図4
(b))、テーパ構造(図4(c))等の構造を用いて
もよい。In this embodiment, the demultiplexing interval is 100 G
Although an optical wavelength multiplexer / demultiplexer having 16 Hz and 16 channels has been described, the present invention is not limited to this, and the demultiplexing interval, the number of channels, and the like can be arbitrarily set. In addition to the Y-branch structure as the band adjusting waveguide element, a parabolic horn structure (FIG. 4A) and an MMI structure (FIG.
(B)) and a structure such as a tapered structure (FIG. 4C) may be used.
【0034】尚、図4(a)〜図4(c)は図1(a)
〜図1(f)に示した帯域調整用導波路素子の変形例で
ある。4 (a) to 4 (c) correspond to FIG. 1 (a).
FIGS. 2A to 2F are modifications of the band adjusting waveguide element shown in FIG.
【0035】以上において本発明によれば、入力光ファ
イバとアレイ導波路型光波長合分波素子との間に帯域調
整用導波路素子を設け、この帯域調整用導波路素子を適
切な構造にすることによって、広帯域化等の調整が可能
となる。また、中心波長設定を精度よく行うため、帯域
調整用導波路素子及びアレイ導波路の光波長合分波器に
それぞれ付加導波路を配置し、これらの素子固定時に若
干の軸ずれが生じても導波路素子の組合わせにより、中
心波長設定を精度よく行うことができる。As described above, according to the present invention, a band adjusting waveguide element is provided between an input optical fiber and an arrayed waveguide type optical wavelength multiplexing / demultiplexing element, and the band adjusting waveguide element has an appropriate structure. By doing so, it is possible to make adjustments such as broadening the band. In addition, in order to accurately set the center wavelength, an additional waveguide is disposed in each of the optical wavelength multiplexer / demultiplexer of the band adjusting waveguide element and the array waveguide, and even if a slight axis shift occurs when these elements are fixed. By combining the waveguide elements, the center wavelength can be accurately set.
【0036】[0036]
【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。In summary, according to the present invention, the following excellent effects are exhibited.
【0037】広い帯域で平坦化が図れ、中心波長の設定
を精度善く行うことができ、低クロストークの光波長合
分波器の提供を実現できる。Flattening can be achieved in a wide band, the center wavelength can be set with high accuracy, and an optical wavelength multiplexer / demultiplexer with low crosstalk can be provided.
【図1】(a)は本発明の光波長合分波器の一実施の形
態を示す平面図、(b)は(a)に示した光波長合分波
器の帯域調整用導波路素子の拡大平面図、(c)は
(a)の領域Aの拡大図、(d)は(a)の領域Bの部
分拡大図、(e)は(a)の領域Cの部分拡大図、
(f)は(a)のD−D線断面図である。FIG. 1A is a plan view showing an embodiment of an optical wavelength multiplexer / demultiplexer according to the present invention, and FIG. 1B is a waveguide element for band adjustment of the optical wavelength multiplexer / demultiplexer shown in FIG. (C) is an enlarged view of the area A in (a), (d) is a partially enlarged view of the area B in (a), (e) is a partially enlarged view of the area C in (a),
(F) is a sectional view taken along line DD of (a).
【図2】図1(a)〜(f)に示した光波長合分波器の
分波波長特性を示す図である。FIG. 2 is a diagram illustrating demultiplexing wavelength characteristics of the optical wavelength multiplexer / demultiplexer illustrated in FIGS. 1 (a) to 1 (f).
【図3】図1(a)〜(f)に示した光波長合分波器の
波長損失特性を示す図である。FIG. 3 is a diagram showing wavelength loss characteristics of the optical wavelength multiplexer / demultiplexer shown in FIGS. 1 (a) to (f).
【図4】(a)〜(c)は図1(a)〜図1(f)に示
した帯域調整用導波路素子の変形例である。4 (a) to 4 (c) are modifications of the band adjusting waveguide element shown in FIGS. 1 (a) to 1 (f).
【図5】波長合分波器の従来例を示す平面図である。FIG. 5 is a plan view showing a conventional example of a wavelength multiplexer / demultiplexer.
1 基板 4 アレイ導波路 5 出力側スラブ導波路 7 出力側導波路 7a、13a 付加導波路 10 入力側スラブ導波路 13 入力側導波路 14 スラブ導波路 DESCRIPTION OF SYMBOLS 1 Substrate 4 Array waveguide 5 Output side slab waveguide 7 Output side waveguide 7a, 13a Additional waveguide 10 Input side slab waveguide 13 Input side waveguide 14 Slab waveguide
───────────────────────────────────────────────────── フロントページの続き (72)発明者 上塚 尚登 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 Fターム(参考) 2H047 KA03 KA12 KA15 KB10 LA18 MA05 TA00 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Naoto Uezuka 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Prefecture F-term in Opto-Systems Research Laboratory, Hitachi Cable, Ltd. 2H047 KA03 KA12 KA15 KB10 LA18 MA05 TA00
Claims (3)
イバからの波長分割多重光信号を入力する入力側スラブ
導波路と、該入力側スラブ導波路に接続され所定の導波
路長差ΔLを有する複数本の導波路からなり、上記入力
光ファイバに入力された波長分割多重光信号を分波する
アレイ導波路と、該アレイ導波路に接続された出力側ス
ラブ導波路と、該出力側スラブ導波路に接続され分波さ
れた光信号をそれぞれ出力光ファイバに出力する複数の
出力側導波路とを備えた光波長合分波器において、上記
入力光ファイバと上記入力側スラブ導波路との間に帯域
調整用導波路素子を設けたことを特徴とする光波長合分
波器。1. A substrate, an input slab waveguide formed on the substrate for inputting a wavelength division multiplexed optical signal from an input optical fiber, and a predetermined waveguide length difference ΔL connected to the input slab waveguide. An arrayed waveguide composed of a plurality of waveguides having the following configuration and splitting the wavelength division multiplexed optical signal input to the input optical fiber; an output side slab waveguide connected to the arrayed waveguide; In an optical wavelength multiplexer / demultiplexer including a plurality of output-side waveguides each connected to a slab waveguide and outputting a demultiplexed optical signal to an output optical fiber, the input optical fiber, the input-side slab waveguide, An optical wavelength multiplexing / demultiplexing device characterized in that a band adjusting waveguide element is provided between them.
側導波路の近傍にそれぞれ複数の付加導波路が配置され
ている請求項1に記載の波長合分波器。2. The wavelength multiplexer / demultiplexer according to claim 1, wherein a plurality of additional waveguides are arranged in the vicinity of the band adjusting waveguide element and the output side waveguide, respectively.
る請求項1又は2に記載の光波長合分波器。3. The optical wavelength multiplexer / demultiplexer according to claim 1, wherein each of the waveguides is a temperature-independent waveguide.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32124699A JP2001141944A (en) | 1999-11-11 | 1999-11-11 | Optical wavelength multiplexer / demultiplexer |
| US09/634,581 US6549696B1 (en) | 1999-08-10 | 2000-08-08 | Optical wavelength multiplexer/demultiplexer |
| CA002315458A CA2315458C (en) | 1999-08-10 | 2000-08-09 | Optical wavelength multiplexer/demultiplexer |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32124699A JP2001141944A (en) | 1999-11-11 | 1999-11-11 | Optical wavelength multiplexer / demultiplexer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001141944A true JP2001141944A (en) | 2001-05-25 |
Family
ID=18130450
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP32124699A Pending JP2001141944A (en) | 1999-08-10 | 1999-11-11 | Optical wavelength multiplexer / demultiplexer |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001141944A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001305361A (en) * | 2000-04-27 | 2001-10-31 | Furukawa Electric Co Ltd:The | Array waveguide type diffraction grating and manufacturing method thereof |
| JP2001324629A (en) * | 2000-03-09 | 2001-11-22 | Furukawa Electric Co Ltd:The | Arrayed waveguide grating |
| WO2001096918A1 (en) * | 2000-06-14 | 2001-12-20 | The Furukawa Electric Co., Ltd. | Array waveguide diffraction grating |
| KR100446524B1 (en) * | 2002-11-25 | 2004-09-04 | 삼성전자주식회사 | Wavelength division multiplexer / demultiplexer |
| US6810167B2 (en) | 2001-10-29 | 2004-10-26 | Fujitsu Limited | Wavelength division demultiplexing apparatus |
| KR100464335B1 (en) * | 2002-05-25 | 2005-01-03 | 삼성전자주식회사 | Variable alignment type optical fiber block and arrayed waveguides grating module using the same |
| JP2006292917A (en) * | 2005-04-08 | 2006-10-26 | Furukawa Electric Co Ltd:The | Optical waveguide circuit device |
-
1999
- 1999-11-11 JP JP32124699A patent/JP2001141944A/en active Pending
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001324629A (en) * | 2000-03-09 | 2001-11-22 | Furukawa Electric Co Ltd:The | Arrayed waveguide grating |
| JP2001305361A (en) * | 2000-04-27 | 2001-10-31 | Furukawa Electric Co Ltd:The | Array waveguide type diffraction grating and manufacturing method thereof |
| WO2001096918A1 (en) * | 2000-06-14 | 2001-12-20 | The Furukawa Electric Co., Ltd. | Array waveguide diffraction grating |
| US6810167B2 (en) | 2001-10-29 | 2004-10-26 | Fujitsu Limited | Wavelength division demultiplexing apparatus |
| US7020358B2 (en) | 2001-10-29 | 2006-03-28 | Fujitsu Limited | Wavelength division demultiplexing apparatus |
| CN100372272C (en) * | 2001-10-29 | 2008-02-27 | 富士通株式会社 | WDM equipment |
| KR100464335B1 (en) * | 2002-05-25 | 2005-01-03 | 삼성전자주식회사 | Variable alignment type optical fiber block and arrayed waveguides grating module using the same |
| KR100446524B1 (en) * | 2002-11-25 | 2004-09-04 | 삼성전자주식회사 | Wavelength division multiplexer / demultiplexer |
| JP2006292917A (en) * | 2005-04-08 | 2006-10-26 | Furukawa Electric Co Ltd:The | Optical waveguide circuit device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Miya | Silica-based planar lightwave circuits: passive and thermally active devices | |
| EP0922973B1 (en) | Temperature compensated optical multiplexer/demultiplexer | |
| EP1226461B1 (en) | Phasar with flattened pass-band | |
| US5841919A (en) | Optical wavelength multiplexer/demultiplexer | |
| US5940555A (en) | Optical multiplexer/demultiplexer | |
| JP4385224B2 (en) | Optical waveguide device and optical waveguide module | |
| US20190041578A1 (en) | Echelle grating multiplexer or demultiplexer | |
| US6195481B1 (en) | Array waveguide diffraction grating optical multiplexer/demultiplexer | |
| US6684009B2 (en) | Arrayed waveguide grating and multiplexer/demultiplexer system and multiplexer/demultiplexer device using thereof | |
| Suzuki et al. | Integrated multichannel optical wavelength selective switches incorporating an arrayed-waveguide grating multiplexer and thermooptic switches | |
| JP2000171661A (en) | Arrayed waveguide grating type optical multiplexer / demultiplexer | |
| JP2001141944A (en) | Optical wavelength multiplexer / demultiplexer | |
| JP3246710B2 (en) | Optical device manufacturing method | |
| Clemens et al. | Wavelength-adaptable optical phased array in SiO 2-Si | |
| JP3472247B2 (en) | Waveguide type optical multiplexer / demultiplexer | |
| JP2001051136A (en) | Optical wavelength multiplexer / demultiplexer | |
| JP3029028B2 (en) | Optical wavelength multiplexer / demultiplexer | |
| JP2001051135A (en) | Optical wavelength multiplexer / demultiplexer | |
| JP3309369B2 (en) | Optical wavelength multiplexer / demultiplexer | |
| JP2001100059A (en) | Optical wavelength multiplexer / demultiplexer | |
| JPH05157920A (en) | Waveguide diffraction grating | |
| JP2798124B2 (en) | Optical waveguide device and method of manufacturing the same | |
| KR20210023511A (en) | Wavelength demultiplexer with arrayed waveguide grating and methods of manufacturing | |
| JP2003075662A (en) | Optical wavelength multiplexer / demultiplexer | |
| JP3026302B2 (en) | Optical multiplexer / demultiplexer |