JP2001145280A - Permanent magnet synchronous motor - Google Patents
Permanent magnet synchronous motorInfo
- Publication number
- JP2001145280A JP2001145280A JP32106199A JP32106199A JP2001145280A JP 2001145280 A JP2001145280 A JP 2001145280A JP 32106199 A JP32106199 A JP 32106199A JP 32106199 A JP32106199 A JP 32106199A JP 2001145280 A JP2001145280 A JP 2001145280A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- stator
- rotor
- magnetic
- synchronous motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
(57)【要約】
【課題】 ラジアル・エア・ギャップ型の永久磁石同期
モータの回転子ヨークに設ける永久磁石群の数を2組或
いは3組とした場合であっても、固定子と永久磁石間の
磁束の乱れを少なくして回転中のトルク変動を低く押さ
える。
【解決手段】 回転子の軸方向に積層した複数の磁性体
板を有する固定子と、回転子は、その軸方向に設けた回
転子ヨークの周囲で且つ前記軸方向に間隔を置いて配置
した少なくとも2組の永久磁石群を有し、この2組の永
久磁石群の夫々は回転軸の径方向に磁化された複数の永
久磁石を有し、前記2組の永久磁石群は回転子ヨーク上
で互いに所定角度ずらして設けられたラジアル・エア・
ギャップ型の永久磁石同期モータにおいて、前記複数の
磁性体板の内、前記2組の永久磁石群間の間隙に対応す
る磁性体板を非磁性体板で置換する。
(57) [Problem] To provide a stator and a permanent magnet even when the number of permanent magnet groups provided on a rotor yoke of a radial air gap type permanent magnet synchronous motor is two or three. The fluctuation of the magnetic flux during rotation is reduced to suppress the torque fluctuation during rotation. SOLUTION: A stator having a plurality of magnetic plates laminated in the axial direction of the rotor, and the rotor are arranged around a rotor yoke provided in the axial direction and at intervals in the axial direction. It has at least two permanent magnet groups, each of the two permanent magnet groups has a plurality of permanent magnets magnetized in the radial direction of the rotating shaft, and the two permanent magnet groups are located on the rotor yoke. Radial air
In the gap type permanent magnet synchronous motor, a magnetic plate corresponding to a gap between the two sets of permanent magnets among the plurality of magnetic plates is replaced with a non-magnetic plate.
Description
【0001】[0001]
【発明の属する分野】本発明は、永久磁石を用いた同期
モータに関し、特に、モータのトルク変動(トルクの脈
動)を少なくした永久磁石同期モータに関する。[0001] 1. Field of the Invention [0002] The present invention relates to a synchronous motor using a permanent magnet, and more particularly to a permanent magnet synchronous motor in which torque fluctuation (torque pulsation) of the motor is reduced.
【0002】[0002]
【従来の技術】永久磁石を用いた同期モータは、効率が
高く制御性に優れているため、サーボモータを始めとす
る制御用モータとして広く使用されている。2. Description of the Related Art Synchronous motors using permanent magnets are widely used as control motors such as servomotors because of their high efficiency and excellent controllability.
【0003】図4は、従来のラジアル・エア・ギャップ
型の永久磁石同期モータを“回転子軸に対して直角方向
に切断した”断面図である。回転子軸10の軸方向(図
面に垂直の方向)で且つ軸10の周囲には、回転子ヨー
ク12が設けられ、この回転子ヨーク12の周囲には、
複数の(図示の場合には6個)の永久磁石14が配置さ
れている。FIG. 4 is a sectional view of a conventional radial air gap type permanent magnet synchronous motor cut in a direction perpendicular to a rotor axis. A rotor yoke 12 is provided in an axial direction of the rotor shaft 10 (a direction perpendicular to the drawing) and around the shaft 10, and around the rotor yoke 12,
A plurality (six in the illustrated case) of permanent magnets 14 are arranged.
【0004】複数の永久磁石14は交互に逆方向に磁化
されている(磁化の方向を矢印で示す)。複数の永久磁
石14の夫々は、その周方向(回転子軸10の周方向)
の端部が中央部に比べて薄くなっている(理由は後述す
る)。この断面形状のために永久磁石14の夫々はC型
磁石とも称される。回転子16は、上述の回転子軸1
0、回転子ヨーク12、及び複数の永久磁石14から構
成される。The plurality of permanent magnets 14 are alternately magnetized in opposite directions (the direction of magnetization is indicated by an arrow). Each of the plurality of permanent magnets 14 has a circumferential direction (a circumferential direction of the rotor shaft 10).
Is thinner than the center (the reason will be described later). Because of this cross-sectional shape, each of the permanent magnets 14 is also called a C-shaped magnet. The rotor 16 is provided with the rotor shaft 1 described above.
0, a rotor yoke 12, and a plurality of permanent magnets 14.
【0005】回転子16の周囲には、径方向(ラジアル
方向)に、空隙(エア・ギャップ:例えば約0.7m
m)を介して固定子18が設けられている。このよう
に、径方向に空隙を設けているため、図3に示す永久磁
石同期モータをラジアル・エア・ギャップ型と称する。Around the rotor 16, a gap (air gap: about 0.7 m) is formed in a radial direction (radial direction).
m), a stator 18 is provided. As described above, since the air gap is provided in the radial direction, the permanent magnet synchronous motor shown in FIG. 3 is referred to as a radial air gap type.
【0006】固定子18は、固定子ヨーク20と、この
固定子ヨーク20から内部に伸びる複数の歯(ティー
ス)22を有する。更に、歯と歯の間のスロット24に
はコイル(分布巻きされた3相Y結線)が設けられてい
る。図示したU,V,Wは、コイルが3相巻きであるこ
とを示している。尚、図4の例では、歯22の数は18
であり、各コイルの巻数(1スロット当たりの巻数)は
例えば約30ターンである。The stator 18 has a stator yoke 20 and a plurality of teeth (teeth) 22 extending from the stator yoke 20 to the inside. Further, a coil (a three-phase Y-connection distributed and wound) is provided in the slot 24 between the teeth. U, V, and W shown in the figure indicate that the coil has a three-phase winding. In the example of FIG. 4, the number of teeth 22 is 18
The number of turns of each coil (the number of turns per slot) is, for example, about 30 turns.
【0007】図5(a)は固定子18を回転軸10の軸
方向からみた平面図であり、図5(b)は図5(a)固
定子18を線A−Aに沿って切断した断面図である。図
5(b)に示すように、固定子18は複数の磁性体の薄
板26(例えば、約0.5mm程度の電磁鋼板、ケイ素
鋼板等)を積層したものである。FIG. 5A is a plan view of the stator 18 viewed from the axial direction of the rotating shaft 10, and FIG. 5B is a sectional view of the stator 18 taken along line AA in FIG. It is sectional drawing. As shown in FIG. 5B, the stator 18 is formed by stacking a plurality of magnetic thin plates 26 (for example, an electromagnetic steel plate, a silicon steel plate, or the like having a thickness of about 0.5 mm).
【0008】図4及び図5に示す永久磁石式の同期モー
タを、高精度のトルク制御が要求されるサーボモータ等
として使用する場合には、モータ回転中のトルク変動
(トルクの脈動、コギングトルク)を出来るだけ小さく
することが重要である。When the permanent magnet type synchronous motor shown in FIGS. 4 and 5 is used as a servomotor or the like that requires high-precision torque control, torque fluctuations during motor rotation (torque pulsation, cogging torque) It is important to make) as small as possible.
【0009】永久磁石14と固定子18の歯22の間の
空隙(エア・ギャップ)での磁束密度の変化(磁束の乱
れ)は、モータのトルク変動として現れる。The change in magnetic flux density (flux disturbance) in the air gap (air gap) between the permanent magnet 14 and the teeth 22 of the stator 18 appears as a motor torque fluctuation.
【0010】回転中のトルク変動を低減する一方法とし
て、上述のように、永久磁石14の夫々の端部を中央部
に比べて厚みを小さくして空隙での磁束密度の変化を少
なくする方法が従来から提案されている。As one method for reducing the torque fluctuation during rotation, as described above, the end portions of the permanent magnet 14 are made thinner than the center portion to reduce the change in the magnetic flux density in the air gap. Has been conventionally proposed.
【0011】トルク変動を更に低減する方法として、図
6に示すように、2組の永久磁石群30及び32を、回
転軸10の軸方向で且つ回転子ヨーク12の周囲に間隔
を置いて配置し、更に、両永久磁石群30及び32の周
方向の位置を互いにずらして設けることが提案されてい
る。2組の永久磁石群30及び32自体は同一の構成で
あるが、永久磁石群30及び32を相互に周方向にずら
して配置することにより、回転子16が回転した際、回
転子16と固定子18との間の空隙での磁束密度の変化
を小さくすることができる。As a method of further reducing the torque fluctuation, as shown in FIG. 6, two permanent magnet groups 30 and 32 are arranged in the axial direction of the rotating shaft 10 and at intervals around the rotor yoke 12. In addition, it has been proposed that the positions of the permanent magnet groups 30 and 32 in the circumferential direction are shifted from each other. Although the two permanent magnet groups 30 and 32 themselves have the same configuration, the permanent magnet groups 30 and 32 are fixed to the rotor 16 when the rotor 16 rotates by disposing them in the circumferential direction. The change in the magnetic flux density in the air gap with the element 18 can be reduced.
【0012】即ち、各組の永久磁石群を構成する複数の
永久磁石の夫々の端部での磁力線の乱れを、2組の永久
磁石群を回転子ヨーク12の周方向に相互にずらすこと
によって解決しようとするものである。That is, the disturbance of the lines of magnetic force at the respective ends of the plurality of permanent magnets constituting each set of permanent magnets is reduced by shifting the two sets of permanent magnets relative to each other in the circumferential direction of the rotor yoke 12. That is what we are trying to solve.
【0013】2組の永久磁石群30及び32の回転子軸
方向の間隔34は、モータ自体の大きさにより異なる
が、約0.5mm〜5.0mm程度である。尚、2組の
永久磁石群30及び32の周方向での“ずれ”の角度θ
をステップスキュー角という。図6では2組の永久磁石
群30及び32を示したが、回転子軸の長さが充分であ
れば3組とすることもできる。The distance 34 between the two sets of permanent magnets 30 and 32 in the axial direction of the rotor varies depending on the size of the motor itself, but is about 0.5 mm to 5.0 mm. The angle θ of the “shift” in the circumferential direction between the two permanent magnet groups 30 and 32
Is called a step skew angle. Although two sets of permanent magnet groups 30 and 32 are shown in FIG. 6, three sets can be used if the rotor shaft is long enough.
【0014】しかしながら、上述のように、永久磁石群
の数が少ない場合(2組或いは3組)には、夫々の永久
磁石群を相互に周方向にずらしたとしても、ステップス
キュー角が大きいために夫々の永久磁石群を構成する磁
石端部に起因する磁束の乱れは依然として無視できな
い。However, as described above, when the number of the permanent magnet groups is small (two or three), the step skew angle is large even if the respective permanent magnet groups are shifted from each other in the circumferential direction. However, the disturbance of the magnetic flux caused by the magnet ends constituting each permanent magnet group cannot be ignored.
【0015】[0015]
【発明が解決しようとする課題】この問題を解決するた
めに、永久磁石群を4組以上設けて隣接する永久磁石群
のずれの角(ステップスキュー角)を小さくし、夫々の
永久磁石群を構成する磁石の端部に起因する磁束の乱れ
を少なくすることが考えられる。しかし、使用する磁石
数が増加するために製作費が高くなるという問題が生ず
る。更に、小型のモータの場合には回転子ヨークの長さ
が限定されるので、永久磁石群を構成する磁石の微細加
工が必要となり製作費が高騰するという問題もある。In order to solve this problem, four or more permanent magnet groups are provided to reduce the angle of misalignment (step skew angle) between adjacent permanent magnet groups, and to reduce the number of permanent magnet groups. It is conceivable to reduce the disturbance of the magnetic flux caused by the ends of the constituent magnets. However, there is a problem that the manufacturing cost increases because the number of magnets used increases. Further, in the case of a small motor, the length of the rotor yoke is limited, so that fine processing of the magnets constituting the permanent magnet group is required, and there is a problem that the production cost rises.
【0016】[0016]
【発明の目的】したがって、本発明は、回転子ヨークに
設ける永久磁石群の数を2組或いは3組とした場合であ
っても、固定子と永久磁石間の磁束の乱れを少なくして
回転中のトルク変動を低く抑えることを目的とする。SUMMARY OF THE INVENTION Therefore, the present invention reduces the disturbance of the magnetic flux between the stator and the permanent magnet even when the number of the permanent magnet groups provided on the rotor yoke is two or three. The purpose of the present invention is to suppress the fluctuation of torque during operation.
【0017】[0017]
【課題を解決するための手段】本発明の一実施の形態に
係る永久磁石同期モータは、固定子と該固定子の内側に
空間を介して設けられた回転子とを有し;前記固定子
は、前記回転子の軸方向に積層した複数の磁性体板を有
し;前記回転子は、その軸方向に設けた回転子ヨークの
周囲で且つ前記軸方向に間隔を置いて配置した少なくと
も2組の永久磁石群を有し、該2組の永久磁石群の夫々
は前記軸の径方向に磁化された複数の永久磁石を有し、
前記2組の永久磁石群は前記ヨーク上で互いに所定角度
ずらして設けられたラジアル・エア・ギャップ型の永久
磁石同期モータであって;前記複数の磁性体板の内、前
記第1及び第2の永久磁石群間の間隙に対応する磁性体
板を非磁性体板で置換したことを特徴としている。According to one embodiment of the present invention, there is provided a permanent magnet synchronous motor having a stator and a rotor provided through a space inside the stator; Has a plurality of magnetic plates laminated in the axial direction of the rotor; the rotor has at least two magnetic plates arranged around a rotor yoke provided in the axial direction and spaced in the axial direction. A set of permanent magnets, each of the two sets of permanent magnets having a plurality of permanent magnets magnetized radially of the axis;
The two sets of permanent magnets are radial air gap type permanent magnet synchronous motors provided at a predetermined angle from each other on the yoke; and the first and second magnetic plates among the plurality of magnetic plates. The magnetic plate corresponding to the gap between the permanent magnet groups is replaced with a non-magnetic plate.
【0018】[0018]
【発明の実施の形態】図1を参照して本発明に係る第1
の実施の形態を説明する。尚、必要に応じて従来例の説
明に使用した図4〜図6に言及する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG.
An embodiment will be described. 4 to 6 used in the description of the conventional example will be referred to as needed.
【0019】上述したように、図4〜図6に示した従来
の永久磁石モータは、回転子軸10の軸方向に、2組の
永久磁石群30及び32を間隔Dを置いて設け、更に、
軸10の周方向にステップスキュー角θだけずらして配
置されている。しかし、2組の永久磁石群ではステップ
スキュー角θが大きいため、夫々の永久磁石群30及び
32の夫々の磁石14の端部での磁束密度の変化を充分
に補償することが困難であった。As described above, in the conventional permanent magnet motor shown in FIGS. 4 to 6, two sets of permanent magnets 30 and 32 are provided at intervals D in the axial direction of the rotor shaft 10. ,
They are arranged so as to be shifted by a step skew angle θ in the circumferential direction of the shaft 10. However, since the step skew angle θ is large in the two permanent magnet groups, it is difficult to sufficiently compensate for the change in the magnetic flux density at the end of each magnet 14 in each of the permanent magnet groups 30 and 32. .
【0020】このため、本発明に係る第1の実施の形態
は、図1に示したように、従来の固定子18の積層した
磁性体の薄板の内(図5参照)、永久磁石群30及び3
2の間の間隙(図6参照)に相当する部分の磁性体薄板
を、非磁性体の板40で置換したものである。その他の
モータの構成は従来と同様である。For this reason, the first embodiment according to the present invention, as shown in FIG. 1, uses a permanent magnet group 30 (see FIG. 5) of a laminated magnetic thin plate of a conventional stator 18. And 3
The magnetic thin plate corresponding to the gap between the two (see FIG. 6) is replaced with a non-magnetic plate 40. Other configurations of the motor are the same as those of the related art.
【0021】非磁性体の板40は、例えば、アルミニュ
ーム、銅、非磁性ステンレス、紙、ベークライト、木材
等を用いて製作する。非磁性体の板40の厚みは、図6
の永久磁石群30及び間隙34の長さDと同一或いはD
より少し大きな値とする。The non-magnetic plate 40 is manufactured using, for example, aluminum, copper, non-magnetic stainless steel, paper, bakelite, wood or the like. The thickness of the nonmagnetic plate 40 is shown in FIG.
Or the same as the length D of the permanent magnet group 30 and the gap 34
A slightly larger value is used.
【0022】このように、永久磁石群30及び32の間
の間隙34(図6参照)に相当する部分の磁性体板を非
磁性体の板40で置換することにより、永久磁石群30
(図6参照)から出る磁束の殆どは非磁性体板40の上
部(図面上)に位置する複数の磁性体板に入り、永久磁
石群30に入る磁束の殆どは磁性体板40の上部(図面
上)に位置する複数の磁性体板から出る磁束となる。同
様に、永久磁石群32から出る磁束の磁束の殆どは非磁
性体板40の下部(図面上)に位置する複数の磁性体板
に入り、永久磁石群32に入る磁束の磁束の殆どは非磁
性体板40の下部(図面上)に位置する複数の磁性体板
から出る磁束となる。固定子と回転子の間の空隙(ギャ
ップ)が非常に狭いために上述のような現象を得ること
ができる。したがって、永久磁石30及び32の夫々を
構成する永久磁石の端部に起因する磁束の乱れを防止す
ることができる。As described above, by replacing the magnetic plate at the portion corresponding to the gap 34 between the permanent magnet groups 30 and 32 (see FIG. 6) with the non-magnetic plate 40,
Most of the magnetic flux emitted from the magnetic plate 40 (see FIG. 6) enters a plurality of magnetic plates located above the non-magnetic plate 40 (on the drawing), and most of the magnetic flux entering the permanent magnet group 30 is located above the magnetic plate 40 (see FIG. (On the drawing). Similarly, most of the magnetic flux of the magnetic flux emitted from the permanent magnet group 32 enters a plurality of magnetic plates located below the nonmagnetic plate 40 (on the drawing), and most of the magnetic flux of the magnetic flux entering the permanent magnet group 32 is non-magnetic. The magnetic flux is emitted from a plurality of magnetic plates located below the magnetic plate 40 (on the drawing). Since the gap between the stator and the rotor is very narrow, the above phenomenon can be obtained. Therefore, it is possible to prevent the magnetic flux from being disturbed due to the end portions of the permanent magnets constituting each of the permanent magnets 30 and 32.
【0023】尚、従来例では永久磁石群を3組とした場
合にもトルク変動が無視できなかったが、本発明は永久
磁石群を3組とした場合には上述の“磁束の乱れ”を更
に効果的に抑制できることが判る。In the conventional example, the torque fluctuation cannot be ignored even when three permanent magnet groups are used. However, the present invention eliminates the above-mentioned "flux disturbance" when three permanent magnet groups are used. It turns out that it can control more effectively.
【0024】本発明の第2の実施の態様は、図2に示す
ように、固定子18に設けた非磁性体板40の回転子側
の一部を取り去って空隙44を設け、第1の実施の態様
と同様の効果を狙ったものである。In the second embodiment of the present invention, as shown in FIG. 2, a portion of the nonmagnetic plate 40 provided on the stator 18 on the rotor side is removed to form a gap 44, and It aims at the same effect as the embodiment.
【0025】本発明の第3の実施の態様は、図3に示す
ように、固定子18に設けた非磁性体板40の回転子側
の一部を取り去って空隙44を設けた点は第2の実施の
形態と同一である。しかし、固定子18の歯22の先端
部を、第1或いは第2の実施の形態と異なり、空隙44
に対応するようにしている。この理由は、永久磁石群3
0から出る磁束が非磁性体板40の上部(図面上)に位
置する複数の磁性体板に入り易いようにし、永久磁石群
30に入る磁束を非磁性体板40の上部(図面上)に位
置する複数の磁性体板から出る磁束とするためである。
同様に、永久磁石群32から出る磁束が非磁性体板40
の下部(図面上)に位置する複数の磁性体板に入り易い
ようにし、永久磁石群32に入る磁束を非磁性体板40
の下部(図面上)に位置する複数の磁性体板から出る磁
束とするためである。In the third embodiment of the present invention, as shown in FIG. 3, a portion of the nonmagnetic plate 40 provided on the stator 18 on the rotor side is removed to form a gap 44. This is the same as the second embodiment. However, unlike the first or second embodiment, the tip of the teeth 22 of the stator 18 is
To respond to. The reason is that the permanent magnet group 3
The magnetic flux exiting from zero is facilitated to enter a plurality of magnetic plates located above the nonmagnetic plate 40 (on the drawing), and the magnetic flux entering the permanent magnet group 30 is placed above the nonmagnetic plate 40 (on the drawing). This is because the magnetic flux is emitted from the plurality of magnetic plates located.
Similarly, the magnetic flux emitted from the permanent magnet group 32 is
The magnetic flux entering the permanent magnet group 32 is made easy to enter a plurality of magnetic plates located below (on the drawing)
This is because the magnetic flux is emitted from a plurality of magnetic plates located below (on the drawing).
【0026】以下に、本願の発明者が行なった本発明と
従来例との実験結果について述べる。尚、実験はNd−
Fe−B系の永久磁石で行なったが、本発明はこのよう
な永久磁石に限定されるものではない。The results of experiments conducted by the inventor of the present invention on the present invention and the conventional example will be described below. The experiment was performed using Nd-
Although the test was performed with an Fe-B-based permanent magnet, the present invention is not limited to such a permanent magnet.
【0027】永久磁石は次の工程で製作した。純度9
9.7重量%のNd,Fe,Co,M(MはAl,S
i,Cu)と、純度99.5重量%のBを使用し、真空
溶解炉で溶解鋳造してインゴットを製作した。次に、こ
のインゴットをジョウクラッシャーで粗粉砕し、更に窒
素気流中のジェットミル粉砕により平均粒径3.5μm
の微粉末を得た。この粉末を垂直磁場プレスにより12
kGの磁場中において1.0t/cm2の成形圧で成型
した。この成型体をArガス中で1時間1090℃で焼
結し、引き続き580℃で1時間の熱処理を行なった。
その後、砥石による研削加工を行なって永久磁石を得
た。永久磁石の特性は、Br(残留磁束密度)が13.
0kG、iHcが15kOe、bHcが12.4kOe
であり、(BH)maxは40MGOeであった。The permanent magnet was manufactured in the following steps. Purity 9
9.7% by weight of Nd, Fe, Co, M (M is Al, S
i, Cu) and B having a purity of 99.5% by weight were melt-cast in a vacuum melting furnace to produce an ingot. Next, the ingot was coarsely pulverized with a jaw crusher, and further jet milled in a nitrogen stream to obtain an average particle size of 3.5 μm.
Was obtained. This powder was subjected to 12
Molding was performed at a molding pressure of 1.0 t / cm 2 in a magnetic field of kG. This molded body was sintered at 1090 ° C. for 1 hour in Ar gas, and subsequently heat-treated at 580 ° C. for 1 hour.
Thereafter, grinding was performed with a grindstone to obtain a permanent magnet. As a characteristic of the permanent magnet, Br (residual magnetic flux density) is 13.
0 kG, iHc is 15 kOe, bHc is 12.4 kOe
And (BH) max was 40 MGOe.
【0028】実験は、上述の永久磁石を用いた従来の同
期モータ(図5及び図6)と、上述の永久磁石を用いた
本発明の第1の実施の形態に係る同期モータ(図5及び
図6に相当し非磁性体の板40を用いたもの)とを用
い、双方のコギングトルクと3相巻線(図4参照)の線
間に発生した誘起電圧を測定した。今回使用した従来例
のモータの定格トルクは0.63Nm/3000rpm
であった。In the experiments, the conventional synchronous motor using the permanent magnet described above (FIGS. 5 and 6) and the synchronous motor according to the first embodiment of the present invention using the permanent magnet described above (FIGS. 5 and 6) were used. Using a nonmagnetic plate 40 corresponding to FIG. 6), the cogging torque and the induced voltage generated between the wires of the three-phase winding (see FIG. 4) were measured. The rated torque of the conventional motor used this time is 0.63 Nm / 3000 rpm
Met.
【0029】コギングトルクは脈動するトルクの最大値
と最小値との差である。今回の実験では、モータの回転
軸10の一端にトルク検出器を接続し、回転軸10の他
端に別に用意したモータを10rpm以下の低速度で回
転させた際のトルクを測定してコギングトルクを求め
た。一方、誘起電圧は上記の軸10の他端に接続したモ
ータを1000rpmで回転させて測定した。The cogging torque is the difference between the maximum value and the minimum value of the pulsating torque. In this experiment, a torque detector was connected to one end of the rotating shaft 10 of the motor, and the cogging torque was measured by rotating the separately prepared motor at the other end of the rotating shaft 10 at a low speed of 10 rpm or less. I asked. On the other hand, the induced voltage was measured by rotating a motor connected to the other end of the shaft 10 at 1000 rpm.
【0030】回転子16と固定子18との間隙(エア・
ギャップ(図4参照))は0.7mm、永久磁石群30
及び32の夫々の回転軸10の方向の長さは15mm、
永久磁石群30及び32の間隙34の長さDは3mm、
ステップスキュー角は5o、永久磁石群30及び32夫
々の隣接する磁石の間隔は1.5mm、各磁石(C型磁
石)の中央部及び端部の高さは夫々3mm及び2mm、
非磁性体の厚みは3mmであった。The gap between the rotor 16 and the stator 18 (air
The gap (see FIG. 4) is 0.7 mm, and the permanent magnet group 30
And 32 have a length of 15 mm in the direction of the rotation axis 10,
The length D of the gap 34 between the permanent magnet groups 30 and 32 is 3 mm,
The step skew angle is 5 ° , the interval between the adjacent magnets of each of the permanent magnet groups 30 and 32 is 1.5 mm, the height of the center and the end of each magnet (C type magnet) is 3 mm and 2 mm, respectively.
The thickness of the non-magnetic material was 3 mm.
【0031】実験の結果、次の値を得た。 本発明の第1の実施例 (a)コギングトルク(Nm): 0.003 (b)誘起電圧(mV(実効値)/rpm): 10.
54 従来例 (a)コギングトルク(Nm): 0.016 (b)誘起電圧(mV(実効値)/rpm): 10.
65As a result of the experiment, the following values were obtained. First Embodiment of the Present Invention (a) Cogging torque (Nm): 0.003 (b) Induced voltage (mV (effective value) / rpm):
54 Conventional Example (a) Cogging torque (Nm): 0.016 (b) Induced voltage (mV (effective value) / rpm):
65
【0032】上述のように、コギングトルクは脈動する
トルクの最大値と最小値との差であり、高精度の制御用
永久磁石同期モータでは、定格トルクの1%以下が目標
値である。定格トルクは0.63Nm/3000rpm
なので、目標値は0.006Nmであり、実験結果か
ら、本発明に係るモータのコギングトルク(トルク変
動)は目標値になっているが、従来では目標値に達して
いないことが判る。更に、本発明を応用したモータの誘
起電圧は従来と略々同じであり問題はないと言える。As described above, the cogging torque is the difference between the maximum value and the minimum value of the pulsating torque. In a high-accuracy control permanent magnet synchronous motor, the target value is 1% or less of the rated torque. Rated torque is 0.63Nm / 3000rpm
Therefore, the target value is 0.006 Nm, and it can be seen from the experimental results that the cogging torque (torque fluctuation) of the motor according to the present invention is the target value, but has not reached the target value in the related art. Furthermore, it can be said that the induced voltage of the motor to which the present invention is applied is substantially the same as that of the conventional motor and there is no problem.
【0033】[0033]
【発明の効果】以上説明したように、本発明によれば、
固定子の簡単な改良でトルク変動を大幅に押さえること
ができる。As described above, according to the present invention,
A simple improvement of the stator can greatly reduce torque fluctuations.
【図1】本発明に係る第1の実施の形態を説明するため
の図。FIG. 1 is a diagram illustrating a first embodiment according to the present invention.
【図2】本発明に係る第2の実施の形態を説明するため
の図。FIG. 2 is a diagram illustrating a second embodiment according to the present invention.
【図3】本発明に係る第3の実施の形態を説明するため
の図。FIG. 3 is a diagram illustrating a third embodiment according to the present invention.
【図4】従来の永久磁石同期モータを説明するための
図。FIG. 4 is a view for explaining a conventional permanent magnet synchronous motor.
【図5】従来の永久磁石同期モータの固定子を説明する
ための図。FIG. 5 is a view for explaining a stator of a conventional permanent magnet synchronous motor.
【図6】本発明及び従来の永久磁石同期モータの双方に
関連する回転子を説明するための図。FIG. 6 is a view for explaining a rotor related to both the present invention and a conventional permanent magnet synchronous motor.
10:回転子軸 12:回転子ヨーク 14:永久磁石 16:回転子 18:固定子 20:固定子ヨーク 22:固定子の歯(ティース) 24:固定子に設けられたスロット 26:磁性体の薄板 30,32:永久磁石群 34:永久磁石群間の間隔 40,40’:非磁性体の薄板 44:非磁性体の薄板の回転子側に設けた空間(空隙) 10: Rotor shaft 12: Rotor yoke 14: Permanent magnet 16: Rotor 18: Stator 20: Stator yoke 22: Stator teeth (teeth) 24: Slot provided in the stator 26: Magnetic material Thin plate 30, 32: Permanent magnet group 34: Spacing between permanent magnet groups 40, 40 ': Non-magnetic thin plate 44: Space (gap) provided on the rotor side of non-magnetic thin plate
Claims (3)
けられた回転子とを有し、 前記固定子は、前記回転子の軸方向に積層した複数の磁
性体板を有し、 前記回転子は、その軸方向に設けた回転子ヨークの周囲
で且つ前記軸方向に間隔を置いて配置した少なくとも2
組の永久磁石群を有し、該2組の永久磁石群の夫々は前
記軸の径方向に磁化された複数の永久磁石を有し、前記
2組の永久磁石群は前記ヨーク上で互いに所定角度ずら
して設けられたラジアル・エア・ギャップ型の永久磁石
同期モータにおいて、 前記固定子の前記複数の磁性体板の内、前記第1及び第
2の永久磁石群間の間隙に対応する磁性体板を非磁性体
板で置換したことを特徴とする永久磁石同期モータ。1. A stator having a stator and a rotor provided inside the stator via a space, wherein the stator has a plurality of magnetic plates laminated in the axial direction of the rotor. At least two rotors are arranged around a rotor yoke provided in the axial direction and spaced apart in the axial direction.
A plurality of permanent magnet groups, each of the two permanent magnet groups having a plurality of permanent magnets magnetized in a radial direction of the axis, wherein the two permanent magnet groups are mutually fixed on the yoke. In the radial air gap type permanent magnet synchronous motor provided at an angle, the magnetic material corresponding to the gap between the first and second permanent magnet groups among the plurality of magnetic material plates of the stator. A permanent magnet synchronous motor characterized in that the plate is replaced by a non-magnetic plate.
去して空隙としたことを特徴とする請求項1記載の永久
磁石同期モータ。2. The permanent magnet synchronous motor according to claim 1, wherein an end of said non-magnetic plate on said stator side is removed to form a gap.
方向に延びたの複数の歯を有し、該歯の先端部形状を、
前記非磁性体板の前記固定子側の端部を除去して設けた
空隙に対応させたことを特徴とする請求項2記載の永久
磁石同期モータ。3. The stator has a plurality of teeth extending in a radial direction with respect to the axis of the rotor, and the shape of the tips of the teeth is as follows.
The permanent magnet synchronous motor according to claim 2, wherein an end of the nonmagnetic plate on the stator side is removed to correspond to a gap provided.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32106199A JP2001145280A (en) | 1999-11-11 | 1999-11-11 | Permanent magnet synchronous motor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32106199A JP2001145280A (en) | 1999-11-11 | 1999-11-11 | Permanent magnet synchronous motor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001145280A true JP2001145280A (en) | 2001-05-25 |
Family
ID=18128374
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP32106199A Pending JP2001145280A (en) | 1999-11-11 | 1999-11-11 | Permanent magnet synchronous motor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001145280A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108736592A (en) * | 2018-08-10 | 2018-11-02 | 北京九州动脉隧道技术有限公司 | A kind of Linear motor device and magnetic suspension train |
-
1999
- 1999-11-11 JP JP32106199A patent/JP2001145280A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108736592A (en) * | 2018-08-10 | 2018-11-02 | 北京九州动脉隧道技术有限公司 | A kind of Linear motor device and magnetic suspension train |
| CN108736592B (en) * | 2018-08-10 | 2023-12-26 | 北京九州动脉隧道技术有限公司 | Linear motor device and magnetic suspension train |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4358697A (en) | Two-pole permanent magnet synchronous motor rotor | |
| US7948135B2 (en) | Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor | |
| KR101402451B1 (en) | Permanent magnet and permanent magnet rotating machine | |
| JP2000350393A (en) | Permanent magnet motor | |
| US20100072850A1 (en) | Axial gap type rotating machine | |
| US6633100B2 (en) | Permanent magnet motor and rotor thereof | |
| CN110311526A (en) | A stator yokeless axial flux permanent magnet motor | |
| JPH08256441A (en) | Permanent magnet rotor | |
| JP2003164085A (en) | Rotating electric machine | |
| JP2587608B2 (en) | Motor | |
| JP4890620B2 (en) | Mold, magnetic field molding machine, and method for manufacturing permanent magnet | |
| CN105409096B (en) | Electric rotating machine and elevator hoist | |
| JP4238971B2 (en) | Manufacturing method of radial anisotropic sintered magnet | |
| JP2001145280A (en) | Permanent magnet synchronous motor | |
| JP4471698B2 (en) | Mold, permanent magnet magnetic field molding machine, and method for manufacturing permanent magnet | |
| JP5353976B2 (en) | Radial anisotropic sintered magnet and magnet rotor | |
| JP3683442B2 (en) | Multistage long multipole magnetized cylindrical magnet rotor and permanent magnet motor | |
| JPH10271723A (en) | Permanent-magnet field type rotating machine and its manufacture | |
| JP4080376B2 (en) | Sintered ring magnet and manufacturing method thereof | |
| JP2000175384A (en) | Permanent magnet motor | |
| JP4850439B2 (en) | Permanent magnet member for embedded magnet type rotating electrical machine and rotating electrical machine | |
| JP2598770Y2 (en) | Rotating electric machine | |
| CN111555483A (en) | A double-layer stator modular magnetization motor | |
| JP2000116090A (en) | Permanent magnet motor | |
| JP5448314B2 (en) | Permanent magnet and permanent magnet rotating machine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051012 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080716 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080818 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081017 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090202 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090624 |