[go: up one dir, main page]

JP2001160212A - Non-magnetic particle powder for non-magnetic base layer of magnetic recording medium and magnetic recording medium - Google Patents

Non-magnetic particle powder for non-magnetic base layer of magnetic recording medium and magnetic recording medium

Info

Publication number
JP2001160212A
JP2001160212A JP34339399A JP34339399A JP2001160212A JP 2001160212 A JP2001160212 A JP 2001160212A JP 34339399 A JP34339399 A JP 34339399A JP 34339399 A JP34339399 A JP 34339399A JP 2001160212 A JP2001160212 A JP 2001160212A
Authority
JP
Japan
Prior art keywords
magnetic
particle powder
acicular hematite
magnetic recording
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34339399A
Other languages
Japanese (ja)
Other versions
JP4870860B2 (en
Inventor
Kazuyuki Hayashi
一之 林
Keisuke Iwasaki
敬介 岩崎
Hiroko Morii
弘子 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP34339399A priority Critical patent/JP4870860B2/en
Publication of JP2001160212A publication Critical patent/JP2001160212A/en
Application granted granted Critical
Publication of JP4870860B2 publication Critical patent/JP4870860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide acicular hematite particle powder suitable for non-magnetic particle powder for a non-magnetic base layer of a magnetic recording medium having improved surface smoothness. SOLUTION: The acicular hematite particle powder suitable for the non- magnetic particle powder for the non-magnetic base layer is mixed acicular hematite particle powder of large particle size acicular hematite particle powder having 0.10-0.30 μm average major axis and an aspect ratio of 3.0-9.5 and small particle size acicular hematite particle powder having a ratio of the average major axis to the major axis of the large particle size acicular hematite particle powder of 0.10-0.83 and an aspect ratio of 3.0-9.5. The mixing ratio of the large particle size acicular hematite particle powder to the small particle size acicular hematite particle powder is 20:80-40:60 in volume.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体の非磁性
下地層用非磁性粒子粉末として好適な針状ヘマタイト粒
子粉末を提供する。
The present invention provides a needle-like hematite particle powder suitable as a non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium.

【0002】[0002]

【従来の技術】 近年、ビデオ用、オーディオ用磁気記
録再生用機器の長時間記録化、小型軽量化が進むにつれ
て、磁気テープ、磁気ディスク等の磁気記録媒体に対す
る高性能化、即ち、高密度記録化、高出力特性、殊に周
波数特性の向上、低ノイズ化の要求が益々強まってい
る。
2. Description of the Related Art In recent years, as long-term recording and miniaturization of video and audio magnetic recording / reproducing devices have progressed, the performance of magnetic recording media such as magnetic tapes and magnetic disks has been improved. There is an increasing demand for higher performance, higher output characteristics, especially improved frequency characteristics, and lower noise.

【0003】殊に、近時におけるビデオテープの高画像
高画質化に対する要求は益々強まっており、従来のビデ
オテープに比べ、記録されるキャリアー信号の周波数が
短波長領域に移行しており、その結果、磁気テープの表
面からの磁化深度が著しく浅くなっている。
In particular, in recent years, the demand for higher image quality and higher image quality of video tapes has been increasing more and more, and the frequency of a carrier signal to be recorded has shifted to a short wavelength region as compared with conventional video tapes. As a result, the magnetization depth from the surface of the magnetic tape is extremely shallow.

【0004】短波長信号に対して、磁気記録媒体の高出
力特性、殊に、S/N比を向上させるためには、磁気記
録層の薄層化が強く要求されている。磁気記録層を薄層
化するためには、磁気記録層を平滑にし、且つ、厚みむ
らを少なくする必要がある。そのためには、ベースフィ
ルムの表面もまた平滑でなければならない。
[0004] In order to improve the high output characteristics of a magnetic recording medium, especially the S / N ratio, for a short wavelength signal, it is strongly required to make the magnetic recording layer thinner. In order to reduce the thickness of the magnetic recording layer, it is necessary to smooth the magnetic recording layer and reduce unevenness in thickness. To do so, the surface of the base film must also be smooth.

【0005】一般に磁気記録媒体はベースフィルム等の
非磁性支持体上に磁性粒子粉末と結合剤樹脂を含む磁気
記録層を形成し、カレンダーをかけて表面平滑化処理を
行うことにより磁気記録層の平滑化を行っている。
In general, a magnetic recording medium is formed by forming a magnetic recording layer containing magnetic particle powder and a binder resin on a non-magnetic support such as a base film and calendering the surface to perform a surface smoothing treatment. Smoothing is performed.

【0006】近年、磁気記録層の薄層化が一層進む中
で、ベースフィルム等の非磁性支持体上に針状へマタイ
ト粒子粉末等の非磁性粒子粉末を結合剤樹脂中に分散さ
せてなる下地層(以下、「非磁性下地層」という。)を
一層設けることにより、磁気記録層の表面性の悪化や電
磁変換特性を劣化させる等の問題を解決することが提案
され、実用化されている(特公平6−93297号公
報、特開昭62−159338号公報、特開昭63−1
87418号公報、特開平4−167225号公報、特
開平4−325915公報、特開平5−73882号公
報、特開平5−182177号公報)。
In recent years, as magnetic recording layers have become thinner, non-magnetic particles such as needle-like matite particles are dispersed in a binder resin on a non-magnetic support such as a base film. It has been proposed that a single underlayer (hereinafter, referred to as a “nonmagnetic underlayer”) be provided to solve problems such as deterioration of the surface properties of the magnetic recording layer and deterioration of the electromagnetic conversion characteristics. (JP-B-6-93297, JP-A-62-159338, JP-A-63-1)
87418, JP-A-4-167225, JP-A-4-325915, JP-A-5-73882, JP-A-5-182177.

【0007】前記非磁性下地層を有する磁気記録媒体の
場合には、非磁性支持体上に非磁性粒子粉末と結合剤樹
脂とを含有する非磁性下地層及び磁性粒子粉末と結合剤
樹脂とを含有する磁気記録層を形成し、次いで、カレン
ダー処理を行い非磁性支持体の凹凸を非磁性下地層が吸
収することによって、磁気記録層の表面平滑化を図って
いる。例えば、特開平5−12650号公報には、「…
…非磁性の緩衝層を設けることにより六方晶系フェライ
ト磁性粉体を含む層が表面平滑化処理する際に直下の非
磁性層がバッファー層として押しつぶされる。これによ
り下層(非磁性層のこと?)が吸収層として作用し、上
層の六方晶系フェライト板状磁性粉を含む磁気記録層が
平滑化されることになる。」と記載されている。
In the case of a magnetic recording medium having a nonmagnetic underlayer, a nonmagnetic underlayer containing nonmagnetic particle powder and a binder resin, a magnetic particle powder and a binder resin are formed on a nonmagnetic support. A magnetic recording layer containing the magnetic recording layer is formed, and then calendering is performed to absorb unevenness of the non-magnetic support by the non-magnetic underlayer, thereby smoothing the surface of the magnetic recording layer. For example, Japanese Patent Application Laid-Open No. Hei 5-12650 discloses "...
... By providing the non-magnetic buffer layer, the non-magnetic layer immediately below is crushed as a buffer layer when the layer containing the hexagonal ferrite magnetic powder is subjected to the surface smoothing treatment. As a result, the lower layer (nonmagnetic layer?) Acts as an absorption layer, and the upper magnetic recording layer containing the hexagonal ferrite plate-like magnetic powder is smoothed. It is described.

【0008】非磁性下地層の表面平滑性を改善するため
には、分散性が優れていると共にカレンダー処理による
表面平滑性の向上が期待できる針状ヘマタイト粒子粉末
を用いることが好ましい。
In order to improve the surface smoothness of the non-magnetic underlayer, it is preferable to use acicular hematite particles which have excellent dispersibility and can be expected to improve the surface smoothness by calendering.

【0009】従来、磁気記録媒体の諸特性改善のために
非磁性下地層用非磁性粒子粉末に対して種々の試みがな
されており、1)平板状無機質粉体と針状無機質粉体と
を含有した中間層を有する磁気記録媒体(特開平5−7
3882号公報)、2)非磁性下地層として粒状無機質
粉末、カーボンブラック及び粗大なる第3成分粉体とを
含有する磁気記録媒体(特開平5−217149号公
報)、3)非磁性層又は軟磁性層中に非磁性粉又は軟磁
性粉より大きい長軸径を有し、新モース硬度が6以上で
ある酸化物、炭化物及び窒化物を含有する磁気記録媒体
(特開平5−242455号公報)、4)非磁性下地層
に平均粒子径の異なる二種類の非磁性粉末を含有させた
磁気記録媒体(特開平6−267059号公報)等が知
られている。
Conventionally, various attempts have been made on non-magnetic particle powder for a non-magnetic underlayer to improve various characteristics of a magnetic recording medium. 1) A flat inorganic powder and a needle-like inorganic powder are used. Magnetic recording medium having an intermediate layer containing
3882), 2) a magnetic recording medium containing a granular inorganic powder, carbon black, and a coarse third component powder as a non-magnetic underlayer (JP-A-5-217149); 3) a non-magnetic layer or a soft magnetic layer. A magnetic recording medium containing an oxide, a carbide and a nitride having a major axis diameter larger than that of a nonmagnetic powder or a soft magnetic powder in a magnetic layer and having a new Mohs hardness of 6 or more (JP-A-5-242455) 4) A magnetic recording medium in which a nonmagnetic underlayer contains two types of nonmagnetic powders having different average particle sizes (Japanese Patent Application Laid-Open No. 6-267059) is known.

【0010】[0010]

【発明が解決しようとする課題】表面平滑性がより優れ
た磁気記録媒体の非磁性下地層用非磁性粒子粉末として
好適な針状ヘマタイト粒子粉末は現在最も要求されてい
るところであるが、未だ得られていない。
A needle-like hematite particle powder suitable as a non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium having more excellent surface smoothness has been most demanded at present, but it has not been obtained yet. Not been.

【0011】即ち、前出1)の公知方法による場合で
は、無機質粉体の粒子形状が異なるため、カレンダー処
理による表面平滑効果が期待できない。また、用いる無
機質粉体の粒子サイズが0.4〜3.0μmと粗大な粒
子粉末であるため、表面が平滑な塗膜が得られ難いもの
である。
That is, in the case of the above-mentioned known method 1), since the particle shape of the inorganic powder is different, the surface smoothing effect by the calendar treatment cannot be expected. Further, since the inorganic powder used has a coarse particle size of 0.4 to 3.0 μm, it is difficult to obtain a coating film having a smooth surface.

【0012】また、前出2)の公知方法による場合で
は、無機質粉体の粒子形状が粒状であるため、カレンダ
ー掛かりが悪くカレンダー処理による表面平滑効果が期
待できない。
In the case of the known method 2), since the inorganic powder has a granular particle shape, the surface of the inorganic powder is poorly calendered, and the surface smoothing effect by the calendering treatment cannot be expected.

【0013】また、前出3)の方法では、大粒径の軟磁
性粒子粉末又は非磁性粒子粉末と小粒径の軟磁性粒子粉
末又は非磁性粒子粉末との混合割合が2:98〜18:
82であり、小粒径粒子粉末の含有量が多すぎるため、
カレンダー処理による表面平滑効果が期待できない。
In the above method 3), the mixing ratio of the large-sized soft magnetic particles or non-magnetic particles to the small-sized soft magnetic particles or non-magnetic particles is 2: 98-18. :
82, because the content of the small particle size powder is too large,
The surface smoothing effect by the calendar treatment cannot be expected.

【0014】また、前出4)の方法では、平均粒子径の
異なる2種類の非磁性粒子粉末の粒子形状が、粒状であ
ったり、異なったりする場合があるため、カレンダー処
理による表面平滑効果が期待できない。
In the method 4), the two types of non-magnetic particles having different average particle diameters may be granular or different in particle shape. Can't expect.

【0015】そこで、本発明は、表面平滑性に優れた磁
気記録媒体の非磁性下地層用非磁性粒子粉末として好適
な分散性が優れていると共にカレンダー処理による表面
平滑性の向上が期待できる針状ヘマタイト粒子粉末を得
ることを技術的課題とする。
Accordingly, the present invention provides a needle having excellent dispersibility suitable for a non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium having excellent surface smoothness and capable of improving surface smoothness by calendering. It is a technical object to obtain powdery hematite particles.

【0016】[0016]

【課題を解決する為の手段】前記技術的課題は、次の通
りの本発明によって達成できる。
The above technical object can be achieved by the present invention as described below.

【0017】即ち、本発明は、平均長軸径が0.10〜
0.30μmであって、軸比が3.0〜9.5である大
粒径針状ヘマタイト粒子粉末と該大粒径針状ヘマタイト
粒子粉末の平均長軸径に対する平均長軸径の比が0.1
0〜0.83であって、軸比が3.0〜9.5である小
粒径針状ヘマタイト粒子粉末との混合針状ヘマタイト粒
子粉末であり、且つ、前記大粒径針状ヘマタイト粒子粉
末と前記小粒径針状ヘマタイト粒子粉末との混合割合が
体積比で20:80〜40:60であることを特徴とす
る磁気記録媒体の非磁性下地層用非磁性粒子粉末である
(本発明1)。
That is, according to the present invention, the average major axis diameter is 0.10 to 0.10.
The ratio of the average major axis diameter to the average major axis diameter of the large-diameter acicular hematite particle powder having an axis ratio of 3.0 to 9.5 and the large-diameter acicular hematite particle powder is 0.30 μm. 0.1
A needle-like hematite particle powder mixed with a small-diameter needle-like hematite particle powder having an axial ratio of 3.0 to 9.5, and the large-diameter needle-like hematite particles; The mixing ratio of the powder and the small-sized acicular hematite particles is 20:80 to 40:60 in volume ratio, and is a nonmagnetic particle powder for a nonmagnetic underlayer of a magnetic recording medium. Invention 1).

【0018】また、本発明は、本発明1の大粒径針状ヘ
マタイト粒子粉末の粒子表面及び/又は小粒径針状ヘマ
タイト粒子粉末の粒子表面が、アルミニウムの水酸化
物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ
素の酸化物から選ばれる少なくとも一種からなる表面被
覆物によって被覆されていることを特徴とする磁気記録
媒体の非磁性下地層用非磁性粒子粉末である(本発明
2)。
Further, according to the present invention, the particle surface of the large-sized acicular hematite particle powder and / or the small-sized acicular hematite particle powder of the present invention has an aluminum hydroxide or an aluminum oxide. A non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium, which is coated with a surface coating comprising at least one selected from the group consisting of hydroxides of silicon and oxides of silicon. ).

【0019】また、本発明は、非磁性支持体、該非磁性
支持体上に形成される非磁性粒子粉末及び結合剤樹脂を
含む非磁性下地層及び該非磁性下地層の上に形成される
磁性粒子粉末及び結合剤樹脂を含む磁気記録層からなる
磁気記録媒体において、前記非磁性粒子粉末が上記本発
明1及び本発明2に係る各非磁性下地層用非磁性粒子粉
末のいずれかであることを特徴とする磁気記録媒体であ
る。
The present invention also provides a non-magnetic support, a non-magnetic underlayer containing a non-magnetic particle powder and a binder resin formed on the non-magnetic support, and a magnetic particle formed on the non-magnetic under layer. In a magnetic recording medium comprising a magnetic recording layer containing a powder and a binder resin, the non-magnetic particle powder is any one of the non-magnetic particle powders for non-magnetic underlayer according to the first and second aspects of the present invention. It is a magnetic recording medium characterized by the following.

【0020】 本発明の構成をより詳しく説明すれば次
の通りである。
The configuration of the present invention will be described in more detail as follows.

【0021】 まず、本発明に係る非磁性下地層用非磁
性粒子粉末について述べる。
First, the nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention will be described.

【0022】 本発明に係る非磁性下地層用非磁性粒子
粉末は、平均長軸径が0.10〜0.30μmであっ
て、軸比が3.0〜9.5である大粒径針状ヘマタイト
粒子粉末と該大粒径針状ヘマタイト粒子粉末の平均長軸
径に対する平均長軸径の比が0.10〜0.83であっ
て、軸比が3.0〜9.5である小粒径針状ヘマタイト
粒子粉末との混合針状ヘマタイト粒子粉末である。
The nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention has a large diameter needle having an average major axis diameter of 0.10 to 0.30 μm and an axial ratio of 3.0 to 9.5. The ratio of the average major axis diameter to the average major axis diameter of the powdery hematite particle powder and the large-diameter acicular hematite particle powder is 0.10 to 0.83, and the axial ratio is 3.0 to 9.5. It is a mixed needle-like hematite particle powder with a small particle-size needle-like hematite particle powder.

【0023】本発明における各針状ヘマタイト粒子粉末
の粒子形状は、針状である。ここで「針状」とは、文字
どおりの針状はもちろん、紡錘状や米粒状などを含む意
味である。
The particle shape of each acicular hematite particle powder in the present invention is acicular. Here, the term "needle-shaped" means a needle-like shape, a spindle shape, a rice grain shape, and the like, as well as a literal needle-like shape.

【0024】粒子形状が粒状又は板状等の針状以外の場
合は、本発明の目的とするカレンダー処理による表面平
滑性の向上効果を得ることが困難となる。
When the particle shape is other than a granular or plate-like acicular shape, it is difficult to obtain the effect of improving the surface smoothness by the calendering treatment which is the object of the present invention.

【0025】本発明における大粒径針状ヘマタイト粒子
粉末及び小粒径針状ヘマタイト粒子粉末の各軸比は、
3.0〜9.5である。軸比が3.0未満の場合、十分
な強度を有する塗膜が得られ難い。軸比が9.5を超え
る場合、ビヒクル中での粒子の絡み合いが多くなり、分
散性が悪くなったり、粘度が増加したりすることがあ
る。得られる塗膜の強度及びビヒクル中での分散性を考
慮すると各針状ヘマタイト粒子粉末の軸比は、3.5〜
9.0が好ましく、より好ましくは、4.0〜8.5で
ある。
The axial ratio of the large-sized acicular hematite particles and the small-sized acicular hematite particles according to the present invention is as follows:
3.0 to 9.5. When the axial ratio is less than 3.0, it is difficult to obtain a coating film having sufficient strength. When the axial ratio exceeds 9.5, the entanglement of the particles in the vehicle increases, and the dispersibility may worsen or the viscosity may increase. In consideration of the strength of the obtained coating film and the dispersibility in the vehicle, the axial ratio of each acicular hematite particle powder is 3.5 to 3.5.
9.0 is preferred, and more preferably 4.0 to 8.5.

【0026】本発明における大粒径針状ヘマタイト粒子
粉末の平均長軸径に対する小粒径針状ヘマタイト粒子粉
末の平均長軸径の比は0.10〜0.83である。小粒
径針状ヘマタイト粒子粉末の平均長軸径の比が上記範囲
外の場合には、カレンダー処理による表面平滑性向上効
果が得られない。好ましくは、0.11〜0.80であ
り、より好ましくは、0.12〜0.75である。
In the present invention, the ratio of the average major axis diameter of the small-sized acicular hematite particles to the average major axis diameter of the large-sized acicular hematite particles is 0.10 to 0.83. If the ratio of the average major axis diameter of the small-diameter acicular hematite particle powder is out of the above range, the effect of improving the surface smoothness by the calendar treatment cannot be obtained. Preferably it is 0.11-0.80, More preferably, it is 0.12-0.75.

【0027】本発明における大粒径針状ヘマタイト粒子
粉末は平均長軸径が0.1〜0.3μmである。また、
長軸径の幾何標準偏差値が1.50以下、BET比表面
積値が35〜80m/gであることが好ましい。
The large-diameter acicular hematite particles according to the present invention have an average major axis diameter of 0.1 to 0.3 μm. Also,
It is preferable that the geometric standard deviation value of the major axis diameter is 1.50 or less, and the BET specific surface area value is 35 to 80 m 2 / g.

【0028】大粒径針状ヘマタイト粒子粉末の平均長軸
径が0.10μm未満の場合には、塗膜中での充填状態
が密になるためカレンダー処理による表面平滑効果が得
られにくい。0.30μmを超える場合には、粒子サイ
ズが大きすぎるため、塗膜の表面平滑性を害することが
ある。好ましくは、0.1〜0.28μm、より好まし
くは、0.1〜0.25μmである。
When the large-diameter acicular hematite particle powder has an average major axis diameter of less than 0.10 μm, the filling state in the coating film becomes dense, so that it is difficult to obtain a surface smoothing effect by calendering. If it exceeds 0.30 μm, the particle size is too large, which may impair the surface smoothness of the coating film. Preferably it is 0.1-0.28 μm, more preferably 0.1-0.25 μm.

【0029】大粒径針状ヘマタイト粒子粉末のBET比
表面積値が80m/gを超える場合には塗膜中での充
填状態が密になるため、カレンダー処理による表面平滑
効果が得られにくい。35m/g未満の場合には、粒
子サイズが大きすぎるため、塗膜の表面平滑性向上の観
点から好ましくない。得られる磁気記録媒体の表面平滑
性を考慮すれば、大粒径針状ヘマタイト粒子粉末のBE
T比表面積値は35〜75m/gがより好ましく、更
により好ましくは35〜70m/gである。
When the BET specific surface area value of the large-diameter acicular hematite particle powder exceeds 80 m 2 / g, the filling state in the coating film becomes dense, so that it is difficult to obtain a surface smoothing effect by calendering. If it is less than 35 m 2 / g, the particle size is too large, which is not preferable from the viewpoint of improving the surface smoothness of the coating film. Considering the surface smoothness of the obtained magnetic recording medium, the BE
T specific surface area value is more preferably between 35 and 75 2 / g, and even more preferably 35~70m 2 / g.

【0030】大粒径針状ヘマタイト粒子粉末の長軸径の
幾何標準偏差値が1.50を超える場合には、粒度分布
が大きく、粗大粒子が存在するため塗膜の表面平滑性を
害することがある。塗膜の表面平滑性を考慮すれば、よ
り好ましくは1.48以下、更により好ましくは1.4
5以下である。工業的な生産性を考慮すれば大粒径針状
ヘマタイト粒子粉末の長軸径の幾何標準偏差値の下限値
は1.01である。
When the geometric standard deviation of the major axis diameter of the large-sized acicular hematite particle powder exceeds 1.50, the particle size distribution is large and the presence of coarse particles impairs the surface smoothness of the coating film. There is. In consideration of the surface smoothness of the coating film, it is more preferably 1.48 or less, and still more preferably 1.4.
5 or less. In consideration of industrial productivity, the lower limit of the geometric standard deviation of the major axis diameter of the large-diameter acicular hematite particle powder is 1.01.

【0031】本発明における小粒径針状ヘマタイト粒子
粉末の平均長軸径は、大粒径針状ヘマタイト粒子粉末の
平均長軸径に対する小粒径針状ヘマタイト粒子粉末の平
均長軸径の比が0.10〜0.83の範囲のものであ
り、好ましくは0.01以上0.1μm未満、より好ま
しくは0.01〜0.09μmである。平均長軸径が
0.01μm未満の場合には、粒子の微粒子化による分
子間力の増大により、ビヒクル中における分散が困難と
なる。また、長軸径の幾何標準偏差値は1.50以下、
BET比表面積値は70〜200m/gであることが
好ましい。
The average major axis diameter of the acicular hematite particles having a small particle diameter in the present invention is the ratio of the average major axis diameter of the acicular hematite particles having a small particle diameter to the average major axis diameter of the acicular hematite particles having a large particle diameter. Is in the range of 0.10 to 0.83, preferably 0.01 or more and less than 0.1 μm, more preferably 0.01 to 0.09 μm. When the average major axis diameter is less than 0.01 μm, dispersion in a vehicle becomes difficult due to an increase in intermolecular force due to fine particles. Also, the geometric standard deviation of the major axis diameter is 1.50 or less,
The BET specific surface area value is preferably from 70 to 200 m 2 / g.

【0032】小粒径針状ヘマタイト粒子粉末のBET比
表面積値が200m/gを超える場合には、粒子の微
細化による分子間力の増大により凝集を起こしやすいた
め、非磁性塗料の製造時におけるビヒクル中への分散性
が低下する。BET比表面積値が70m/g未満の場
合には、小粒径針状ヘマタイト粒子粉末としては粗大な
粒子であったり、粒子相互間で焼結が生じた粒子となっ
ており、カレンダー処理による表面平滑効果が得られに
くい。得られる磁気記録媒体の表面平滑性及びビヒクル
中における分散性をを考慮すれば、小粒径針状ヘマタイ
ト粒子粉末のBET比表面積値は75〜200m/g
がより好ましく、更により好ましくは80〜200m
/gである。
When the BET specific surface area value of the small particle size acicular hematite particles exceeds 200 m 2 / g, aggregation tends to occur due to an increase in intermolecular force due to finer particles. , The dispersibility in the vehicle decreases. When the BET specific surface area is less than 70 m 2 / g, the small-sized needle-like hematite particles are coarse particles or particles in which sintering occurs between the particles. It is difficult to obtain a surface smoothing effect. Considering the surface smoothness of the obtained magnetic recording medium and the dispersibility in the vehicle, the BET specific surface area of the small-sized needle-like hematite particles is 75 to 200 m 2 / g.
Is more preferable, and still more preferably 80 to 200 m 2
/ G.

【0033】小粒径針状ヘマタイト粒子粉末の長軸径の
幾何標準偏差値が1.50を超える場合には、粒度分布
が大きく、超微粒子が存在するためビヒクル中での分散
が困難となり、塗膜の表面平滑性を害することがある。
塗膜の表面平滑性を考慮すれば、より好ましくは1.4
8以下、更により好ましくは1.45以下である。工業
的な生産性を考慮すれば大粒径針状ヘマタイト粒子粉末
の長軸径の幾何標準偏差値の下限値は1.01である。
If the geometric standard deviation of the major axis diameter of the small particle size acicular hematite particle powder exceeds 1.50, the particle size distribution is large and the dispersion in the vehicle becomes difficult due to the presence of ultrafine particles, The surface smoothness of the coating film may be impaired.
Considering the surface smoothness of the coating film, more preferably 1.4.
8 or less, still more preferably 1.45 or less. In consideration of industrial productivity, the lower limit of the geometric standard deviation of the major axis diameter of the large-diameter acicular hematite particle powder is 1.01.

【0034】本発明における大粒径針状ヘマタイト粒子
粉末と小粒径針状ヘマタイト粒子粉末との混合割合は、
体積比で20:80〜40:60であり、好ましくは2
5:75〜35:65である。大粒径針状ヘマタイト粒
子粉末と小粒径針状ヘマタイト粒子粉末の体積比が上記
範囲以外の場合には、カレンダー処理による表面平滑性
向上の効果が低下する。
The mixing ratio of the large-sized acicular hematite particles and the small-sized acicular hematite particles in the present invention is as follows:
The volume ratio is 20:80 to 40:60, preferably 2
5:75 to 35:65. When the volume ratio between the large-diameter acicular hematite particles and the small-diameter acicular hematite particles is out of the above range, the effect of improving the surface smoothness by the calendering treatment is reduced.

【0035】なお、カレンダー処理による表面平滑性の
向上効果は、大粒径針状ヘマタイト粒子粉末の軸比と小
粒径針状ヘマタイト粒子粉末の軸比が近似していればい
るほど大きくなることから、可能な限り、両粒子粉末の
軸比を近似させることが望ましい。
The effect of improving the surface smoothness by the calendering treatment increases as the axial ratio of the acicular hematite particles having a large particle diameter and the axial ratio of the acicular hematite particles having a small particle diameter become closer to each other. Therefore, it is desirable to approximate the axial ratio of both particle powders as much as possible.

【0036】本発明における混合針状へマタイト粒子粉
末は、必要により、大粒径針状ヘマタイト粒子粉末及び
/又は小粒径針状ヘマタイト粒子粉末の粒子表面がアル
ミニウムの水酸化物、アルミニウムの酸化物、ケイ素の
水酸化物及びケイ素の酸化物から選ばれる少なくとも1
種からなる表面被覆物によって被覆されていてもよい。
粒子表面が表面被覆物で被覆されている針状ヘマタイト
粒子粉末は、ビヒクル中に分散させる場合に、結合剤樹
脂とのなじみがよく、所望の分散度が得られ易い。
The mixed acicular hematite particle powder according to the present invention may have, if necessary, a surface of a large-acicular acicular hematite particle powder and / or a small-accurate acicular hematite particle powder whose surface is aluminum hydroxide or aluminum oxide. At least one selected from a substance, a hydroxide of silicon and an oxide of silicon
It may be coated with a surface coating consisting of seeds.
Needle-like hematite particle powder whose particle surface is coated with a surface coating has good compatibility with a binder resin when dispersed in a vehicle, and a desired degree of dispersion is easily obtained.

【0037】前記表面被覆物の量は、針状へマタイト粒
子粉末に対しアルミニウムの水酸化物やアルミニウムの
酸化物はAl換算で、ケイ素の水酸化物やケイ素の酸化
物はSiO換算で、それぞれ0.01〜50重量%が
好ましい。0.01重量%未満の場合には、被覆による
分散性向上効果がほとんどなく、50重量%を超える場
合には、被覆効果が飽和するため、必要以上に被覆する
意味がない。ビヒクル中における分散性向上効果及び工
業的な生産性を考慮すれば、0.05〜20重量%がよ
り好ましい。
The amount of the surface coating is such that aluminum hydroxide or aluminum oxide is converted to Al, silicon hydroxide or silicon oxide is converted to SiO 2 with respect to the acicular hematite particles. Each is preferably 0.01 to 50% by weight. If the amount is less than 0.01% by weight, the effect of improving the dispersibility by the coating is hardly obtained. Considering the effect of improving dispersibility in the vehicle and industrial productivity, 0.05 to 20% by weight is more preferable.

【0038】アルミニウム化合物とケイ素化合物とを併
せて使用する場合には、針状ヘマタイト粒子粉末に対
し、Al換算量とSiO換算量との総和で0.01〜
50重量%が好ましい。
When the aluminum compound and the silicon compound are used in combination, the total of the converted amount in Al and the converted amount in SiO 2 is 0.01 to
50% by weight is preferred.

【0039】 本発明における表面被覆物で被覆されて
いる針状へマタイト粒子粉末は、表面被覆物で被覆され
ていない本発明における針状へマタイト粒子粉末とほぼ
同程度の粒子サイズ、幾何標準偏差値、軸比及びBET
比表面積値を有している。
The acicular hematite particle powder coated with the surface coating according to the present invention has a particle size and a geometric standard deviation substantially equivalent to those of the acicular hematite particle powder according to the present invention not coated with the surface coating. Value, axial ratio and BET
It has a specific surface area value.

【0040】次に、本発明に係る磁気記録媒体について
述べる。
Next, the magnetic recording medium according to the present invention will be described.

【0041】本発明に係る磁気記録媒体は、非磁性支持
体、該非磁性支持体上に形成された非磁性下地層及び該
非磁性下地層上に形成された磁気記録層とからなる。
The magnetic recording medium according to the present invention comprises a non-magnetic support, a non-magnetic underlayer formed on the non-magnetic support, and a magnetic recording layer formed on the non-magnetic under layer.

【0042】前記非磁性支持体としては、現在、磁気記
録媒体に汎用されているポリエチレンテレフタレート、
ポリエチレン、ポリプロピレン、ポリカーボネート、ポ
リエチレンナフタレート、ポリアミド、ポリアミドイミ
ド、ポリイミド等の合成樹脂フィルム、アルミニウム、
ステンレス等金属の箔や板及び各種の紙を使用すること
ができる。その厚みは、材質により種々異なるが、通常
好ましくは1.0〜300μm、より好ましくは2.0
〜200μmである。
Examples of the non-magnetic support include polyethylene terephthalate, which is currently widely used for magnetic recording media,
Polyethylene, polypropylene, polycarbonate, polyethylene naphthalate, polyamide, polyamide imide, synthetic resin film such as polyimide, aluminum,
Metal foils and plates such as stainless steel and various types of paper can be used. The thickness varies depending on the material, but is usually preferably 1.0 to 300 μm, more preferably 2.0 to 300 μm.
200200 μm.

【0043】なお、磁気ディスクの場合には、一般にポ
リエチレンテレフタレートが用いられ、その厚みは、通
常50〜300μm、好ましくは60〜200μmであ
る。磁気テープの場合には、ポリエチレンテレフタレー
ト、ポリエチレンナフタレート、ポリアミドなどが用い
られ、ポリエチレンテレフタレートの厚みは、通常3〜
100μm、好ましくは4〜20μm、ポリエチレンナ
フタレートの厚みは、通常3〜50μm、好ましくは4
〜20μm、ポリアミドの厚みは、通常2〜10μm、
好ましくは3〜7μmである。
In the case of a magnetic disk, polyethylene terephthalate is generally used, and its thickness is usually 50 to 300 μm, preferably 60 to 200 μm. In the case of a magnetic tape, polyethylene terephthalate, polyethylene naphthalate, polyamide or the like is used, and the thickness of polyethylene terephthalate is usually 3 to
100 μm, preferably 4 to 20 μm, and the thickness of polyethylene naphthalate is usually 3 to 50 μm, preferably 4 μm.
~ 20μm, the thickness of the polyamide is usually 2 ~ 10μm,
Preferably it is 3 to 7 μm.

【0044】本発明における非磁性下地層は、本発明に
係る非磁性下地層用非磁性粒子粉末又は本発明に係る表
面被覆物で被覆されている非磁性下地層用非磁性粒子粉
末及び結合剤樹脂からなる。
The nonmagnetic underlayer according to the present invention comprises the nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention or the nonmagnetic particle powder for a nonmagnetic underlayer coated with the surface coating according to the present invention, and a binder. Made of resin.

【0045】結合剤樹脂としては、現在、磁気記録媒体
の製造にあたって汎用されている塩化ビニル−酢酸ビニ
ル共重合体、ウレタン樹脂、塩化ビニル−酢酸ビニル−
マレイン酸共重合体、ウレタンエラストマー、ブタジエ
ン−アクリロニトリル共重合体、ポリビニルブチラー
ル、ニトロセルロース等セルロース誘導体、ポリエステ
ル樹脂、ポリブタジエン等の合成ゴム系樹脂、エポキシ
樹脂、ポリアミド樹脂、ポリイソシアネート、電子線硬
化型アクリルウレタン樹脂等及びこれらの混合物を使用
することができる。また、各結合剤樹脂には−OH、−
COOH、−SO M、−OPO、−NH等の
極性基(但し、MはH、Na、Kである。)が含まれて
いてもよい。本発明における混合針状ヘマタイト粒子粉
末のビヒクル中における分散性を考慮すれば、極性基と
して−COOH、−SOMが含まれている結合剤樹脂
が好ましい。
As the binder resin, at present, magnetic recording media
PVC-vinyl acetate commonly used in the manufacture of
Copolymer, urethane resin, vinyl chloride-vinyl acetate-
Maleic acid copolymer, urethane elastomer, butadier
-Acrylonitrile copolymer, polyvinyl butyral
, Cellulose derivatives such as nitrocellulose, polyester
Resin, synthetic rubber resin such as polybutadiene, epoxy
Resin, polyamide resin, polyisocyanate, electron beam hardening
Uses acrylic urethane resin and mixtures of these
can do. Also, each binder resin has -OH,-
COOH, -SO 3M, -OPO2M2, -NH2Etc.
Polar groups (where M is H, Na, K)
May be. Mixed needle-like hematite particle powder in the present invention
Considering the dispersibility in the final vehicle,
-COOH, -SO3Binder resin containing M
Is preferred.

【0046】本発明における混合針状ヘマタイト粒子粉
末と結合剤樹脂との配合割合は、結合剤樹脂100重量
部に対し、混合針状ヘマタイト粒子粉末が5〜2000
重量部、好ましくは100〜1000重量部である。
The mixing ratio of the mixed needle-like hematite particle powder and the binder resin in the present invention is such that the mixed needle-like hematite particle powder is 5 to 2,000 per 100 parts by weight of the binder resin.
Parts by weight, preferably 100 to 1000 parts by weight.

【0047】混合針状ヘマタイト粒子粉末が5重量部未
満の場合には、非磁性塗料中の混合針状ヘマタイト粒子
粉末が少なすぎるため、塗膜にした時に、混合針状ヘマ
タイト粒子粉末の連続分散した層が得られず、塗膜表面
の平滑性及び塗膜の強度が不十分となる。2000重量
部を超える場合には、結合剤樹脂の量に対して混合針状
ヘマタイト粒子粉末が多すぎるため、非磁性塗料中で混
合針状ヘマタイト粒子粉末が十分に分散されず、その結
果、塗膜にした時に、十分な表面平滑性を有する塗膜が
得られ難い。また、混合針状ヘマタイト粒子粉末が結合
剤樹脂によって十分にバインドされないため、得られた
塗膜はもろいものとなりやすい。
When the mixed acicular hematite particle powder is less than 5 parts by weight, the mixed acicular hematite particle powder in the non-magnetic paint is too small. Layer cannot be obtained, and the smoothness of the coating film surface and the strength of the coating film become insufficient. If the amount exceeds 2000 parts by weight, the mixed needle-like hematite particles are not sufficiently dispersed in the non-magnetic paint because the amount of the mixed needle-like hematite particles is too large with respect to the amount of the binder resin. When formed into a film, it is difficult to obtain a coating film having sufficient surface smoothness. Further, since the mixed needle-like hematite particle powder is not sufficiently bound by the binder resin, the obtained coating film tends to be brittle.

【0048】非磁性支持体上に形成された非磁性下地層
の塗膜厚さは、0.2〜10μmであることが好まし
い。0.2μm未満の場合には、非磁性支持体の表面粗
さを改善することが困難となり、強度も不十分となりや
すい。磁気記録媒体の薄層化及び塗膜の強度を考慮すれ
ば、塗膜厚さはより好ましくは0.5〜5μmである。
The coating thickness of the non-magnetic underlayer formed on the non-magnetic support is preferably 0.2 to 10 μm. If it is less than 0.2 μm, it becomes difficult to improve the surface roughness of the nonmagnetic support, and the strength tends to be insufficient. In consideration of the thickness of the magnetic recording medium and the strength of the coating film, the thickness of the coating film is more preferably 0.5 to 5 μm.

【0049】なお、非磁性下地層に、磁気記録媒体の製
造に通常用いられている潤滑剤、研磨剤、帯電防止剤等
を添加してもよい。
The non-magnetic underlayer may contain a lubricant, an abrasive, an antistatic agent and the like which are usually used for manufacturing a magnetic recording medium.

【0050】粒子表面が前記表面被覆物によって被覆さ
れていない本発明に係る非磁性粒子粉末を用いた非磁性
下地層は、塗膜の光沢度が175〜300%、好ましく
は180〜300%、より好ましくは185〜300%
であって、塗膜表面粗度Raが0.5〜8.5nm、好
ましくは0.5〜8.0nmであって、塗膜の強度は、
ヤング率(相対値)が126〜160、好ましくは12
8〜160であり、塗膜の収縮率は10〜20%、好ま
しくは11〜20%である。
The nonmagnetic underlayer using the nonmagnetic particle powder according to the present invention in which the particle surface is not coated with the surface coating has a glossiness of the coating film of 175 to 300%, preferably 180 to 300%, More preferably 185 to 300%
And the coating film surface roughness Ra is 0.5 to 8.5 nm, preferably 0.5 to 8.0 nm, and the strength of the coating film is
Young's modulus (relative value) is 126 to 160, preferably 12
8 to 160, and the shrinkage of the coating film is 10 to 20%, preferably 11 to 20%.

【0051】粒子表面が前記表面被覆物によって被覆さ
れている本発明に係る非磁性粒子粉末を用いた非磁性下
地層は、塗膜の光沢度が180〜300%、好ましくは
185〜300%、より好ましくは190〜300%で
あって、塗膜表面粗度Raが0.5〜8.0nm、好ま
しくは0.5〜7.5nmであって、塗膜の強度は、ヤ
ング率(相対値)が128〜160、好ましくは130
〜160であり、塗膜の収縮率は10.5〜20%、好
ましくは11.5〜20%である。
The non-magnetic underlayer using the non-magnetic particle powder according to the present invention, in which the particle surface is coated with the surface coating, has a glossiness of the coating film of 180 to 300%, preferably 185 to 300%, It is more preferably 190 to 300%, the coating film surface roughness Ra is 0.5 to 8.0 nm, preferably 0.5 to 7.5 nm, and the strength of the coating film is Young's modulus (relative value). ) Is from 128 to 160, preferably 130
And the shrinkage of the coating film is 10.5 to 20%, preferably 11.5 to 20%.

【0052】本発明における磁気記録層は、磁性粒子粉
末及び結合剤樹脂からなる。
The magnetic recording layer according to the present invention comprises magnetic particles and a binder resin.

【0053】磁性粒子粉末としては、マグヘマイト粒子
粉末(γ−Fe)やマグネタイト粒子粉末(Fe
・Fe、0<x≦1)等の磁性酸化鉄粒子粉
末にCo又はCo及びFeを被着させたCo被着型磁性
酸化鉄粒子粉末、前記Co被着型磁性酸化鉄粒子粉末に
Fe以外のCo、Al、Ni、P、Zn、Si、B、希
土類金属等の異種元素を含有させたCo被着型磁性酸化
鉄粒子粉末、鉄を主成分とする針状金属磁性粒子粉末、
鉄以外のCo、Al、Ni、P、Zn、Si、B、希土
類金属等を含有する針状鉄合金磁性粒子粉末、Ba、S
r、又はBa−Srを含有するマグネトプランバイト型
板状フェライト粒子粉末並びにこれらにCo、Ni、Z
n、Mn、Mg、Ti、Sn、Zr、Nb、Cu、Mo
等の2価及び4価の金属から選ばれた保磁力低減剤の1
種又は2種以上を含有させた板状マグネトプランバイト
型フェライト粒子粉末等のいずれかを用いることができ
る。
As the magnetic particles, maghemite particles (γ-Fe 2 O 3 ) and magnetite particles ( Fe
Co-coated magnetic iron oxide particles obtained by coating Co or Co and Fe on magnetic iron oxide particles such as O x .Fe 2 O 3 , 0 <x ≦ 1); Co-coated magnetic iron oxide particle powder containing different elements such as Co, Al, Ni, P, Zn, Si, B, and rare earth metals other than Fe in the particle powder, and acicular metal magnetism mainly composed of iron Particle powder,
Acicular iron alloy magnetic particle powder containing Co, Al, Ni, P, Zn, Si, B, rare earth metal, etc. other than iron, Ba, S
r or Ba-Sr-containing magnetoplumbite-type plate-like ferrite particles and Co, Ni, Z
n, Mn, Mg, Ti, Sn, Zr, Nb, Cu, Mo
One of coercive force reducing agents selected from divalent and tetravalent metals such as
Either a plate-like magnetoplumbite-type ferrite particle powder or the like containing two or more species can be used.

【0054】なお、近年の短波長記録、高密度記録を考
慮すれば、鉄を主成分とする針状金属磁性粒子粉末、鉄
以外のCo、Al、Ni、P、Zn、Si、B、希土類
金属等を含有する針状鉄合金磁性粒子粉末等が好まし
い。
In view of recent short-wavelength recording and high-density recording, acicular metallic magnetic particles containing iron as a main component, Co, Al, Ni, P, Zn, Si, B, and rare earths other than iron Needle-like iron alloy magnetic particles containing a metal or the like are preferred.

【0055】磁性粒子粉末は、平均長軸径(板状粒子の
場合は平均長軸径)が0.01〜0.5μm、好ましく
は0.03〜0.3μmである。該磁性粒子粉末の粒子
形状は針状もしくは板状が好ましい。ここで「針状」と
は、文字通りの針状はもちろん、紡錘状や米粒状などを
含む意味である。
The magnetic particle powder has an average major axis diameter (average major axis diameter in the case of plate-like particles) of 0.01 to 0.5 μm, preferably 0.03 to 0.3 μm. The particle shape of the magnetic particle powder is preferably acicular or plate-like. Here, the term "needle-shaped" means not only a needle-like shape in a literal sense but also a spindle-shaped or rice-grained shape.

【0056】また、磁性粒子粉末の粒子形状が針状の場
合、軸比は3.0以上、好ましくは5以上であり、ビヒ
クル中における分散性を考慮すれば、その上限値は15
であり、好ましくは10である。
When the magnetic particle powder has a needle shape, the axial ratio is 3.0 or more, preferably 5 or more, and the upper limit value is 15 in consideration of the dispersibility in the vehicle.
And preferably 10.

【0057】磁性粒子粉末の粒子形状が板状の場合、板
状比(粒子の平均長軸径と粒子の平均厚みの比)は2以
上、好ましくは3以上であり、ビヒクル中における分散
性を考慮すれば、その上限値は20であり、好ましくは
15である。
When the particle shape of the magnetic particle powder is plate-like, the plate-like ratio (ratio of the average major axis diameter of the particles to the average thickness of the particles) is 2 or more, preferably 3 or more, and the dispersibility in the vehicle is improved. Considering that, the upper limit is 20, and preferably 15.

【0058】磁性粒子粉末の磁気特性は、保磁力値が3
9.8〜318.3kA/m(500〜4000O
e)、好ましくは43.8〜318.3kA/m(55
0〜4000Oe)であって、飽和磁化値が50〜17
0Am/kg(50〜170emu/g)、好ましく
は60〜170Am/kg(60〜170emu/
g)である。
The magnetic properties of the magnetic particles are as follows.
9.8 to 318.3 kA / m (500 to 4000 O
e), preferably 43.8 to 318.3 kA / m (55
0 to 4000 Oe) and the saturation magnetization value is 50 to 17
0Am 2 / kg (50~170emu / g ), preferably 60~170Am 2 / kg (60~170emu /
g).

【0059】高密度記録化等を考慮して、磁性粒子粉末
として鉄を主成分とする針状金属磁性粒子粉末又は針状
鉄合金磁性粒子粉末を用いた場合の磁気特性は、保磁力
値が63.7〜278.5kA/m(800〜3500
Oe)、好ましくは71.6〜278.5kA/m(9
00〜3500Oe)、飽和磁化値が90〜170Am
/kg(90〜170emu/g)、好ましくは10
0〜170Am/kg(100〜170emu/g)
である。
In consideration of high-density recording and the like, the magnetic properties when using acicular metallic magnetic particles containing iron as the main component or acicular iron alloy magnetic particles as the magnetic particles are as follows. 63.7 to 278.5 kA / m (800 to 3500
Oe), preferably 71.6 to 278.5 kA / m (9
00-3500 Oe), and the saturation magnetization value is 90-170 Am
2 / kg (90-170 emu / g), preferably 10
0~170Am 2 / kg (100~170emu / g )
It is.

【0060】結合剤樹脂としては、前記非磁性下地層を
形成するために用いた結合剤樹脂を使用することができ
る。
As the binder resin, the binder resin used for forming the nonmagnetic underlayer can be used.

【0061】非磁性下地層上に設けられた磁気記録層の
塗膜厚さは、0.01〜5μmの範囲である。0.01
μm未満の場合には、均一な塗布が困難であり、塗りむ
ら等の現象が出やすくなるため好ましくない。5μmを
超える場合には、反磁界の影響のため、所望の電磁変換
特性が得られにくくなる。好ましくは0.05〜1μm
の範囲である。
The coating thickness of the magnetic recording layer provided on the non-magnetic underlayer is in the range of 0.01 to 5 μm. 0.01
When the thickness is less than μm, uniform application is difficult and phenomena such as uneven coating are likely to occur, which is not preferable. If it exceeds 5 μm, it becomes difficult to obtain desired electromagnetic conversion characteristics due to the influence of a demagnetizing field. Preferably 0.05 to 1 μm
Range.

【0062】磁性粒子粉末と結合剤樹脂との配合割合
は、結合剤樹脂100重量部に対し、磁性粒子粉末が2
00〜2000重量部、好ましくは300〜1500重
量部である。
The mixing ratio of the magnetic particle powder and the binder resin is such that the magnetic particle powder is 2 parts per 100 parts by weight of the binder resin.
It is 00 to 2000 parts by weight, preferably 300 to 1500 parts by weight.

【0063】磁気記録層中には、通常用いられている潤
滑剤、研磨剤、帯電防止剤等を添加してもよい。
A commonly used lubricant, abrasive, antistatic agent and the like may be added to the magnetic recording layer.

【0064】本発明に係る磁気記録媒体は、磁性粒子粉
末として前記磁性粒子粉末を用い、非磁性下地層用非磁
性粒子粉末として表面被覆物によって被覆されていない
本発明に係る非磁性下地層用非磁性粒子粉末を用いた場
合には、保磁力値が39.8〜318.3kA/m(5
00〜4000Oe)、好ましくは43.8〜318.
3kA/m(550〜4000Oe)、角形比(残留磁
束密度Br/飽和磁束密度Bm)が0.85〜0.9
5、好ましくは0.86〜0.95、塗膜の光沢度が1
65〜300%、好ましくは170〜300%、塗膜表
面粗度Raが9.0nm以下、好ましくは2.0〜8.
5nm、より好ましくは2.0〜8.0nm、ヤング率
が128〜160、好ましくは130〜160、塗膜の
収縮率は8.5〜20%、好ましくは9.0〜20%、
より好ましくは9,5〜20%である。
The magnetic recording medium according to the present invention uses the magnetic particle powder as the magnetic particle powder, and the non-magnetic underlayer according to the present invention, which is not coated with a surface coating as the nonmagnetic particle powder for the nonmagnetic underlayer. When non-magnetic particle powder is used, the coercive force value is 39.8 to 318.3 kA / m (5
00 to 4000 Oe), preferably 43.8 to 318.
3 kA / m (550-4000 Oe), squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm) of 0.85-0.9
5, preferably 0.86 to 0.95, and the glossiness of the coating film is 1
65-300%, preferably 170-300%, the coating film surface roughness Ra is 9.0 nm or less, preferably 2.0-8.
5 nm, more preferably 2.0 to 8.0 nm, the Young's modulus is 128 to 160, preferably 130 to 160, the shrinkage of the coating film is 8.5 to 20%, preferably 9.0 to 20%,
More preferably, it is 9.5 to 20%.

【0065】本発明に係る磁気記録媒体は、磁性粒子粉
末として前記磁性粒子粉末を用い、非磁性下地層用非磁
性粒子粉末として表面被覆物によって被覆されている本
発明に係る非磁性下地層用非磁性粒子粉末を用いた場合
には、保磁力値が39.8〜318.3kA/m(50
0〜4000Oe)、好ましくは39.8〜318.3
kA/m(550〜4000Oe)、角形比(残留磁束
密度Br/飽和磁束密度Bm)が0.85〜0.95、
好ましくは0.86〜0.95、塗膜の光沢度が170
〜300%、好ましくは175〜300%、塗膜表面粗
度Raが8.5nm以下、好ましくは2.0〜8.0n
m、より好ましくは2.0〜7.5nm、ヤング率が1
30〜160、好ましくは132〜160、塗膜の収縮
率は9.0〜20%、好ましくは9.5〜20%、より
好ましくは10.0〜20%である。
The magnetic recording medium according to the present invention uses the above magnetic particle powder as the magnetic particle powder and is coated with a surface coating as the nonmagnetic particle powder for the nonmagnetic underlayer according to the present invention. When non-magnetic particle powder is used, the coercive force value is 39.8 to 318.3 kA / m (50
0 to 4000 Oe), preferably 39.8 to 318.3.
kA / m (550-4000 Oe), squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm) of 0.85-0.95,
Preferably 0.86 to 0.95, and the glossiness of the coating film is 170
To 300%, preferably 175 to 300%, and the coating film surface roughness Ra is 8.5 nm or less, preferably 2.0 to 8.0 n.
m, more preferably 2.0 to 7.5 nm, and a Young's modulus of 1
30 to 160, preferably 132 to 160, and the shrinkage of the coating film is 9.0 to 20%, preferably 9.5 to 20%, more preferably 10.0 to 20%.

【0066】高密度記録等を考慮して、磁性粒子粉末と
して鉄を主成分とする針状金属磁性粒子粉末又は針状鉄
合金磁性粒子粉末を用い、非磁性下地層用非磁性粒子粉
末として表面被覆物によって被覆されていない本発明に
係る非磁性下地層用非磁性粒子粉末を用いた場合には、
保磁力値が63.7〜278.5kA/m(800〜3
500Oe)、好ましくは71.6〜278.5kA/
m(900〜3500Oe)、角形比(残留磁束密度B
r/飽和磁束密度Bm)が0.87〜0.95、好まし
くは0.88〜0.95、塗膜の光沢度が195〜30
0%、好ましくは200〜300%、塗膜表面粗度Ra
が8.0nm以下、好ましくは2.0〜7.5nm、よ
り好ましくは2.0〜7.0nm、ヤング率が128〜
160、好ましくは130〜160、塗膜の収縮率は
8.5〜20%、好ましくは9.0〜20%、より好ま
しくは9.5〜20%である。
In consideration of high-density recording and the like, a needle-like metal magnetic particle powder or a needle-like iron alloy magnetic particle powder containing iron as a main component is used as the magnetic particle powder, and the surface is used as the non-magnetic particle powder for the non-magnetic underlayer. When using the non-magnetic particle powder for non-magnetic underlayer according to the present invention not coated with the coating,
The coercive force value is 63.7 to 278.5 kA / m (800 to 3
500 Oe), preferably 71.6 to 278.5 kA /
m (900-3500 Oe), squareness ratio (residual magnetic flux density B
r / saturation magnetic flux density Bm) is 0.87 to 0.95, preferably 0.88 to 0.95, and the glossiness of the coating film is 195 to 30.
0%, preferably 200-300%, coating film surface roughness Ra
Is 8.0 nm or less, preferably 2.0 to 7.5 nm, more preferably 2.0 to 7.0 nm, and the Young's modulus is 128 to
160, preferably 130 to 160, and the shrinkage of the coating film is 8.5 to 20%, preferably 9.0 to 20%, more preferably 9.5 to 20%.

【0067】磁性粒子粉末として鉄を主成分とする針状
金属磁性粒子粉末又は針状鉄合金磁性粒子粉末を用い、
非磁性下地層用非磁性粒子粉末として表面被覆物によっ
て被覆されている本発明に係る非磁性下地層用非磁性粒
子粉末を用いた場合には、保磁力値が63.7〜27
8.5kA/m(800〜3500Oe)、好ましくは
71.6〜278.5kA/m(900〜3500O
e)、角形比(残留磁束密度Br/飽和磁束密度Bm)
が0.87〜0.95、好ましくは0.88〜0.9
5、塗膜の光沢度が200〜300%、好ましくは20
5〜300%、塗膜表面粗度Raが7.5nm以下、好
ましくは2.0〜7.0nm、より好ましくは2.0〜
6.5nm、ヤング率が130〜160、好ましくは1
32〜160、塗膜の収縮率は9.0〜20%、好まし
くは9.5〜20%、より好ましくは10.0〜20%
である。
As the magnetic particle powder, acicular metal magnetic particle powder containing iron as a main component or acicular iron alloy magnetic particle powder is used.
When the nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention coated with a surface coating is used as the nonmagnetic particle powder for a nonmagnetic underlayer, the coercive force value is 63.7 to 27.
8.5 kA / m (800-3500 Oe), preferably 71.6-278.5 kA / m (900-3500 Oe)
e), squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm)
Is 0.87 to 0.95, preferably 0.88 to 0.9
5. The glossiness of the coating film is 200 to 300%, preferably 20
5 to 300%, the coating film surface roughness Ra is 7.5 nm or less, preferably 2.0 to 7.0 nm, more preferably 2.0 to 7.0 nm.
6.5 nm, Young's modulus is 130 to 160, preferably 1
32-160, shrinkage of coating film is 9.0-20%, preferably 9.5-20%, more preferably 10.0-20%
It is.

【0068】 次に、本発明に係る非磁性下地層用非磁
性粒子粉末の製造法について述べる。
Next, a method for producing the nonmagnetic particle powder for a nonmagnetic underlayer according to the present invention will be described.

【0069】本発明に係る非磁性下地層用非磁性粒子粉
末は、大粒径針状ヘマタイト粒子粉末と小粒径針状ヘマ
タイト粒子粉末を混合処理することにより得ることがで
きる。
The non-magnetic particle powder for a non-magnetic underlayer according to the present invention can be obtained by mixing a large particle acicular hematite particle powder and a small particle acicular hematite particle powder.

【0070】 本発明における大粒径針状ヘマタイト粒
子粉末及び小粒径針状ヘマタイト粒子粉末は、通常の方
法によって得ることができ、例えば、第一鉄塩と水酸化
アルカリ水溶液、炭酸アルカリ水溶液又は水酸化アルカ
リ・炭酸アルカリ水溶液のいずれかの水溶液を用いて反
応して得られる鉄含有沈殿物を含む懸濁液に空気等の酸
素含有ガスを通気しゲータイト粒子粉末を生成させ、該
ゲータイト粒子粉末を550〜850℃の温度範囲で加
熱脱水処理して得ることができる。
The large-diameter acicular hematite particle powder and the small-diameter acicular hematite particle powder in the present invention can be obtained by a usual method, for example, a ferrous salt and an alkali hydroxide aqueous solution, an alkali carbonate aqueous solution or An oxygen-containing gas such as air is passed through a suspension containing an iron-containing precipitate obtained by a reaction using any one of an aqueous solution of an alkali hydroxide and an alkali carbonate to generate goethite particle powder. Can be obtained by heat dehydration treatment in a temperature range of 550 to 850 ° C.

【0071】平均長軸径の制御は、ゲータイト粒子の生
成反応中に、通常添加されているNi、Zn、P、Si
等の異種元素を添加したり、反応温度、反応時間等の反
応条件を制御することによって行うことができる。
The control of the average major axis diameter is performed during the reaction of forming goethite particles by adding Ni, Zn, P, Si
And the like, or by controlling reaction conditions such as reaction temperature and reaction time.

【0072】本発明における大粒径針状ヘマタイト粒子
粉末と小粒径針状ヘマタイト粒子粉末の混合処理のため
の機器としては、エッジランナー、ヘンシェルミキサー
等を使用することができる。エッジランナーとしては、
(株)松本鋳造鉄工所製の「サンドミル」や新東工業
(株)製の「ミックスマラー」等が挙げられる。
In the present invention, an edge runner, a Henschel mixer, or the like can be used as a device for mixing the large-diameter acicular hematite particles and the small-diameter acicular hematite particles. As an edge runner,
"Sandmill" manufactured by Matsumoto Casting Iron Works, "Mix Muller" manufactured by Shinto Kogyo Co., Ltd., and the like.

【0073】混合処理の荷重は、147〜784N/c
m(15〜80Kg/cm)が好ましい。
The load of the mixing process is 147 to 784 N / c.
m (15 to 80 kg / cm) is preferred.

【0074】 混合処理の時間は、10〜120分が好
ましい。
The mixing time is preferably from 10 to 120 minutes.

【0075】なお、混合処理を行う前にホモミキサー、
横型サンドグラインダー等によって粒子の凝集を解きほ
ぐしておくことが好ましい。
Before performing the mixing process, a homomixer
It is preferable to disperse the aggregation of the particles by a horizontal sand grinder or the like.

【0076】本発明における表面被覆物により被覆され
た非磁性下地層用非磁性粒子粉末は、大粒径針状ヘマタ
イト粒子粉末又は小粒径針状ヘマタイト粒子粉末のどち
らかを表面被覆物により表面処理した後混合処理を行う
こと、又は、大粒径針状ヘマタイト粒子粉末及び小粒径
針状ヘマタイト粒子粉末を別々に表面被覆物により表面
処理した後混合処理を行うこと、又は、大粒径針状ヘマ
タイト粒子粉末と小粒径針状ヘマタイト粒子粉末とを同
時に表面被覆物により表面処理した後混合処理を行うこ
とにより得ることができる。
The non-magnetic particle powder for the non-magnetic underlayer coated with the surface coating according to the present invention is obtained by coating either the large-diameter acicular hematite particles or the small-diameter acicular hematite particles with the surface coating. After the treatment, to perform a mixing treatment, or to perform a large particle size acicular hematite particle powder and a small particle size acicular hematite particle powder separately after surface treatment with a surface coating, or to perform a large particle size It can be obtained by simultaneously treating the surface of the acicular hematite particle powder and the small-diameter acicular hematite particle powder with a surface coating and then performing a mixing treatment.

【0077】針状ヘマタイト粒子の表面被覆物による表
面処理は、大粒径針状ヘマタイト粒子粉末及び/又は小
粒径針状ヘマタイト粒子粉末を分散して得られる水懸濁
液に、アルミニウム化合物、ケイ素化合物又は当該両化
合物を添加して混合攪拌することにより、又は、必要に
より、混合攪拌後にpH値を調整することにより、前記
針状ヘマタイト粒子粉末の粒子表面を、アルミニウムの
水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及
びケイ素の酸化物から選ばれる一種又は二種以上の化合
物で被覆し、次いで、濾別、水洗、乾燥、粉砕する。必
要により、更に、脱気・圧密処理等を施してもよい。
The surface treatment of the acicular hematite particles with the surface coating is carried out by dispersing an aluminum compound, an aqueous suspension obtained by dispersing the acicular hematite particle powder having a large particle diameter and / or the acicular hematite particle powder having a small particle diameter. By adding a silicon compound or both compounds and mixing and stirring, or if necessary, by adjusting the pH value after mixing and stirring, the particle surface of the acicular hematite particle powder is changed to a hydroxide of aluminum, aluminum hydroxide. , A hydroxide of silicon and one or more compounds selected from oxides of silicon, followed by filtration, washing with water, drying and pulverization. If necessary, a deaeration / consolidation treatment may be performed.

【0078】アルミニウム化合物としては、酢酸アルミ
ニウム、硫酸アルミニウム、塩化アルミニウム、硝酸ア
ルミニウム等のアルミニウム塩や、アルミン酸ナトリウ
ム等のアルミン酸アルカリ塩等が使用できる。ケイ素化
合物としては、3号水ガラス、オルトケイ酸ナトリウ
ム、メタケイ酸ナトリウム等が使用できる。
As the aluminum compound, aluminum salts such as aluminum acetate, aluminum sulfate, aluminum chloride and aluminum nitrate, and alkali aluminates such as sodium aluminate can be used. As the silicon compound, No. 3 water glass, sodium orthosilicate, sodium metasilicate and the like can be used.

【0079】次に、本発明に係る磁気記録媒体の製造法
について述べる。
Next, a method for manufacturing a magnetic recording medium according to the present invention will be described.

【0080】前記非磁性下地層及び前記磁気記録層の形
成に用いる溶剤としては、磁気記録媒体に汎用されてい
るメチルエチルケトン、トルエン、シクロヘキサノン、
メチルイソブチルケトン、テトラヒドロフラン及びその
混合物等を使用することができる。
As the solvent used for forming the nonmagnetic underlayer and the magnetic recording layer, methyl ethyl ketone, toluene, cyclohexanone, and the like generally used for magnetic recording media are used.
Methyl isobutyl ketone, tetrahydrofuran and mixtures thereof can be used.

【0081】溶剤の使用量は、粒子粉末100重量部に
対しその総量で65〜1000重量部である。65重量
部未満では塗料とした場合に粘度が高くなりすぎ塗布が
困難となる。1000重量部を超える場合には、塗膜を
形成する際の溶剤の揮発量が多くなりすぎ工業的に不利
となる。
The amount of the solvent used is 65 to 1000 parts by weight in total with respect to 100 parts by weight of the particle powder. If the amount is less than 65 parts by weight, the viscosity becomes too high in the case of a paint, and application becomes difficult. If the amount exceeds 1000 parts by weight, the amount of the solvent volatilized when forming a coating film becomes too large, which is industrially disadvantageous.

【0082】[0082]

【発明の実施の形態】本発明の代表的な実施の形態は、
次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows.
It is as follows.

【0083】粒子の平均長軸径、平均短軸径は、電子顕
微鏡写真(×30,000)を縦方向及び横方向にそれ
ぞれ4倍に拡大した写真に示される粒子約350個につ
いて長軸径、短軸径をそれぞれ測定し、その平均値で示
した。
The average major axis diameter and average minor axis diameter of the particles were determined by measuring the major axis diameter of about 350 particles shown in an electron micrograph (× 30,000) enlarged four times in the vertical and horizontal directions, respectively. And the minor axis diameter were measured, and the average value was shown.

【0084】軸比は、平均長軸径と平均短軸径との比
で、板状比は、平均長軸径と平均厚みとの比で示した。
The axial ratio is the ratio between the average major axis diameter and the average minor axis diameter, and the plate ratio is the ratio between the average major axis diameter and the average thickness.

【0085】粒子の長軸径の粒度分布は、下記の方法に
より求めた値で示した。
The particle size distribution of the major axis diameter of the particles was shown by a value obtained by the following method.

【0086】即ち、上記拡大写真に示される粒子の長軸
径を測定した値を、その測定値から計算して求めた粒子
の実際の長軸径と個数から統計学的手法に従って対数正
規確率紙上に横軸に長軸径を、縦軸に所定の長軸径区間
のそれぞれに属する粒子の累積個数(積算フルイ下)を
百分率でプロットする。そして、このグラフから粒子の
個数が50%及び84.13%のそれぞれに相当する長
軸径の値を読みとり、幾何標準偏差値=積算フルイ下8
4.13%における長軸径/積算フルイ下50%におけ
る長軸径(幾何平均径)に従って算出した値で示した。
幾何標準偏差値が1に近いほど、粒子の粒度分布が優れ
ていることを意味する。
That is, a value obtained by measuring the major axis diameter of the particles shown in the above enlarged photograph is calculated on the logarithmic normal probability paper from the actual major axis diameter and the number of particles calculated from the measured values according to a statistical method. The horizontal axis represents the major axis diameter, and the vertical axis represents the percentage of the cumulative number of particles (under the integrated screen) belonging to each of the predetermined major axis diameter sections. Then, the value of the major axis diameter corresponding to each of 50% and 84.13% of the number of particles is read from this graph, and the geometric standard deviation value = 8
The value was calculated according to the major axis diameter at 4.13% / the major axis diameter (geometric mean diameter) at 50% below the integrated screen.
The closer the geometric standard deviation value is to 1, the better the particle size distribution of the particles.

【0087】比表面積値はBET法により測定した値で
示した。
The specific surface area was indicated by a value measured by the BET method.

【0088】針状ヘマタイト粒子粉末及び磁性粒子粉末
の粒子内部や粒子表面に存在するAl量及びSi量のそ
れぞれは「蛍光X線分析装置3063M型」(理学電機
工業(株)製)を使用し、JIS K0119の「けい
光X線分析通則」に従って測定した。
The amount of Al and the amount of Si present inside the particles of the acicular hematite particle powder and the magnetic particle powder and on the surface of the particles were measured using a “fluorescent X-ray analyzer 3063M” (manufactured by Rigaku Corporation). And JIS K0119, "General rules for X-ray fluorescence analysis".

【0089】塗料粘度は、得られた塗料の25℃におけ
る塗料粘度を、E型粘度計EMD−R(株式会社東京計
器製)を用いて測定し、ずり速度D=1.92sec
−1における値で示した。
The paint viscosity was measured at 25 ° C. using an E-type viscometer EMD-R (manufactured by Tokyo Keiki Co., Ltd.), and the shear rate D was 1.92 sec.
It was shown by the value at -1 .

【0090】非磁性下地層及び磁気記録層の塗膜表面の
光沢度は、「グロスメーターUGV−5D」(スガ試験
機株式会社製)を用いて塗膜の45°光沢度を測定して
求めた。
The glossiness of the coating surface of the nonmagnetic underlayer and the magnetic recording layer was determined by measuring the 45 ° glossiness of the coating film using “Gloss Meter UGV-5D” (manufactured by Suga Test Instruments Co., Ltd.). Was.

【0091】表面粗度Raは、「Surfcom−57
5A」(東京精密株式会社製)を用いて塗布膜の中心線
平均粗さを測定した。
The surface roughness Ra is “Surfcom-57
The center line average roughness of the coating film was measured using “5A” (manufactured by Tokyo Seimitsu Co., Ltd.).

【0092】塗膜の強度は、「オートグラフ」(株式会
社島津製作所製)を用いて塗膜のヤング率を測定し、市
販ビデオテープ「AV T−120(日本ビクター株式
会社製)」のヤング率との相対値で表した。相対値が高
いほど塗膜の強度が良好であることを示す。
The strength of the coating film was measured by measuring the Young's modulus of the coating film using “Autograph” (manufactured by Shimadzu Corporation) and determining the Young's modulus of a commercially available video tape “AV T-120 (manufactured by Victor Company of Japan, Ltd.)”. It was expressed as a relative value to the rate. The higher the relative value, the better the strength of the coating film.

【0093】磁気記録媒体を構成する非磁性支持体、非
磁性下地層及び磁気記録層の各層の厚みは、次の通りの
測定手法によって測定した。
The thickness of each of the non-magnetic support, the non-magnetic underlayer, and the magnetic recording layer constituting the magnetic recording medium was measured by the following measuring method.

【0094】デジタル電子マイクロメーターK351C
(安立電気株式会社製)を用いて、先ず、非磁性支持体
の膜厚(A)を測定する。次に、非磁性支持体と該非磁
性支持体上に形成された非磁性下地層との厚み(B)
(非磁性支持体の厚みと非磁性下地層の厚みとの総和)
を同様にして測定する。更に、非磁性下地層上に磁気記
録層を形成することにより得られた磁気記録媒体の厚み
(C)(非磁性支持体の厚みと非磁性下地層の厚みと磁
気記録層の厚みとの総和)を同様にして測定する。そし
て、非磁性下地層の厚みは(B)−(A)で示し、磁気
記録層の厚みは(C)−(B)で示した。
Digital electronic micrometer K351C
First, the film thickness (A) of the nonmagnetic support is measured using (manufactured by Anritsu Electric Co., Ltd.). Next, the thickness (B) of the nonmagnetic support and the nonmagnetic underlayer formed on the nonmagnetic support
(Sum of the thickness of the nonmagnetic support and the thickness of the nonmagnetic underlayer)
Is measured in the same manner. Further, the thickness (C) of the magnetic recording medium obtained by forming the magnetic recording layer on the nonmagnetic underlayer (the sum of the thickness of the nonmagnetic support, the thickness of the nonmagnetic underlayer, and the thickness of the magnetic recording layer) ) Is measured in the same manner. The thickness of the nonmagnetic underlayer is shown by (B)-(A), and the thickness of the magnetic recording layer is shown by (C)-(B).

【0095】磁性粒子粉末及び磁気記録媒体の磁気特性
は、「振動試料型磁力計VSM−3S−15」(東英工
業株式会社製)を使用し、外部磁場795.8kA/m
(10KOe)までかけて測定した。
The magnetic properties of the magnetic particle powder and the magnetic recording medium were measured using an external magnetic field of 795.8 kA / m using a “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Kogyo Co., Ltd.).
(10KOe).

【0096】非磁性下地層及び磁気記録媒体の塗膜の収
縮率は、それぞれ、塗布後の乾燥させた塗膜の膜厚t
(μm)と該塗膜のカレンダー処理後の塗膜の膜厚t
(μm)から下記式に従って求めた値で示した。
The shrinkage ratios of the nonmagnetic underlayer and the magnetic recording medium coating film were respectively determined by the film thickness t 0 of the dried coating film after coating.
(Μm) and the thickness t 1 of the coating film after calendering the coating film.
(Μm) according to the following equation.

【0097】[0097]

【数1】 塗膜の収縮率(%)={(t−t)/t}×100 t:非磁性下地層又は非磁性下地層と磁気記録層の厚
み t:カレンダー後の非磁性下地層又はカレンダー後の
非磁性下地層と磁気記録層の厚み
[Number 1] shrinkage of the coating film (%) = {(t 0 -t 1) / t 0} × 100 t 0: Thickness t 1 of the non-magnetic undercoat layer or a non-magnetic undercoat layer and magnetic recording layer: After Calendar Thickness of the nonmagnetic underlayer or the nonmagnetic underlayer after calendering and the magnetic recording layer

【0098】<混合針状ヘマタイト粒子粉末の製造>大
粒径針状ヘマタイト粒子粉末(粒子形状:針状、平均長
軸径0.151μm、平均短軸径0.0228μm、軸
比6.6、幾何標準偏差値1.35、BET比表面積値
51.9m/g)6kgと小粒径針状ヘマタイト粉末
(粒子形状:針状、平均長軸径0.072μm、平均短
軸径0.0109μm、軸比6.6、幾何標準偏差値
1.38、BET比表面積値91.1m/g)14k
gとを、凝集を解きほぐすために純水150lに攪拌機
を用いて邂逅し、さらに「TKパイプラインホモミクサ
ー」(製品名、特殊機化工業(株)製)を3回通して大粒
径針状ヘマタイト粒子粉末及び小粒径針状ヘマタイト粒
子粉末を含むスラリーを得た。
<Production of mixed needle-like hematite particle powder> Large-diameter needle-like hematite particle powder (particle shape: needle-like, average major axis diameter 0.151 μm, average minor axis diameter 0.0228 μm, axial ratio 6.6, 6 kg of small-diameter acicular hematite powder (particle shape: acicular, average major axis diameter 0.072 μm, average minor axis diameter 0.0109 μm), with a geometric standard deviation of 1.35 and a BET specific surface area of 51.9 m 2 / g. , Axial ratio 6.6, geometric standard deviation 1.38, BET specific surface area 91.1 m 2 / g) 14k
g with 150 liters of pure water using a stirrer to disperse the coagulation, and further pass through "TK pipeline homomixer" (product name, manufactured by Tokushu Kika Kogyo Co., Ltd.) three times to obtain a large particle size needle. A slurry containing powdery hematite particles and small-sized needle-like hematite particles was obtained.

【0099】続いて、この大粒径針状ヘマタイト粒子粉
末及び小粒径針状ヘマタイト粒子粉末を含むスラリーを
横型サンドグラインダー「マイティーミルMHG−1.
5L」(製品名、井上製作所(株)製)を用いて、軸回転
数2000rpmにおいて5回パスさせて、大粒径針状
ヘマタイト粒子粉末及び小粒径針状ヘマタイト粒子粉末
を含む分散スラリーを得た。
Subsequently, a slurry containing the large-diameter acicular hematite particle powder and the small-diameter acicular hematite particle powder was placed in a horizontal sand grinder “Mighty Mill MHG-1.
5L "(product name, manufactured by Inoue Seisakusho Co., Ltd.) and passed five times at a shaft rotation speed of 2000 rpm to obtain a dispersion slurry containing large-sized acicular hematite particles and small-sized acicular hematite particles. Obtained.

【0100】得られた分散スラリーの325mesh
(目開き44μm)における篩残分は0%であった。こ
の分散スラリーのうち75lについて、フィルタープレ
スにより濾別、水洗して大粒径針状ヘマタイト粒子粉末
及び小粒径針状ヘマタイト粒子粉末のケーキを得た。次
いで、大粒径針状ヘマタイト粒子粉末及び小粒径針状ヘ
マタイト粒子粉末のケーキを120℃で乾燥した後、乾
燥粉末のうち8.0kgを計量し、エッジランナー「M
PUV−2型」(製品名、(株)松本鋳造鉄工所製)に投
入して、441N/cm(45Kg/cm)の荷重で2
0分間混合攪拌を行い、混合針状ヘマタイト粒子粉末を
得た。
325 mesh of the obtained dispersion slurry
The sieve residue at (opening 44 μm) was 0%. 75 l of the dispersed slurry was filtered off with a filter press and washed with water to obtain cakes of large-diameter acicular hematite particle powder and small-diameter acicular hematite particle powder. Next, after drying the cake of the large-diameter acicular hematite particle powder and the small-diameter acicular hematite particle powder at 120 ° C., 8.0 kg of the dried powder was weighed, and the edge runner “M” was used.
PUV-2 type "(product name, manufactured by Matsumoto Casting Iron Works) and loaded at a load of 441 N / cm (45 kg / cm).
Mixing and stirring were performed for 0 minutes to obtain mixed needle-like hematite particle powder.

【0101】<非磁性下地層の製造>前記で得られた混
合針状ヘマタイト粒子粉末12g、カーボンブラック微
粒子粉末(粒子径0.020μm、BET比表面積値1
13m/g)1.2g及び研磨材としてアルミナ粒子
粉末(粒子径0.22μm、BET比表面積値15.8
/g)0.6gと結合剤樹脂溶液(スルホン酸ナト
リウム基を有する塩化ビニル−酢酸ビニル共重合樹脂3
0重量%とシクロヘキサノン70重量%とからなる)及
びシクロヘキサノンとを混合し、固形分率72重量%に
おいて、プラストミルを用いて30分間混練した。
<Production of Nonmagnetic Underlayer> 12 g of the mixed needle-like hematite particle powder obtained above and carbon black fine particle powder (particle diameter 0.020 μm, BET specific surface area 1
13 m 2 / g) 1.2 g and alumina particle powder as abrasive (particle size 0.22 μm, BET specific surface area value 15.8)
m 2 / g) and binder resin solution (vinyl chloride-vinyl acetate copolymer resin 3 having sodium sulfonate group 3)
0% by weight and 70% by weight of cyclohexanone) and cyclohexanone, and kneaded at a solid content of 72% by weight using a plastmill for 30 minutes.

【0102】次いで、混練物を取り出し、140mlガ
ラス瓶に1.5mmφガラスビーズ95g、追加結合剤
樹脂溶液(スルホン酸ナトリウム基を有するポリウレタ
ン樹脂30重量%、トルエン35重量%,メチルエチル
ケトン35重量%からなる)及びシクロヘキサノン、ト
ルエン、メチルエチルケトンを添加し、ペイントシェイ
カーで6時間混合・分散を行った。
Next, the kneaded material was taken out, and 95 g of 1.5 mmφ glass beads were placed in a 140 ml glass bottle, and an additional binder resin solution (consisting of 30% by weight of a polyurethane resin having a sodium sulfonate group, 35% by weight of toluene, and 35% by weight of methyl ethyl ketone) Then, cyclohexanone, toluene and methyl ethyl ketone were added, and the mixture was mixed and dispersed with a paint shaker for 6 hours.

【0103】得られた非磁性塗料の組成は下記の通りで
ある。 混合針状ヘマタイト粒子粉末 100.0重量部、 スルホン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共重合樹脂 10.0重量部、 スルホン酸ナトリウム基を有するポリウレタン樹脂 10.0重量部、 シクロヘキサノン 57.7重量部、 メチルエチルケトン 144.2重量部、 トルエン 86.5重量部。
The composition of the obtained non-magnetic paint is as follows. Mixed needle-like hematite particle powder 100.0 parts by weight, vinyl chloride-vinyl acetate copolymer resin having sodium sulfonate group 10.0 parts by weight, polyurethane resin having sodium sulfonate group 10.0 parts by weight, cyclohexanone 57.7 Parts by weight, 144.2 parts by weight of methyl ethyl ketone, 86.5 parts by weight of toluene.

【0104】得られた非磁性塗料の塗料粘度は435c
Pであった。
The viscosity of the obtained nonmagnetic paint was 435 c.
P.

【0105】次に、得られた非磁性塗料を、厚さ12μ
mのポリエチレンテレフタレートフィルム上に、アプリ
ケーターを用いて55μmの厚さに塗布し、乾燥させる
ことにより非磁性下地層を形成した。
Next, the obtained non-magnetic paint was applied to a thickness of 12 μm.
On a polyethylene terephthalate film having a thickness of 55 m, a non-magnetic underlayer was formed by applying the film to a thickness of 55 μm using an applicator and drying the film.

【0106】得られた非磁性下地層の塗布厚みは3.8
6μm、光沢は193%、表面粗度Raは6.1nm、
ヤング率(相対値)は131であった。カレンダー処理
後の非磁性下地層の膜厚は3.38μmであり、塗膜の
圧縮率は、12.4%であった。
The coating thickness of the obtained nonmagnetic underlayer is 3.8
6 μm, gloss 193%, surface roughness Ra 6.1 nm,
The Young's modulus (relative value) was 131. The thickness of the nonmagnetic underlayer after the calendering treatment was 3.38 μm, and the compression ratio of the coating film was 12.4%.

【0107】<磁気記録媒体の製造>鉄を主成分とする
針状金属磁性粉末(平均長軸径0.120μm、平均短
軸径0.0185μm、軸比6.5、保磁力値148.
8kA/m(1870Oe)、飽和磁化値136Am
/kg(136emu/g))12g、カーボンブラッ
ク微粒子粉末(粒子径0.028μm、BET比表面積
値240m/g)0.12g、及び研磨材としてアル
ミナ粒子粉末(粒子径0.22μm、BET比表面積値
15.8m/g)0.84g、結合剤樹脂溶液(スル
ホン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共
重合樹脂30重量%とシクロヘキサノン70重量%から
なる)及びシクロヘキサノンとを混合し、固形分率78
%において、プラストミルを用いて30分間混練して混
練物を得た。
<Manufacture of Magnetic Recording Medium> Needle-like metal magnetic powder containing iron as a main component (average major axis diameter 0.120 μm, average minor axis diameter 0.0185 μm, axial ratio 6.5, coercive force value 148.
8 kA / m (1870 Oe), saturation magnetization value 136 Am 2
/ Kg (136 emu / g)), 12 g of carbon black fine particle powder (particle diameter 0.028 μm, BET specific surface area value 240 m 2 / g), and alumina particle powder (particle diameter 0.22 μm, BET ratio as abrasive) 0.84 g of a surface area value (15.8 m 2 / g), a binder resin solution (comprising 30% by weight of a vinyl chloride-vinyl acetate copolymer resin having a sodium sulfonate group and 70% by weight of cyclohexanone) and cyclohexanone, Solids content 78
%, And kneaded using a plastmill for 30 minutes to obtain a kneaded material.

【0108】この混練物を140mlガラス瓶に1.5
mmφガラスビーズ95gと追加樹脂結合剤溶液(スル
ホン酸ナトリウム基を有するポリウレタン樹脂30重量
%、トルエン35重量%、メチルエチルケトン35重量
%からなる)およびシクロヘキサノン、トルエン、メチ
ルエチルケトンを添加し、ペイントシェイカーで6時
間、混合・分散を行った。その後、得られた塗料組成物
に潤滑剤および硬化剤を加え、更にペイントシェーカー
で15分間混合・分散を行った。
The kneaded material was placed in a 140 ml glass bottle for 1.5 times.
Add 95 g of mmφ glass beads, an additional resin binder solution (comprising 30% by weight of a polyurethane resin having a sodium sulfonate group, 35% by weight of toluene, and 35% by weight of methyl ethyl ketone) and cyclohexanone, toluene, and methyl ethyl ketone, and then use a paint shaker for 6 hours. And mixing and dispersion. Thereafter, a lubricant and a curing agent were added to the obtained coating composition, and the mixture was further mixed and dispersed with a paint shaker for 15 minutes.

【0109】得られた磁性塗料の組成は以下の通りであ
る。 鉄を主成分とする針状金属磁性粒子粉末 100.0重量部、 研磨剤(アルミナ粒子粉末) 7.0重量部、 カーボンブラック微粒子粉末 1.0重量部、 スルホン酸ナトリウム基を有する塩化ビニル−酢酸ビニル共重合樹脂 10.0重量部、 スルホン酸ナトリウム基を有するポリウレタン樹脂 10.0重量部、 潤滑剤 (ミリスチン酸:ステアリン酸ブチル=1:2) 1.0重量部、 硬化剤(ポリイソシアネート) 5.0重量部、 シクロヘキサノン 62.5重量部、 メチルエチルケトン 156.3重量部、 トルエン 93.8重量部。
The composition of the obtained magnetic paint is as follows. Acicular metal magnetic particle powder containing iron as a main component 100.0 parts by weight, abrasive (alumina particle powder) 7.0 parts by weight, carbon black fine particle powder 1.0 parts by weight, vinyl chloride having a sodium sulfonate group 10.0 parts by weight of vinyl acetate copolymer resin, 10.0 parts by weight of polyurethane resin having sodium sulfonate group, 1.0 part by weight of lubricant (myristic acid: butyl stearate = 1: 2), curing agent (polyisocyanate) 5.0 parts by weight, 62.5 parts by weight of cyclohexanone, 156.3 parts by weight of methyl ethyl ketone, 93.8 parts by weight of toluene.

【0110】得られた磁性塗料の塗料粘度は5280c
Pであった。
The viscosity of the obtained magnetic paint was 5280 c.
P.

【0111】得られた磁性塗料を、前記非磁性下地層を
有する基体の上にアプリケーターを用いて15μmの厚
さに塗布した後、磁場中において配向、乾燥した。この
ときの磁性層の厚みは1.13μm、塗布層の全厚は
4.99μmであった。
The obtained magnetic coating material was applied to a thickness of 15 μm on the substrate having the nonmagnetic underlayer using an applicator, and then oriented and dried in a magnetic field. At this time, the thickness of the magnetic layer was 1.13 μm, and the total thickness of the coating layer was 4.99 μm.

【0112】次いで、カレンダー処理を行った後、60
℃で24時間硬化反応を行い、0.5インチ幅にスリッ
トして磁気テープを得た。得られた磁気テープの塗布層
の全厚は4.45μm、保磁力値は158.4kA/m
(1990Oe)、角型比は0.88、光沢は238
%、表面粗度Raは5.4nm、ヤング率(相対値)は
135であり、塗膜の圧縮率は、10.8%であった。
Next, after performing a calendar process, 60
A curing reaction was performed at 24 ° C. for 24 hours, and slit to 0.5 inch width to obtain a magnetic tape. The total thickness of the coating layer of the obtained magnetic tape was 4.45 μm, and the coercive force value was 158.4 kA / m.
(1990 Oe), squareness ratio 0.88, gloss 238
%, Surface roughness Ra was 5.4 nm, Young's modulus (relative value) was 135, and compression ratio of the coating film was 10.8%.

【0113】[0113]

【作用】本発明における混合針状ヘマタイト粒子粉末を
用いた非磁性下地層を有する磁気記録媒体が表面平滑性
に優れる理由としては、大粒径針状ヘマタイト粒子粉末
と小粒径針状ヘマタイト粒子粉末が同じ粒子形状を有
し、且つ、針状であることから、大粒径針状ヘマタイト
粒子粉末の粒子間の隙間に小粒径針状ヘマタイト粒子粉
末が容易に入り込むことができるため、塗膜が圧縮され
やすく、また、カレンダー処理によって針状ヘマタイト
粒子が同一方向に容易に並びやすいので、表面平滑な塗
膜が得られるものと本発明者は考えている。
The magnetic recording medium having a non-magnetic underlayer using the mixed acicular hematite particle powder according to the present invention has excellent surface smoothness because of the large particle acicular hematite particle powder and the small particle acicular hematite particle. Since the powders have the same particle shape and are acicular, the small-sized acicular hematite particles can easily enter the gaps between the large-sized acicular hematite particles. The present inventor believes that the film is easily compressed and the needle-like hematite particles are easily arranged in the same direction by the calendering treatment, so that a coating film having a smooth surface can be obtained.

【0114】[0114]

【実施例】次に、実施例並びに比較例を挙げる。Next, examples and comparative examples will be described.

【0115】出発原料1〜10:ヘマタイト粒子粉末と
して、表1に示す特性を有するヘマタイト粒子粉末を用
意した。
Starting materials 1 to 10: Hematite particle powder having the properties shown in Table 1 was prepared as hematite particle powder.

【0116】[0116]

【表1】 [Table 1]

【0117】<混合処理> 実施例1〜11、比較例1〜7:大粒径針状ヘマタイト
粒子粉末の種類、小粒径針状ヘマタイト粒子粉末の種
類、混合処理における体積比及び混合処理の条件を種々
変化させた以外は前記発明の実施の形態と同様にして混
合針状ヘマタイト粒子粉末を得た。
<Mixing Process> Examples 1 to 11, Comparative Examples 1 to 7: Types of large-diameter acicular hematite particle powder, types of small-diameter acicular hematite particle powder, volume ratio in mixing process and mixing process A mixed needle-like hematite particle powder was obtained in the same manner as in the embodiment of the invention except that the conditions were variously changed.

【0118】このときの製造条件を表2に示す。Table 2 shows the manufacturing conditions at this time.

【0119】[0119]

【表2】 [Table 2]

【0120】<表面被覆処理> 実施例12:出発原料1 3kgと出発原料4 7kg
(実施例1の粒子の種類及び配合割合)とを凝集を解き
ほぐすために純水75lに攪拌機を用いて邂逅し、実施
の形態と同様にして混合針状ヘマタイト粒子粉末を含む
分散スラリーを得た。次いで、デカンテーション法によ
り水洗し、pH値が6.0のスラリーとした。正確を期
すため、この時点でのスラリー濃度を確認したところ1
28g/lであった。水酸化ナトリウムを用いてpH値
を10.5に調整した後、攪拌しながら再度加熱して6
0℃とし、このスラリー中に1.0mol/lのアルミ
ン酸ナトリウム溶液11l(混合針状ヘマタイト粒子粉
末に対してAl換算で3.0重量%に相当する。)を加
え、攪拌を続けながら60分間保持した後、酢酸を用い
てpH値を8.0に調整した。
<Surface Coating Treatment> Example 12: Starting material 13 kg and starting material 47 kg
(Type and blending ratio of the particles of Example 1) were contacted with 75 L of pure water using a stirrer to dissolve the agglomeration, and a dispersion slurry containing mixed needle-like hematite particles was obtained in the same manner as in the embodiment. . Next, the slurry was washed with water by a decantation method to obtain a slurry having a pH value of 6.0. To ensure accuracy, the slurry concentration at this point was confirmed.
It was 28 g / l. After adjusting the pH value to 10.5 using sodium hydroxide, the mixture was heated again while stirring, and
The temperature was adjusted to 0 ° C., 11 l of a 1.0 mol / l sodium aluminate solution (corresponding to 3.0% by weight in terms of Al with respect to the mixed needle-like hematite particles) was added to the slurry, and stirring was continued for 60 hours. After holding for one minute, the pH was adjusted to 8.0 using acetic acid.

【0121】次に、このスラリーをフィルタープレスに
より濾別、水洗して混合針状ヘマタイト粒子粉末のケー
キを得、この混合針状ヘマタイト粒子粉末のケーキを1
20℃で乾燥した。
Next, this slurry was separated by filtration with a filter press and washed with water to obtain a cake of mixed needle-like hematite particle powder.
Dried at 20 ° C.

【0122】得られた乾燥粉末のうち8.0kgを計量
し、エッジランナー「MPUV−2型」(製品名、
(株)松本鋳造鉄工所製)に投入して、441N/cm
(45Kg/cm)で20分間混合攪拌を行い、粒子の
凝集を解きほぐし、粒子表面が水酸化アルミニウムで被
覆された混合針状ヘマタイト粒子粉末を得た。
8.0 kg of the obtained dry powder was weighed, and an edge runner “MPUV-2 type” (product name,
441 N / cm
(45 Kg / cm) for 20 minutes with stirring to disperse the aggregates of the particles to obtain mixed needle-like hematite particles having a particle surface coated with aluminum hydroxide.

【0123】得られた針状ヘマタイト粒子粉末は、水酸
化アルミニウムの表面処理量はAl換算で2.91重量
%であった。
In the obtained acicular hematite particles, the surface treatment amount of aluminum hydroxide was 2.91% by weight in terms of Al.

【0124】実施例13〜18:各針状ヘマタイト粒子
粉末の種類及び混合割合、添加物の種類及び添加量を種
々変化させた以外は、実施例12と同様にして表面被覆
物によって被覆された混合針状ヘマタイト粒子粉末を得
た。
Examples 13 to 18: Coated with a surface coating in the same manner as in Example 12, except that the type and mixing ratio of each acicular hematite particle powder, and the type and amount of additives were variously changed. A mixed needle-like hematite particle powder was obtained.

【0125】このときの製造条件を表3に示す。尚、表
3の被覆物の種類は、Aがアルミニウムの水酸化物、S
がケイ素の酸化物であることを示す。
Table 3 shows the manufacturing conditions at this time. In addition, the kind of the coating in Table 3 is such that A is aluminum hydroxide, S is
Is an oxide of silicon.

【0126】[0126]

【表3】 [Table 3]

【0127】<非磁性下地層の製造> 実施例19〜36、比較例8〜14:混合針状ヘマタイ
ト粒子粉末の種類を種々変化させた以外は、前記発明の
実施の形態と同様にして非磁性下地層を得た。
<Manufacture of Non-Magnetic Underlayer> Examples 19 to 36 and Comparative Examples 8 to 14: Non-magnetic underlayers were prepared in the same manner as in the embodiment of the present invention, except that the type of mixed needle-like hematite particles was variously changed. A magnetic underlayer was obtained.

【0128】このときの製造条件及び得られた非磁性下
地層の諸特性を表4に示す。
Table 4 shows the manufacturing conditions and various characteristics of the obtained non-magnetic underlayer.

【0129】[0129]

【表4】 [Table 4]

【0130】磁性粒子粉末(a)〜(c):磁性粒子粉
末として表5に示す特性を有する針状金属磁性粒子粉末
(a)〜(c)を用意した。
Magnetic particle powders (a) to (c): Acicular metal magnetic particle powders (a) to (c) having the properties shown in Table 5 were prepared as magnetic particle powders.

【0131】[0131]

【表5】 [Table 5]

【0132】<磁気記録媒体の製造> 実施例37〜54、比較例15〜21:非磁性下地層の
種類及び磁性粒子粉末の種類を種々変化させた以外は、
前記発明に実施の形態と同様にして磁気記録媒体を得
た。
<Manufacture of Magnetic Recording Medium> Examples 37 to 54 and Comparative Examples 15 to 21: Except that the type of the nonmagnetic underlayer and the type of the magnetic particle powder were variously changed,
A magnetic recording medium was obtained in the same manner as in the above embodiment.

【0133】このときの製造条件及び得られた磁気記録
媒体の諸特性を表6及び表7に示す。
Tables 6 and 7 show the manufacturing conditions and various characteristics of the obtained magnetic recording medium.

【0134】[0134]

【表6】 [Table 6]

【0135】[0135]

【表7】 [Table 7]

【0136】[0136]

【発明の効果】本発明に係る非磁性下地層用非磁性粒子
粉末を用いた場合、表面平滑性に優れた非磁性下地層を
得ることができ、該非磁性下地層を用いて磁気記録媒体
とした場合、表面平滑性に優れた磁気記録媒体とするこ
とができるので、非磁性下地層を有する磁気記録媒体の
非磁性下地層用非磁性粒子粉末として好適である。
When the non-magnetic particle powder for a non-magnetic under layer according to the present invention is used, a non-magnetic under layer having excellent surface smoothness can be obtained. In this case, a magnetic recording medium having excellent surface smoothness can be obtained, so that it is suitable as a nonmagnetic particle powder for a nonmagnetic underlayer of a magnetic recording medium having a nonmagnetic underlayer.

【0137】また、本発明に係る磁気記録媒体は、上述
した通り、表面平滑性に優れているので高密度磁気記録
媒体として好適である。
As described above, the magnetic recording medium according to the present invention has excellent surface smoothness and is therefore suitable as a high-density magnetic recording medium.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均長軸径が0.10〜0.30μmで
あって、軸比が3.0〜9.5である大粒径針状ヘマタ
イト粒子粉末と該大粒径針状ヘマタイト粒子粉末の平均
長軸径に対する平均長軸径の比が0.10〜0.83で
あって、軸比が3.0〜9.5である小粒径針状ヘマタ
イト粒子粉末との混合針状ヘマタイト粒子粉末であり、
且つ、前記大粒径針状ヘマタイト粒子粉末と前記小粒径
針状ヘマタイト粒子粉末との混合割合が体積比で20:
80〜40:60であることを特徴とする磁気記録媒体
の非磁性下地層用非磁性粒子粉末。
1. A large-diameter acicular hematite particle powder having an average major axis diameter of 0.10 to 0.30 μm and an axial ratio of 3.0 to 9.5, and the large-diameter acicular hematite particles. Needle ratio of the average major axis diameter to the average major axis diameter of the powder is 0.10 to 0.83, and the needle ratio is in the range of 3.0 to 9.5. Hematite particle powder,
In addition, the mixing ratio of the large-diameter acicular hematite particle powder and the small-diameter acicular hematite particle powder is 20:
Nonmagnetic particle powder for a nonmagnetic underlayer of a magnetic recording medium, wherein the ratio is 80 to 40:60.
【請求項2】 請求項1記載の大粒径針状ヘマタイト粒
子粉末の粒子表面及び/又は小粒径針状ヘマタイト粒子
粉末の粒子表面が、アルミニウムの水酸化物、アルミニ
ウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物か
ら選ばれる少なくとも一種からなる表面被覆物によって
被覆されていることを特徴とする磁気記録媒体の非磁性
下地層用非磁性粒子粉末。
2. The particle surface of the large-sized acicular hematite particle powder and / or the small-sized acicular hematite particle powder according to claim 1 has a hydroxide surface of aluminum, an oxide of aluminum or a surface of silicon. Non-magnetic particle powder for a non-magnetic underlayer of a magnetic recording medium, which is coated with a surface coating comprising at least one selected from hydroxides and oxides of silicon.
【請求項3】 非磁性支持体、該非磁性支持体上に形成
される非磁性粒子粉末及び結合剤樹脂を含む非磁性下地
層及び該非磁性下地層の上に形成される磁性粒子粉末及
び結合剤樹脂を含む磁気記録層からなる磁気記録媒体に
おいて、前記非磁性粒子粉末が請求項1又は請求項2記
載の非磁性下地層用非磁性粒子粉末であることを特徴と
する磁気記録媒体。
3. A nonmagnetic support, a nonmagnetic underlayer containing a nonmagnetic particle powder formed on the nonmagnetic support and a binder resin, and a magnetic particle powder and a binder formed on the nonmagnetic underlayer. 3. A magnetic recording medium comprising a magnetic recording layer containing a resin, wherein the nonmagnetic particle powder is the nonmagnetic particle powder for a nonmagnetic underlayer according to claim 1 or 2.
JP34339399A 1999-12-02 1999-12-02 Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium Expired - Fee Related JP4870860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34339399A JP4870860B2 (en) 1999-12-02 1999-12-02 Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34339399A JP4870860B2 (en) 1999-12-02 1999-12-02 Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2001160212A true JP2001160212A (en) 2001-06-12
JP4870860B2 JP4870860B2 (en) 2012-02-08

Family

ID=18361176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34339399A Expired - Fee Related JP4870860B2 (en) 1999-12-02 1999-12-02 Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4870860B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042185A (en) * 2005-08-02 2007-02-15 Dowa Holdings Co Ltd Non-magnetic powder and multilayer magnetic recording medium
JP2007039317A (en) * 2005-06-27 2007-02-15 Dowa Holdings Co Ltd Iron compound particle powder and magnetic recording medium using same
JP2007128629A (en) * 2005-11-07 2007-05-24 Toda Kogyo Corp Nonmagnetic particle powder for nonmagnetic base layer of magnetic recording medium, its production method, nonmagnetic paint for nonmagnetic base layer, and magnetic recording medium
US7641990B2 (en) 2005-06-27 2010-01-05 Dowa Electronics Materials Co., Ltd. Iron compound particles and magnetic recording medium using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039317A (en) * 2005-06-27 2007-02-15 Dowa Holdings Co Ltd Iron compound particle powder and magnetic recording medium using same
US7641990B2 (en) 2005-06-27 2010-01-05 Dowa Electronics Materials Co., Ltd. Iron compound particles and magnetic recording medium using same
JP2007042185A (en) * 2005-08-02 2007-02-15 Dowa Holdings Co Ltd Non-magnetic powder and multilayer magnetic recording medium
JP2007128629A (en) * 2005-11-07 2007-05-24 Toda Kogyo Corp Nonmagnetic particle powder for nonmagnetic base layer of magnetic recording medium, its production method, nonmagnetic paint for nonmagnetic base layer, and magnetic recording medium

Also Published As

Publication number Publication date
JP4870860B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP2000123354A (en) Particulate powder for nonmagnetic underlayer of magnetic recording medium, its production and magnetic recording medium
JPH11242812A (en) Base body for magnetic record medium having nonmagnetic base layer and magnetic record medium using the base body
JP2001068322A (en) Compound magnetic particle powder for magnetic recording medium, its manufacturing method and recording medium
JP4870860B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP4557117B2 (en) Surface modified magnetic particle powder for magnetic recording medium, surface modified filler material for magnetic recording medium, surface modified nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP3427883B2 (en) Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP2002237404A (en) Composite magnetic particles and powder for magnetic recording medium and magnetic recording medium
JP3763353B2 (en) Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer
JP3661738B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP2000327335A (en) Nonmagnetic particle powder for nonmagnetic ground layer of magnetic recording medium, its production and magnetic recording medium
JP4732556B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP2002327202A (en) Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium
JP2002008915A (en) Composite magnetic grain powder for magnetic recording medium, its manufacturing method, and the magnetic recording medium
JP4352270B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3952171B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3512056B2 (en) Hematite particle powder for non-magnetic underlayer of magnetic recording medium and magnetic recording medium
JPH07192248A (en) Undercoat layer for magnetic recording medium
JPH11353637A (en) Acicular hematite particle powder for nonmagnetic base layer and magnetic recording medium having nonmagnetic base layer using the acicular hematite particle powder
JP3661733B2 (en) Magnetic recording medium
JP2001101652A (en) Non-magnetic particle powder for non-magnetic base layer of magnetic recording medium, its manufacturing method and magnetic recording medium
JP4732555B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
JP3661730B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP3654406B2 (en) Magnetic recording medium
JP3661735B2 (en) Magnetic recording medium
JPH10241148A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Ref document number: 4870860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees