[go: up one dir, main page]

JP2001194304A - Element for measuring oxygen concentration, its manufacturing method, and sensor equipped with the same - Google Patents

Element for measuring oxygen concentration, its manufacturing method, and sensor equipped with the same

Info

Publication number
JP2001194304A
JP2001194304A JP2000000685A JP2000000685A JP2001194304A JP 2001194304 A JP2001194304 A JP 2001194304A JP 2000000685 A JP2000000685 A JP 2000000685A JP 2000000685 A JP2000000685 A JP 2000000685A JP 2001194304 A JP2001194304 A JP 2001194304A
Authority
JP
Japan
Prior art keywords
oxygen
fluorescence
layer
fluorescent
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000000685A
Other languages
Japanese (ja)
Other versions
JP3749414B2 (en
Inventor
Akihiko Tanioka
明彦 谷岡
Tsuneo Imazu
恒夫 今津
Kozo Inoue
浩三 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUTOM SYST RES KK
Original Assignee
AUTOM SYST RES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AUTOM SYST RES KK filed Critical AUTOM SYST RES KK
Priority to JP2000000685A priority Critical patent/JP3749414B2/en
Publication of JP2001194304A publication Critical patent/JP2001194304A/en
Application granted granted Critical
Publication of JP3749414B2 publication Critical patent/JP3749414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an element for measuring oxygen concentration, its manufacturing method, and an oxygen sensor equipped with the same, having high measurement sensitivity and accuracy, high resistance to a severe measurement environment such as various chemical solvents, and capable of performing stable measurement for a long period of time. SOLUTION: A fluorescent material having fluorescence intensity reduced by the existence of oxygen molecules and an oxygen-permeable liquid compound are mixed together to be uniformly dispersed in a porous filter and then staticized on a substrate glass, Its surface is covered by a fluorescence-reflection/ external-light cut-off layer for preventing fluorescence/excited light from leaking out of a fluorescence detection part to the exterior and cutting off external light, thus forming the element for measuring oxygen concentration. The oxygen sensor uses this element as a fluorescence detection part, and is adapted so that excited light emitted from an ultraviolet emitting diode is applied to a fluorescence generating layer via optical fiber, and that generated fluorescence is received by a photodiode via optical fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸素濃度を測定す
るための酸素濃度測定用素子、特に光励起により発する
蛍光が測定すべき酸素濃度に応じてその強度を減ずると
いう、いわゆる「蛍光消光減少」に基づく酸素濃度測定
用素子に関するものである。本発明は、さらにこのよう
な酸素濃度測定用素子を製造する方法並びにこのような
酸素濃度測定用素子を具える酸素濃度センサにも関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen concentration measuring element for measuring oxygen concentration, and more particularly to a so-called "fluorescence quenching reduction" in which the intensity of fluorescence emitted by photoexcitation is reduced according to the oxygen concentration to be measured. And a device for measuring oxygen concentration based on The invention further relates to a method for producing such an element for measuring oxygen concentration and to an oxygen concentration sensor comprising such an element for measuring oxygen concentration.

【0002】[0002]

【従来の技術】酸素濃度を計測するセンサとしては、従
来から種々の原理に基づくものが実際に用いられてき
た。例えば、酸素の電子受容体としての性質を利用し、
酸素透過膜によって被覆した電極を使用して酸素の電気
化学的還元の際に流れる電流を検知したり、高温状態に
あるセラミックの酸素濃淡電池作用に基づく酸素イオン
伝導性を利用して酸素を検知するものが知られている。
更に、近年、光励起により発する蛍光が、存在する酸素
の濃度に応じてその強度を減ずる「蛍光消光現象」を利
用した酸素濃度の測定が提案されている。この現象に基
づく酸素センサは、気体・液中の0〜100%の酸素分圧を
測定が可能であること、電解液や酸素透過性膜を用いな
いので長期間連続して測定できること、圧力の影響を受
けにくいこと、静止した溶液中でも測定が可能であるこ
と等の多くの優れた特性を有している。例えば、特開平
6-180287号公報には、蛍光試薬をシリコンオイル中に混
合し、その後、架橋・固定化して上述したような酸素セ
ンサ素子を製造する方法が開示されている。更に、特開
平10-132742号公報には、蛍光試薬を微細結晶として混
合させる方法が開示されている。
2. Description of the Related Art Conventionally, sensors based on various principles have been actually used as sensors for measuring oxygen concentration. For example, utilizing the property of oxygen as an electron acceptor,
Detects current flowing during electrochemical reduction of oxygen using an electrode covered with an oxygen permeable membrane, or detects oxygen using oxygen ion conductivity based on the action of oxygen concentration cells in ceramics at high temperatures What is known is.
Furthermore, in recent years, there has been proposed a measurement of an oxygen concentration using a “fluorescence quenching phenomenon” in which the intensity of fluorescence emitted by photoexcitation is reduced according to the concentration of oxygen present. An oxygen sensor based on this phenomenon can measure 0 to 100% oxygen partial pressure in gas and liquid, and can measure continuously for a long period of time without using an electrolyte or an oxygen permeable membrane. It has many excellent properties, such as being less affected and being able to measure even in a stationary solution. For example,
Japanese Patent Application Laid-Open No. 6-180287 discloses a method for producing an oxygen sensor element as described above by mixing a fluorescent reagent in silicone oil, and then crosslinking and fixing the mixture. Further, JP-A-10-132742 discloses a method of mixing a fluorescent reagent as fine crystals.

【0003】[0003]

【発明が解決しようとする課題】上述した蛍光消光型の
酸素濃度測定用センサの酸素検知素子は、デカシクレ
ン、ペリレン、テトラセン、ベンズアントラセン等の多
環式芳香族分子または複素環式芳香族分子を、シリコ
ン、ポリエチレン、ポリプロピレン、ポリスチレン、テ
フロン等の酸素透過性化合物に固定化する必要がある。
そのため種々の方法が提案されてきたが、実用的な精度
および感度を有する測定ができる程度に十分な蛍光を発
生するデカシクレンなどの蛍光試薬の量を固定化するこ
とは困難であった。また、デカシクレンをシリコンオイ
ル中に分散させた後、加熱してゲル状の蛍光層を製作す
ることも提案されているが、この場合にも感度が低いと
ともに蛍光分子の分散が均一とはならず特性のばらつき
が大きかった。デカシクレンを微細結晶として用いる方
法でも特性のばらつきを十分に小さくすることはできな
かった。
The oxygen quenching element of the above-described fluorescence quenching type oxygen concentration measuring sensor comprises a polycyclic aromatic molecule or a heterocyclic aromatic molecule such as decacyclene, perylene, tetracene or benzanthracene. , Silicon, polyethylene, polypropylene, polystyrene, Teflon and the like.
For this reason, various methods have been proposed, but it has been difficult to immobilize the amount of a fluorescent reagent such as decacyclene that generates sufficient fluorescence to enable measurement with practical accuracy and sensitivity. It has also been proposed to disperse decacyclene in silicone oil and then heat it to produce a gel-like fluorescent layer. However, in this case, the sensitivity is low and the dispersion of fluorescent molecules is not uniform. The variation in characteristics was large. Even with the method using dekacyclene as a fine crystal, variation in characteristics could not be sufficiently reduced.

【0004】更に、蛍光層や、蛍光層の上に設ける遮光
層の膜厚、及び、その形状を一定にする必要があるが、
従来の方法ではこれらを正確に調整することは、極めて
困難であり、膜圧、形状による特性のばらつきも大きか
った。
Further, it is necessary to keep the thickness and the shape of the fluorescent layer and the light-shielding layer provided on the fluorescent layer constant.
It is extremely difficult to adjust these accurately with the conventional method, and the variation in characteristics due to the film pressure and shape is large.

【0005】従って、本発明の目的は、より感度が高く
特性のばらつきがない酸素濃度測定用素子及びその製造
方法を提供することである。本発明の他の目的は、この
ような酸素濃度測定用素子と、蛍光を受光する蛍光検知
部と、この蛍光検知部からの出力信号を処理して酸素濃
度を指示する信号を出力する信号処理部とを具え、安定
的に長期間使用でき、特性のばらつきがない酸素センサ
を提供することである。
Accordingly, it is an object of the present invention to provide an element for measuring oxygen concentration which has higher sensitivity and does not vary in characteristics, and a method for manufacturing the same. Another object of the present invention is to provide such an oxygen concentration measuring element, a fluorescence detection unit for receiving fluorescence, and a signal processing for processing an output signal from the fluorescence detection unit and outputting a signal indicating an oxygen concentration. It is an object of the present invention to provide an oxygen sensor which has a unit and can be used stably for a long period of time and has no variation in characteristics.

【0006】[0006]

【課題を解決するための手段】本発明による酸素濃度測
定用素子は、励起光及び蛍光が透過する基板と、この基
板上に設けられ、励起光の下で、酸素濃度に応じて蛍光
強度の減少を示す多環式芳香族または複素環式芳香族の
蛍光物質を、多孔質フィルタ内に均一に分散、固定させ
た蛍光発生層と、この蛍光発生層の上に設けられ、蛍光
発生層から放射される蛍光を反射し、外光を遮断し、酸
素を透過すると共に蛍光発生層を保護する被覆層を、具
えることを特徴とするものである。本発明においては、
上述した被覆層は上述した全ての機能を有する単一の層
として構成するか、または、それぞれの機能を有する3
つの独立した層を積層して構成するか、または、蛍光発
生層から放射される蛍光を反射し、外光を遮断すると共
に酸素を透過する蛍光反射・外光遮断層と、保護機能を
有する保護層とを積層して構成することができる。ま
た、上述した多孔質フィルタは、均一な膜厚、かつ均一
な酸素透過性を有し、均一な多孔質である必要がある。
このようなフィルタにおいて、蛍光物質は、このフィル
タ内の多数の微細な孔に入り込み、極めて均一に分散さ
れるとともに安定に存在することとなる。
An oxygen concentration measuring element according to the present invention is provided on a substrate through which excitation light and fluorescence are transmitted, and provided on the substrate. A polycyclic aromatic or heterocyclic aromatic fluorescent substance exhibiting a decrease is uniformly dispersed and fixed in a porous filter, and a fluorescent generating layer is provided on the fluorescent generating layer. It is characterized by comprising a coating layer that reflects emitted fluorescence, blocks external light, transmits oxygen, and protects the fluorescence generating layer. In the present invention,
The above-mentioned coating layer may be configured as a single layer having all the functions described above, or may be a single layer having the respective functions.
Fluorescent reflection / external light blocking layer, which consists of two independent layers laminated or reflects fluorescence emitted from the fluorescence generating layer, blocks external light and transmits oxygen, and protection with a protective function It can be constituted by laminating layers. In addition, the above-described porous filter needs to have a uniform thickness, a uniform oxygen permeability, and a uniform porosity.
In such a filter, the fluorescent material enters many fine holes in the filter, and is dispersed very uniformly and stably exists.

【0007】また、本発明による酸素濃度測定用素子の
製造方法は、励起光の下で、酸素濃度に応じて蛍光強度
の減少を示す多環式芳香族または複素環式芳香族の蛍光
物質の粉末を処理精製し、この処理精製した蛍光物質の
粉末を、酸素透過性液状ポリマ中に分散させた分散液
を、多孔質フィルタに塗布、浸透させた後、加熱して蛍
光物質を前記フィルタ中に固定して蛍光発生層を形成
し、この蛍光発生層を基板の上に固定し、その上に蛍光
発生層から放射される蛍光を反射し、外光を遮断すると
共に酸素を透過すると共に蛍光発生層を保護する被覆層
を設けることを特徴とするものである。この被覆層は、
単一の層として形成するか、または、2つまたは3つの
層を積層して形成することができる。
Further, the method for manufacturing an oxygen concentration measuring element according to the present invention is directed to a method for producing a polycyclic aromatic or heterocyclic aromatic fluorescent substance which shows a decrease in fluorescence intensity in response to oxygen concentration under excitation light. The powder is treated and refined, and the dispersion of the treated and refined fluorescent substance powder dispersed in an oxygen-permeable liquid polymer is applied to a porous filter, allowed to penetrate, and then heated to cause the fluorescent substance to pass through the filter. To form a fluorescent light-generating layer, and fix this fluorescent light-emitting layer on a substrate, reflect the fluorescent light emitted from the fluorescent light-emitting layer, block external light, transmit oxygen, and It is characterized by providing a coating layer for protecting the generation layer. This coating layer
It can be formed as a single layer, or can be formed by laminating two or three layers.

【0008】更に、本発明よる酸素センサは、励起光を
放射する光源と、この光源からの励起光を透過する基板
と、この基板上に設けられ、励起光の下で、酸素濃度に
応じて蛍光強度の減少を示す多環式芳香族または複素環
式芳香族の蛍光物質を、多孔質フィルタ内に均一に分
散、固定させた蛍光発生層と、この蛍光発生層の上に設
けられ、蛍光発生層から放射される蛍光を反射し、外光
を遮断し、酸素を透過すると共に蛍光発生層を保護する
被覆層とを具える酸素測定用素子と、前記蛍光発生層か
ら放射される蛍光を前記基板を経て受光する蛍光検知部
と、この蛍光検知部からの出力信号を処理して酸素濃度
を指示する信号を出力する信号処理部とを具えることを
特徴とするものである。
Further, an oxygen sensor according to the present invention comprises a light source for emitting excitation light, a substrate for transmitting the excitation light from the light source, and a substrate provided on the substrate. A polycyclic aromatic or heterocyclic aromatic fluorescent substance exhibiting a decrease in fluorescence intensity is uniformly dispersed and fixed in a porous filter, and a fluorescent generation layer is provided on the fluorescent generation layer. An oxygen measurement element comprising a coating layer that reflects fluorescence emitted from the generation layer, blocks external light, transmits oxygen, and protects the fluorescence generation layer, and emits the fluorescence emitted from the fluorescence generation layer. It is characterized by comprising a fluorescence detection unit that receives light via the substrate, and a signal processing unit that processes an output signal from the fluorescence detection unit and outputs a signal indicating an oxygen concentration.

【0009】[0009]

【発明の実施の形態】実施例1 以下に、本発明による酸素濃度測定用素子の製造方法の
代表的な例について説明する。初めに、蛍光物質を以下
のようにして処理精製する。5gのデカシクレンと、3
00ccのアニリンを3角フラスコに入れ、十分に攪拌
・混合する。このデカシクレン−アニリン混合液を、温
度60℃で2時間加熱・混合する。デカシクレン−アニ
リン混合液に、過塩素酸を入れてpH=3.0に調整す
る。8時間放置し、不溶性物質を沈降させる。500メ
ッシュのステンレス製の濾過網で、デカシクレン−アニ
リン混合液の上澄み液を濾過する。濾過液を遠心分離器
によって、例えば2000回転で2時間以上、5000回転で30
分以上、10000回転で10分以上という条件で分離させ
る。遠心分離した液の上澄み液を捨て、残りの沈殿物と
アセトンを混合・攪拌し、再度遠心分離機にかけて、分
離させる。更に、このような遠心分離を2回繰り返す。
遠心分離機で沈殿させた物質を、60℃で5時間乾燥さ
せて処理精製した蛍光物質を得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a representative example of a method for manufacturing an element for measuring oxygen concentration according to the present invention will be described. First, the fluorescent substance is treated and purified as follows. 5g of dekacyclene and 3
Put 00 cc of aniline into a triangular flask and mix and mix well. The decacyclene-aniline mixture is heated and mixed at a temperature of 60 ° C. for 2 hours. Perchloric acid is added to the decacyclene-aniline mixture to adjust the pH to 3.0. Let stand for 8 hours to allow insoluble material to settle. The supernatant of the decacyclene-aniline mixture is filtered through a 500 mesh stainless steel filter net. The filtrate is centrifuged, for example, at 2,000 rpm for 2 hours or more, and at 5,000 rpm for 30 hours.
Separate for 10 minutes or more at 10,000 rpm for more than 10 minutes. The supernatant of the centrifuged liquid is discarded, the remaining precipitate and acetone are mixed and stirred, and the mixture is centrifuged again to separate. Further, such centrifugation is repeated twice.
The substance precipitated by the centrifuge is dried at 60 ° C. for 5 hours to obtain a treated and purified fluorescent substance.

【0010】次に上述したようにして処理精製した蛍光
物質を用いて酸素測定用素子を製造する。最初に蛍光発
生層を作製する。液状の酸素透過性ポリマーである「サ
イトップ(旭ガラスの登録商標)」溶液に、処理精製し
た蛍光物質の微粉末を入れて混合・攪拌する。図1に示
すように、基板ガラス(すりガラス面)1に、上記の蛍
光物質−酸素透過性化合物混合液を2滴たらし、酸素透
過性化合物である厚さ20−100μm、メッシュ10
−100nmのフッ素系化合物をその上に乗せて、この
フッ素系化合物に液を染み込ませ、基板ガラス−フッ素
系化合物間の空気を追い出し、密着させる。この状態で
12時間自然乾燥させ、その後、乾燥機で100℃、2
時間乾燥させて蛍光発生層2を得る。
Next, an element for oxygen measurement is manufactured using the fluorescent substance treated and purified as described above. First, a fluorescence generating layer is prepared. A fine powder of the processed and purified fluorescent substance is added to a solution of “CYTOP (registered trademark of Asahi Glass)” which is a liquid oxygen-permeable polymer, and mixed and stirred. As shown in FIG. 1, two drops of the above-mentioned fluorescent substance-oxygen permeable compound mixture liquid were dropped on a substrate glass (ground glass surface) 1 and the oxygen permeable compound having a thickness of 20-100 μm and a mesh 10
A -100 nm fluorine-based compound is placed on the fluorine-based compound, and the liquid is impregnated into the fluorine-based compound, and the air between the substrate glass and the fluorine-based compound is expelled and adhered. In this state, air dry naturally for 12 hours, and then use a dryer at 100 ° C for 2 hours.
After drying for a time, the fluorescence generating layer 2 is obtained.

【0011】次に、蛍光反射層3を作製する。サイトッ
プ溶液に酸化チタン粉末を入れて混合・攪拌する。基板
ガラス1の上に形成した蛍光発生層2の表面に酸化チタン
−サイトップ混合液を細い筆などで塗布し、自然乾燥
後、再度塗布し、6時間以上自然乾燥させ、その後、乾
燥機で150℃で、2時間乾燥させて蛍光反射層3を形成す
る。すきまの空気を追い出すために、圧力700Kg/c
、6分間以上という条件で油圧プレスする。
Next, the fluorescent reflection layer 3 is formed. The titanium oxide powder is added to the CYTOP solution and mixed and stirred. A mixture of titanium oxide and CYTOP is applied to the surface of the fluorescence generating layer 2 formed on the substrate glass 1 with a fine brush or the like, air-dried, applied again, air-dried for 6 hours or more, and then dried by a dryer. After drying at 150 ° C. for 2 hours, the fluorescent reflection layer 3 is formed. 700 kg / c pressure to drive out air
The hydraulic press is performed under the conditions of m 2 , 6 minutes or more.

【0012】次に、外光遮断層4を作製する。サイトッ
プ溶液に金属チタン粉末を入れて混合・攪拌する。塗膜
を剥離させやすいフッ素系化合物に、金属チタン−サイ
トップ混合液を細い筆などで2回塗布し自然乾燥させ、
塗膜を剥離させる。基板ガラス1の表面に形成した蛍光
発生層2の上に形成した蛍光反射層3の表面にサイトップ
溶液を塗布し、30分位乾燥し、半乾きの状態にさせ
る。そこに、上述したように剥離させた塗膜を乗せて接
着し、12時間自然乾燥させる。その後、乾燥機で、2
時間乾燥させて外光遮断層4を得る。すきまの空気を追
い出すために、圧力700Kg/cm、6分間以上とい
う条件で油圧プレスする。
Next, an external light blocking layer 4 is formed. Add the metal titanium powder to the CYTOP solution and mix and stir. To a fluorine-based compound that is easy to peel off the coating film, apply a mixture of metal titanium and CYTOP twice with a fine brush and let it dry naturally.
Peel off the coating. A CYTOP solution is applied to the surface of the fluorescence reflection layer 3 formed on the fluorescence generation layer 2 formed on the surface of the substrate glass 1 and dried for about 30 minutes to make it a semi-dry state. The coating film peeled off as described above is put thereon and adhered, and is naturally dried for 12 hours. Then, in the dryer, 2
After drying for an hour, the external light blocking layer 4 is obtained. In order to drive out the air in the gap, a hydraulic press is performed under the conditions of a pressure of 700 kg / cm 2 and at least 6 minutes.

【0013】このようにして、図1に示す酸素濃度測定
用素子が得られる。この酸素濃度測定用素子は、外側
(測定すべき酸素と接触する側)から順に、膜厚が20
μmの保護層5、膜厚が5μmの外光遮断層4、膜厚が5
μmの蛍光反射層3、膜厚が20μmの蛍光発生層2、厚
さ2mmの基板ガラス1から構成される。以下、各層に
ついて説明する。
Thus, the element for measuring oxygen concentration shown in FIG. 1 is obtained. This oxygen concentration measuring element has a thickness of 20 in order from the outside (the side in contact with the oxygen to be measured).
μm protective layer 5, external light blocking layer 4 having a thickness of 5 μm,
It is composed of a fluorescent reflection layer 3 having a thickness of 20 μm, a fluorescence generation layer 2 having a thickness of 20 μm, and a substrate glass 1 having a thickness of 2 mm. Hereinafter, each layer will be described.

【0014】保護層5は、フッ素系化合物にフッ素系化
合物溶液を含浸し、熱処理後、プレス圧縮して形成す
る。これによって、水、スチーム、油、アルコール等、
液体の浸潤を完全に防止させる。液体が少しでも浸潤す
ると酸素ガスの移動交換が悪くなったり、また光学特性
が変化し応答特性、感度が非常に悪くなってしまうから
である。
The protective layer 5 is formed by impregnating a fluorine-based compound solution with a fluorine-based compound, heat-treating the resultant, and press-compressing it. This allows water, steam, oil, alcohol, etc.
Completely prevent liquid infiltration. This is because even if the liquid infiltrates even a little, the transfer of oxygen gas becomes worse, or the optical characteristics change, resulting in extremely poor response characteristics and sensitivity.

【0015】外光遮断層4は、金属チタン微粉末とフッ
素系化合物溶液とを混合し、その混合液を塗布し乾燥さ
せたものである。蛍光の光強度は非常に微弱であり、外
部から光が侵入すると外乱ノイズになり測定誤差が生じ
測定が不安定になってしまうため、この層で外光を遮断
する必要がある。
The external light blocking layer 4 is obtained by mixing fine metal titanium powder and a fluorine compound solution, applying the mixed solution, and drying the mixture. The light intensity of the fluorescent light is very weak, and if light enters from the outside, it causes disturbance noise and measurement error occurs, making the measurement unstable. Therefore, it is necessary to block external light with this layer.

【0016】蛍光反射層3は、酸化チタン微粉末とフッ
素系化合物溶液とを混合し、その混合液を塗布し乾燥さ
せたものである。内部の励起光、蛍光が外部に漏れても
測定誤差が生ずるが、この層はこの内部からの光漏れを
防止する必要がある。この白色の層で励起光、蛍光を反
射して集光効率を高くすることにより、感度を塗らない
時より3倍以上に高くすることができる。
The fluorescent reflection layer 3 is obtained by mixing a fine powder of titanium oxide and a solution of a fluorine-based compound, applying the mixture, and drying the mixture. Even if the internal excitation light or fluorescence leaks to the outside, a measurement error occurs, but this layer needs to prevent light leakage from the inside. By increasing the light collection efficiency by reflecting the excitation light and the fluorescent light with this white layer, the sensitivity can be made three times or more higher than when no sensitivity is applied.

【0017】蛍光発生層2は、蛍光物質を外径13mm、
厚さ20μm、メッシュ40nmのフッ素系化合物内に液
状性フッ素系化合物によって均一に分散させ、固定化し
たものである。
The fluorescent layer 2 is made of a fluorescent material having an outer diameter of 13 mm.
It is uniformly dispersed and immobilized with a liquid fluorine compound in a fluorine compound having a thickness of 20 μm and a mesh of 40 nm.

【0018】基板ガラス1は、外径10mm、厚さ2mmで
あって、材質が石英ガラス、耐熱ガラス、サファイアガ
ラス等を使用すると安定して測定可能である。
The substrate glass 1 has an outer diameter of 10 mm and a thickness of 2 mm, and can be stably measured using quartz glass, heat-resistant glass, sapphire glass or the like.

【0019】図2は、本発明による酸素センサの、上述
した酸素濃度測定用素子10を組み込んだ酸素検知部の
構造を示すものである。図2の上方が測定すべき酸素と
接触する部分である。基板ガラス1、蛍光発生層2、蛍
光反射層3、外光遮断層4および保護層5によって構成
される酸素濃度測定用素子10は、ステンレス(SUS31
6)製のセンサキャップ11の先端に保持し、このセン
サキャップをプローブホルダ12の先端に固定してい
る。
FIG. 2 shows the structure of an oxygen sensor of the oxygen sensor according to the present invention, in which the above-described oxygen concentration measuring element 10 is incorporated. The upper part of FIG. 2 is the part that comes into contact with the oxygen to be measured. The oxygen concentration measurement element 10 composed of the substrate glass 1, the fluorescence generation layer 2, the fluorescence reflection layer 3, the external light blocking layer 4, and the protection layer 5 is made of stainless steel (SUS31
6) and is fixed to the tip of the probe holder 12.

【0020】蛍光検知部の酸素濃度測定用素子10をセ
ンサキャップ11の先端に固定するために、エポキシ系
接着剤は、主剤と硬化剤を混合し、真空ベルジャーに入
れ真空ポンプで15分間吸引し、脱泡を行う。脱泡後の
接着剤をセンサキャップ11の内面に塗り、基板ガラス
1とセンサキャップ11とを接着させる。乾燥機で50
℃、5時間以上乾燥させて形成した接着層を符号12で
示す。このように先端に酸素濃度測定用素子を固定した
センサキャップ11をプローブホルダ12に嵌合する。
このとき基板ガラス1の裏面とプローブホルダ12の先
端面との間にOリング13を介挿する。
In order to fix the oxygen concentration measuring element 10 of the fluorescence detecting section to the tip of the sensor cap 11, an epoxy-based adhesive is prepared by mixing a base material and a curing agent, placing the mixture in a vacuum bell jar, and sucking it for 15 minutes with a vacuum pump. Perform degassing. The defoamed adhesive is applied to the inner surface of the sensor cap 11, and the substrate glass 1 and the sensor cap 11 are adhered. 50 in the dryer
Reference numeral 12 indicates an adhesive layer formed by drying at 5 ° C. for 5 hours or more. In this manner, the sensor cap 11 having the oxygen concentration measuring element fixed to the tip is fitted to the probe holder 12.
At this time, an O-ring 13 is inserted between the back surface of the substrate glass 1 and the tip end surface of the probe holder 12.

【0021】図3は、本発明による酸素センサの全体の
構成を示すものである。上述したように先端に酸素濃度
測定用素子を固定したプローブホルダ12の内部には、
一端をガラス基板1の裏面に当接したライトガイドロッ
ドLGRを配置し、その他端にそれぞれ一端が当接する
ように一対の光ファイバ14および15を延在させ、一
方の光ファイバ14の他端(入射側)をブルーフィルタ
16を介して、紫外線を発生する発光ダイオード17と
対向させる。また、他方の光ファイバ15の他端(出射
側)はグリーンフィルタ18を介してフォトダイオード
19と対向させる。
FIG. 3 shows the overall configuration of the oxygen sensor according to the present invention. As described above, inside the probe holder 12 having the oxygen concentration measuring element fixed to the tip,
A light guide rod LGR having one end in contact with the back surface of the glass substrate 1 is arranged, and a pair of optical fibers 14 and 15 are extended so that one end is in contact with the other end, respectively, and the other end of one optical fiber 14 ( The light-emitting diode (light-incident side) is opposed to a light-emitting diode 17 that generates ultraviolet light via a blue filter 16. The other end (outgoing side) of the other optical fiber 15 is opposed to the photodiode 19 via the green filter 18.

【0022】ブルーフィルタ16の出射側には、光軸か
ら外れた位置に励起光補償用のフォトダイオード20を
設け、その出力を発光ダイオード17を駆動するための
演算・制御回路21にフィードバックする。この演算・
制御回路21には中央処理ユニット(CPU)22から
規準信号を供給し、この規準信号とフォトダイオード2
0からの信号とのずれに基づいて発光ダイオード17の
駆動電流を制御し、常に一定の輝度の励起光が放射され
るようにする。
On the emission side of the blue filter 16, a photodiode 20 for compensating excitation light is provided at a position off the optical axis, and its output is fed back to an arithmetic and control circuit 21 for driving the light emitting diode 17. This operation
A reference signal is supplied to a control circuit 21 from a central processing unit (CPU) 22, and the reference signal and the photodiode 2
The driving current of the light emitting diode 17 is controlled based on the deviation from the signal from 0, so that the excitation light having a constant brightness is always emitted.

【0023】測定すべき酸素の濃度に応じて酸素濃度測
定用素子10の表面から、それぞれ酸素透過性を有する
保護層5、外光遮断層4および蛍光反射層3を経て蛍光
発生層2内に酸素が入り込む。この蛍光発生層2には、
発光ダイオード17から放射される紫外線を光ファイバ
14を経て照射するので、蛍光が発生されるが、入り込
んだ酸素による蛍光消光現象によって蛍光量は酸素濃度
に反比例して減少する。この蛍光を基板ガラス1下部に
装着された光ファイバ15を経てフォトダイオード19
で受光する。発光ダイオード17が放射する励起光の波
長は385nm、バンド幅は20nmであり、酸素によって
消光される蛍光の波長は510nm、バンド幅は20nmで
ある。
In accordance with the concentration of oxygen to be measured, the surface of the oxygen concentration measuring element 10 enters the fluorescence generating layer 2 through the protective layer 5 having oxygen permeability, the external light blocking layer 4 and the fluorescent reflecting layer 3, respectively. Oxygen enters. This fluorescence generating layer 2 includes
Ultraviolet light emitted from the light emitting diode 17 is irradiated through the optical fiber 14 so that fluorescence is generated. However, the amount of fluorescence decreases in inverse proportion to the oxygen concentration due to the fluorescence quenching phenomenon due to the entered oxygen. This fluorescent light is passed through the optical fiber 15 attached to the lower part of the substrate glass 1 and the photodiode 19
To receive light. The wavelength of the excitation light emitted from the light emitting diode 17 is 385 nm, the bandwidth is 20 nm, and the wavelength of the fluorescence quenched by oxygen is 510 nm, and the bandwidth is 20 nm.

【0024】フォトダイオード19の出力信号を、プリ
アンプ23で増幅した後、サンプル・ホールド回路24
でサンプリングし、得られるサンプル値を演算増幅器2
5および計器本体側のアンプ26でさらに増幅した後、
A/D変換器27でディジタル信号に変換し、CPU2
2に供給する。CPU22では、このようにして供給さ
れるフォトダイオード19の出力信号を処理して酸素濃
度を求めることができる。
After the output signal of the photodiode 19 is amplified by the preamplifier 23, the sample / hold circuit 24
, And obtains the obtained sample value by the operational amplifier 2.
5 and further amplified by the amplifier 26 on the instrument body side,
The signal is converted into a digital signal by the A / D converter 27 and
Feed to 2. The CPU 22 can calculate the oxygen concentration by processing the output signal of the photodiode 19 thus supplied.

【0025】プローブホルダ12の先端には、温度セン
サ31をも設け、その出力信号をアンプ32で増幅して
計器本体へ送り、A/D変換器33でディジタル信号に
変換した後、CPU22へ供給する。酸素濃度と温度と
の相関関係を予め求めておき、CPU22で酸素濃度を
演算により求める際に、温度センサ31によって検出し
た温度による補正を行うことにより、測定精度を向上す
ることができる。
A temperature sensor 31 is also provided at the tip of the probe holder 12, and its output signal is amplified by an amplifier 32 and sent to the main body of the instrument, converted into a digital signal by an A / D converter 33, and then supplied to the CPU 22. I do. The correlation between the oxygen concentration and the temperature is obtained in advance, and when the CPU 22 calculates the oxygen concentration by calculation, the correction based on the temperature detected by the temperature sensor 31 can be performed to improve the measurement accuracy.

【0026】上述したようにして求めた酸素濃度を表す
信号は、CPU22に接続した液晶ディスプレイ41で
表示したり、D/A変換器42でアナログ信号に変換し
て出力したり、RS−232Cインターフェイス43を
介してディジタル信号として出力する。
The signal representing the oxygen concentration obtained as described above is displayed on the liquid crystal display 41 connected to the CPU 22, converted into an analog signal by the D / A converter 42 and output, and output from the RS-232C interface. The signal is output as a digital signal via 43.

【0027】次に上述した実施例の各種特性を説明する
とともに比較例との特性の差異を説明する。先ず、感度
特性について説明する。サンプル1は、本実施例によっ
て作成した0.02mmの膜厚のセンサチップである。サンプ
ルNo.2として、特開平10-132742号公報の蛍光試薬を微
細結晶として混合させる方法によって、センサチップと
してデカシクレンをアニリンに溶解させ、沈殿物を除去
した後、上澄み液にアセトンを加えて再結晶化させ、ア
セトン、エタノールで洗浄・精製した蛍光材料を液状シ
リコーンポリマ中に混合、溶解し、重合して所定の形状
に硬化させて0.10mmの膜厚の蛍光発生層を作成したセン
サチップを準備した。サンプルNo.3としてデカシクレ
ン粉末をそのままシリコーンポリマ中に分散させて作っ
たセンサチップを準備し、サンプルNo.4としてデカシ
クレンをアニリンに溶解したときに生じる沈殿物を再結
晶化して得られる蛍光材料を液状シリコーンポリマ中に
混合、溶解し、硬化させたセンサチップを準備した。こ
れらのサンプルNo.3およびNo.4の蛍光発生層の膜厚も
0.10mmとした。これらのサンプルを温度25℃、窒素雰囲
気(酸素濃度0%)中において2時間以上経過後に測定
した信号強度と、空気中(酸素濃度20.9%)で測定した信
号強度との差を求めた結果を表1に示す。
Next, various characteristics of the above-described embodiment will be described, and differences in characteristics from the comparative example will be described. First, the sensitivity characteristics will be described. Sample 1 is a sensor chip having a thickness of 0.02 mm formed according to the present embodiment. As sample No. 2, a solution of decacyclene in aniline as a sensor chip was removed by a method of mixing fluorescent reagents as fine crystals disclosed in JP-A-10-132742, and the precipitate was removed. A sensor chip that has crystallized, washed and purified with acetone and ethanol, mixed in a liquid silicone polymer, dissolved, polymerized and cured to a predetermined shape to create a 0.10 mm-thick fluorescent-emitting layer. Got ready. As a sample No. 3, a sensor chip prepared by dispersing decacyclene powder in a silicone polymer as it is was prepared. As a sample No. 4, a fluorescent material obtained by recrystallizing a precipitate generated when decacyclene was dissolved in aniline was used. A sensor chip that was mixed, dissolved, and cured in a liquid silicone polymer was prepared. The thickness of the fluorescence generating layers of these samples No. 3 and No. 4
It was 0.10 mm. The difference between the signal intensity measured after 2 hours or more in a nitrogen atmosphere (oxygen concentration 0%) at 25 ° C. and the signal intensity measured in air (oxygen concentration 20.9%) was determined. It is shown in Table 1.

【0028】[0028]

【表1】 この表1から、本発明によるサンプルNo.1の感度は、サ
ンプルNo2 に比べて2倍以上も高く、サンプルNo3に比
べれば50倍以上も高いことがわかる。サンプルNo.1は
膜厚が0.02mmと他のサンプルの20%しかないことを
考慮すると、膜厚あたりのサンプルNo.1の感度は、No.2
に比べて10倍以上も高く、サンプルNo.4に比べれば2
50倍以上も高いことがわかる。
[Table 1] From Table 1, it can be seen that the sensitivity of Sample No. 1 according to the present invention is more than twice as high as Sample No. 2 and more than 50 times higher than Sample No. 3. Considering that Sample No. 1 has a thickness of 0.02 mm and only 20% of other samples, the sensitivity of Sample No. 1 per film thickness is No. 2
More than 10 times higher than that of sample No. 4 and 2 times higher than sample No. 4.
It turns out that it is 50 times or more higher.

【0029】次に長期安定性についての試験を行った結
果を示す。測定条件としては、上述したサンプルNo.1〜
No.4を空気中で温度20℃に保ち、信号強度の時間的変
化、すなわちドリフト率を測定した。その結果を表2示
す。
Next, results of a test for long-term stability are shown. As the measurement conditions, the above-mentioned sample Nos. 1 to
No. 4 was maintained at a temperature of 20 ° C. in the air, and the time-dependent change of the signal intensity, that is, the drift rate was measured. Table 2 shows the results.

【0030】[0030]

【表2】 [Table 2]

【0031】このグラフから本発明による実施例である
サンプルNo.1では、長期間に亘って感度の変動はきわめ
て少なく、2000時間での、ドリフト率は、0.0%であ
る。サンプルNo.2は、179時間でドリフト率0.1%である
が、本発明によるサンプルNo.1では、その10倍以上の時
間である2000時間でもドリフト率0.0%であり、サン
プルNo.1は顕著に安定性が優れている。さらに、サンプ
ルNo4は、表1からわかるように感度そのものは大きい
が、大きなドリフト率を示し安定性がないことがわか
る。
From this graph, in sample No. 1 which is an embodiment according to the present invention, the fluctuation in sensitivity is extremely small over a long period of time, and the drift rate after 2000 hours is 0.0%. Sample No. 2 had a drift rate of 0.1% at 179 hours, while Sample No. 1 according to the present invention had a drift rate of 0.0% even at 2000 hours, which is 10 times or more the time, and Sample No. 1 Has remarkably excellent stability. Furthermore, as can be seen from Table 1, Sample No. 4 has a large sensitivity itself, but shows a large drift rate and lacks stability.

【0032】実施例2 図1の実施例1では、蛍光反射層3、外光遮断層4とい
う構成となっているが、図4に示すように、これを一体
として蛍光反射・外光遮断層53として形成することも
できる。即ち、蛍光反射層は、蛍光発生層側では主とし
て蛍光発生層から放射される蛍光を反射する機能を果た
すが、一方、被検物質側では外光を遮断する機能をも併
せ持つものである。従って、実施例1では蛍光反射層3
と外光遮断層4とを積層した構造となっているが、図4
に示すように、蛍光反射・外光遮断層53として1層で
形成し、蛍光発生層52から放射される蛍光を反射する
機能及び外光を遮断する機能を果たさせることももちろ
ん可能である。
Embodiment 2 In the embodiment 1 shown in FIG. 1, the structure of the fluorescent reflection layer 3 and the external light blocking layer 4 is employed. However, as shown in FIG. 53 can also be formed. That is, the fluorescence reflection layer has a function of mainly reflecting the fluorescence emitted from the fluorescence generation layer on the side of the fluorescence generation layer, but also has a function of blocking external light on the side of the test substance. Therefore, in the first embodiment, the fluorescent reflection layer 3
FIG. 4 shows a structure in which the light shielding layer 4 and the external light blocking layer 4 are laminated.
As shown in (1), it is of course possible to form a single layer as the fluorescence reflection / external light blocking layer 53 so as to fulfill the function of reflecting fluorescence emitted from the fluorescence generating layer 52 and the function of blocking external light. .

【0033】実施例3 図1の実施例1では、蛍光反射層3、外光遮断層4、保
護層5という構成となっているが、図5に示すように、
これを一体として被覆層63として形成することもでき
る。即ち、実施例1で保護層5として使用したフッ素系
化合物フィルタに、蛍光を反射し、外光を遮断する機能
を果たす物質を塗布し、一体として被覆層63を形成さ
せるものである。具体的には、膜厚70〜80μmのフ
ッ素系化合物フィルタに、金属チタン−サイトップ混合
液を細い筆などで2回塗布し自然乾燥させる。基板ガラ
ス61の表面に形成した蛍光発生層62の上にサイトップ
溶液を塗布し、30分位乾燥し、半乾きの状態にさせ
る。そこに、上述したフィルタを乗せて接着し、12時
間自然乾燥させる。その後、乾燥機で、2時間乾燥させ
て被覆層63を得る。すきまの空気を追い出すために、
圧力700Kg/cm、6分間以上という条件で油圧プ
レスする。油圧プレスによって被覆層63は、最終的に
は約20〜30μmとなる。図5のように、被覆層63
の上部(被検物質側)には薄い薄膜の金属チタン−サイ
トップ層64が形成される。
Embodiment 3 In Embodiment 1 shown in FIG. 1, the structure includes the fluorescent reflection layer 3, the external light blocking layer 4, and the protective layer 5, but as shown in FIG.
This can be integrally formed as the coating layer 63. That is, a substance having a function of reflecting fluorescence and blocking external light is applied to the fluorine-based compound filter used as the protective layer 5 in Example 1, and the coating layer 63 is integrally formed. Specifically, a metal titanium-cytop mixture is applied twice to a fluorine-based compound filter having a thickness of 70 to 80 μm with a thin brush or the like, and air-dried. The CYTOP solution is applied on the fluorescence generating layer 62 formed on the surface of the substrate glass 61, and dried for about 30 minutes to make it a semi-dry state. Then, the above-mentioned filter is put thereon and adhered, and air-dried for 12 hours. After that, the coating layer 63 is obtained by drying with a dryer for 2 hours. In order to drive out the air gap,
A hydraulic press is performed under the conditions of a pressure of 700 kg / cm 2 and 6 minutes or more. The coating layer 63 finally becomes about 20 to 30 μm by the hydraulic press. As shown in FIG.
A thin titanium metal-cytop layer 64 is formed on the upper part of the substrate (test substance side).

【0034】[0034]

【発明の効果】本発明による酸素濃度測定用素子は、多
孔質フィルタの内部に蛍光物質を均一に分散し、安定に
固定したものであるので、感度および精度が高いと共に
長期間に亘って安定に動作するものである。また、蛍光
発生層、被覆層、蛍光反射・外光遮断層の膜厚及び形状
ともに再現性が高く、特性のばらつきを非常に小さくす
ることができる。また、このような優れた特性を有する
酸素濃度測定用素子を具える酸素センサは、感度が良
く、長期間安定に連続して測定することが可能である。
さらに、このような酸素濃度測定用素子を製造する本発
明の方法によれば、特性の優れた素子をきわめて再現性
高く製造することができる。
According to the oxygen concentration measuring element of the present invention, a fluorescent substance is uniformly dispersed in a porous filter and fixed stably, so that sensitivity and accuracy are high and stable over a long period of time. It works. In addition, the thickness and shape of the fluorescence generation layer, the coating layer, and the fluorescence reflection / external light blocking layer are highly reproducible, and variations in characteristics can be extremely reduced. In addition, an oxygen sensor including an oxygen concentration measuring element having such excellent characteristics has high sensitivity and can perform stable measurement continuously for a long period of time.
Furthermore, according to the method of the present invention for producing such an element for measuring oxygen concentration, an element having excellent characteristics can be produced with extremely high reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による実施例1の酸素濃度測定用素子
の構成を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a configuration of an element for measuring oxygen concentration of Example 1 according to the present invention.

【図2】 酸素濃度測定用素子とセンサキャップとの接
合状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a bonded state between an oxygen concentration measuring element and a sensor cap.

【図3】 本発明による酸素センサの全体の構成を示す
線図である。
FIG. 3 is a diagram showing an overall configuration of an oxygen sensor according to the present invention.

【図4】 本発明による実施例2の酸素濃度測定用素子
の構成を示す断面図である。
FIG. 4 is a sectional view showing a configuration of an element for measuring oxygen concentration according to a second embodiment of the present invention.

【図5】 本発明による実施例3の酸素濃度測定用素子
の構成を示す断面図である。
FIG. 5 is a cross-sectional view illustrating a configuration of an oxygen concentration measuring element according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板ガラス、 2 蛍光発生層、 3 蛍光反射
層、 4 外光遮断層、5 保護層、10 酸素濃度測
定用素子、 11 センサキャップ、 12 プローブ
ホルダ、 13 接着層、 14、15 光ファイバ、
16 ブルーフィルタ、 17 発光ダイオード、
18 グリーンフィルタ、 19 フォトダイオード、
20 励起光補償用フォトダイオード、 21 演算
・制御回路、 22 CPU、 23 プリアンプ、
24 S−Hアンプ、 25 Fアンプ、 26 アン
プ、 27、33 A/Dコンバータ、 41 液晶ディ
スプレイ、42 D/Aコンバータ、 43 RS-232Cイン
ターフェイス、 51 基板ガラス、 52 蛍光発生
層、 53 蛍光反射・外光遮断層、 54 保護層、
61 基板ガラス、 62 蛍光発生層、63 被覆層
DESCRIPTION OF SYMBOLS 1 Substrate glass, 2 Fluorescence generation layer, 3 Fluorescence reflection layer, 4 External light blocking layer, 5 Protective layer, 10 Element for oxygen concentration measurement, 11 Sensor cap, 12 Probe holder, 13 Adhesive layer, 14, 15 Optical fiber,
16 blue filter, 17 light emitting diode,
18 green filter, 19 photodiode,
Reference Signs List 20 photodiode for excitation light compensation, 21 operation / control circuit, 22 CPU, 23 preamplifier,
24 S-H amplifier, 25 F amplifier, 26 amplifier, 27, 33 A / D converter, 41 liquid crystal display, 42 D / A converter, 43 RS-232C interface, 51 substrate glass, 52 fluorescence generation layer, 53 fluorescence reflection / External light blocking layer, 54 protective layer,
61 substrate glass, 62 fluorescence generating layer, 63 coating layer

フロントページの続き (72)発明者 井上 浩三 東京都千代田区岩本町1−10−5 株式会 社オートマチック・システムリサーチ内 Fターム(参考) 2G043 AA01 BA09 CA01 EA01 FA03 GA08 GB01 GB16 GB21 HA05 JA03 KA02 KA03 LA01 MA01 2G059 AA01 BB01 CC07 EE02 EE07 GG02 HH03 JJ02 JJ17 JJ21 KK01 MM01 MM10 MM14 NN02 PP04 Continuation of the front page (72) Inventor Kozo Inoue 1-10-5 Iwamotocho, Chiyoda-ku, Tokyo F-term in the Automatic System Research Co., Ltd. (Reference) 2G043 AA01 BA09 CA01 EA01 FA03 GA08 GB01 GB16 GB21 HA05 JA03 KA02 KA03 LA01 MA01 2G059 AA01 BB01 CC07 EE02 EE07 GG02 HH03 JJ02 JJ17 JJ21 KK01 MM01 MM10 MM14 NN02 PP04

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 励起光及び蛍光が透過する基板と、この
基板上に設けられ、励起光の下で、酸素濃度に応じて蛍
光強度の減少を示す多環式芳香族または複素環式芳香族
の蛍光物質を、多孔質フィルタ内に均一に分散、固定さ
せた蛍光発生層と、この蛍光発生層の上に設けられ、蛍
光発生層から放射される蛍光を反射し、外光を遮断し、
酸素を透過すると共に蛍光発生層を保護する被覆層と、
を具えることを特徴とする酸素測定用素子。
1. A substrate through which excitation light and fluorescence are transmitted, and a polycyclic aromatic or heterocyclic aromatic provided on the substrate and exhibiting a decrease in fluorescence intensity according to oxygen concentration under the excitation light. The fluorescent substance is uniformly dispersed and fixed in the porous filter, and a fluorescent generating layer, which is provided on the fluorescent generating layer, reflects the fluorescence emitted from the fluorescent generating layer, blocks external light,
A coating layer that transmits oxygen and protects the fluorescence generating layer,
An element for oxygen measurement, comprising:
【請求項2】 前記被覆層が、蛍光発生層から放射され
る蛍光を反射すると共に酸素を透過する蛍光反射層、外
光を遮断すると共に酸素を透過する外光遮断層、及び、
酸素を透過する保護層を含むことを特徴とする、請求項
1に記載の酸素測定用素子。
2. The coating layer according to claim 1, wherein the coating layer reflects fluorescence emitted from the fluorescence generation layer and transmits oxygen, a fluorescence reflection layer that blocks external light and transmits oxygen.
The element for oxygen measurement according to claim 1, further comprising a protective layer permeable to oxygen.
【請求項3】 前記被覆層が、蛍光発生層から放射され
る蛍光を反射し、外光を遮断すると共に酸素を透過する
蛍光反射・外光遮断層、及び、酸素を透過する保護層を
含むことを特徴とする、請求項1に記載の酸素測定用素
子。
3. The coating layer includes a fluorescence reflection / external light blocking layer that reflects fluorescence emitted from the fluorescence generating layer, blocks external light, and transmits oxygen, and a protective layer that transmits oxygen. The element for oxygen measurement according to claim 1, wherein:
【請求項4】 前記フィルタが、酸素透過性化合物で形
成されていることを特徴とする、請求項1〜3の何れか
に記載の酸素測定用素子。
4. The element according to claim 1, wherein the filter is formed of an oxygen-permeable compound.
【請求項5】 前記フィルタが、フッ素系化合物または
シリコン系化合物で形成されていることを特徴とする、
請求項1〜4の何れかに記載の酸素測定用素子。
5. The filter according to claim 1, wherein the filter is formed of a fluorine compound or a silicon compound.
The element for measuring oxygen according to claim 1.
【請求項6】 前記被覆層、前記保護層、前記蛍光反射
・外光遮断層、前記蛍光反射層、または、前記外光遮断
層が、酸素透過性フッ素系化合物またはシリコン系化合
物で形成されていることを特徴とする、請求項1〜5の
何れかに記載の酸素測定用素子。
6. The coating layer, the protective layer, the fluorescence reflection / external light blocking layer, the fluorescence reflection layer, or the external light blocking layer is formed of an oxygen-permeable fluorine-based compound or a silicon-based compound. The oxygen measuring element according to claim 1, wherein
【請求項7】 前記基板が、石英ガラス、耐熱ガラス、
またはサファイアガラスで形成されていることを特徴と
する、請求項1〜6の何れかに記載の酸素測定用素子。
7. The method according to claim 1, wherein the substrate is quartz glass, heat-resistant glass,
The element for oxygen measurement according to any one of claims 1 to 6, wherein the element is made of sapphire glass.
【請求項8】 前記被覆層、前記蛍光反射・外光遮断
層、前記蛍光反射層、または、前記外光遮断層が、炭
素、酸化鉄、チタン及びその化合物、及びこれらの混合
物からなる群から選ばれた材料の粉末を含むことを特徴
とする、請求項1〜7の何れかに記載の酸素測定用素
子。
8. The coating layer, the fluorescence reflection / external light blocking layer, the fluorescence reflection layer, or the external light blocking layer is selected from the group consisting of carbon, iron oxide, titanium and a compound thereof, and a mixture thereof. The oxygen measuring element according to claim 1, comprising a powder of a selected material.
【請求項9】 励起光の下で、酸素濃度に応じて蛍光強
度の減少を示す多環式芳香族または複素環式芳香族の蛍
光物質の粉末を処理精製し、この処理精製した蛍光物質
の粉末を、酸素透過性液状ポリマ中に分散させた分散液
を、多孔質フィルタに塗布、浸透させて蛍光物質を前記
フィルタ中に固定して蛍光発生層を形成し、この蛍光発
生層を基板の上に固定し、その上に被覆層、または、蛍
光反射・外光遮断層を形成することを特徴とする酸素測
定用素子の製造方法。
9. A process for purifying a polycyclic aromatic or heteroaromatic fluorescent substance powder exhibiting a decrease in fluorescence intensity in accordance with oxygen concentration under excitation light, and purifying the processed and purified fluorescent substance. A dispersion in which the powder is dispersed in an oxygen-permeable liquid polymer is applied to a porous filter, penetrated, and a fluorescent substance is fixed in the filter to form a fluorescent generating layer. A method for manufacturing an element for oxygen measurement, comprising: fixing the device on the upper surface; and forming a coating layer or a fluorescence reflection / external light blocking layer thereon.
【請求項10】 励起光の下で、酸素濃度に応じて蛍光
強度の減少を示す多環式芳香族または複素環式芳香族の
蛍光物質の粉末を処理精製し、この処理精製した蛍光物
質の粉末を、酸素透過性液状ポリマ中に分散させた分散
液を、多孔質フィルタに塗布、浸透させて蛍光物質を前
記フィルタ中に固定して蛍光発生層を形成し、この蛍光
発生層を基板の上に固定し、その上に、蛍光反射層、外
光遮断層を順次に形成することを特徴とする、酸素測定
用素子の製造方法。
10. A polycyclic aromatic or heteroaromatic fluorescent substance powder exhibiting a decrease in fluorescence intensity in accordance with oxygen concentration under excitation light is treated and purified. A dispersion in which the powder is dispersed in an oxygen-permeable liquid polymer is applied to a porous filter, penetrated, and a fluorescent substance is fixed in the filter to form a fluorescent generating layer. A method for manufacturing an element for oxygen measurement, comprising fixing a fluorescent reflection layer and an external light blocking layer in this order on an upper surface.
【請求項11】 前記蛍光物質の処理精製を、アニリ
ン、過塩素酸、アセトン、エタノール、硫化水素、硫
酸、または硫黄系化合物溶液によって行うことを特徴と
する、請求項9または10に記載の酸素測定用素子の製
造方法。
11. The oxygen according to claim 9, wherein the treatment and purification of the fluorescent substance are performed using a solution of aniline, perchloric acid, acetone, ethanol, hydrogen sulfide, sulfuric acid, or a sulfur compound. Manufacturing method of measuring element.
【請求項12】 前記被覆層を、炭素、酸化鉄、チタン
及びその化合物、及びこれらの混合物からなる群から選
ばれた材料の粉末を分散させた酸素透過性のシリコン系
化合物及びまたはフッ素系化合物の溶液をフッ素系化合
物フィルタまたはシリコン系化合物フィルタに塗布した
後、固定化して形成することを特徴とする、請求項9に
記載の酸素測定用素子の製造方法。
12. The oxygen-permeable silicon-based compound and / or fluorine-based compound in which the coating layer is formed by dispersing a powder of a material selected from the group consisting of carbon, iron oxide, titanium and a compound thereof, and a mixture thereof. The method for producing an element for oxygen measurement according to claim 9, wherein the solution of (1) is applied to a fluorine-based compound filter or a silicon-based compound filter and then fixed.
【請求項13】 前記蛍光反射・外光遮断層、または、
前記蛍光反射層及び前記外光遮断層の各々を、炭素、酸
化鉄、チタン及びその化合物、及びこれらの混合物から
なる群から選ばれた材料の粉末を分散させた酸素透過性
のシリコン系化合物及びまたはフッ素系化合物の溶液を
塗布した後、固定化して形成することを特徴とする、請
求項9または10に記載の酸素測定用素子の製造方法。
13. The fluorescence reflection / external light blocking layer, or
Each of the fluorescent reflection layer and the external light blocking layer, an oxygen-permeable silicon-based compound in which powder of a material selected from the group consisting of carbon, iron oxide, titanium and a compound thereof, and a mixture thereof, and The method for producing an oxygen measuring element according to claim 9, wherein the method is formed by applying a solution of a fluorine-based compound and then fixing the solution.
【請求項14】 励起光を放射する光源と、この光源か
らの励起光を透過する基板と、この基板上に設けられ、
励起光の下で、酸素濃度に応じて蛍光強度の減少を示す
多環式芳香族または複素環式芳香族の蛍光物質を、多孔
質フィルタ内に均一に分散、固定させた蛍光発生層と、
この蛍光発生層の上に設けられ、蛍光発生層から放射さ
れる蛍光を反射し、外光を遮断し、酸素を透過すると共
に蛍光発生層を保護する被覆層、または、蛍光発生層か
ら放射される蛍光を反射し、外光を遮断すると共に酸素
を透過する蛍光反射・外光遮断層とを具える酸素測定用
素子と、前記蛍光発生層から放射される蛍光を前記基板
を経て受光する蛍光検知部と、この蛍光検知部からの出
力信号を処理して酸素濃度を指示する信号を出力する信
号処理部と、を具えることを特徴とする酸素センサ。
14. A light source that emits excitation light, a substrate that transmits the excitation light from the light source, and a substrate provided on the substrate.
Under the excitation light, a polycyclic aromatic or heterocyclic aromatic fluorescent substance exhibiting a decrease in fluorescence intensity in accordance with the oxygen concentration is uniformly dispersed and fixed in the porous filter, and a fluorescence generating layer,
A coating layer that is provided on the fluorescence generating layer, reflects fluorescence emitted from the fluorescence generation layer, blocks external light, transmits oxygen, and protects the fluorescence generation layer, or is emitted from the fluorescence generation layer. An oxygen measurement element comprising a fluorescence reflection / external light blocking layer that reflects external fluorescent light, blocks external light, and transmits oxygen, and fluorescent light that receives the fluorescent light emitted from the fluorescent light generating layer via the substrate. An oxygen sensor, comprising: a detection unit; and a signal processing unit that processes an output signal from the fluorescence detection unit and outputs a signal indicating an oxygen concentration.
【請求項15】 前記光源に、青色及び励起用紫外線を
放射するLEDを設けたことを特徴とする、請求項14に
記載の酸素センサ。
15. The oxygen sensor according to claim 14, wherein the light source includes an LED that emits blue light and ultraviolet light for excitation.
【請求項16】 前記蛍光物質の励起光の波長を中心と
する通過帯域を有するバンドパスフィルタと、このバン
ドパスフィルタを透過した励起光を受光するフォトダイ
オードと、このフォトダイオードの出力を受け、励起光
強度を一定に保つ光源駆動アンプとを設けたことを特徴
とする請求項14に記載の酸素センサ。
16. A band-pass filter having a pass band centered on the wavelength of the excitation light of the fluorescent substance, a photodiode for receiving the excitation light transmitted through the band-pass filter, and receiving an output of the photodiode. 15. The oxygen sensor according to claim 14, further comprising: a light source driving amplifier for maintaining a constant excitation light intensity.
JP2000000685A 2000-01-06 2000-01-06 Oxygen concentration measuring element, manufacturing method thereof, and sensor comprising the same Expired - Lifetime JP3749414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000000685A JP3749414B2 (en) 2000-01-06 2000-01-06 Oxygen concentration measuring element, manufacturing method thereof, and sensor comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000000685A JP3749414B2 (en) 2000-01-06 2000-01-06 Oxygen concentration measuring element, manufacturing method thereof, and sensor comprising the same

Publications (2)

Publication Number Publication Date
JP2001194304A true JP2001194304A (en) 2001-07-19
JP3749414B2 JP3749414B2 (en) 2006-03-01

Family

ID=18529997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000000685A Expired - Lifetime JP3749414B2 (en) 2000-01-06 2000-01-06 Oxygen concentration measuring element, manufacturing method thereof, and sensor comprising the same

Country Status (1)

Country Link
JP (1) JP3749414B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023725A3 (en) * 2004-08-19 2006-05-18 Blood Cell Storage Inc FLUORESCENT pH DETECTOR SYSTEM AND RELATED METHODS
WO2006110460A3 (en) * 2005-04-08 2007-03-29 Rosemount Analytical Inc Integrated optical device for luminescence sensing
JP2007286268A (en) * 2006-04-14 2007-11-01 Fuji Xerox Co Ltd Display device and method
CN100371701C (en) * 2005-05-01 2008-02-27 福州大学 A preparation method of a porous plastic optical fiber probe for measuring oxygen
JP2008542694A (en) * 2005-05-25 2008-11-27 ラウメディック アーゲー Probe for measuring oxygen content in biological tissue and catheter having this type of probe
US8183052B2 (en) 2004-08-19 2012-05-22 Blood Cell Storage, Inc. Methods and apparatus for sterility testing
US8497134B2 (en) 2004-08-19 2013-07-30 Blood Cell Storage, Inc. Fluorescent detector systems for the detection of chemical perturbations in sterile storage devices
US9040307B2 (en) 2011-05-27 2015-05-26 Blood Cell Storage, Inc. Fluorescent pH detector system and related methods
CN105842212A (en) * 2016-03-24 2016-08-10 上海交通大学 Method for determining protein stability
CN110749581A (en) * 2019-09-19 2020-02-04 北京华科仪科技股份有限公司 Fluorescent dissolved oxygen sensor diaphragm and preparation method thereof
CN113607708A (en) * 2021-08-06 2021-11-05 常州罗盘星检测科技有限公司 Method and application of preparing oxygen sensitive film of dissolved oxygen sensor by loading fluorescent indicator
JP2021196206A (en) * 2020-06-10 2021-12-27 株式会社オートマチック・システムリサーチ An element for measuring oxygen gas concentration and a sensor provided with the element.
JP7650347B2 (en) 2020-09-01 2025-03-24 ザ ジェネラル ホスピタル コーポレイション Systems and methods for monitoring an analyte or parameter - Patents.com

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217170B2 (en) 2004-08-19 2015-12-22 Blood Cell Storage, Inc. Fluorescent detector systems for the detection of chemical perturbations in sterile storage devices
US8183052B2 (en) 2004-08-19 2012-05-22 Blood Cell Storage, Inc. Methods and apparatus for sterility testing
WO2006023725A3 (en) * 2004-08-19 2006-05-18 Blood Cell Storage Inc FLUORESCENT pH DETECTOR SYSTEM AND RELATED METHODS
US10156578B2 (en) 2004-08-19 2018-12-18 Blood Cell Storage, Inc. Fluorescent detector systems for the detection of chemical perturbations in sterile storage devices
US8497134B2 (en) 2004-08-19 2013-07-30 Blood Cell Storage, Inc. Fluorescent detector systems for the detection of chemical perturbations in sterile storage devices
US7608460B2 (en) 2004-08-19 2009-10-27 Blood Cell Storage, Inc. Fluorescent pH detector system and related methods
US8148167B2 (en) 2004-08-19 2012-04-03 Blood Cell Storage, Inc. Fluorescent pH detector system and related methods
WO2006110460A3 (en) * 2005-04-08 2007-03-29 Rosemount Analytical Inc Integrated optical device for luminescence sensing
CN100371701C (en) * 2005-05-01 2008-02-27 福州大学 A preparation method of a porous plastic optical fiber probe for measuring oxygen
JP2008542694A (en) * 2005-05-25 2008-11-27 ラウメディック アーゲー Probe for measuring oxygen content in biological tissue and catheter having this type of probe
JP2007286268A (en) * 2006-04-14 2007-11-01 Fuji Xerox Co Ltd Display device and method
US9040307B2 (en) 2011-05-27 2015-05-26 Blood Cell Storage, Inc. Fluorescent pH detector system and related methods
CN105842212A (en) * 2016-03-24 2016-08-10 上海交通大学 Method for determining protein stability
CN105842212B (en) * 2016-03-24 2019-06-04 上海交通大学 Method for determining protein stability
CN110749581A (en) * 2019-09-19 2020-02-04 北京华科仪科技股份有限公司 Fluorescent dissolved oxygen sensor diaphragm and preparation method thereof
CN110749581B (en) * 2019-09-19 2024-03-26 北京华科仪科技股份有限公司 Fluorescent dissolved oxygen sensor diaphragm and preparation method thereof
JP2021196206A (en) * 2020-06-10 2021-12-27 株式会社オートマチック・システムリサーチ An element for measuring oxygen gas concentration and a sensor provided with the element.
JP7295574B2 (en) 2020-06-10 2023-06-21 株式会社オートマチック・システムリサーチ Oxygen gas concentration measuring element and sensor provided with the element
JP7650347B2 (en) 2020-09-01 2025-03-24 ザ ジェネラル ホスピタル コーポレイション Systems and methods for monitoring an analyte or parameter - Patents.com
CN113607708A (en) * 2021-08-06 2021-11-05 常州罗盘星检测科技有限公司 Method and application of preparing oxygen sensitive film of dissolved oxygen sensor by loading fluorescent indicator

Also Published As

Publication number Publication date
JP3749414B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
US5237631A (en) Method for the manufacture of a fluorescent chemical sensor for determining the concentration of gases, vapors or dissolved gases in a sample
EP2635624B1 (en) Optical sensor and sensing system for oxygen monitoring in fluids using molybdenum cluster phosphorescence
JP2001194304A (en) Element for measuring oxygen concentration, its manufacturing method, and sensor equipped with the same
Kroneis et al. A fluorescence-based sterilizable oxygen probe for use in bioreactors
EP0850409B1 (en) SIMULTANEOUS DUAL EXCITATION/SINGLE EMISSION FLUORESCENT SENSING METHOD FOR pH AND pCO2
US4833091A (en) Sensor system
Trettnak et al. Miniaturized luminescence lifetime-based oxygen sensor instrumentation utilizing a phase modulation technique
US5627922A (en) Micro optical fiber light source and sensor and method of fabrication thereof
US7450980B2 (en) Intracorporeal substance measuring assembly
EP1864118B1 (en) Fibre optic sensor
NO325071B1 (en) Fluorescent optical sensor
Optiz et al. Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes
CN101710074B (en) Micro optical fiber biosensor for detecting nitric oxide concentration in organism
EP3333568A1 (en) Optochemical sensor
JP2005315871A (en) Intracorporeal substance measuring assembly, manufacturing method for intracorporeal substance measuring assembly, and embedded type substance sensor
CN112945922B (en) A PDMS Sensing Detector and Sensing Application Based on Spiropyran Doping
JPH10132742A (en) Sensor for measuring oxygen concentration and its manufacturing method
JPH0669363B2 (en) Biosensor device
JPH02190748A (en) Implement for measuring oxygen concentration
JPS5987343A (en) Measuring device for deciding co2 component in sample
Sloan et al. A fibre‐optic calcium ion sensor using a calcein derivative
AU662925B2 (en) Sensors and methods for sensing
EP0539968B1 (en) Exciplex-based sensors and methods for sensing
JPH06180287A (en) Sensor element for measuring the amount of dissolved oxygen in the test sample
Wang et al. A fluorometric rate assay of hydrogen peroxide using immobilized peroxidase with a fibre-optic detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3749414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term