[go: up one dir, main page]

JP2001157834A - Catalytic reactor having partition wall comprising porous membrane, method of manufacturing chemical substance using the same and reaction apparatus using reactor - Google Patents

Catalytic reactor having partition wall comprising porous membrane, method of manufacturing chemical substance using the same and reaction apparatus using reactor

Info

Publication number
JP2001157834A
JP2001157834A JP34437899A JP34437899A JP2001157834A JP 2001157834 A JP2001157834 A JP 2001157834A JP 34437899 A JP34437899 A JP 34437899A JP 34437899 A JP34437899 A JP 34437899A JP 2001157834 A JP2001157834 A JP 2001157834A
Authority
JP
Japan
Prior art keywords
reactor
gas
catalyst
reaction
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34437899A
Other languages
Japanese (ja)
Inventor
Takao Kokugan
孝雄 国眼
Torianto Azis
トリアント アジス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP34437899A priority Critical patent/JP2001157834A/en
Publication of JP2001157834A publication Critical patent/JP2001157834A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalytic reactor for obtaining a product exceeding a theoretical value of equilibrium reaction. SOLUTION: In a catalytic reactor which has a gas inflow port and a gas outflow port and is packed with a catalyst, a partition wall comprising a matter permeable porous membrane is provided along a gas flowing direction so as to divide the reactor into two chambers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な気体触媒反
応器及びそれを用いた化学物質の製造方法に関し、特
に、多孔膜からなる隔膜によって気体の流れ方向に沿っ
て2分された、気体分解反応用触媒反応器、及び、化学
平衡の移動を利用した化学物質の製造方法並びにこれら
の実用化のための反応装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel gas-catalyzed reactor and a method for producing a chemical substance using the same, and more particularly, to a method of dividing a gas into two by a porous membrane in the gas flow direction. The present invention relates to a catalytic reactor for a decomposition reaction, a method for producing a chemical substance using the transfer of chemical equilibrium, and a reaction apparatus for putting them into practical use.

【0002】[0002]

【従来技術】平衡反応系において、物質透過性微細孔を
有する隔膜を介して該平衡反応系の物質を拡散除去する
ことにより平衡をずらし、平衡値を越える生成物を得る
ことのできる反応器、及び、隔膜を介し反応系から物質
が拡散してくる透過側に不活性ガスをスウィープガスと
して流すことにより、全体としての平衡値からのずれを
更に大きくすることができることは既に知られている
(ジャーナル オブ ケミカルエンジニアリング オブ
ジャパン、第20巻、第4号、399頁〜404頁
(1988))。
2. Description of the Related Art In an equilibrium reaction system, a reactor capable of shifting the equilibrium by diffusing and removing substances in the equilibrium reaction system through a membrane having material-permeable micropores to obtain a product exceeding the equilibrium value. It is already known that a deviation from an overall equilibrium value can be further increased by flowing an inert gas as a sweep gas to a permeation side where a substance diffuses from a reaction system through a diaphragm (see FIG. 1). Journal of Chemical Engineering of Japan, Vol. 20, No. 4, pp. 399-404 (1988)).

【0003】このように、平衡反応における平衡転化率
によって制限される本来の生成量以上の生成物を得るこ
とは、生成物に対する需要が大きい場合ほど重要であ
る。例えば、エタンやシクロヘキサンの脱水素分解反応
における、エチレン、水素、ベンゼン等の需要は、エタ
ンやシクロヘキサン自身に対する需要よりも大きい。従
って、これらの分解反応を、平衡転化率以上に進めるこ
とが望まれるが、従来の方法による改善では未だ十分と
言えるものではなかった。
[0003] As described above, it is more important to obtain a product whose amount is equal to or greater than the original production amount limited by the equilibrium conversion in the equilibrium reaction as the demand for the product is larger. For example, the demand for ethylene, hydrogen, benzene and the like in the dehydrogenation decomposition reaction of ethane and cyclohexane is larger than the demand for ethane and cyclohexane itself. Therefore, it is desired that these decomposition reactions proceed to an equilibrium conversion rate or higher, but improvement by the conventional method has not been sufficient.

【0004】そこで本発明者らは、多孔膜を隔壁として
有する反応器を用い、平衡反応を更に大きくずらすこと
について鋭意検討した結果、スウィープガスを流す透過
側にも反応室に充填したものと同じ触媒を充填すること
により、従来より更に良好な結果を得ることができるこ
とを見出し本発明に到達した。
[0004] The inventors of the present invention have used the reactor having the porous membrane as a partition wall, and have made intensive studies on further deviating the equilibrium reaction. It has been found that by filling the catalyst, better results can be obtained than before, and the present invention has been achieved.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の第1の
目的は、平衡反応の理論値を越える生成物を得るための
触媒反応器を提供することにある。本発明の第2の目的
は、平衡反応の理論値を越えて、より多くの有用な生成
物を得るための方法を提供することにある。更に本発明
の第3の目的は、平衡反応から得られる生成物を、理論
的平衡値を越えて効率良く得るための反応装置を提供す
ることにある。
SUMMARY OF THE INVENTION It is therefore a first object of the present invention to provide a catalytic reactor for obtaining products which exceed the theoretical value of the equilibrium reaction. A second object of the present invention is to provide a method for obtaining more useful products beyond the theoretical value of the equilibrium reaction. A third object of the present invention is to provide a reactor for efficiently obtaining a product obtained from an equilibrium reaction exceeding a theoretical equilibrium value.

【0006】[0006]

【課題を解決するための手段】本発明の上記の諸目的
は、ガス流入口とガス流出口を有し、内部に触媒を充填
してなる反応器であって、該反応器内部を2室に2分す
る如く、ガスの流れ方向に沿って物質透過性の多孔膜か
らなる隔壁が設けられてなる触媒反応器、及び、該反応
器を有する反応装置によって達成された。
An object of the present invention is to provide a reactor having a gas inlet and a gas outlet and having a catalyst filled therein, wherein the inside of the reactor has two chambers. This was achieved by a catalytic reactor provided with a partition wall made of a porous material-permeable membrane along the gas flow direction, and a reactor having the reactor.

【0007】[0007]

【発明の実施の形態】本発明の反応器は、夫々同一又は
同一種類の触媒が充填され、物質透過性の多孔膜によっ
て2室に分割された反応室からなると共に、一方の端部
に原料ガス又はスウィープガスを供給し得るガス供給
口、及び、他方の端部にガス排出口を有するものであれ
ば良く、その材質や形状等は公知のもののなかから適宜
選択することができる。また、上記多孔膜も、物質透過
性であって反応室壁を形成し得る公知のものの中から適
宜選択することができる。このような多孔膜としては、
例えば、多孔質バイコールガラスやセラミックス等を挙
げることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reactor of the present invention comprises a reaction chamber filled with the same or the same type of catalyst and divided into two chambers by a material-permeable porous membrane. Any material having a gas supply port capable of supplying gas or sweep gas and a gas discharge port at the other end may be used, and the material, shape, and the like can be appropriately selected from known ones. The porous membrane can also be appropriately selected from known substances which are permeable to substances and can form reaction chamber walls. As such a porous membrane,
For example, porous Vycor glass and ceramics can be used.

【0008】本発明の反応器における第1、第2反応室
の2室のうち、第1反応室は原料ガスのみをガス供給口
から供給する主反応室であり、第2反応室はスウィープ
ガスのみをガス供給口から供給する副反応室である。該
副反応室には主反応室に充填した触媒と同一又は同種の
反応触媒が充填される。また、通常、主反応室には全域
にわたって触媒が充填されるが、副反応室には、ガス流
れ方向の後段部のみに充填することが好ましい。
[0008] Of the first and second reaction chambers in the reactor of the present invention, the first reaction chamber is a main reaction chamber for supplying only a raw material gas from a gas supply port, and the second reaction chamber is a sweep gas. This is a sub-reaction chamber that supplies only gas from the gas supply port. The sub-reaction chamber is filled with the same or the same type of reaction catalyst as the catalyst charged in the main reaction chamber. Usually, the catalyst is filled in the entire main reaction chamber, but it is preferable that the sub-reaction chamber is filled only in the rear part in the gas flow direction.

【0009】本発明の反応器が有効となる反応は、例え
ば、エタンやシクロヘキサンの脱水素分解反応等の化学
平衡の存在する触媒反応である。即ち、主反応室に原料
を供給すると平衡反応が生じ、多孔膜の透過膜がない場
合には、反応が平衡点に達した後は、見掛け上はそれ以
上反応が進むことはない。しかしながら、前記多孔膜を
通して原料ガスや生成ガスが拡散すると前記平衡が崩れ
ることになり、実際の反応は、理論上の平衡点を越えて
進行する。
The reaction in which the reactor of the present invention is effective is, for example, a catalytic reaction having a chemical equilibrium such as a dehydrogenation decomposition reaction of ethane or cyclohexane. That is, when the raw material is supplied to the main reaction chamber, an equilibrium reaction occurs, and if there is no permeable membrane of the porous membrane, the reaction does not seem to proceed further after the reaction reaches the equilibrium point. However, when the source gas or the generated gas diffuses through the porous membrane, the equilibrium is broken, and the actual reaction proceeds beyond the theoretical equilibrium point.

【0010】一方、副反応室には、多孔膜を通って主反
応室から透過してきたガスとスウィープガスが混在す
る。スウィープガスの一部は多孔膜を通って主反応室に
拡散する。従来は、副反応室におけるスウィープガス以
外のガスは、主反応室から透過してきた原料及び反応生
成物であり、これらの比率は、透過して来た量の比率で
ある。しかしながら、本発明においては副反応室にも触
媒を充填してあるので、透過してきた原料ガスが反応し
て、その分生成ガスの生成量が増大する。
On the other hand, in the sub-reaction chamber, the gas permeated from the main reaction chamber through the porous membrane and the sweep gas are mixed. Some of the sweep gas diffuses through the porous membrane into the main reaction chamber. Conventionally, gases other than the sweep gas in the sub-reaction chamber are raw materials and reaction products that have permeated from the main reaction chamber, and their ratio is the ratio of the permeated amount. However, in the present invention, since the sub-reaction chamber is also filled with the catalyst, the permeated raw material gas reacts, and the amount of generated gas increases accordingly.

【0011】反応転化率は副反応室の触媒の量にほぼ比
例するが、部分的に充填する場合には、ガス排出口から
順次手前に充填することが好ましい。スウィープガスは
非反応性のガスの中から適宜選択して使用することがで
きる。特に、窒素ガス及び炭酸ガスが安価であるので好
ましい。以下、本発明を図面に従って更に詳述する。
Although the reaction conversion is substantially proportional to the amount of the catalyst in the sub-reaction chamber, when partially charged, it is preferable to sequentially fill the gas from the gas outlet. The sweep gas can be appropriately selected from non-reactive gases and used. In particular, nitrogen gas and carbon dioxide gas are preferable because they are inexpensive. Hereinafter, the present invention will be described in more detail with reference to the drawings.

【0012】図1は、多孔膜を隔壁として有する、従来
の反応器を用いた、シクロヘキサンの脱水素分解反応系
の概念図である。尚、図中の網掛け部は触媒を有する反
応室、網掛けのない方は、原料や生成物が透過してくる
透過室であり、この透過室に触媒は存在しない。また、
透過室には不活性なスウィープガスを供給するが、スウ
ィープガスの1部は主反応室側に透過する。スウィープ
ガスは窒素ガス、炭酸ガス、希ガス等、公知の不活性な
ガスの中から適宜選択することができるが、経済性の観
点から、特に窒素ガス又は炭酸ガスが好ましい。
FIG. 1 is a conceptual diagram of a cyclohexane dehydrogenation decomposition reaction system using a conventional reactor having a porous membrane as a partition. The shaded area in the figure is a reaction chamber having a catalyst, and the unshaded area is a permeation chamber through which raw materials and products permeate, and no catalyst is present in this permeation chamber. Also,
An inert sweep gas is supplied to the permeation chamber, and a part of the sweep gas permeates to the main reaction chamber. The sweep gas can be appropriately selected from known inert gases such as a nitrogen gas, a carbon dioxide gas, and a rare gas. From the viewpoint of economy, a nitrogen gas or a carbon dioxide gas is particularly preferable.

【0013】図2は、多孔膜を隔壁として有する本発明
の反応器である。本図においては、原料ガスを供給する
主反応室、及び、スウィープスガスを供給する副反応室
の何れにも、同一の触媒が同じように充填されている
が、副反応室の触媒は部分的に充填されていても良い
(図3参照)。しかしながら、少なくとも、ガス流出口
近傍には充填されていることが好ましい。
FIG. 2 shows a reactor of the present invention having a porous membrane as a partition. In this figure, the same catalyst is similarly filled in both the main reaction chamber for supplying the raw material gas and the sub-reaction chamber for supplying the sweep gas, but the catalyst in the sub-reaction chamber is partially filled. It may be filled (see FIG. 3). However, it is preferable that at least the vicinity of the gas outlet is filled.

【0014】反応器の形状は特に限定されず、図2の如
く主反応室と副反応室が平面状の多孔膜によって単に仕
切られていても、主反応室と副反応室の関係が、芯と鞘
の関係のようになっていても良い。このような反応器と
することにより、後述する如く、全体としての反応率を
従来の場合より大幅に増大させることができるだけでな
く、スウィープスガスの使用量も特に多いという程でも
ないので、生成物の分離も容易である。
The shape of the reactor is not particularly limited. Even if the main reaction chamber and the sub-reaction chamber are simply separated by a planar porous membrane as shown in FIG. It may be like a relationship between the sheath. By using such a reactor, as described later, not only can the overall reaction rate be significantly increased than in the conventional case, but the amount of sweep gas used is not particularly large, so Separation of objects is also easy.

【0015】図4は本発明の反応器を有する本発明の反
応装置の概念図である。図中、符号Rは多孔膜隔壁を有
する本発明の反応器、A及びAは吸着分離塔、M
〜M は混合機、FDはフラッシュ蒸留機、Dは蒸留分
離機である。吸着分離塔に充填する吸着剤は公知のもの
の中から適宜選択することができるが、通常は活性炭を
使用する。また、吸着分離塔の代りに圧縮器を用い、圧
縮して液化するものと液化しないものに分離しても良
い。蒸留分離塔も公知のものの中から適宜選択すること
ができる。
FIG. 4 shows the reaction of the present invention having the reactor of the present invention.
It is a conceptual diagram of a response apparatus. In the figure, the symbol R has a porous membrane partition.
A of the present invention,1And A2Is the adsorption separation column, M1
~ M 4Is a blender, FD is a flash still, D is a distillation fraction
It is a takeoff machine. Known adsorbents to be packed in the adsorption separation tower
Can be selected as appropriate, but usually activated carbon is
use. In addition, a compressor is used instead of the adsorption
It can be separated into those that liquefy and those that do not liquefy
No. The distillation separation column should also be appropriately selected from known ones.
Can be.

【0016】[0016]

【発明の効果】本発明の触媒反応器を用いれば、単に化
学平衡を崩すだけでなく、透過膜通過後にも反応が進行
するので、全体として、化学平衡を大きく越えた量の生
成物を得ることができる。従って分解反応によってクリ
ーンエネルギー源として使用し得る水素ガスを製造する
場合に、本発明は特に有効である。以下、本発明を実施
例によって更に詳述するが、本発明はこれによって限定
されるものではない。
According to the catalytic reactor of the present invention, not only the chemical equilibrium is destroyed, but also the reaction proceeds after passing through the permeable membrane, so that the amount of the product greatly exceeds the chemical equilibrium as a whole. be able to. Therefore, the present invention is particularly effective when producing hydrogen gas that can be used as a clean energy source by a decomposition reaction. Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

【0017】実施例1.図2の本発明の反応器を用いて
エタンの脱水素分解反応C=C+Hを行
った。触媒としては顆粒状の白金触媒を用い、1気圧、
700℃で主反応室におけるガス空間速度を4.06c
STP/分(これをFとする)として実験を行っ
た。この結果、本発明の反応器を用いた場合には、主反
応室出口における各ガスの検出量は[C]=0.1
24F、[C]=0.297F、[H]=0.11
6F、[N]=0.744Fであり、副反応室出口にお
いては、[C]=0.231F、[C]=0.
348F、[H]=0.535F、[N]=8.256
Fであった。また、全転化率は64.5%であった。
Embodiment 1 FIG. The ethane dehydrogenation decomposition reaction C 2 H 6 CC 2 H 4 + H 2 was carried out using the reactor of the present invention shown in FIG. As a catalyst, a granular platinum catalyst was used, and the pressure was 1 atm.
At 700 ° C., the gas space velocity in the main reaction chamber is 4.06 c.
The experiment was performed with m 3 STP / min (this is F). As a result, when the reactor of the present invention was used, the detected amount of each gas at the outlet of the main reaction chamber was [C 2 H 6 ] = 0.1
24F, [C 2 H 4] = 0.297F, [H 2] = 0.11
6F, [N 2 ] = 0.744F, and [C 2 H 6 ] = 0.231F, [C 2 H 4 ] = 0.
348F, [H 2] = 0.535F , [N 2] = 8.256
F. The total conversion was 64.5%.

【0018】比較例1.図2の本発明の反応器の代り
に、従来型である図1の反応器を用いた他は実施例1と
全く同様にしたところ、反応室出口における各ガスの検
出量は、[C ]=0.124F、[C]=0.
298F、[H]=0.109F、[N]=0.745
Fであり、透過室出口においては、[C]=0.2
63F、[C]=0.316F、[H]=0.50
5F、[N]=8.255Fであった。また、全反応量
は61.4%であった。実施例1及び比較例1から明ら
かなように、本発明の反応器を用いることにより、全体
の反応率を増大させることのできることが実証された。
Comparative Example 1 Instead of the reactor of the invention of FIG.
Example 1 was the same as Example 1 except that the conventional reactor of FIG. 1 was used.
When exactly the same was done, the detection of each gas at the reaction chamber outlet was performed.
The output is [C2H 6] = 0.124F, [C2H4] = 0.
298F, [H2] = 0.109F, [N2] = 0.745
F, and at the exit of the permeation chamber, [C2H6] = 0.2
63F, [C2H4] = 0.316F, [H2] = 0.50
5F, [N2] = 8.255F. Also, the total reaction volume
Was 61.4%. It is clear from Example 1 and Comparative Example 1.
As you can see, by using the reactor of the present invention,
Has been demonstrated to be able to increase the reaction rate.

【0019】実施例2.図2の本発明の反応器(MPM
R)を用いてシクロヘクサンの脱水素分解反応C
12=C+3Hを、1気圧、180℃の条件で
行った。触媒としては顆粒状の白金を用い、主反応室に
おけるガス空間速度を35−100cmSTP/分
(Da換算で1.92−0.72)、スウェープガス
(N)速度を250cmSTP/分とした。Daは
反応による生成速度を供給速度で除したものである。結
果は図5に示した通りである。
Embodiment 2 FIG. The reactor (MPM) of the present invention shown in FIG.
R), the dehydrogenation decomposition reaction of cyclohexane C 6 H
12 = C 6 H 6 + 3H 2 was performed under the conditions of 1 atm and 180 ° C. As the catalyst used granular platinum, 35-100cm 3 STP / min of gas space velocity in the main reaction chamber (in Da terms 1.92-0.72), Suwepugasu the (N 2) speed 250 cm 3 STP / min And Da is a value obtained by dividing the production rate by the reaction by the supply rate. The results are as shown in FIG.

【0020】比較例2.反応器として、図1の従来の反
応器(CPMR)を用いた他は実施例2と全く同様にし
て反応を行わせた。結果は、図5に示した通りである。
実施例2の結果と比較例2の結果から、図2の本発明の
反応器を用いた場合には図1の従来の反応器(CPM
R)を用いた場合より優れた結果を得ることのできるこ
とが実証された。また、Da=1.92では、CPMR
の全転化率は3.75%、実施例2の全転化率は5.5
0%であり、比較例2の場合より47%増大しているこ
とが確認された。
Comparative Example 2 The reaction was carried out in exactly the same manner as in Example 2 except that the conventional reactor (CPMR) shown in FIG. 1 was used as the reactor. The results are as shown in FIG.
From the results of Example 2 and Comparative Example 2, when the reactor of the present invention of FIG. 2 was used, the conventional reactor (CPM) of FIG. 1 was used.
It was demonstrated that superior results could be obtained with R). Also, when Da = 1.92, the CPMR
Is 3.75%, and the total conversion of Example 2 is 5.5.
0%, which was confirmed to be 47% higher than that of Comparative Example 2.

【0021】実施例3.本発明の反応器を用いてC
12=C+3Hの反応を行い、副反応室の触媒
充填率に対する全転化率依存性を調べた。結果は図6に
示した通りである。この結果は、触媒の充填率がゼロの
従来の反応器より、透過側に触媒を充填した本発明の反
応器の場合の方が全転化率が大きいこと、即ち、副反応
室に触媒を充填することによって転化率が改善されるこ
とを実証するものである。
Embodiment 3 FIG. C 6 H using the reactor of the present invention
A reaction of 12 = C 6 H 6 + 3H 2 was performed, and the dependence of the total conversion on the catalyst loading in the sub-reaction chamber was examined. The results are as shown in FIG. This result indicates that the total conversion is higher in the case of the reactor of the present invention in which the permeate side is filled with the catalyst than in the case of the conventional reactor in which the catalyst fill rate is zero, that is, the auxiliary reaction chamber is filled with the catalyst. This demonstrates that conversion improves the conversion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】多孔膜を用いた従来の反応器である。FIG. 1 shows a conventional reactor using a porous membrane.

【図2】多孔膜を用いた本発明の反応器である。FIG. 2 shows a reactor of the present invention using a porous membrane.

【図3】本発明の反応器における副反応室の触媒充填状
態を変えた場合を説明する図である。
FIG. 3 is a diagram illustrating a case where the state of filling a catalyst in a sub-reaction chamber in the reactor of the present invention is changed.

【図4】本発明の反応装置の概念図である。FIG. 4 is a conceptual diagram of the reaction apparatus of the present invention.

【図5】本発明の反応器と従来の反応器における全転化
率のDa依存性を表すグラフである。
FIG. 5 is a graph showing the Da dependence of the total conversion in the reactor of the present invention and the conventional reactor.

【図6】全転化率の、副反応室の触媒充填量に対する依
存性を表すグラフである。
FIG. 6 is a graph showing the dependence of the total conversion on the catalyst loading in the sub-reaction chamber.

【符号の説明】[Explanation of symbols]

R 本発明の反応器 A 吸着分離塔 A 吸着分離塔 M 混合機 M 混合機 M 混合機 M 混合機 FD フラッシュ蒸留機 D 蒸留分離機R Reactor of the present invention A 1 adsorption separation tower A 2 adsorption separation tower M 1 mixer M 2 mixer M 3 mixer M 4 mixer FD flash distillation machine D distillation separation machine

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 11/04 C07C 11/04 // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4D006 GA41 KB30 MA02 MA03 MC03 MC04 PB20 PB66 PC80 4G069 AA08 AA15 BC75B CB07 CB11 CB12 EA02Y FB77 4G070 AA01 AB02 BB05 CA01 CA12 CB15 4H006 AA02 AA04 AC12 BA26 BD35 BD52 BD81 4H039 CA21 CA41 CC10 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C07C 11/04 C07C 11/04 // C07B 61/00 300 C07B 61/00 300 F term (reference) 4D006 GA41 KB30 MA02 MA03 MC03 MC04 PB20 PB66 PC80 4G069 AA08 AA15 BC75B CB07 CB11 CB12 EA02Y FB77 4G070 AA01 AB02 BB05 CA01 CA12 CB15 4H006 AA02 AA04 AC12 BA26 BD35 BD52 BD81 4H039 CA21 CA41 CC10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス流入口とガス流出口を有し、内部に
触媒を充填してなる反応器であって、該反応器内部を2
室に2分する如く、ガスの流れ方向に沿って物質透過性
の多孔膜からなる隔壁が設けられてなる触媒反応器。
1. A reactor having a gas inlet and a gas outlet and having a catalyst filled therein.
A catalytic reactor in which a partition made of a material-permeable porous membrane is provided along the gas flow direction so as to be divided into two chambers.
【請求項2】 どちらか一方の反応室における触媒が、
ガスの流れ方向に対して部分的に充填されていることを
特徴とする、請求項1に記載された触媒反応器。
2. The catalyst in one of the reaction chambers,
2. The catalytic reactor according to claim 1, wherein the catalytic reactor is partially filled in the gas flow direction.
【請求項3】 どちらか一方の反応室における触媒が、
ガスの流出口近傍のみに充填されていることを特徴とす
る、請求項1に記載された触媒反応器。
3. The catalyst in one of the reaction chambers,
2. The catalytic reactor according to claim 1, wherein the catalyst is filled only in the vicinity of the gas outlet.
【請求項4】 請求項1〜3の何れかに記載された触媒
反応器における、一方の第1反応室に分解反応用触媒が
充填され、他方の第2反応室には、中央よりガス出口側
の部分に同じ触媒が充填されている反応器の、前記第1
反応室側のガス流入口から原料ガスを供給し、第2反応
室側のガス流入口からは非反応性のスウィープガスを供
給することを特徴とする、化学物質の製造方法。
4. The catalyst reactor according to claim 1, wherein one of the first reaction chambers is filled with a catalyst for a decomposition reaction, and the other second reaction chamber has a gas outlet from the center. The first part of the reactor, the side part of which is filled with the same catalyst,
A method for producing a chemical substance, comprising supplying a raw material gas from a gas inlet on a reaction chamber side and supplying a non-reactive sweep gas from a gas inlet on a second reaction chamber side.
【請求項5】 請求項1〜3の何れかに記載された触媒
反応器、及び吸着分離塔並びに蒸留分離塔を有する反応
装置であって、請求項4の製造方法によって製造した化
学物質を分取すると共に、非反応性のスウィープガスを
リサイクルする如く、前記反応器、吸着分離塔及び蒸留
分離塔を連結して成ることを特徴とする反応装置。
5. A reactor having the catalytic reactor according to claim 1, an adsorption separation column and a distillation separation column, wherein the chemical substance produced by the production method according to claim 4 is separated. A reaction apparatus, wherein the reactor, the adsorption separation tower, and the distillation separation tower are connected so as to recycle the non-reactive sweep gas.
JP34437899A 1999-12-03 1999-12-03 Catalytic reactor having partition wall comprising porous membrane, method of manufacturing chemical substance using the same and reaction apparatus using reactor Withdrawn JP2001157834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34437899A JP2001157834A (en) 1999-12-03 1999-12-03 Catalytic reactor having partition wall comprising porous membrane, method of manufacturing chemical substance using the same and reaction apparatus using reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34437899A JP2001157834A (en) 1999-12-03 1999-12-03 Catalytic reactor having partition wall comprising porous membrane, method of manufacturing chemical substance using the same and reaction apparatus using reactor

Publications (1)

Publication Number Publication Date
JP2001157834A true JP2001157834A (en) 2001-06-12

Family

ID=18368790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34437899A Withdrawn JP2001157834A (en) 1999-12-03 1999-12-03 Catalytic reactor having partition wall comprising porous membrane, method of manufacturing chemical substance using the same and reaction apparatus using reactor

Country Status (1)

Country Link
JP (1) JP2001157834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9745191B2 (en) 2011-04-11 2017-08-29 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9745191B2 (en) 2011-04-11 2017-08-29 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures

Similar Documents

Publication Publication Date Title
US5205842A (en) Two stage membrane dryer
JPH01502192A (en) Phase transfer catalysis method
EP0312743B1 (en) An integrated pressure swing adsorption/membrane separation
CA2530277C (en) Selective separation of fluid compounds utilizing a membrane separation process
US4881955A (en) Method for gas separation using helically wound hollow fibers permeable membrane cartridge
JP2002519237A (en) Multiple air separation module OBIGGS with membranes with different permeability and selectivity
CN103764268B (en) Using the olefin hydration process of integrated membrane reactor
JPH09511509A (en) Method for producing methanol
Chai et al. Promotion of Methane Steam Reforming Using Ruthenium-Dispersed Microporous Alumina Membrane Ractor.
WO2004002609A2 (en) Processes and apparatus using solid perm-selective membranes in multiple groups for simultaneous recovery of specified products from a fluid mixture
US5302189A (en) Membrane nitrogen gas generator with improved flexibility
GB2228427A (en) Gas separation
Piera et al. Use of zeolite membrane reactors for selectivity enhancement: application to the liquid-phase oligomerization of i-butene
JP2007209973A (en) Gas-liquid reactor
AU617900B2 (en) A process for the separation of carbon dioxide
CN109678119A (en) A kind of hydrogen dioxide solution production by anthraquinone process system and hydrogen dioxide solution production by anthraquinone process method
JP2981304B2 (en) Gas separation method
Seibert et al. Hydraulics and mass transfer efficiency of a commercial-scale membrane extractor
JP2001157834A (en) Catalytic reactor having partition wall comprising porous membrane, method of manufacturing chemical substance using the same and reaction apparatus using reactor
KR101559201B1 (en) Membrane sepreation apparatus
JPS6410166B2 (en)
Kiatkittipong et al. A pervaporation membrane reactor for liquid phase synthesis of ethyl tert-butyl ether from tert-butyl alcohol and ethanol
Kim et al. Supported liquid‐phase catalytic membrane reactor–separator for homogeneous catalysis
Chen et al. A membrane reactor with two dispersion-free interfaces for homogeneous catalytic reactions
Ross et al. Catalysis with membranes or catalytic membranes?

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206