[go: up one dir, main page]

JP2001102483A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2001102483A
JP2001102483A JP27818299A JP27818299A JP2001102483A JP 2001102483 A JP2001102483 A JP 2001102483A JP 27818299 A JP27818299 A JP 27818299A JP 27818299 A JP27818299 A JP 27818299A JP 2001102483 A JP2001102483 A JP 2001102483A
Authority
JP
Japan
Prior art keywords
heat
wiring board
semiconductor
thermal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27818299A
Other languages
Japanese (ja)
Other versions
JP4480818B2 (en
Inventor
Yasuo Osone
靖夫 大曽根
Norio Nakazato
典生 中里
Yasunari Umemoto
康成 梅本
Chushiro Kusano
忠四郎 草野
Kiichi Yamashita
喜市 山下
Shizuo Kondo
静雄 近藤
Sakae Kikuchi
栄 菊池
Satoshi Sasaki
聡 佐々木
Mitsuaki Hibino
光明 日比野
Masaki Nakanishi
正樹 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27818299A priority Critical patent/JP4480818B2/en
Priority to PCT/JP2000/005785 priority patent/WO2001026152A1/en
Publication of JP2001102483A publication Critical patent/JP2001102483A/en
Application granted granted Critical
Publication of JP4480818B2 publication Critical patent/JP4480818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to reduce thermal resistance by connecting a semiconductor device and a thermal via in a wiring board with good electrical and thermal efficiency. SOLUTION: A semiconductor device comprises a semiconductor element to be mounted on a wiring board, a conductive pillar-shaped member mounted on the wiring board and passed through the semiconductor in the thickness direction, and a thermally conductive member for connecting the semiconductor element and the conductive pillar-shaped member thermally and electrically.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯通信端末用高
周波パワーアンプ等に用いられる半導体装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device used for a high-frequency power amplifier for a portable communication terminal.

【0002】[0002]

【従来の技術】携帯通信端末、例えば携帯電話機は、近
年小型・軽量化が急ピッチで進行中であり、これと並行
して低コスト化が重要な課題である。この小型・軽量・
低コストの3条件を実現する上で、高周波パワーアンプ
の効率(消費電力に対する出力電力の比率)改善が必須
である。高周波パワーアンプの効率は、通話時の消費電
力にほぼ比例するため,同じ連続通話時間を基準に考え
ると、高効率、即ち消費電力の少ない高周波パワーアン
プを用いることにより,その分だけ電池の容量を低減す
ることができ、軽量化が可能である。
2. Description of the Related Art In recent years, miniaturization and weight reduction of portable communication terminals, for example, portable telephones, are progressing at a rapid pace, and at the same time, cost reduction is an important issue. This small, lightweight,
In order to realize the three low-cost conditions, it is essential to improve the efficiency (ratio of output power to power consumption) of the high-frequency power amplifier. Since the efficiency of a high-frequency power amplifier is almost proportional to the power consumption during a call, considering the same continuous talk time as a reference, the use of a high-efficiency, high-frequency power amplifier with low power consumption results in a corresponding increase in the battery capacity. Can be reduced, and the weight can be reduced.

【0003】一方、パワーアンプ自体の低コスト化の観
点からは、上記のような効率改善の他に、パワーアンプ
そのものの高密度実装化、小型化が必須である。この高
密度実装化、小型化は必ずしもパワーアンプに限った技
術的課題ではないが、発熱スポットの集約化により、発
熱量が低減できても装置内部の局所的な温度は従来品よ
り高くなってしまう場合があり、高密度化に合わせた低
熱抵抗化技術の開発が必要とされている。
[0003] On the other hand, from the viewpoint of reducing the cost of the power amplifier itself, in addition to the above-described efficiency improvement, it is essential that the power amplifier itself be densely mounted and miniaturized. This high-density mounting and miniaturization are not necessarily technical issues limited to power amplifiers, but due to the consolidation of heat spots, even if the amount of heat generated can be reduced, the local temperature inside the device will be higher than conventional products. In some cases, it is necessary to develop a technology for lowering the thermal resistance in accordance with the higher density.

【0004】さて、携帯電話のように、アンテナを有す
る通信機器は、アンテナを介して電波の送信を行った時
に高周波パワーアンプ内の半導体素子が発熱する。高周
波パワーアンプの効率は100%ではなく、消費電力と
出力電力との差の大半が熱となって放出するので、一般
的に、パワーアンプ内の半導体素子から放出された熱
は、半導体基板から配線基板を経由してマザーボードに
伝達されて、携帯電話の外形を形成する筐体から、輻
射、空気への熱伝達、あるいは携帯電話を握った人の手
を伝わって外部に伝達させるように設計されている。こ
の半導体装置は、半導体素子と、この半導体素子を搭載
する配線基板とから構成されており、この配線基板を半
導体素子から生じた熱が通過する。従って、配線基板
は、熱伝導率が高いほど半導体素子の温度を一定の基準
値以下にするためには好適と言える。
In a communication device having an antenna, such as a mobile phone, a semiconductor element in a high-frequency power amplifier generates heat when radio waves are transmitted through the antenna. Since the efficiency of a high-frequency power amplifier is not 100% and most of the difference between the power consumption and the output power is released as heat, generally, the heat released from the semiconductor element in the power amplifier is transmitted from the semiconductor substrate. Designed to be transmitted to the motherboard via the wiring board and form the outer shape of the mobile phone, radiated, heat transferred to the air, or transmitted to the outside through the hand of the person holding the mobile phone Have been. This semiconductor device includes a semiconductor element and a wiring board on which the semiconductor element is mounted, and heat generated from the semiconductor element passes through the wiring board. Therefore, it can be said that the higher the thermal conductivity of the wiring board, the more suitable it is to lower the temperature of the semiconductor element to a certain reference value or less.

【0005】パワーアンプ等に用いられるこの半導体装
置を図5にて説明する。マザーボード8上に多層配線基
板2が搭載されている。多層配線基板2上には、ロウ材
9を介して半導体素子1が搭載されている。この半導体
素子1は、半導体基板1aと、この半導体基板1aの表
層面に形成されたトランジスタ等の回路から構成されて
いる。この回路の一部には、発熱部1b(例えば、トラ
ンジスタのエミッタ・ベース間領域など)が存在する。
3は、多層配線基板2を板厚方向に貫通した柱状部材
(以下、サーマルビアという)であり、半導体基板1a
とマザーボード8とを電気的、熱的に接続するものであ
る。5は、多層配線基板2の配線要素であり、マザーボ
ード8と接続される。上記多層配線基板2上には上記半
導体素子1以外に、チップコンデンサや抵抗などの複数
の部品12が実装されている。
This semiconductor device used for a power amplifier or the like will be described with reference to FIG. The multilayer wiring board 2 is mounted on the motherboard 8. The semiconductor element 1 is mounted on the multilayer wiring board 2 via a brazing material 9. The semiconductor element 1 includes a semiconductor substrate 1a and a circuit such as a transistor formed on a surface of the semiconductor substrate 1a. A heat generating portion 1b (for example, a region between an emitter and a base of a transistor) exists in a part of this circuit.
Reference numeral 3 denotes a columnar member (hereinafter referred to as a thermal via) penetrating the multilayer wiring board 2 in the thickness direction, and includes a semiconductor substrate 1a.
And the motherboard 8 are electrically and thermally connected. Reference numeral 5 denotes a wiring element of the multilayer wiring board 2, which is connected to the motherboard 8. A plurality of components 12 such as a chip capacitor and a resistor are mounted on the multilayer wiring board 2 in addition to the semiconductor element 1.

【0006】一般的に、多層配線基板2の材料として電
気絶縁性が高いガラスセラミック系やガラスエポキシ
系、あるいはアルミナ等のセラミック系の材料が使用さ
れている。上記のような配線基板の材料は、電気絶縁性
が高い反面、熱伝導率が低いという特性があるので、こ
れらの材料をそのまま多層配線基板2の材料として使用
すると、半導体装置全体の熱抵抗が高くなり、半導体素
子1の発熱部1bの温度が目標とする上限値を超えて上
昇してしまうという問題がある。
In general, a ceramic-based material such as glass-ceramic, glass-epoxy, or alumina having high electrical insulation is used as the material of the multilayer wiring board 2. The materials of the wiring board as described above have characteristics of high electrical insulation, but low thermal conductivity. Therefore, when these materials are used as they are as the material of the multilayer wiring board 2, the thermal resistance of the entire semiconductor device is reduced. Therefore, there is a problem that the temperature of the heat generating portion 1b of the semiconductor element 1 rises above a target upper limit.

【0007】このような問題を解決する一手段として、
図5の半導体装置のように、多層配線基板2にサーマル
ビア3を複数配置し、その上にハンダ等の導電性ロウ材
9を用いて半導体素子1を実装したものがある。このサ
ーマルビア3を設けることにより、半導体素子1から多
層配線基板2の裏面を経てマザーボード8上の共通接地
電極に至るまでを電気的に接続すると同時に、半導体基
板1aとマザーボード8とを熱的に接続することができ
るので、半導体素子1の発熱部1bと多層配線基板2裏
面との間の熱抵抗が低減し、発熱部1bの温度を一定の
基準値以下にすることが可能である。
As one means for solving such a problem,
As shown in the semiconductor device of FIG. 5, there is a device in which a plurality of thermal vias 3 are arranged on a multilayer wiring board 2 and a semiconductor element 1 is mounted thereon using a conductive brazing material 9 such as solder. By providing the thermal vias 3, the semiconductor element 1 is electrically connected to the common ground electrode on the motherboard 8 via the back surface of the multilayer wiring board 2, and at the same time, the semiconductor substrate 1 a and the motherboard 8 are thermally connected. Since the connection can be made, the thermal resistance between the heat generating portion 1b of the semiconductor element 1 and the rear surface of the multilayer wiring board 2 is reduced, and the temperature of the heat generating portion 1b can be set to a certain reference value or less.

【0008】一方、半導体装置については、半導体基板
1aの材料として、従来、例えばSi単結晶基板が用い
られ、この単結晶基板上にMOSFETの回路を形成す
るなどして高周波パワーアンプを構成してきた。このS
i系の材料は熱伝導率が比較的高いため、素子表面の発
熱部1bと多層配線基板2裏面との間の熱抵抗は、後述
するGaAs系などの化合物半導体基板を用いた場合ほ
ど大きくならない。ところが、高周波パワーアンプの効
率を改善するためには、Si系のMOSFETでは十分
ではないという問題がある。このため、高周波パワーア
ンプの出力向上及び高率改善を図る目的から、半導体基
板をGaAs系の化合物半導体基板で形成したものがあ
る。
On the other hand, in the semiconductor device, for example, a Si single crystal substrate is conventionally used as a material of the semiconductor substrate 1a, and a high frequency power amplifier has been formed by forming a MOSFET circuit on the single crystal substrate. . This S
Since the i-type material has a relatively high thermal conductivity, the thermal resistance between the heat generating portion 1b on the element surface and the back surface of the multilayer wiring board 2 does not increase as much as when a GaAs-based compound semiconductor substrate described later is used. . However, in order to improve the efficiency of the high-frequency power amplifier, there is a problem that a Si-based MOSFET is not sufficient. For this reason, there is a semiconductor substrate formed of a GaAs-based compound semiconductor substrate for the purpose of improving the output and improving the efficiency of the high-frequency power amplifier.

【0009】このGaAs系材料は、熱伝導率が低く電
気絶縁性が高いという特性があるため、半導体基板1a
の一部にバイアホールと呼ばれる貫通孔を穿設し、半導
体素子裏面には金メッキ等のメッキ層を設け、上記バイ
アホールを経由して半導体基板1aの表面側の特定の配
線と半導体基板の裏面との間を電気的に接続する場合が
ある。これにより配線インダクタンスを低減できる。こ
の場合、前記メッキ層が熱拡散板としての機能を果た
し、素子表面の発熱部1bと多層配線基板2の裏面との
間の熱抵抗が小さくなり、結果的に、熱伝導率が低いG
aAs系材であってもパワーアンプ全体の熱抵抗を低減
することが可能である。
Since the GaAs-based material has a characteristic of low thermal conductivity and high electrical insulation, the semiconductor substrate 1a
A through hole called a via hole is formed in a part of the substrate, a plating layer such as gold plating is provided on the back surface of the semiconductor element, a specific wiring on the front surface side of the semiconductor substrate 1a and the back surface of the semiconductor substrate via the via hole. May be electrically connected. Thereby, the wiring inductance can be reduced. In this case, the plating layer functions as a heat diffusion plate, and the thermal resistance between the heat-generating portion 1b on the element surface and the back surface of the multilayer wiring board 2 becomes small.
Even with an aAs-based material, it is possible to reduce the thermal resistance of the entire power amplifier.

【0010】上記の熱拡散板として用いられるメッキ層
は、一般的にプレーテッドヒートシンク(以下、PHS
という)と呼ばれ、このPHSとバイアホールとを組合
わせた半導体装置の例として、例えば特開平5−152
340号公報などがある。
The plating layer used as the above-mentioned heat diffusion plate is generally a plated heat sink (hereinafter, PHS).
An example of a semiconductor device in which the PHS and the via hole are combined is disclosed in, for example, JP-A-5-152.
No. 340, for example.

【0011】図6は、半導体素子1を構成する半導体基
板1aと配線基板2との間に熱拡散板13を介在させた
半導体装置を示す。図6によれば、携帯通信機のパワー
アンプに限らず、半導体素子を配線基板上に実装する場
合、サーマルビアを配線基板2に設けない構造のものが
考えられる。このように、熱拡散板を取付けた半導体装
置の例として、例えば特開平11−191603号公報
や特開平10−247704号公報等がある。
FIG. 6 shows a semiconductor device in which a heat diffusion plate 13 is interposed between a semiconductor substrate 1a constituting a semiconductor element 1 and a wiring substrate 2. According to FIG. 6, not only the power amplifier of the portable communication device but also a structure in which a thermal via is not provided in the wiring board 2 when a semiconductor element is mounted on the wiring board can be considered. Examples of the semiconductor device to which the heat diffusion plate is attached as described above include, for example, JP-A-11-191603 and JP-A-10-247704.

【0012】図7は、配線基板2を貫通するサーマルビ
ア3を半導体基板1aとほぼ同等若しくはそれ以上の大
きさで、単一形状とした半導体装置を示したものであ
る。図中、7はPHSを示す。このPHS7は、上述し
たように、金メッキ層などからなり、半導体素子1から
の熱をサーマルビア3に伝えるものである。
FIG. 7 shows a semiconductor device in which the thermal via 3 penetrating through the wiring board 2 is substantially equal to or larger than the semiconductor substrate 1a and has a single shape. In the figure, 7 indicates PHS. As described above, the PHS 7 is made of a gold plating layer or the like, and transfers heat from the semiconductor element 1 to the thermal via 3.

【0013】[0013]

【発明が解決しようとする課題】熱伝導率の低いGaA
s系材料からなる半導体基板の裏面にPHSを備え、こ
のPHSを直接多層配線基板にハンダ等のロウ材を用い
て固定した場合、PHSを極端に厚くしないとSi系の
半導体素子ほどには素子表面の発熱部から多層配線基板
に至るまでの熱抵抗を小さくすることができない。とこ
ろが、このように厚いPHSを金メッキで形成すると、
コスト的に極めて高価なものになってしまう。
SUMMARY OF THE INVENTION GaAs having low thermal conductivity
When a PHS is provided on the back surface of a semiconductor substrate made of an s-based material, and the PHS is directly fixed to a multilayer wiring substrate using a brazing material such as solder, the element is not as thick as a Si-based semiconductor device unless the PHS is extremely thick. The thermal resistance from the heat generating portion on the surface to the multilayer wiring board cannot be reduced. However, when such a thick PHS is formed by gold plating,
It becomes extremely expensive in terms of cost.

【0014】また、金メッキ層によるPHSの厚さが厚
すぎると、GaAsと金の線膨張係数の差により、例え
ば、製造工程におけるリフロー工程で発生する熱応力
や、あるいは素子動作時の発熱サイクルで、金メッキ層
と半導体基板の界面に発生する熱応力によって半導体基
板1aにクラックが発生したり、半導体基板1aとPH
Sとの間に剥離が生じてしまう恐れがある。
If the thickness of the PHS due to the gold plating layer is too large, a difference in linear expansion coefficient between GaAs and gold may cause a thermal stress generated in a reflow process in a manufacturing process, or a heat cycle during device operation. Cracks may occur in the semiconductor substrate 1a due to thermal stress generated at the interface between the gold plating layer and the semiconductor substrate,
There is a possibility that peeling may occur between S and S.

【0015】また、特開平10−247704号公報で
開示されているように、下から配線基板、第一のロウ
材、熱拡散板、第二のロウ材、半導体素子の順に実装
し、半導体基板の厚さを薄くして熱抵抗を小さくしよう
とすると、半導体基板内での三次元の熱の広がりが不十
分なため、サーマルビアへの熱の伝達範囲が狭くなり、
熱伝達に貢献しないサーマルビアが発生し、サーマルビ
アの有効な利用が図れない。このため、多層配線基板内
の熱抵抗を十分低減することができなくなり、装置全体
の熱抵抗は必ずしも小さくならない場合がある。
Further, as disclosed in Japanese Patent Application Laid-Open No. 10-247704, a wiring board, a first brazing material, a heat diffusion plate, a second brazing material, and a semiconductor element are mounted in this order from the bottom to form a semiconductor substrate. In order to reduce the thermal resistance by reducing the thickness of the thermal via, the spread of heat to the thermal vias becomes narrow because the three-dimensional heat spread in the semiconductor substrate is insufficient.
Thermal vias that do not contribute to heat transfer occur, making it impossible to use thermal vias effectively. For this reason, the thermal resistance in the multilayer wiring board cannot be sufficiently reduced, and the thermal resistance of the entire device may not always be reduced.

【0016】逆に、半導体基板の厚さを厚くすると、基
板が厚いほど熱が広い範囲に拡散されてサーマルビアを
無駄なく有効に利用することが可能であるが、半導体基
板を厚くするとバイアホールの加工が困難になったり、
コスト的に折合わないという問題がある。また、半導体
基板内の熱抵抗は厚いほど高くなるため、装置全体の熱
抵抗は必ずしも小さくならない。
Conversely, if the thickness of the semiconductor substrate is increased, the heat is diffused over a wider range as the substrate is thicker, and the thermal vias can be effectively used without waste. Processing becomes difficult,
There is a problem that costs cannot be met. Further, since the thermal resistance in the semiconductor substrate increases as the thickness increases, the thermal resistance of the entire device does not always decrease.

【0017】結局、半導体基板表面の発熱部から多層配
線基板裏面までの熱抵抗の合計で考えると、半導体基板
の厚さが薄くても厚くても、それだけではあまり有効な
熱抵抗低減策にはならない。
As a result, considering the total thermal resistance from the heat-generating portion on the front surface of the semiconductor substrate to the rear surface of the multilayer wiring substrate, it is not very effective to reduce the thermal resistance even if the semiconductor substrate is thin or thick. No.

【0018】ところで、多層配線基板の母材が絶縁性の
高いガラスセラミック系やガラスエポキシ系の材料であ
ることは、実質的に多層配線基板が断熱層となるので、
サーマルビア以外に熱を多層配線基板裏面に逃がす部分
が存在しないことになる。
Incidentally, the fact that the base material of the multilayer wiring board is made of a glass ceramic or glass epoxy material having high insulating properties means that the multilayer wiring board becomes a heat insulating layer substantially.
Except for the thermal via, there is no portion that allows heat to escape to the rear surface of the multilayer wiring board.

【0019】図7に記載したように、半導体基板1aの
断面積と等しいか、あるいはそれ以上に大きい断面積の
単一のサーマルビア3を形成することによって熱抵抗を
十分に低減させることができるものと考えられるが、単
一の巨大なサーマルビアを形成すると、サーマルビアの
内部に巣ができてしまい、結果的に熱抵抗を上昇させて
しまう可能性が高い。
As shown in FIG. 7, by forming a single thermal via 3 having a sectional area equal to or larger than the sectional area of the semiconductor substrate 1a, the thermal resistance can be sufficiently reduced. However, when a single huge thermal via is formed, a nest is formed inside the thermal via, and as a result, there is a high possibility that the thermal resistance is increased.

【0020】一方、多層配線基板2に貫通孔を設けて板
状部材で作ったサーマルビア3を圧入して装置を形成す
る場合、熱抵抗の点では問題のない材料を選択しても、
サーマルビア3と多層配線基板2の線膨張係数を一定の
誤差範囲内で一致させないと素子発熱時に熱応力で破壊
してしまう可能性がある。この問題を回避するためにサ
ーマルビア3の寸法を多層配線基板2の貫通孔よりかな
り小さくしてしまうと今度はサーマルビア3の固定方法
を別途考える必要が生じ、コスト増の一因となってしま
う。
On the other hand, when a device is formed by press-fitting a thermal via 3 made of a plate-like member by providing a through hole in the multilayer wiring board 2, even if a material having no problem in terms of thermal resistance is selected,
If the coefficient of linear expansion of the thermal via 3 and the coefficient of linear expansion of the multilayer wiring board 2 are not matched within a certain error range, there is a possibility that the element will be broken by thermal stress at the time of heat generation. If the size of the thermal via 3 is made considerably smaller than the through hole of the multilayer wiring board 2 in order to avoid this problem, it is necessary to separately consider a method of fixing the thermal via 3, which causes an increase in cost. I will.

【0021】本発明の目的は、半導体基板を厚くするこ
となく、半導体素子からの熱を多層配線基板から外部に
効率良く伝達させることが可能な半導体装置を低コスト
で提供することにある。
An object of the present invention is to provide a semiconductor device capable of efficiently transmitting heat from a semiconductor element to the outside from a multilayer wiring substrate without increasing the thickness of a semiconductor substrate, at a low cost.

【0022】[0022]

【課題を解決するための手段】上記目的は、配線基板上
に実装される半導体素子と、前記配線基板内に配置さ
れ、この配線基板を厚さ方向に貫通して設けられた第1
の熱伝導部材と、前記半導体素子と第1の熱伝導部材と
を熱的に接続する第2の熱伝導部材とを備えたことによ
り達成される。
A first object of the present invention is to provide a semiconductor device mounted on a wiring board and a first element disposed in the wiring board and penetrating the wiring board in a thickness direction.
And a second heat conductive member for thermally connecting the semiconductor element and the first heat conductive member.

【0023】また、配線基板上に実装される半導体素子
と、前記配線基板内に配置され、この配線基板を厚さ方
向に貫通して設けられた第1の熱伝導部材と、この第1
の熱伝導部材と前記半導体素子との間に設けられた熱拡
散板と、この熱拡散板と前記第1の熱伝導部材とを熱的
に接続する第2の熱伝導部材を設けたことにより達成さ
れる。
A semiconductor element mounted on the wiring board; a first heat conductive member disposed in the wiring board and provided through the wiring board in a thickness direction;
A heat diffusion plate provided between the heat diffusion member and the semiconductor element, and a second heat conduction member for thermally connecting the heat diffusion plate and the first heat conduction member. Achieved.

【0024】また、配線基板上に実装される半導体素子
と、前記配線基板内に配置され、この配線基板を厚さ方
向に貫通して設けられた第1の熱伝導部材と、この第1
の熱伝導部材と前記半導体素子との間に設けられ、前記
半導体素子の面積と同一若しくはそれ以上の面積を有す
る熱拡散板と、この熱拡散板と前記第1の熱伝導部材と
を熱的に接続し、前記半導体素子の面積と同一若しくは
それ以上の面積を有する第2の熱伝導部材を設けたこと
により達成される。
A semiconductor element mounted on the wiring board; a first heat conductive member disposed in the wiring board and provided through the wiring board in a thickness direction;
A heat diffusion plate provided between the heat conduction member and the semiconductor element and having an area equal to or larger than the area of the semiconductor element; and thermally connecting the heat diffusion plate and the first heat conduction member to each other. And a second heat conducting member having an area equal to or larger than the area of the semiconductor element is provided.

【0025】また、請求項1記載の半導体装置におい
て、前記半導体素子がSi等の単結晶半導体基板または
GaAs等の化合物半導体基板上に、複数のトランジス
タまたはダイオード等からなる多フィンガー素子が形成
されたことにより達成される。
In the semiconductor device according to the first aspect, a multi-finger element including a plurality of transistors or diodes is formed on a single-crystal semiconductor substrate such as Si or a compound semiconductor substrate such as GaAs. This is achieved by:

【0026】また、前記半導体素子と配線基板との間に
配置される第2の熱伝導部材は、上記半導体素子よりも
熱伝導率の高い材料であることにより達成される。
Further, the second heat conductive member disposed between the semiconductor element and the wiring board is achieved by using a material having a higher thermal conductivity than the semiconductor element.

【0027】また、前記半導体素子と配線基板との間に
配置される第2の熱伝導部材と、上記半導体素子と第2
の熱伝導部材との間に配置される熱拡散板のいずれもが
上記半導体素子よりも熱伝導率の高い材料であることに
より達成される。
A second heat conductive member disposed between the semiconductor element and the wiring board;
This is attained by the fact that all of the heat diffusion plates disposed between the heat conducting members are made of a material having higher heat conductivity than the semiconductor element.

【0028】また、前記半導体素子、第2の熱伝導部
材、熱拡散板の厚さが、熱拡散板が最も薄く、第2の熱
伝導部材が最も厚い構成であることにより達成される。
The thickness of the semiconductor element, the second heat conducting member and the heat diffusion plate is achieved by the thinnest heat diffusion plate and the thickest second heat conduction member.

【0029】[0029]

【発明の実施の形態】本発明における一実施形態を図1
及び図2を用いて説明する。図1は、本発明を備えた半
導体装置の断面図、図2は、本発明の多層配線基板を貫
通しないサーマルビアを設けた半導体装置の断面図であ
る。
FIG. 1 shows an embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 is a sectional view of a semiconductor device provided with the present invention, and FIG. 2 is a sectional view of a semiconductor device provided with a thermal via which does not penetrate a multilayer wiring board of the present invention.

【0030】図1において、半導体素子1を構成する半
導体基板1aは、配線基板2上に実装されている。配線
基板2内部には、導電性と高熱伝導性を有するサーマル
ビア3が配線基板2を貫通するように複数本設けられて
いる。個々のサーマルビア3と半導体基板1aとの間に
は、熱伝導部材4が介在され、電気的かつ熱的に接続さ
せている。
In FIG. 1, a semiconductor substrate 1 a constituting a semiconductor element 1 is mounted on a wiring board 2. A plurality of thermal vias 3 having conductivity and high thermal conductivity are provided inside the wiring board 2 so as to penetrate the wiring board 2. A heat conductive member 4 is interposed between each thermal via 3 and the semiconductor substrate 1a, and is electrically and thermally connected.

【0031】前記配線基板2は、絶縁性が高く、熱伝導
率が小さいガラスセラミック系やガラスエポキシ系の材
料であるため、サーマルビア3以外の部分は断熱に近
く、配線基板2内で電気的かつ熱的に良伝導性であるの
はほぼサーマルビア3のみである。このため、熱伝導部
材4を用いて、できるだけ多くのサーマルビア3と半導
体基板1とを熱的に接続することにより、半導体基板1
aの表層面の発熱部1bと配線基板2裏面との間の熱抵
抗を低減することが可能である。半導体基板1aは、こ
の部分の熱抵抗を小さくするために極力薄く(100μ
m程度以下、典型的には30〜50μm程度)してい
る。
Since the wiring board 2 is made of a glass-ceramic or glass-epoxy material having a high insulation property and a low thermal conductivity, portions other than the thermal vias 3 are close to heat insulation and are electrically connected within the wiring board 2. Almost only the thermal via 3 has good thermal conductivity. Therefore, as many thermal vias 3 as possible are thermally connected to the semiconductor substrate 1 by using the heat conductive member 4 so that the semiconductor substrate 1
It is possible to reduce the thermal resistance between the heat generating portion 1b on the surface layer a of FIG. The semiconductor substrate 1a is as thin as possible (100 μm) in order to reduce the thermal resistance of this portion.
m or less, typically about 30 to 50 μm).

【0032】薄くすることによって半導体基板1a内で
の熱の拡散が不十分となっても、半導体基板1a裏面で
局所的に温度の高い範囲とサーマルビア3とを熱伝導部
材4を用いて熱的に効果的に接続することにより、配線
基板2裏面と発熱部1bとの間の熱抵抗を低減すること
ができる。
Even if the heat diffusion in the semiconductor substrate 1a becomes insufficient due to the thinning, the region where the temperature is locally high and the thermal via 3 on the back surface of the semiconductor substrate 1a is thermally By effectively and effectively connecting, it is possible to reduce the thermal resistance between the rear surface of the wiring board 2 and the heat generating portion 1b.

【0033】前記熱伝導部材4が位置する半導体基板1
aと配線基板2との間の空間は、絶縁性の部材を用いて
封じていても問題なく、図1のように、空間上に浮いた
形で実装させても良い。また、配線基板2の裏面の配線
要素5は、サーマルビア3と電気的に接続されており、
この配線要素5を介してマザーボード8上の共通接地配
線に接続している。ところで、配線要素5は、配線基板
2裏面全面を覆う必要はない。この点は、以下に説明す
る本発明の全ての実施形態に共通する。
The semiconductor substrate 1 on which the heat conducting member 4 is located
The space between a and the wiring board 2 may be sealed using an insulating member without any problem, and may be mounted in a form floating above the space as shown in FIG. The wiring element 5 on the back surface of the wiring board 2 is electrically connected to the thermal via 3,
The wiring element 5 is connected to a common ground wiring on the motherboard 8. Incidentally, the wiring element 5 does not need to cover the entire back surface of the wiring board 2. This point is common to all embodiments of the present invention described below.

【0034】また、図1では、サーマルビア3を均等に
配置した例を示したが、サーマルビア3の本数や、その
間隔は図1に示した例に限定されるものではない。
FIG. 1 shows an example in which the thermal vias 3 are evenly arranged. However, the number of thermal vias 3 and their intervals are not limited to the example shown in FIG.

【0035】図2において、配線基板2が多層配線基板
である場合、各層間に高導電性で、かつ高熱伝導性の配
線要素5が介在されていれば、配線基板2を厚さ方向を
貫通しないか、あるいは直接熱伝導部材4と接しないサ
ーマルビア6があっても問題ない。極力多くのサーマル
ビア3もしくは6と半導体基板1aが熱的に接続される
ことが望ましいのであり、熱伝導部材4により直接半導
体基板1aと接続できないサーマルビア6が、層間に存
在する配線要素5によって熱的に有効に活用できるよう
になり、更に熱抵抗を低減できる。
In FIG. 2, when the wiring board 2 is a multilayer wiring board, if the wiring element 5 having high conductivity and high thermal conductivity is interposed between the respective layers, the wiring board 2 penetrates in the thickness direction. There is no problem even if there is no thermal via 6 that does not directly contact the heat conductive member 4. It is desirable that the thermal vias 3 or 6 and the semiconductor substrate 1a be thermally connected as much as possible. The thermal vias 6 that cannot be directly connected to the semiconductor substrate 1a by the heat conductive member 4 are formed by the wiring elements 5 existing between the layers. The heat can be effectively utilized, and the thermal resistance can be further reduced.

【0036】多層配線基板2上には、半導体素子1以外
の回路要素12が実装されている。これらの回路要素1
2と多層配線基板2裏面に設けられた独立した配線間を
上記サーマルビア3とは独立したスルーホールを用いて
電気的に接続しても構わない。
Circuit elements 12 other than the semiconductor element 1 are mounted on the multilayer wiring board 2. These circuit elements 1
2 and the independent wiring provided on the rear surface of the multilayer wiring board 2 may be electrically connected using a through hole independent of the thermal via 3.

【0037】なお、個々の熱伝導部材4の断面積は、そ
れぞれの熱伝導部材4と接続するサーマルビア3まで熱
が伝達される際に生じる温度差を一定にすることが重要
であり、半導体基板1aからサーマルビア3までの距離
が最も長い熱伝導部材4の断面積を大きくすることによ
って熱抵抗を調整することが可能である。
It is important that the cross-sectional area of each of the heat conducting members 4 is such that a temperature difference generated when heat is transferred to the thermal via 3 connected to each heat conducting member 4 is constant. The thermal resistance can be adjusted by increasing the cross-sectional area of the heat conductive member 4 having the longest distance from the substrate 1a to the thermal via 3.

【0038】本発明における他の一実施形態を図3を用
いて説明する。図3は、本発明の他の実施例を備えた半
導体装置の断面図である。
Another embodiment of the present invention will be described with reference to FIG. FIG. 3 is a sectional view of a semiconductor device having another embodiment of the present invention.

【0039】図3において、半導体基板1aと熱伝導部
材4との間に金などのメッキ層からなるPHS7を設け
たものである。半導体基板1aが厚くない場合には、半
導体基板1aの表層面に位置する複数の発熱部1bから
発生する熱が半導体素子1内部で十分横に拡散せず、半
導体素子1裏面の温度分布が均一にならない。例えば、
個々の発熱部1b直下の温度が高く、その間の部分の温
度は低い場合がある。熱伝導率に空間分布のない材料の
温度分布に斑があるということは、その材料を通過する
熱流束に分布があることと等しい。このため、個々の熱
伝導部材4を通過してサーマルビア3に伝えられる熱の
量が均等にならず、一部のサーマルビア3は、有効に機
能しない可能性がある。従って、半導体基板1a裏面の
温度分布はなるべく均一であることが望ましい。
In FIG. 3, a PHS 7 made of a plating layer such as gold is provided between a semiconductor substrate 1a and a heat conducting member 4. When the semiconductor substrate 1a is not thick, the heat generated from the plurality of heat generating portions 1b located on the surface layer of the semiconductor substrate 1a does not sufficiently diffuse inside the semiconductor element 1, and the temperature distribution on the back surface of the semiconductor element 1 is uniform. do not become. For example,
In some cases, the temperature immediately below each of the heat generating portions 1b is high, and the temperature between the portions is low. Variations in the temperature distribution of a material that has no spatial distribution of thermal conductivity are equivalent to having a distribution in the heat flux passing through the material. For this reason, the amount of heat transmitted to the thermal vias 3 through the individual heat conducting members 4 is not uniform, and some thermal vias 3 may not function effectively. Therefore, it is desirable that the temperature distribution on the back surface of the semiconductor substrate 1a be as uniform as possible.

【0040】図3は、熱伝導部材4を通過して個々のサ
ーマルビア3に伝えられる熱の量を均等にするために、
半導体基板1aと熱伝導部材4との間にPHS7を設け
たものである。半導体基板1aを薄くした場合であって
も、PHS7裏面の温度分布は、外周縁が最も温度が低
く、中心部が最も温度が高くなるような同心円状に近い
温度分布となり、半導体素子1表面側の複数の発熱領域
1bの分布の影響を相殺することができる。これは、P
HS7の厚さ分だけ熱抵抗が上昇するマイナスの影響よ
りも、PHS7によって熱が一様に拡散するプラスの影
響の方が大きいために熱抵抗を低減することができる。
また、発熱部1bの配置に応じて熱伝導部材4の半導体
基板1aと接する部分の配置を調整する必要もほとんど
なくすることができる。
FIG. 3 is a graph showing the relationship between the amount of heat transmitted to the individual thermal vias 3 through the heat conducting member 4.
The PHS 7 is provided between the semiconductor substrate 1a and the heat conducting member 4. Even when the semiconductor substrate 1a is made thinner, the temperature distribution on the rear surface of the PHS 7 becomes a concentric temperature distribution in which the outer peripheral edge has the lowest temperature and the central portion has the highest temperature. Can be offset by the distribution of the plurality of heat generating regions 1b. This is P
The thermal resistance can be reduced because the positive effect of uniformly diffusing the heat by the PHS 7 is greater than the negative effect of increasing the thermal resistance by the thickness of the HS 7.
Also, it is possible to almost eliminate the need to adjust the arrangement of the portion of the heat conductive member 4 that contacts the semiconductor substrate 1a according to the arrangement of the heat generating portion 1b.

【0041】本発明の他の一実施例を図4を用いて説明
する。図4は、本発明の他の実施例を備えた半導体装置
の断面図である。
Another embodiment of the present invention will be described with reference to FIG. FIG. 4 is a sectional view of a semiconductor device having another embodiment of the present invention.

【0042】図4において、半導体基板1aの裏面に、
半導体基板1aとほぼ同等の断面積、若しくはそれ以上
の断面積を有するPHS7を設けたものである。一方、
PHS7と多層配線基板2との間には、熱伝導部材10
が介在されている。この熱伝導部材10の上下両面に
は、ロウ材が設けられ、多層配線基板2側には、第1の
ロウ材9が、PHS側には、第2のロウ材11が設けら
れている。多層配線基板2には、高導電性かつ高熱伝導
性のサーマルビア3が多層配線基板2を貫通するように
設けられている。これらのロウ材9、11は、半導体基
板1aとサーマルビア3を電気的、熱的に接続してい
る。
In FIG. 4, on the back surface of the semiconductor substrate 1a,
A PHS 7 having a sectional area substantially equal to or larger than that of the semiconductor substrate 1a is provided. on the other hand,
A heat conductive member 10 is provided between the PHS 7 and the multilayer wiring board 2.
Is interposed. A brazing material is provided on both upper and lower surfaces of the heat conductive member 10, a first brazing material 9 is provided on the multilayer wiring board 2 side, and a second brazing material 11 is provided on the PHS side. The multilayer wiring board 2 is provided with a thermal via 3 having high conductivity and high thermal conductivity so as to penetrate the multilayer wiring board 2. These brazing materials 9 and 11 electrically and thermally connect the semiconductor substrate 1 a and the thermal via 3.

【0043】多層配線基板2内に配置されたサーマルビ
ア3の領域が半導体素子1の面積より広い場合は、熱伝
導部材10の面積が半導体基板1aの面積より大きいこ
とが必要であり、可能であれば全てのサーマルビア3に
またがる面積を有することが望ましい。
When the area of the thermal via 3 arranged in the multilayer wiring board 2 is larger than the area of the semiconductor element 1, the area of the heat conducting member 10 needs to be larger than the area of the semiconductor substrate 1a. If so, it is desirable to have an area that extends over all the thermal vias 3.

【0044】PHS7を用いることにより、PHS7裏
面、即ち熱伝導部材10と向い合う面の温度分布を均一
化することが可能であり、半導体素子1から熱伝導部材
10までの熱抵抗を低減することができる。また、熱伝
導部材10を単一の板状部材とすることで、図1、2ま
たは3に示した本発明の他の実施形態と比較して低コス
トで半導体素子1の発熱部1bで発生する熱を多層配線
基板2に配置された高導電性かつ高熱伝導性のサーマル
ビア3に効率良く伝達することができる。このため、熱
伝導部材10と配線基板2裏面との間の熱抵抗を低減で
き、PHS7と熱伝導部材10、及びサーマルビア3の
組み合わせにより、低コストで低熱抵抗構造を実現する
ことができる。
By using the PHS 7, the temperature distribution on the back surface of the PHS 7, ie, the surface facing the heat conducting member 10, can be made uniform, and the thermal resistance from the semiconductor element 1 to the heat conducting member 10 can be reduced. Can be. Further, since the heat conducting member 10 is a single plate-like member, the heat generating member 10 is generated at the heat generating portion 1b of the semiconductor element 1 at a lower cost than in the other embodiments of the present invention shown in FIG. The heat generated can be efficiently transmitted to the thermal via 3 having high conductivity and high heat conductivity disposed on the multilayer wiring board 2. For this reason, the thermal resistance between the heat conductive member 10 and the back surface of the wiring board 2 can be reduced, and the combination of the PHS 7, the heat conductive member 10, and the thermal via 3 can realize a low heat resistance structure at low cost.

【0045】なお、熱伝導部材10の厚さは、半導体基
板1aの厚さよりも厚く、配線基板2のサーマルビアの
貫通する部分の厚さより薄いか、同程度であることが望
ましい。また、半導体基板1aとPHS7の厚さについ
ては、PHS7の方が薄い方が望ましい。即ち、半導体
基板1a、PHS7、熱伝導部材10、配線基板2のサ
ーマルビア3が貫通する部分の厚さをそれぞれt1、t
2、t3、t4とすると、本一実施形態における半導体
装置では、 t2<t1<t3≦t4 という関係が成立する。一例としては、 t2=5〜20μm程度 t1=30〜50、最大100μm程度 t3=150〜300μm程度 t4=300〜450μm程度 とする場合があるが、上記関係式を満たせば必ずしも上
記の範囲に限定されないことは言うまでもない。また、
第1及び第2のロウ材、サーマルビアの厚さをそれぞれ
t5、t6、t7とすると以下の関係が成り立つよう、
厚さを調整する。
It is desirable that the thickness of the heat conducting member 10 is larger than the thickness of the semiconductor substrate 1a and smaller than or equal to the thickness of the portion of the wiring substrate 2 through which the thermal via penetrates. As for the thicknesses of the semiconductor substrate 1a and the PHS7, it is desirable that the PHS7 be thinner. That is, the thicknesses of the portions of the semiconductor substrate 1a, the PHS 7, the heat conduction member 10, and the thermal via 3 of the wiring board 2 through which the thermal vias 3 pass are t1 and t, respectively.
Assuming that t2, t3, and t4, the relationship of t2 <t1 <t3 ≦ t4 holds in the semiconductor device according to the present embodiment. As an example, t2 = about 5 to 20 μm t1 = 30 to 50, maximum about 100 μm t3 = about 150 to 300 μm t4 = about 300 to 450 μm, but if the above relational expression is satisfied, it is not necessarily limited to the above range Needless to say, it will not be done. Also,
Assuming that the thicknesses of the first and second brazing materials and the thermal vias are t5, t6, and t7, respectively, the following relationship is established.
Adjust the thickness.

【0046】t2≦t5≒t6≦t1 t4=t7 一方、半導体基板1a、PHS7、熱伝導部材10、配
線基板2の母材、第1のロウ材9、第2のロウ材11、
サーマルビア3の熱伝導率をそれぞれ、λ1、λ2、λ
3、λ4、λ5、λ6、λ7とし、線膨張係数をそれぞ
れα1、α2、α3、α4、α5、α6、α7とすれば、
本一実施形態においては次の関係が成り立つように材料
を選択する。
T2 ≦ t5 ≒ t6 ≦ t1 t4 = t7 On the other hand, the semiconductor substrate 1a, the PHS7, the heat conductive member 10, the base material of the wiring board 2, the first brazing material 9, the second brazing material 11,
The thermal conductivity of the thermal via 3 is λ1, λ2, λ, respectively.
3, λ4, λ5, λ6, λ7, and the linear expansion coefficients are α1, α2, α3, α4, α5, α6, α7, respectively.
In the present embodiment, the materials are selected such that the following relationship is satisfied.

【0047】 λ4<λ5≒λ6≒λ1<λ2≒λ3≒λ7 α6≦α1<α2、α4≒α7<α3、α6<α3 ここで、記号≒は、物性値がほぼ同じオーダーであると
い程度の意味であり、大小関係については必ずしもこだ
わらないことを意味する。即ち、配線基板2の母材、各
種ロウ材と半導体基板1a、各種熱伝導・熱拡散部材の
順に熱抵抗が高くなっていく構成である。なお、半導体
基板1aがSiと同程度以上の熱伝導率を有する場合
(温度373K(100℃)でλ1≒100[W/(m
・K)]程度かそれ以上)、半導体基板1aとロウ材
9、11の熱伝導率の関係に関してはλ5≒λ6<λ1
となっても構わない。
Λ4 <λ5 ≒ λ6 ≒ λ1 <λ2 ≒ λ3 ≒ λ7 α6 ≦ α1 <α2, α4 ≒ α7 <α3, α6 <α3 Here, the symbol 意味 means that the physical property values are almost in the same order. This means that we do not always care about magnitude relations. That is, the thermal resistance increases in the order of the base material of the wiring board 2, the various brazing materials, the semiconductor substrate 1a, and the various heat conducting / thermal diffusing members. When the semiconductor substrate 1a has a thermal conductivity equal to or higher than that of Si (λ1λ100 [W / (m at 373K (100 ° C.)).
.K)] or more), and the relationship between the thermal conductivity of the semiconductor substrate 1a and the thermal conductivity of the brazing materials 9, 11 is λ5 ≒ λ6 <λ1.
It does not matter.

【0048】線膨張係数については、第2のロウ材の線
膨張係数が最も低く、半導体基板1aが同程度かそれ以
上、PHS7が非常に高い。第2のロウ材より下の部材
については、配線基板2の母材とサーマルビア3がほぼ
等しく、熱伝導部材10の線膨張係数が高い。
Regarding the coefficient of linear expansion, the coefficient of linear expansion of the second brazing material is the lowest, that of the semiconductor substrate 1a is equal to or higher, and that of the PHS 7 is very high. With respect to the members below the second brazing material, the base material of the wiring board 2 and the thermal vias 3 are substantially equal, and the coefficient of thermal expansion of the heat conductive member 10 is high.

【0049】図4に示した一実施例においては、半導体
基板1aの材料をSi系単結晶、もしくはGaAs系等
の化合物からなる半導体基板とすることが考えられる。
また、熱伝導部材10の材質としては銅、アルミニウ
ム、モリブデン等の金属、もしくはそれらを主成分とす
る合金が考えられるが、熱抵抗を目標値以下にできるも
のであれば、必ずしも上記の材料でなくても良い。一
方、第1のロウ材9は半田等の材料が望ましく、第二の
ロウ材11は導電性銀ペースト材などで、導電性を有
し、熱伝導率が半導体基板1aとほぼ同じ程度である熱
硬化性の材料であることが望ましい。
In the embodiment shown in FIG. 4, it is conceivable that the material of the semiconductor substrate 1a is a semiconductor substrate made of a Si-based single crystal or a GaAs-based compound.
In addition, as a material of the heat conductive member 10, a metal such as copper, aluminum, and molybdenum, or an alloy containing them as a main component can be considered. However, as long as the heat resistance can be set to a target value or less, the above materials are not necessarily used. You don't have to. On the other hand, the first brazing material 9 is preferably made of a material such as solder, and the second brazing material 11 is made of a conductive silver paste or the like, has conductivity, and has a thermal conductivity substantially equal to that of the semiconductor substrate 1a. A thermosetting material is desirable.

【0050】本実施形態では、第一のロウ材9の融点は
第二のロウ材11の製造工程上の硬化温度より高く、第
二のロウ材11上にPHS7を介して半導体素子1を固
定する際に第一のロウ材9が溶けてしまわないような物
性値を有する材料を選択している。導電性銀ペースト材
を採用する理由の一つは、このペースト材の母材が熱硬
化性樹脂であるためで、ペースト材が硬化する時に微小
なクラックが無数に入ることなどにより、製造プロセス
中で発生する熱伝導部材10と第2のロウ材11、もし
くはPHS7と第2のロウ材との界面で発生する熱応力
を緩和することができる。また、第2のロウ材硬化後の
発熱動作で生じたPHS7と半導体基板1aとの界面に
おける熱応力は、PHS7を十分薄くすることにより、
金メッキ層が降伏、変形することにより緩和することが
できる。
In the present embodiment, the melting point of the first brazing material 9 is higher than the curing temperature in the manufacturing process of the second brazing material 11, and the semiconductor element 1 is fixed on the second brazing material 11 via the PHS 7. In this case, a material having physical properties such that the first brazing material 9 is not melted is selected. One of the reasons for using the conductive silver paste material is that the base material of the paste material is a thermosetting resin. The thermal stress generated at the interface between the heat conductive member 10 and the second brazing material 11 or at the interface between the PHS 7 and the second brazing material can be reduced. Further, the thermal stress at the interface between the PHS 7 and the semiconductor substrate 1 a generated by the heat generation operation after the second brazing material is cured can be reduced by making the PHS 7 sufficiently thin.
It can be alleviated by the yield and deformation of the gold plating layer.

【0051】図5は、半導体基板1aとサーマルビア3
がロウ材9を介して接続された実施例を示す。
FIG. 5 shows the semiconductor substrate 1a and the thermal via 3
Are connected via the brazing material 9.

【0052】図6は、半導体基板1a配線基板2が熱拡
散板13を介して接続されている実施例を示す。
FIG. 6 shows an embodiment in which the semiconductor substrate 1a and the wiring board 2 are connected via a heat diffusion plate 13.

【0053】図7は、サーマルビア3が半導体基板1a
の大きさと同等若しくはそれ以上の大きさで、一体成形
品で形成された実施例を示す。
FIG. 7 shows that the thermal via 3 is a semiconductor substrate 1a.
An embodiment of the present invention, which has a size equal to or larger than the size and is formed of an integrally molded product, is shown.

【0054】本発明における他の一実施形態を図8、図
9、10を用いて説明する。図8は、本発明を備えた半
導体装置の断面図である。図9はその一部を切り出した
斜視図、図10は配線基板2の上面(図10a)及び底
面図(図10b)と半導体素子1を含む断面図(図19
c)である。
Another embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a sectional view of a semiconductor device provided with the present invention. 9 is a perspective view in which a part thereof is cut out, and FIG. 10 is a top view (FIG. 10a) and a bottom view (FIG. 10b) of the wiring board 2 and a cross-sectional view including the semiconductor element 1 (FIG. 19).
c).

【0055】図8に示す本発明を適用した半導体装置
は、単一の配線基板2に複数の種類の半導体素子16、
17を実装したものである。半導体素子16はGaAs
系等の比較的熱伝導率の低い半導体基板16a上に発熱
部16bが形成され、比較的厚さの薄い半導体基板16
aの裏面にはPHS7をメッキ等により形成している。
一方、半導体素子17ではSi系等の比較的熱伝導率の
高い半導体基板17a上に発熱部17bが形成される。
半導体基板17aの熱伝導率がSi系材料の熱伝導率と
ほぼ同等かそれ以上の場合、半導体素子17aの厚さを
数100μm程度にすることで半導体基板17a裏面の
温度分布をほぼ均一化できるため、PHS7や前述した
熱伝導部材10を用いなくても熱抵抗の目標値を達成で
きる場合がある。このような場合は、図8aのように、
半導体基板17は、配線基板2に第二のロウ材11を介
して配線基板2に直接実装することができるので、コス
ト低減を図ることができる。
A semiconductor device to which the present invention is applied as shown in FIG. 8 has a plurality of types of semiconductor elements 16 on a single wiring board 2.
17 is implemented. The semiconductor element 16 is made of GaAs
A heat generating portion 16b is formed on a semiconductor substrate 16a having a relatively low thermal conductivity such as a system, and the semiconductor substrate 16 having a relatively small thickness is formed.
The PHS 7 is formed on the back surface of a by plating or the like.
On the other hand, in the semiconductor element 17, a heat generating portion 17b is formed on a semiconductor substrate 17a having a relatively high thermal conductivity such as a Si type.
When the thermal conductivity of the semiconductor substrate 17a is substantially equal to or higher than the thermal conductivity of the Si-based material, the temperature distribution on the back surface of the semiconductor substrate 17a can be made substantially uniform by setting the thickness of the semiconductor element 17a to about several hundred μm. Therefore, the target value of the thermal resistance can sometimes be achieved without using the PHS 7 or the above-described heat conducting member 10. In such a case, as shown in FIG.
Since the semiconductor substrate 17 can be directly mounted on the wiring board 2 via the second brazing material 11 on the wiring board 2, the cost can be reduced.

【0056】図8aにおいて、多層配線基板の表層2a
には、半導体装置16、17の他、配線要素101と、
抵抗やチップコンデンサなどの回路部品12が実装され
ている。配線要素101または回路部品12と半導体素
子16、17は、例えばボンディングワイヤ18により
電気的に接続されている。
In FIG. 8A, the surface layer 2a of the multilayer wiring board is shown.
Includes a wiring element 101 in addition to the semiconductor devices 16 and 17;
Circuit components 12 such as resistors and chip capacitors are mounted. The wiring element 101 or the circuit component 12 and the semiconductor elements 16 and 17 are electrically connected by, for example, bonding wires 18.

【0057】図8aの断面図には示していないが、多層
配線基板2の各層における配線要素とスルーホール、及
び半導体素子16、17の組み合わせにより、例えば携
帯通信端末用の高周波パワーアンプとして動作する一つ
の半導体装置(以下、モジュール)が構成される。図8
aの場合、半導体素子16、17のGNDがPHS7、
熱伝導部材10、サーマルビア3、多層配線基板の裏面
2b上に形成されたGND配線層5を介してマザーボー
ド8上のGND配線層102に電気的、かつ熱的に接続
される。
Although not shown in the cross-sectional view of FIG. 8A, the combination of the wiring elements, the through holes, and the semiconductor elements 16 and 17 in each layer of the multilayer wiring board 2 operates as, for example, a high-frequency power amplifier for a portable communication terminal. One semiconductor device (hereinafter, module) is configured. FIG.
In the case of a, the GNDs of the semiconductor elements 16 and 17 are PHS7,
It is electrically and thermally connected to the GND wiring layer 102 on the motherboard 8 via the heat conductive member 10, the thermal via 3, and the GND wiring layer 5 formed on the back surface 2b of the multilayer wiring board.

【0058】また、入出力信号用などの電極103も多
層配線基板裏面2bに形成され、この電極103と多層
配線基板表層2a上もしくは層間の配線要素101、回
路要素12との間は配線基板2側面もしくは内部にスル
ーホールとして形成された配線104により電気的に接
続される。マザーボード8上には電極103に対応する
配線層105がそれぞれ形成されており、電極103と
配線層105が電気的に接続される。これらの配線層5
及び電極103と配線層102、105との間の接続に
は例えば低融点ハンダ等の第3のロウ材106を用い
る。
Further, electrodes 103 for input / output signals are also formed on the back surface 2b of the multilayer wiring board, and between the electrode 103 and the wiring elements 101 and circuit elements 12 on the surface layer 2a of the multilayer wiring board or between the layers, the wiring board 2 is provided. It is electrically connected by a wiring 104 formed as a through hole on the side surface or inside. Wiring layers 105 corresponding to the electrodes 103 are respectively formed on the motherboard 8, and the electrodes 103 and the wiring layers 105 are electrically connected. These wiring layers 5
For the connection between the electrode 103 and the wiring layers 102 and 105, a third brazing material 106 such as low-melting solder is used.

【0059】上記構成において、第1のロウ材9をハン
ダ、第2のロウ材を熱硬化性の導電性ペースト材、第3の
ロウ材をハンダとし、それぞれの融点及び熱硬化温度を
順にT1、T2、T3とする。まず熱伝導部材10と半
導体装置17を多層配線基板表層2aに実装し、次に半
導体装置16を熱伝導部材10上に実装し、出来上がっ
たモジュールにおける多層配線基板裏面2をマザーボー
ド8上に実装する工程を考えると T1>T2>T3 となるよう、材料を選択する。
In the above structure, the first brazing material 9 is a solder, the second brazing material is a thermosetting conductive paste material, and the third brazing material is a solder. , T2, and T3. First, the heat conductive member 10 and the semiconductor device 17 are mounted on the surface layer 2a of the multilayer wiring board, then the semiconductor device 16 is mounted on the heat conductive member 10, and the rear surface 2 of the multilayer wiring board in the completed module is mounted on the mother board 8. Considering the process, materials are selected so that T1>T2> T3.

【0060】また、上述のように半導体基板17a上に
形成された発熱部17bの発熱量が十分小さく、しかも
半導体基板17aがSi等の熱伝導率の高い材料を用い
ている場合、PHS7や熱伝導部材10がなくても熱抵
抗を目標とする上限値以下にできる場合があり、このよ
うな場合はPHS7や熱伝導部材10を用いる必要性は
ない。従って、複数のチップが一つの多層配線基板2の
上に実装される場合は、そのチップを構成する半導体基
板の物性値や発熱量などから、熱的かつコスト的に最適
な構成を選択することができる。半導体素子16の厚さ
をそのままt1、17の厚さをt9、マイクロストリッ
プラインで形成されるようなチップ抵抗を除く回路部品
12の厚さをt8とすると、上記構成では、 t1<t8、かつt1<t9 の関係が成立する。t8とt9の関係は特に限定する必
要はない。
In the case where the heat generation amount of the heat generating portion 17b formed on the semiconductor substrate 17a is sufficiently small and the semiconductor substrate 17a is made of a material having a high thermal conductivity such as Si, the PHS 7 In some cases, even without the conductive member 10, the thermal resistance can be reduced to the target upper limit or less, and in such a case, there is no need to use the PHS 7 or the thermal conductive member 10. Therefore, when a plurality of chips are mounted on one multilayer wiring board 2, it is necessary to select an optimal configuration in terms of heat and cost from the physical property values and heat generation values of the semiconductor substrate constituting the chip. Can be. Assuming that the thickness of the semiconductor element 16 is t1 as it is, the thickness of 17 is t9, and the thickness of the circuit component 12 excluding a chip resistor formed by a microstrip line is t8, t1 <t8 and The relationship t1 <t9 holds. The relationship between t8 and t9 does not need to be particularly limited.

【0061】なお、配線基板裏面2bの配線要素5につ
いては、複数の半導体素子16、17に対して共通の回
路を形成するよう構成されても、それぞれが短絡しない
よう構成されていても、半導体装置全体の機能が確保で
きるのであれば特に問題はない。
Regarding the wiring element 5 on the rear surface 2b of the wiring board, the semiconductor element 16, 17 may be configured to form a common circuit, or may be configured not to short-circuit each other. There is no particular problem as long as the functions of the entire apparatus can be secured.

【0062】図8bにおいては、半導体素子17がフェ
ースダウンして実装(フリップチップ実装)された場合
を示す。この場合、半導体素子17への入出力信号等は
多層配線基板2内部のスルーホール110と配線層11
1を介して半導体素子17へ供給、もしくは半導体素子
17から出力される。半導体素子表層の回路網と多層配
線基板2との間はハンダバンプ112等を介してCCB
接続される。図8bに示した断面図では、各発熱要素1
7bのGNDがハンダバンプ112を介してサーマルビ
ア3に直結される。即ち、ハンダバンプ112は図1に
おける本発明の一実施形態での熱伝導部材4の役割を果
たす。このため、発熱要素17bから放出された熱が効
果的にサーマルビア3に伝達され、発熱要素17bから
多層配線基板裏面2bまでの熱抵抗を低減することが可
能である。
FIG. 8B shows a case where the semiconductor element 17 is mounted face down (flip chip mounting). In this case, input / output signals and the like to / from the semiconductor element 17 are transmitted through the through hole 110 inside the multilayer wiring board 2 and the wiring layer 11.
1 to the semiconductor element 17 or output from the semiconductor element 17. A CCB is provided between the circuit network on the surface layer of the semiconductor element and the multilayer wiring board 2 via solder bumps 112 and the like.
Connected. In the sectional view shown in FIG.
7b is directly connected to the thermal via 3 via the solder bump 112. That is, the solder bumps 112 play the role of the heat conducting member 4 in the embodiment of the present invention in FIG. Therefore, the heat released from the heat generating element 17b is effectively transmitted to the thermal via 3, and the heat resistance from the heat generating element 17b to the rear surface 2b of the multilayer wiring board can be reduced.

【0063】図8a及び8bにおいて示した本発明の一
実施形態においては、多層配線基板裏面2に形成された
配線層5や電極103はそれぞれベタ状配線で、これら
とマザーボード8上に形成された配線層102、105
との間を第3のロウ材106により接合させているが、
この多層配線基板裏面2bの下に球状のハンダ等のロウ
材113を格子状にならべてマザーボード8と接合させ
る、いわゆるBGA接合により実装させる場合も本発明
の一実施形態に含む。図8cは上記ような実装をした場
合を示した断面図であるが、半導体素子17がフリップ
チップ実装されていてもいなくてももちろん構わない。
In the embodiment of the present invention shown in FIGS. 8A and 8B, the wiring layers 5 and the electrodes 103 formed on the back surface 2 of the multilayer wiring board are solid wirings, respectively, and are formed on the motherboard 8 together with these. Wiring layers 102 and 105
Is joined by a third brazing material 106,
One embodiment of the present invention includes a case where the brazing material 113 such as solder is arranged under the multilayer wiring board back surface 2b in a grid pattern and joined to the motherboard 8 by so-called BGA joining. FIG. 8C is a cross-sectional view showing the case where the semiconductor device 17 is mounted as described above. However, the semiconductor element 17 may or may not be flip-chip mounted.

【0064】図9は本発明を適用した半導体装置の一部
を切り出した斜視図であるが、半導体装置全体をキャッ
プ107などで封止、回路部分を保護した場合、マザー
ボード8への電気的な接続部分はキャップ107のかか
らない部分の側面及び裏面のみであるから、例えば裏面
にある電極103はそれぞれ独立した電極で、電極10
8はサーマルビア3と短絡するGND配線層5の電極の
ように、それぞれ役割が分担されていればよい。
FIG. 9 is a perspective view in which a part of a semiconductor device to which the present invention is applied is cut out. When the whole semiconductor device is sealed with a cap 107 or the like and a circuit portion is protected, an electrical connection to the motherboard 8 is made. Since the connection portion is only the side surface and the back surface of the portion where the cap 107 does not cover, for example, the electrodes 103 on the back surface are independent electrodes,
Numerals 8 only need to be assigned different roles, such as electrodes of the GND wiring layer 5 that short-circuit with the thermal via 3.

【0065】図10は図4または図8a及び図9に示し
た本発明の一実施形態において用いられる半導体装置の
キャップ107を取り払った上面図(図10a)、半導
体素子素子16を通る断面図(図10b)、多層配線基
板裏面2を下から見た底面図(図10c)である。図1
0では多層配線基板表層2aの一部にしか回路が形成さ
れていないが、もちろん全面を有効的に利用して回路が
形成されていても本発明の本質を損なうことはない。
FIG. 10 is a top view (FIG. 10a) of the semiconductor device used in the embodiment of the present invention shown in FIG. 4 or 8a and 9 with the cap 107 removed, and a cross-sectional view through the semiconductor element 16 (FIG. 10a). 10B) is a bottom view (FIG. 10C) of the back surface 2 of the multilayer wiring board viewed from below. FIG.
In the case of 0, the circuit is formed only on a part of the surface layer 2a of the multilayer wiring board. However, even if the circuit is formed by effectively using the entire surface, the essence of the present invention is not spoiled.

【0066】図10aのように、回路要素12が表層に
おいて孤立しているような場合や配線層101が途中で
途切れているような場合、実際には多層配線基板2の各
層において独立した配線・回路網が形成され、スルーホ
ール等を介して電気的に相互接続されてモジュール全体
として一つの製品を構成している。
As shown in FIG. 10A, when the circuit element 12 is isolated on the surface layer or when the wiring layer 101 is interrupted on the way, actually, the wiring A circuit network is formed and electrically interconnected via through holes and the like to constitute one product as a whole module.

【0067】図10bは多層配線基板裏面2bにおける
配線パターンの一例を示しているが、このようにサーマ
ルビア3と直結するGND配線層5がベタ状の配線であ
っても、あるいはハンダボールグリッドアレイ(BG
A)状であってももちろん構わない。独立した電極10
3はそれぞれ、信号の入出力用の電極などを構成してい
る。
FIG. 10B shows an example of a wiring pattern on the back surface 2b of the multilayer wiring board. Even if the GND wiring layer 5 directly connected to the thermal via 3 is a solid wiring, or a solder ball grid array, (BG
A) Of course, it does not matter. Independent electrode 10
Numerals 3 each constitute a signal input / output electrode or the like.

【0068】また、素子の保護の観点から、キャップ1
07の内側の空間にはレジン等の保護部材109が充填
されている場合がある。
From the viewpoint of protection of the element, the cap 1
The space inside 07 may be filled with a protective member 109 such as a resin.

【0069】図4または図8に示した本発明の一実施形
態における半導体装置のモジュール製造プロセスの一例
を図11に示す。
FIG. 11 shows an example of a module manufacturing process of the semiconductor device according to the embodiment of the present invention shown in FIG. 4 or FIG.

【0070】図11において、配線基板2上の所定の位
置に第1のロウ材9として高融点のハンダを印刷もしく
は塗布する。次に、チップコンデンサや抵抗等の部品1
2及び熱伝導部材10を先に第一のロウ材9を印刷もし
くは塗布した位置に搭載し、リフロー及び洗浄工程で上
記部品12及び熱伝導部材10を実装する。次に、導電
性銀ペースト等の第2のロウ材11を所定の位置に塗布
し、PHS7を有する半導体素子1または16や、PH
S構造7を用いない半導体素子1または17を載せ、上
記第1のロウ材9の融点より低く、かつ第2のロウ材1
1を硬化させるのには十分高い温度で第2のロウ材11
をベーク、洗浄する。更にワイヤボンディング等により
半導体素子1または16または17と配線基板2の所定
の位置を配線18で接続し、半導体素子保護のための部
材109を塗布して固定した後、キャップ107をつけ
る。更に配線基板2をそれぞれの単位半導体装置ごとに
分割し、検査工程で合格した半導体装置を完成品とす
る。本工程において、第1のロウ材9、第2のロウ材1
1、半導体素子保護のための部材109は、それぞれ工
程順に徐々に融点もしくは硬化温度が低くなるような材
料とする。
In FIG. 11, high melting point solder is printed or applied as a first brazing material 9 at a predetermined position on the wiring board 2. Next, parts 1 such as chip capacitors and resistors
2 and the heat conductive member 10 are first mounted on the position where the first brazing material 9 is printed or applied, and the component 12 and the heat conductive member 10 are mounted in a reflow and cleaning process. Next, a second brazing material 11 such as a conductive silver paste is applied to a predetermined position, and the semiconductor device 1 or 16 having the PHS 7 or the PH
The semiconductor element 1 or 17 not using the S structure 7 is mounted thereon, and is lower than the melting point of the first brazing material 9 and the second brazing material 1
1 at a temperature high enough to cure the second brazing material 11
Bake and wash. Further, the semiconductor element 1 or 16 or 17 is connected to a predetermined position of the wiring board 2 by wiring 18 by wire bonding or the like, and a member 109 for protecting the semiconductor element is applied and fixed, and then a cap 107 is attached. Further, the wiring board 2 is divided for each unit semiconductor device, and a semiconductor device that has passed the inspection process is completed. In this step, the first brazing material 9 and the second brazing material 1
1. The member 109 for protecting the semiconductor element is made of a material whose melting point or curing temperature gradually decreases in the order of the steps.

【0071】なお、マザーボード8上へのモジュールの
実装は、次の製造プロセスで実施しても、あるはモジュ
ールの状態で顧客に出荷し、顧客側で実装しても構わな
い。この場合、図8における第3のロウ材106の融点
をT3と他のロウ材及び保護部材の融点もしくは硬化温
度との大小関係は上述した通りでなければならない。T
3の値については、予め指示しておいても、また、逆に
T3に合わせて他のT1やT2として適当なものを選択
しても構わない。
The mounting of the module on the motherboard 8 may be performed in the following manufacturing process, or the module may be shipped to the customer in the state of the module and mounted on the customer. In this case, the magnitude relationship between the melting point T3 of the third brazing material 106 in FIG. 8 and the melting points or curing temperatures of the other brazing materials and the protective members must be as described above. T
The value of 3 may be instructed in advance, or conversely, other appropriate values for T1 and T2 may be selected according to T3.

【0072】図12に半導体基板1または16がGaA
s系基板21で、その上にヘテロバイポーラトランジス
タ(以下、HBT)を形成した場合の発熱部1b周辺の
模式的な断面図を示す。
FIG. 12 shows that the semiconductor substrate 1 or 16 is made of GaAs.
FIG. 4 is a schematic cross-sectional view of the vicinity of the heat generating portion 1b when a hetero bipolar transistor (hereinafter, HBT) is formed on the s-based substrate 21.

【0073】図12において、熱伝導部材10の上に第
2のロウ材11、PHS7を介して半絶縁性のGaAs
系基板21が実装されている。GaAs基板21の上に
はサブコレクタ層22、コレクタ層23、ベース層2
4、エミッタ層25、ベース電極26、キャップ層2
7、エミッタ電極28、コレクタ電極29、層間絶縁膜
30及び31、エミッタ配線層32等が形成される。G
aAs系基板21の所定の位置にはバイアホール33と
呼ばれる貫通孔が形成され、GaAs系基板21裏面の
PHS構造7とエミッタ配線層32とは、このバイアホ
ール33内に流入したPHS7を介して電気的に接続さ
れている。また、エミッタ配線層32とバイアホール3
3との間の配線の一部には、バラスト抵抗と呼ばれる抵
抗34を配置する場合がある。
In FIG. 12, semi-insulating GaAs is formed on the heat conductive member 10 via the second brazing material 11 and the PHS 7.
A system board 21 is mounted. On a GaAs substrate 21, a sub-collector layer 22, a collector layer 23, a base layer 2
4, emitter layer 25, base electrode 26, cap layer 2
7, an emitter electrode 28, a collector electrode 29, interlayer insulating films 30 and 31, an emitter wiring layer 32, and the like are formed. G
A through-hole called a via hole 33 is formed at a predetermined position of the aAs-based substrate 21, and the PHS structure 7 and the emitter wiring layer 32 on the back surface of the GaAs-based substrate 21 are connected via the PHS 7 flowing into the via-hole 33. It is electrically connected. Further, the emitter wiring layer 32 and the via hole 3
In some cases, a resistor 34 called a ballast resistor is arranged in a part of the wiring between the first and third wires.

【0074】図4または図8に示した発熱部1bもしく
は16b、17bは、図12においては、個々のベース
24・エミッタ25層間を集中的に電流が通過する領域
である。ここでは、図面を簡略下するために、発熱部領
域が1箇所しかないような構造で示したが、実際には複
数個の発熱領域があってもよい。また、発熱領域の数と
バイアホール33との数は一致しなくてよい。一般的に
は、バイアホール33の数の方が発熱領域の数より少な
い。
The heat generating portion 1b or 16b, 17b shown in FIG. 4 or FIG. 8 is a region through which current flows intensively between the individual base 24 and emitter 25 layers in FIG. Here, for simplification of the drawing, a structure in which there is only one heat-generating region is shown, but there may actually be a plurality of heat-generating regions. Further, the number of heat generating regions and the number of via holes 33 do not need to match. Generally, the number of via holes 33 is smaller than the number of heat generating regions.

【0075】図12に示すような構造では、エミッタ配
線32からバイアホール33を介してPHS7、更には
配線基板2内のサーマルビア3の裏面まで電気的に接続
される。配線基板2は、更にマザーボードに実装される
が、この時配線基板2内のエミッタ配線と電気的に接続
された配線、例えば図10の裏面配線5、をマザーボー
ドの共通GNDに接地することで、電位を一定に保つこ
とができる。
In the structure shown in FIG. 12, the PHS 7 is electrically connected from the emitter wiring 32 via the via hole 33 to the back surface of the thermal via 3 in the wiring board 2. The wiring board 2 is further mounted on the motherboard. At this time, a wiring electrically connected to the emitter wiring in the wiring board 2, for example, the back wiring 5 in FIG. 10 is grounded to a common GND of the motherboard. The potential can be kept constant.

【0076】図13に、図12で示したようなGaAs
系−HBT素子1または16において、上記発熱領域
(フィンガー)19の寸法が幅2μm、長さ20μm、本
数16本×8列=128本であった場合の発熱領域のレ
イアウト図の一例を示す。
FIG. 13 shows GaAs as shown in FIG.
In the system-HBT element 1 or 16, there is shown an example of a layout diagram of the heat-generating region (finger) when the size of the heat-generating region (finger) 19 is 2 μm in width, 20 μm in length, and 16 × 8 = 128.

【0077】図13において、半導体基板1または1
6、及びPHS7の寸法は、1辺の長さが0.9mmも
しくは1.0mmの正方形、熱伝導部材10の寸法は辺
長が1.4mmもしくは1.3mmの正方形、もしくは
縦2.4mm、横1.6mmの長方形であるとし、配線
基板2内のサーマルビア3は個々の直径が0.15mm
で、0.35mmの縦横等ピッチ間隔で配置されている
場合を想定する。今後図14以降で検討する熱伝導部材
10の厚さや材料及び寸法等については、図4、12、
13及び上記の基準に基づいて最適化を実施した場合の
結果を示す。なお、フィンガー19の寸法や数は、発熱
領域1bと配線基板裏面2bの間の熱抵抗の絶対値には
強く影響するが、熱伝導部材10を用いることによる熱
抵抗低減効果の最適化にはあまり強く影響しないことが
熱伝導解析により明らかになっており、熱伝導部材10
とサーマルビア3を有する配線基板2、及びPHS構造
7の組み合わせによる熱抵抗低減効果の定性的評価には
1ケースの発熱領域の寸法及び配置について検討すれば
ほぼ十分である。なお、特に断わらない場合、熱伝導部
材10の材質は銅、PHS構造7は金メッキ層であると
する。また、PHS構造7の厚さは、特に断わらない場
合は15μm、第一のロウ材9と第二のロウ材11の熱
伝導率は等しく、その厚さはそれぞれ、30μmである
として検討した結果を示す。
In FIG. 13, the semiconductor substrate 1 or 1
6, and the dimensions of the PHS7 are 0.9 mm or 1.0 mm square on one side, and the dimensions of the heat conducting member 10 are 1.4 mm or 1.3 mm squares on the side, or 2.4 mm long. The thermal vias 3 in the wiring board 2 each have a diameter of 0.15 mm.
Here, it is assumed that they are arranged at an equal pitch of 0.35 mm vertically and horizontally. The thickness, material, dimensions, and the like of the heat conducting member 10 which will be discussed in FIG.
13 and the results when optimization is performed based on the above criteria. The size and number of the fingers 19 strongly influence the absolute value of the thermal resistance between the heat generating region 1b and the rear surface 2b of the wiring board. It is clear from heat conduction analysis that the influence is not so strong.
For the qualitative evaluation of the effect of reducing the thermal resistance by the combination of the wiring board 2 having the thermal vias 3 and the PHS structure 7, it is almost sufficient to consider the dimensions and arrangement of the heat generating region in one case. Unless otherwise specified, it is assumed that the material of the heat conducting member 10 is copper and the PHS structure 7 is a gold plating layer. The thickness of the PHS structure 7 was 15 μm unless otherwise specified, and the thermal conductivity of the first brazing material 9 and that of the second brazing material 11 were equal, and the thickness was 30 μm. Is shown.

【0078】図14にGaAs系基板21もしくはGa
As系の代りにSi系を用いた場合について、定常熱伝
導解析を用いて求めた、熱伝導部材10の厚さと装置全
体(モジュール)熱抵抗との間の関係を示す。
FIG. 14 shows a GaAs substrate 21 or Ga.
The relationship between the thickness of the heat conducting member 10 and the thermal resistance of the entire device (module) obtained by using the steady-state heat conduction analysis when the Si system is used instead of the As system is shown.

【0079】図14において、横軸は熱伝導部材10の
厚さ、縦軸はモジュール熱抵抗である。図14によれ
ば、基板21の厚さによらず、熱伝導部材10をPHS
構造7と配線基板2との間に設置することにより、モジ
ュール熱抵抗を低減できること、また、熱伝導部材10
の厚さの最適値は検討範囲内においてはほぼ300μm
前後であることがわかる。Si基板を用いた方がモジュ
ール熱抵抗が小さいのは、Siの熱伝導率がGaAsの
熱伝導率より高いためである。なお、GaAs−HBT
を採用するのは、上記の高周波デバイス用パワーアンプ
の場合、出力向上及び高率改善のためであり、熱抵抗の
問題とは別個の問題である。
In FIG. 14, the horizontal axis represents the thickness of the heat conducting member 10 and the vertical axis represents the module thermal resistance. According to FIG. 14, regardless of the thickness of the substrate 21, the heat conducting member 10 is
By installing the module between the structure 7 and the wiring board 2, the module thermal resistance can be reduced.
The optimum value of the thickness is approximately 300 μm within the study range.
It can be seen that it is before and after. The reason that the module thermal resistance is smaller when the Si substrate is used is that the thermal conductivity of Si is higher than the thermal conductivity of GaAs. In addition, GaAs-HBT
In the case of the above-described power amplifier for a high-frequency device, the reason for adopting is to improve the output and to improve the high rate, which is a problem different from the problem of the thermal resistance.

【0080】図15にGaAs基板21もしくは半導体
素子1または16、及びPHS構造7の寸法と、熱伝導
部材の寸法との組み合わせによりモジュール熱抵抗がど
の程度変化するかを定常熱伝導解析により検討した結果
を示す。
FIG. 15 shows how the module thermal resistance changes depending on the combination of the dimensions of the GaAs substrate 21 or the semiconductor element 1 or 16 and the PHS structure 7 with the dimensions of the heat conducting member by a steady-state heat conduction analysis. The results are shown.

【0081】図15において、図14同様、図の横軸は
熱伝導部材10の厚さ、縦軸はモジュール熱抵抗であ
る。この図から、半導体素子16のサイズの若干の大小
はほとんど熱抵抗に影響せず、熱伝導部材10のサイズ
が大きくモジュール熱抵抗に影響することがわかる。こ
れは、配線基板2内のサーマルビア3が半導体素子16
の面積よりも広い範囲に配置された場合に、半導体素子
16よりも熱伝導部材10の面積を大きくし、半導体素
子16直下にないサーマルビア3にも発熱領域8で発生
した熱を逃がすことのできる構造にすることでモジュー
ル全体の熱抵抗が低減できることを示す。
In FIG. 15, as in FIG. 14, the abscissa represents the thickness of the heat conducting member 10 and the ordinate represents the module thermal resistance. From this figure, it can be seen that the size of the semiconductor element 16 has little effect on the thermal resistance and the size of the heat conducting member 10 is large and affects the module thermal resistance. This is because the thermal via 3 in the wiring board 2 is
When the heat conductive member 10 is arranged in a wider area than the area of the semiconductor element 16, the area of the heat conductive member 10 is made larger than that of the semiconductor element 16 so that the heat generated in the heat generating region 8 can be released to the thermal via 3 not directly below the semiconductor element 16. This shows that a structure that can be used can reduce the thermal resistance of the entire module.

【0082】図14及び図15から、熱伝導部材10の
厚さは少なくとも100μm程度以上、300μm程度と
し、また、その面積は半導体素子16よりも大きく、な
るべく多くのサーマルビア3の上にまたがるような寸法
とすることにより、モジュール熱抵抗を低減できる。本
発明においても、熱伝導部材10は上記のような構造と
することが望ましい。
From FIG. 14 and FIG. 15, the thickness of the heat conducting member 10 is at least about 100 μm or more and about 300 μm, and its area is larger than that of the semiconductor element 16 so as to extend over as many thermal vias 3 as possible. By adopting the proper dimensions, the module thermal resistance can be reduced. Also in the present invention, it is desirable that the heat conducting member 10 has the above-described structure.

【0083】図16に、熱伝導部材10がなく、配線基
板2上に第二のロウ材11を用いて直接半導体素子1ま
たは16を実装した場合の、PHS構造7の厚さとモジ
ュール熱抵抗の関係を定常熱伝導解析により検討した結
果を示す。
FIG. 16 shows the relationship between the thickness of the PHS structure 7 and the module thermal resistance when the semiconductor element 1 or 16 is directly mounted on the wiring board 2 using the second brazing material 11 without the heat conductive member 10. The result of examining the relationship by steady-state heat conduction analysis is shown.

【0084】図16において、横軸はPHS構造7の厚
さ、縦軸はモジュール熱抵抗である。図16より、熱伝
導部材10を用いずにそれとほぼ同等の熱抵抗低減を実
現するためには、PHS構造7の厚さを50〜60μm
か、それ以上にする必要があることがわかる。上記のよ
うな厚い金メッキ膜を作るのは工程的にもコスト的にも
困難ではあるが、条件が許せば上記のような構造を採用
しても構わない。
In FIG. 16, the horizontal axis represents the thickness of the PHS structure 7, and the vertical axis represents the module thermal resistance. From FIG. 16, in order to realize substantially the same reduction in thermal resistance without using the heat conducting member 10, the thickness of the PHS structure 7 must be 50 to 60 μm.
Or more. Although it is difficult to form a thick gold plating film as described above in terms of process and cost, the above structure may be employed if conditions permit.

【0085】図17に、PHS構造7がない場合に熱伝
導部材10のみの効果で熱抵抗を低減しようとするとど
のような結果になるかを検討した結果を示す。
FIG. 17 shows the result of examining the result when trying to reduce the thermal resistance by the effect of the heat conducting member 10 alone without the PHS structure 7.

【0086】図17おいて、横軸は熱伝導部材10の厚
さ、縦軸はモジュール熱抵抗を示す。図より、熱伝導部
材10の厚さの最適値は図12や13と同様に300μ
m前後であるが、GaAs基板21を用いた場合はPH
S構造7がないと熱抵抗が十分には小さくならないこと
がわかる。従って、GaAs基板21に対してはPHS
構造7が必須である。一方、Si系の基板の場合、熱伝
導部材10の厚さを最適化するとPHS構造7があって
もなくてもモジュール熱抵抗はほとんど変わらない。従
って、図8や11に示した本発明の一実施形態のよう
に、Si系の制御用ICに対してはPHS構造7はなく
ても特に問題ない。本発明においては、GaAs基板の
ように熱伝導率が50W/(m・K)程度かそれ以下の基
板21を用いている場合についてはPHS構造7を設
け、Si基板のように熱伝導率が148W/(m・K)程
度かそれ以上の基板を用いている場合はPHS構造7を
設けないような構成にして構わない。基板21の熱伝導
率が50前後から148程度までの場合、その厚さや発
熱量に応じてPHS7及び熱伝導部材10を用いるか否
かを選択できる。
In FIG. 17, the horizontal axis represents the thickness of the heat conducting member 10 and the vertical axis represents the module thermal resistance. From the figure, the optimum value of the thickness of the heat conducting member 10 is 300 μm as in FIGS.
m, but when the GaAs substrate 21 is used, PH
It can be seen that without the S structure 7, the thermal resistance is not sufficiently reduced. Therefore, PHS is applied to the GaAs substrate 21.
Structure 7 is essential. On the other hand, in the case of a Si-based substrate, if the thickness of the heat conducting member 10 is optimized, the module thermal resistance hardly changes even with or without the PHS structure 7. Therefore, there is no particular problem even if the PHS structure 7 is not provided for the Si-based control IC as in the embodiment of the present invention shown in FIGS. In the present invention, a PHS structure 7 is provided when a substrate 21 having a thermal conductivity of about 50 W / (m · K) or less, such as a GaAs substrate, is used. When a substrate of about 148 W / (m · K) or more is used, the configuration may be such that the PHS structure 7 is not provided. When the thermal conductivity of the substrate 21 is from about 50 to about 148, whether or not to use the PHS 7 and the thermal conductive member 10 can be selected according to the thickness and the calorific value.

【0087】図18に、熱伝導部材10の材料を銅から
アルミニウムまたはモリブデンとした場合のモジュール
熱抵抗と熱伝導部材10の厚さの関係の検討結果を示
す。
FIG. 18 shows the results of a study on the relationship between the module thermal resistance and the thickness of the heat conducting member 10 when the material of the heat conducting member 10 is changed from copper to aluminum or molybdenum.

【0088】図18において、アルミニウムまたはモリ
ブデンは、それぞれ、銅より熱伝導率が低いため、銅を
用いた場合ほどの熱抵抗低減効果を得ることはできない
が、やはり、厚さが200〜300μm程度の範囲に厚
さの最適値があるとともに、若干の熱抵抗低減効果を得
ることができる。このことから、熱伝導部材10の材料
としては、半導体基板21と熱伝導率が同等であるか、
あるいはそれよりも高い材料を選択することが必要であ
る。できれば銅と同程度以上の熱伝導率をもつ材料を選
択することが望ましい。
In FIG. 18, since aluminum or molybdenum has a lower thermal conductivity than copper, the effect of reducing thermal resistance cannot be obtained as much as copper. However, the thickness is also about 200 to 300 μm. , There is an optimum value of the thickness, and a slight thermal resistance reduction effect can be obtained. From this, as a material of the heat conductive member 10, whether the heat conductivity is the same as that of the semiconductor substrate 21,
Alternatively, it is necessary to select a higher material. If possible, it is desirable to select a material having a thermal conductivity equal to or higher than that of copper.

【0089】[0089]

【発明の効果】本発明によれば、半導体基板を厚くする
ことなく、半導体素子からの熱を多層配線基板から外部
に効率良く伝達させることが可能な半導体装置を低コス
トで提供することができる。
According to the present invention, a semiconductor device capable of efficiently transmitting heat from a semiconductor element to the outside from a multilayer wiring board without increasing the thickness of a semiconductor substrate can be provided at low cost. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における基本的な実施形態を備えた半導
体装置の断面図
FIG. 1 is a cross-sectional view of a semiconductor device having a basic embodiment according to the present invention.

【図2】本発明における配線基板を貫通しないサーマル
ビアを備えた半導体装置の断面図
FIG. 2 is a cross-sectional view of a semiconductor device having a thermal via that does not penetrate a wiring board according to the present invention.

【図3】本発明におけるPHSを備えた半導体装置の断
面図
FIG. 3 is a cross-sectional view of a semiconductor device having a PHS according to the present invention.

【図4】本発明におけるPHSとサーマルビアとの間の
熱伝導部材を備えた半導体装置の断面図
FIG. 4 is a cross-sectional view of a semiconductor device having a heat conducting member between a PHS and a thermal via according to the present invention.

【図5】従来の半導体装置の一例を示す断面図FIG. 5 is a cross-sectional view illustrating an example of a conventional semiconductor device.

【図6】従来の半導体装置の一例を示す断面図FIG. 6 is a cross-sectional view illustrating an example of a conventional semiconductor device.

【図7】従来の半導体装置の一例を示す断面図FIG. 7 is a cross-sectional view illustrating an example of a conventional semiconductor device.

【図8】本発明における複数の種類の半導体素子が一つ
の配線基板上に混載した半導体装置の断面図
FIG. 8 is a cross-sectional view of a semiconductor device according to the present invention in which a plurality of types of semiconductor elements are mixedly mounted on one wiring board.

【図9】本発明を適用した半導体装置の一部を切り出し
た斜視図
FIG. 9 is a perspective view of a part of a semiconductor device to which the present invention is applied;

【図10】本発明における複数の種類の半導体素子が一
つの配線基板上に混載した半導体装置の上面及び底面を
示す図
FIG. 10 is a diagram showing a top surface and a bottom surface of a semiconductor device in which a plurality of types of semiconductor elements according to the present invention are mounted together on one wiring board.

【図11】本発明における半導体素子が配線基板上に実
装されるプロセス工程の一例を示す図
FIG. 11 is a view showing an example of a process step in which a semiconductor element according to the present invention is mounted on a wiring board;

【図12】本発明における半導体素子がHBT素子であ
る場合の代表的なエミッタ電極周辺を示す半導体装置の
断面図
FIG. 12 is a cross-sectional view of a semiconductor device showing a periphery of a typical emitter electrode when a semiconductor element according to the present invention is an HBT element;

【図13】本発明における発熱領域の配置の一例を示す
模擬的な上面図
FIG. 13 is a schematic top view showing an example of the arrangement of heat generating regions according to the present invention.

【図14】本発明における熱伝導部材の厚さがモジュー
ル熱抵抗に与える影響を示すグラフ
FIG. 14 is a graph showing the effect of the thickness of the heat conducting member on the module thermal resistance in the present invention.

【図15】本発明における熱伝導部材の面積がモジュー
ル熱抵抗に与える影響を示すグラフ
FIG. 15 is a graph showing the effect of the area of the heat conduction member on the module thermal resistance in the present invention.

【図16】本発明における、熱伝導部材を用いない場合
において、PHSの厚さがモジュール熱抵抗に与える影
響を示すグラフ
FIG. 16 is a graph showing the effect of the PHS thickness on the module thermal resistance in the case where a heat conducting member is not used in the present invention.

【図17】本発明におけるPHSがない場合に熱伝導部
材の厚さがモジュール熱抵抗に与える影響を示すグラフ
FIG. 17 is a graph showing the effect of the thickness of a heat conducting member on module thermal resistance in the absence of PHS in the present invention.

【図18】本発明における熱伝導部材の種類がモジュー
ル熱抵抗に与える影響を示すグラフ
FIG. 18 is a graph showing the effect of the type of heat conducting member on module thermal resistance in the present invention.

【符号の説明】[Explanation of symbols]

1…半導体素子、1a…半導体基板、1b…発熱領域、
2…配線基板、2a…配線基板表層、2b…配線基板裏
面、3…サーマルビア、4…熱伝導部材、5…配線要
素、6…配線基板内を貫通しないサーマルビア、7…P
HS、8…マザーボード、9…第一のロウ材、10…熱
伝導部材、11…第二のロウ材、12…回路部品、13
…熱拡散板、15…ロウ材、16…熱伝導率の低い材料
で構成される半導体素子、16a…半導体基板、16b
…発熱領域、17…熱伝導率の高い材料で構成される半
導体素子、17a…半導体基板、17b…発熱領域、1
8…ワイヤ配線、19…フィンガー、21…半導体基
板、22…サブコレクタ、23…コレクタ、24…ベー
ス、25…エミッタ、26…ベース電極、27…キャッ
プ層、28…エミッタ電極、29…コレクタ電極、30
…絶縁層、31…絶縁層、32…エミッタ配線、33…
バイアホール、34…バラスト抵抗、35…キャップ、
36…電極、37…電極、101…配線層、102…配
線層、103…電極、104…配線層、105…電極、
106…第3のロウ材、107…キャップ、108…電
極、109…保護部材、110…スルーホール、111
…配線層、112…ハンダバンプ、113…ハンダバン
プ。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 1a ... Semiconductor substrate, 1b ... Heating area,
2 Wiring board, 2a Wiring board surface layer, 2b Backside of wiring board, 3 Thermal via, 4 Thermal conduction member, 5 Wiring element, 6 Thermal via not penetrating inside wiring board, 7 P
HS, 8: mother board, 9: first brazing material, 10: heat conductive member, 11: second brazing material, 12: circuit component, 13
... heat diffusion plate, 15 ... brazing material, 16 ... semiconductor element composed of a material having low thermal conductivity, 16a ... semiconductor substrate, 16b
... Heating region, 17: Semiconductor element composed of a material having high thermal conductivity, 17a: Semiconductor substrate, 17b: Heating region, 1
8: wire wiring, 19: finger, 21: semiconductor substrate, 22: subcollector, 23: collector, 24: base, 25: emitter, 26: base electrode, 27: cap layer, 28: emitter electrode, 29: collector electrode , 30
... insulating layer, 31 ... insulating layer, 32 ... emitter wiring, 33 ...
Via hole, 34: Ballast resistance, 35: Cap,
36 ... electrode, 37 ... electrode, 101 ... wiring layer, 102 ... wiring layer, 103 ... electrode, 104 ... wiring layer, 105 ... electrode,
106: third brazing material, 107: cap, 108: electrode, 109: protective member, 110: through hole, 111
... wiring layer, 112 ... solder bump, 113 ... solder bump.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅本 康成 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内 (72)発明者 草野 忠四郎 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内 (72)発明者 山下 喜市 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 近藤 静雄 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内 (72)発明者 菊池 栄 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内 (72)発明者 佐々木 聡 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内 (72)発明者 日比野 光明 東京都小平市上水本町五丁目20番1号 株 式会社日立製作所半導体グループ内 (72)発明者 中西 正樹 長野県小諸市柏木190番地 日立東部セミ コンダクタ株式会社内 Fターム(参考) 5F036 AA01 BB08 BB21  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasunari Umemoto 5-2-1, Josuihonmachi, Kodaira-shi, Tokyo Within the Semiconductor Group, Hitachi, Ltd. (72) Inventor Chushiro Kusano Gojomisho, Kosumi-shi, Tokyo No. 20-1, Hitachi Ltd. Semiconductor Group (72) Inventor Kiyoshi Yamashita 1-280, Higashi Koigakubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Shizuo Kondo Waterworks, Kodaira-shi, Tokyo 5-2-1, Honcho, Hitachi, Ltd., Semiconductor Group, Ltd. (72) Inventor Sakae Kikuchi 5--20-1, Josuihonmachi, Kodaira-shi, Tokyo In-house, Hitachi, Ltd. Semiconductor Group (72) Inventor, Satoshi Sasaki 5-20-1, Josuihoncho, Kodaira-shi, Tokyo Within the Semiconductor Group, Hitachi, Ltd. (72) Inventor Hibi Komei 5-20-1, Josuihoncho, Kodaira-shi, Tokyo Within the Semiconductor Group, Hitachi, Ltd. (72) Inventor Masaki Nakanishi 190 Kashiwagi, Komoro-shi, Nagano F-term in Hitachi Eastern Semiconductor Co., Ltd. 5F036 AA01 BB08 BB21

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】配線基板上に実装される半導体素子と、前
記配線基板内に配置され、この半導体基板を厚さ方向に
貫通して設けられた第1の熱伝導部材と、前記半導体素
子と第1の熱伝導部材とを熱的に接続する第2の熱伝導
部材とを備えた半導体装置。
A semiconductor device mounted on the wiring board; a first heat conductive member disposed in the wiring board and provided through the semiconductor substrate in a thickness direction; A semiconductor device comprising: a second heat conductive member for thermally connecting the first heat conductive member to the first heat conductive member.
【請求項2】配線基板上に実装される半導体素子と、前
記配線基板内に配置され、この半導体基板を厚さ方向に
貫通して設けられた第1の熱伝導部材と、この第1の熱
伝導部材と前記半導体素子とのい間に設けられた熱拡散
板と、この熱拡散板と前記第1の熱伝導部材とを熱的に
接続する第2の熱伝導部材を設けた半導体装置。
2. A semiconductor device mounted on a wiring board, a first heat conductive member disposed in the wiring board and provided through the semiconductor substrate in a thickness direction, A semiconductor device comprising a heat diffusion plate provided between a heat conduction member and the semiconductor element, and a second heat conduction member for thermally connecting the heat diffusion plate and the first heat conduction member. .
【請求項3】配線基板上に実装される半導体素子と、前
記配線基板内に配置され、この半導体基板を厚さ方向に
貫通して設けられた第1の熱伝導部材と、この第1の熱
伝導部材と前記半導体素子とのい間に設けられ、前記半
導体素子の面積と同一若しくはそれ以上の面積を有する
熱拡散板と、この熱拡散板と前記第1の熱伝導部材とを
熱的に接続し、前記半導体素子の面積と同一若しくはそ
れ以上の面積を有する第2の熱伝導部材を設けた半導体
装置。
3. A semiconductor device mounted on a wiring board, a first heat conductive member disposed in the wiring board, and provided through the semiconductor substrate in a thickness direction, A heat diffusion plate provided between the heat conduction member and the semiconductor element and having an area equal to or larger than the area of the semiconductor element; and thermally connecting the heat diffusion plate and the first heat conduction member to each other. And a second heat conductive member having an area equal to or larger than the area of the semiconductor element.
【請求項4】請求項1記載の半導体装置において、前記
半導体素子がSi等の単結晶半導体基板またはGaAs
等の化合物半導体基板上に、複数のトランジスタまたは
ダイオード等からなる多フィンガー素子が形成された半
導体装置。
4. The semiconductor device according to claim 1, wherein said semiconductor element is a single crystal semiconductor substrate such as Si or GaAs.
A semiconductor device in which a multi-finger element including a plurality of transistors or diodes is formed on a compound semiconductor substrate such as
【請求項5】請求項1記載の半導体装置において、前記
半導体素子と配線基板との間に配置される第2の熱伝導
部材は、上記半導体素子よりも熱伝導率の高い材料であ
る半導体装置。
5. The semiconductor device according to claim 1, wherein said second heat conductive member disposed between said semiconductor element and said wiring board is made of a material having a higher thermal conductivity than said semiconductor element. .
【請求項6】請求項2乃至3記載の半導体装置におい
て、前記半導体素子と配線基板との間に配置される第2
の熱伝導部材と、上記半導体素子と第2の熱伝導部材と
の間に配置される熱拡散板のいずれもが上記半導体素子
よりも熱伝導率の高い材料である半導体装置。
6. The semiconductor device according to claim 2, wherein said second element is disposed between said semiconductor element and a wiring board.
A semiconductor device, wherein both the heat conductive member and the heat diffusion plate disposed between the semiconductor element and the second heat conductive member are made of a material having higher heat conductivity than the semiconductor element.
【請求項7】請求項3記載の半導体装置において、前記
半導体素子、第2の熱伝導部材、熱拡散板の厚さが、熱
拡散板が最も薄く、第2の熱伝導部材が最も厚い構成で
ある半導体装置。
7. The semiconductor device according to claim 3, wherein the thickness of the semiconductor element, the second heat conducting member, and the heat diffusing plate is thinnest for the heat diffusing plate and thickest for the second heat conducting member. Semiconductor device.
JP27818299A 1999-09-30 1999-09-30 Semiconductor device Expired - Fee Related JP4480818B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27818299A JP4480818B2 (en) 1999-09-30 1999-09-30 Semiconductor device
PCT/JP2000/005785 WO2001026152A1 (en) 1999-09-30 2000-08-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27818299A JP4480818B2 (en) 1999-09-30 1999-09-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2001102483A true JP2001102483A (en) 2001-04-13
JP4480818B2 JP4480818B2 (en) 2010-06-16

Family

ID=17593741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27818299A Expired - Fee Related JP4480818B2 (en) 1999-09-30 1999-09-30 Semiconductor device

Country Status (2)

Country Link
JP (1) JP4480818B2 (en)
WO (1) WO2001026152A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258160A (en) * 2002-03-04 2003-09-12 Hitachi Metals Ltd Multilayer ceramic board and multilayer ceramic electronic component employing it
JP2006525653A (en) * 2003-05-15 2006-11-09 スカイワークス ソリューションズ,インコーポレイテッド Semiconductor die package with enhanced thermal conductivity
JP2009010045A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Light emitting device
DE102007056269A1 (en) * 2007-10-22 2009-04-23 Rohde & Schwarz Gmbh & Co. Kg Cooled multichip module
US7554193B2 (en) 2005-08-16 2009-06-30 Renesas Technology Corp. Semiconductor device
US7656030B2 (en) 2006-01-11 2010-02-02 Renesas Technology Corp. Semiconductor device
JP2010027179A (en) * 2008-07-24 2010-02-04 Sharp Corp Hologram laser unit and optical pickup device
JP2011014722A (en) * 2009-07-02 2011-01-20 Tokai Rika Co Ltd Substrate mounting structure of semiconductor chip
JP2011522431A (en) * 2008-06-03 2011-07-28 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Stacked electronic device and method for manufacturing the same
JP2012038769A (en) * 2010-08-03 2012-02-23 Jtekt Corp Multilayer circuit board, board device, and method for determining abnormality of multilayer circuit board
JP2018133382A (en) * 2017-02-14 2018-08-23 三菱電機株式会社 Semiconductor package
JPWO2020203506A1 (en) * 2019-04-01 2021-10-28 ヌヴォトンテクノロジージャパン株式会社 Power amplifier
US11240912B2 (en) 2019-03-11 2022-02-01 Murata Manufacturing Co., Ltd. Multilayer wiring substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867493B2 (en) * 2000-11-15 2005-03-15 Skyworks Solutions, Inc. Structure and method for fabrication of a leadless multi-die carrier
FR2837061A1 (en) * 2002-03-11 2003-09-12 Thales Sa CERAMIC MULTI-LAYERED SUBSTRATE FOR POWER COMPONENT, ELECTRONIC MODULE AND CIRCUIT COMPRISING THE SUBSTRATE AND METHOD FOR MANUFACTURING THE SUBSTRATE

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317585A (en) * 1986-07-09 1988-01-25 Toshiba Corp semiconductor laser device
JPH0677347A (en) * 1992-08-28 1994-03-18 Toshiba Corp Substrate
JPH0786469A (en) * 1993-09-20 1995-03-31 Toshiba Corp Electronic parts
JPH09199629A (en) * 1996-01-18 1997-07-31 Toshiba Corp Semiconductor device
JP2699929B2 (en) * 1995-05-31 1998-01-19 日本電気株式会社 Semiconductor device
JPH10199900A (en) * 1997-01-13 1998-07-31 Nec Corp Semiconductor device
JPH1126335A (en) * 1997-07-07 1999-01-29 Nec Corp Semiconductor device
JPH11191603A (en) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd Semiconductor integrated circuit and its manufacture
JP2000216307A (en) * 1999-01-20 2000-08-04 Nec Corp Amplifying device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317585A (en) * 1986-07-09 1988-01-25 Toshiba Corp semiconductor laser device
JPH0677347A (en) * 1992-08-28 1994-03-18 Toshiba Corp Substrate
JPH0786469A (en) * 1993-09-20 1995-03-31 Toshiba Corp Electronic parts
JP2699929B2 (en) * 1995-05-31 1998-01-19 日本電気株式会社 Semiconductor device
JPH09199629A (en) * 1996-01-18 1997-07-31 Toshiba Corp Semiconductor device
JPH10199900A (en) * 1997-01-13 1998-07-31 Nec Corp Semiconductor device
JPH1126335A (en) * 1997-07-07 1999-01-29 Nec Corp Semiconductor device
JPH11191603A (en) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd Semiconductor integrated circuit and its manufacture
JP2000216307A (en) * 1999-01-20 2000-08-04 Nec Corp Amplifying device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258160A (en) * 2002-03-04 2003-09-12 Hitachi Metals Ltd Multilayer ceramic board and multilayer ceramic electronic component employing it
JP2006525653A (en) * 2003-05-15 2006-11-09 スカイワークス ソリューションズ,インコーポレイテッド Semiconductor die package with enhanced thermal conductivity
US7554193B2 (en) 2005-08-16 2009-06-30 Renesas Technology Corp. Semiconductor device
US7656030B2 (en) 2006-01-11 2010-02-02 Renesas Technology Corp. Semiconductor device
JP2009010045A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Light emitting device
DE102007056269A1 (en) * 2007-10-22 2009-04-23 Rohde & Schwarz Gmbh & Co. Kg Cooled multichip module
JP2011522431A (en) * 2008-06-03 2011-07-28 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Stacked electronic device and method for manufacturing the same
JP2010027179A (en) * 2008-07-24 2010-02-04 Sharp Corp Hologram laser unit and optical pickup device
JP2011014722A (en) * 2009-07-02 2011-01-20 Tokai Rika Co Ltd Substrate mounting structure of semiconductor chip
JP2012038769A (en) * 2010-08-03 2012-02-23 Jtekt Corp Multilayer circuit board, board device, and method for determining abnormality of multilayer circuit board
JP2018133382A (en) * 2017-02-14 2018-08-23 三菱電機株式会社 Semiconductor package
US11240912B2 (en) 2019-03-11 2022-02-01 Murata Manufacturing Co., Ltd. Multilayer wiring substrate
US11871513B2 (en) 2019-03-11 2024-01-09 Murata Manufacturing Co., Ltd. Multilayer wiring substrate
JPWO2020203506A1 (en) * 2019-04-01 2021-10-28 ヌヴォトンテクノロジージャパン株式会社 Power amplifier
US11362011B2 (en) 2019-04-01 2022-06-14 Nuvoton Technology Corporation Japan Power amplification device
JP7091555B2 (en) 2019-04-01 2022-06-27 ヌヴォトンテクノロジージャパン株式会社 Power amplifier

Also Published As

Publication number Publication date
JP4480818B2 (en) 2010-06-16
WO2001026152A1 (en) 2001-04-12

Similar Documents

Publication Publication Date Title
US6856007B2 (en) High-frequency chip packages
US7393771B2 (en) Method for mounting an electronic part on a substrate using a liquid containing metal particles
CN1206732C (en) Multi-Chip Module with Integrated RF Capability
US4744007A (en) High density LSI package for logic circuits
TWI301314B (en) Low voltage drop and high thermal performance ball grid array package
US8535976B2 (en) Method for fabricating chip package with die and substrate
JP3288840B2 (en) Semiconductor device and manufacturing method thereof
US20070053167A1 (en) Electronic circuit module and manufacturing method thereof
JP4480818B2 (en) Semiconductor device
TWI725426B (en) Semiconductor device
US7038309B2 (en) Chip package structure with glass substrate
CN100375272C (en) Thermally Enhanced Component Substrates
CN114449739B (en) Packaging module and preparation method thereof, and electronic equipment
US6954360B2 (en) Thermally enhanced component substrate: thermal bar
US6292368B1 (en) Electrical power component mounted by brazing on a support and corresponding mounting process
JP3912445B2 (en) Semiconductor device
JPH0320067A (en) Semiconductor device fitted with ceramic heat-radiating fins
US20050224933A1 (en) Thermally enhanced component interposer: finger and net structures
TWI820690B (en) Power module and manufacturing method thereof
US11984432B2 (en) Semiconductor chip stack module and method of fabricating the same
US20230411334A1 (en) Power module for high-frequency use and method for manufacturing the same
JPS6211014Y2 (en)
JPH0358455A (en) Semiconductor package
JPS595977Y2 (en) Integrated circuit tower equipment
JP2001267460A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees