JP2001127352A - SQUID substrate and magnetic field measuring device using the same - Google Patents
SQUID substrate and magnetic field measuring device using the sameInfo
- Publication number
- JP2001127352A JP2001127352A JP30348199A JP30348199A JP2001127352A JP 2001127352 A JP2001127352 A JP 2001127352A JP 30348199 A JP30348199 A JP 30348199A JP 30348199 A JP30348199 A JP 30348199A JP 2001127352 A JP2001127352 A JP 2001127352A
- Authority
- JP
- Japan
- Prior art keywords
- squid
- superconductor
- magnetic field
- heater
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Magnetic Variables (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
(57)【要約】
【目的】 磁束トラップを解除できるSQUID基板を
提供する。
【構成】 ジョゼフソン接合22を有するSQUIDが
形成される基板15と、SQUIDの動作温度に於いて
超伝導となる超伝導体で基板に構成されるヒータ5とを
有し、ヒータに超伝導体の臨界電流値以上の電流を流
し、超伝導体を常伝導に転移させて発熱させることによ
り、SQUIDの磁束トラップを解除する。
【効果】 工程増加させず製造でき電源を増やすことな
く磁束トラップを解除できる。
(57) [Summary] [Object] To provide a SQUID substrate capable of releasing a magnetic flux trap. An SQUID having a Josephson junction 22 is formed on a substrate 15 and a heater 5 is formed on the substrate with a superconductor that is superconductive at the operating temperature of the SQUID. A current greater than or equal to the critical current value is passed to cause the superconductor to transition to normal conduction and generate heat, thereby releasing the SQUID magnetic flux trap. [Effect] The magnetic flux trap can be released without increasing the number of processes and manufacturing without increasing the number of processes.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、人間の心臓や脳か
ら発生する生体磁場の計測装置、金属内部の微小亀裂の
検出を非破壊的に行なう検査装置等に於いて、微弱な磁
場を計測するセンサとして用いられる超伝導量子干渉素
子(SQUID: Superconducting
Quantum Interference Devi
ce)、及びこれを用いた磁場計測装置に関し、特に、
トラップされた磁束を解除できる超伝導量子干渉素子、
及びこれを用いる磁場計測装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a weak magnetic field in an apparatus for measuring a biomagnetic field generated from a human heart or brain, an inspection apparatus for non-destructively detecting a minute crack in a metal, and the like. Superconducting Quantum Interference Device (SQUID: Superconducting)
Quantum Interference Devi
ce), and a magnetic field measurement device using the same,
A superconducting quantum interference device that can release the trapped magnetic flux,
And a magnetic field measuring apparatus using the same.
【0002】[0002]
【従来の技術】超伝導量子干渉素子(以下、SQUID
と表記する)は、高感度な磁束−電圧変換素子であり、
人間の心臓や脳から発生する磁場の計測装置、金属内部
の微小亀裂を非破壊的に行なう検査装置等に於いて、微
弱な磁場を計測するセンサとして用いられる。SQUI
Dは、Nb、YBa2Cu3O7-x、Bi2Sr2CaCu2
O8、Tl2Ba2CaCu2O8等の超伝導薄膜により基
板に形成されるのが一般的であり、低温容器に入れて冷
媒を注入する等して臨界温度以下に冷却することによ
り、常伝導状態から超伝導状態に転移して動作可能な状
態となる。2. Description of the Related Art Superconducting quantum interference devices (hereinafter, SQUIDs)
) Is a highly sensitive magnetic flux-voltage conversion element,
It is used as a sensor for measuring a weak magnetic field in an apparatus for measuring a magnetic field generated from the human heart or brain, an inspection apparatus for non-destructively performing a micro-crack inside a metal, and the like. SQUI
D is Nb, YBa 2 Cu 3 O 7-x , Bi 2 Sr 2 CaCu 2
It is generally formed on a substrate by a superconducting thin film of O 8 , Tl 2 Ba 2 CaCu 2 O 8 or the like. The state changes from the normal conduction state to the superconducting state, and becomes operable.
【0003】冷却の際、SQUIDが磁場に暴露された
り、冷却された状態で強い磁気雑音に暴露されると、磁
束が、超伝導薄膜に鎖交したまま閉じ込められることが
ある(これを「磁束トラップ」と呼ぶ)。磁束トラップ
が発生すると、磁束−電圧変換の感度が低下したり、ト
ラップした磁束が熱的に揺らいで雑音を発生したりし
て、微弱な磁場計測の大きな障害となる。[0003] When the SQUID is exposed to a magnetic field during cooling or exposed to strong magnetic noise in a cooled state, the magnetic flux may be confined while being linked to the superconducting thin film (referred to as "flux"). Called "trap"). When a magnetic flux trap is generated, the sensitivity of the magnetic flux-voltage conversion is reduced, and the trapped magnetic flux fluctuates thermally to generate noise, which is a great obstacle to measuring a weak magnetic field.
【0004】磁束トラップはSQUIDの温度を上げて
一旦常伝導に転移させ、再度冷却し直すことで解除でき
る。しかし、SQUIDを冷媒から一時的に出すのは作
業効率が悪く、コストがかかるだけでなく危険も伴うた
め、ヒータを用いて冷媒中のSQUIDだけを部分的に
加熱する方法が提案されている。SQUID基板の近傍
にチップ抵抗を設置する方法もあるが、ヒータを薄膜化
した方がよりSQUIDの近くに設置でき、効果的に加
熱できる。[0004] The magnetic flux trap can be released by raising the temperature of the SQUID, temporarily transitioning to normal conduction, and cooling again. However, temporarily removing the SQUID from the refrigerant is inefficient and costly as well as costly. Therefore, a method of partially heating only the SQUID in the refrigerant using a heater has been proposed. Although there is a method of installing a chip resistor near the SQUID substrate, a thinner heater can be installed closer to the SQUID and can be heated effectively.
【0005】薄膜化したヒータを使用する従来技術とし
て、特許第2856463号(従来技術1)、特開平8
−78738号(従来技術2)、電子情報通信学会技術
報告、91巻、176号、43頁−48頁(従来技術
3)が知られている。As a prior art using a thinned heater, Japanese Patent No. 2856463 (prior art 1),
No. 78738 (Prior Art 2) and IEICE Technical Report, Vol. 91, No. 176, pp. 43-48 (Prior Art 3) are known.
【0006】従来技術1では、ヒータは複数の薄膜抵抗
単位からなっており、複数の抵抗単位に流れる電流によ
って超伝導回路(SQUIDに相当する)に作用する磁
界が零になるように、抵抗単位どうしが近接して並んで
いる。In the prior art 1, the heater is composed of a plurality of thin-film resistance units, and the resistance unit is set so that the magnetic field acting on the superconducting circuit (corresponding to SQUID) becomes zero by the current flowing through the plurality of resistance units. They are in close proximity.
【0007】従来技術2では、SQUIDの構成要素で
ある帰還コイル(フィードバックコイル)に直列にジョ
ゼフソン接合を設け、ジョゼフソン接合をヒータとして
用いている。In the prior art 2, a Josephson junction is provided in series with a feedback coil (feedback coil) which is a component of the SQUID, and the Josephson junction is used as a heater.
【0008】従来技術3では、抵抗体(モリブデン)と
抵抗を持たない配線層である超伝導体(Nb)が、絶縁
体を挟んで2層膜をなす構成が開示されている。The prior art 3 discloses a structure in which a resistor (molybdenum) and a superconductor (Nb), which is a wiring layer having no resistance, form a two-layer film with an insulator interposed therebetween.
【0009】従来技術2、従来技術3では、SQUID
とヒータが同一基板に薄膜で形成されており、SQUI
Dとヒータとを各々別基板に形成するよりも更に効率的
に加熱ができる。In prior art 2 and prior art 3, the SQUID
And the heater are formed in a thin film on the same substrate.
Heating can be performed more efficiently than forming D and the heater on separate substrates.
【0010】[0010]
【発明が解決しようとする課題】SQUIDを加熱する
ヒータをSQUIDと同一基板に形成すれば、最も加熱
効率が良い。また、製作の容易さを考慮すると、SQU
IDの形成工程で形成できることが望ましい。更に、基
板に形成されたヒータは、室温に設置されたヒータの電
源に電源ラインで接続されるが、ヒータの抵抗が電源ラ
インの抵抗に比べて十分大きくなければ、電源電力が電
源ラインで消耗してしまい、非効率である。多くの場
合、電源ラインはマンガニン等の細いワイヤで形成さ
れ、10数Ωの抵抗を有する。従って、ヒータの抵抗値
は、例えば、100Ω程度は必要である。If the heater for heating the SQUID is formed on the same substrate as the SQUID, the best heating efficiency can be obtained. In addition, considering the ease of production,
It is desirable to be able to form in ID formation process. Furthermore, the heater formed on the substrate is connected to the power supply of the heater installed at room temperature by a power supply line. However, if the resistance of the heater is not sufficiently large compared to the resistance of the power supply line, the power supply power is consumed by the power supply line. It is inefficient. In many cases, the power supply line is formed of a thin wire such as manganin and has a resistance of about 10 Ω. Therefore, the resistance value of the heater needs to be, for example, about 100Ω.
【0011】ヒータがSQUIDと同一の基板で、SQ
UIDの近傍に形成された場合、ヒータを電源ラインに
接続するために基板内に薄膜で形成された配線やヒータ
そのものが発生する磁場が問題となり、ヒータや基板内
の配線(以下の説明では、基板内に薄膜で形成される配
線を単に「配線」と呼ぶ。)が磁場を発生すると、これ
らが磁束トラップの原因になるという問題がある。When the heater is on the same substrate as the SQUID,
When formed near the UID, a wiring formed of a thin film in the substrate and a magnetic field generated by the heater itself become a problem in order to connect the heater to the power supply line, and wiring in the heater and the substrate (in the following description, When a wiring formed of a thin film in a substrate is simply called a "wiring", a magnetic field is generated, which causes a problem that a magnetic flux is trapped.
【0012】人間の心臓から発生する磁場の計測を行う
心磁計測装置や、脳から発生する磁場の計測を行う脳磁
計測装置等の生体磁場計測装置では、数十から数百個の
SQUIDが搭載される。これらのSQUIDと一体化
して設置されるヒータの全てを、室温にある電源に接続
したのでは電源ライン数が膨大になり、室温から冷媒へ
の熱流入がおびただしくなるという問題がある。また、
SQUIDを駆動する駆動回路の電源と別にヒータの電
源を設けたのではシステム構成が煩雑になるという問題
がある。In a biomagnetic field measuring device such as a magnetocardiographic measuring device for measuring a magnetic field generated from the human heart or a magnetoencephalographic measuring device for measuring a magnetic field generated from the brain, several tens to several hundreds of SQUIDs are used. Will be installed. If all of the heaters installed integrally with the SQUID are connected to a power supply at room temperature, the number of power supply lines becomes enormous, and there is a problem that heat flows from the room temperature to the refrigerant. Also,
If a power supply for the heater is provided separately from the power supply for the drive circuit for driving the SQUID, there is a problem that the system configuration becomes complicated.
【0013】本発明の目的は、SQUIDの形成工程で
SQUIDと同じ基板に形成でき、100Ω程度の抵抗
値のヒータを有するSQUID基板を提供すること、ヒ
ータと基板内の配線を適切に組み合わせることにより、
磁場を発生しない構造のヒータモデュールを提供するこ
と、ヒータの電源ライン数が少なく、SQUIDを駆動
する駆動回路の電源とヒータの電源を共用できる磁場計
測装置を提供することにある。An object of the present invention is to provide an SQUID substrate which can be formed on the same substrate as the SQUID in the SQUID forming step and has a heater with a resistance value of about 100Ω, by appropriately combining the heater and wiring in the substrate. ,
An object of the present invention is to provide a heater module having a structure that does not generate a magnetic field, and to provide a magnetic field measuring device that has a small number of power supply lines for a heater and can share a power supply for a heater and a power supply for a driving circuit for driving a SQUID.
【0014】[0014]
【課題を解決するための手段】本発明の代表的なSQU
ID基板は、ジョゼフソン接合を有するSQUIDが基
板に形成され、SQUIDの動作温度に於いて超伝導と
なる超伝導体でヒータが同じ基板に構成され、ヒータに
超伝導体の臨界電流値以上の電流を流し、超伝導体を常
伝導に転移させて発熱させることにより、SQUIDの
磁束トラップを解除する。ヒータを構成する超伝導体
は、SQUIDを構成する超伝導体と同じ材質で構成さ
れ、配線を構成する常伝導体は、SQUIDを構成する
常伝導体と同じ材質で構成されるので、SQUIDの製
作工程を利用して容易に、絶縁層を介して形成されるヒ
ータと配線からなる2層構造をもつヒータモジュール
を、SQUIDが形成される基板に形成することができ
る。[MEANS FOR SOLVING THE PROBLEMS] Representative SKU of the present invention
On the ID substrate, a SQUID having a Josephson junction is formed on the substrate, and a heater is formed on the same substrate with a superconductor that becomes superconducting at the operating temperature of the SQUID. A current is applied to cause the superconductor to transition to normal conduction and generate heat, thereby releasing the SQUID flux trap. The superconductor forming the heater is formed of the same material as the superconductor forming the SQUID, and the normal conductor forming the wiring is formed of the same material as the normal conductor forming the SQUID. A heater module having a two-layer structure including a heater and a wiring formed via an insulating layer can be easily formed on a substrate on which a SQUID is formed by utilizing a manufacturing process.
【0015】本発明のSQUID基板では、SQUID
と同一の基板に、SQUIDを形成する超伝導薄膜でヒ
ータを形成する。薄膜の厚さは通常1μm以下である。
ヒータを幅5μm以下の超伝導薄膜細線で構成し、ヒー
タに電源を接続して臨界電流値以上の電流を流すことに
より、超伝導薄膜細線が常伝導に転移してヒータとして
動作する。SQUIDの超伝導体が、例えば、Nbであ
る場合、Nbが常伝導体に転移した時の抵抗はSQUI
Dに用いられる他の金属材料、例えば、AlやAuに比
べて大きく、抵抗値の大きいヒータが実現できる。SQ
UIDの製作工程には超伝導薄膜の成膜と加工が例外な
く含まれるから、ヒータの製作をSQUIDの製作工程
を用いて実行すれば、工程を増やすことなく高抵抗のヒ
ータが実現できる。In the SQUID board of the present invention, the SQUID
On the same substrate as above, a heater is formed from a superconducting thin film forming a SQUID. The thickness of the thin film is usually 1 μm or less.
The heater is composed of a superconducting thin film wire having a width of 5 μm or less, and a power supply is connected to the heater to flow a current equal to or greater than the critical current value. If the superconductor of the SQUID is, for example, Nb, the resistance when Nb is transferred to the normal conductor is SQUID.
As compared with other metal materials used for D, for example, Al and Au, a heater having a large resistance value can be realized. SQ
Since the manufacturing process of the UID includes the film formation and processing of the superconducting thin film without exception, if the heater is manufactured using the SQUID manufacturing process, a high-resistance heater can be realized without increasing the number of processes.
【0016】従来技術3に、ジョゼフソン接合に臨界電
流値以上の電流を流してヒータとして用いる構成が開示
されている。ジョゼフソン接合のような点(正確には超
伝導体に挟まれた酸化物層等の弱結合部分)をヒータと
して用いるのに比較すると、超伝導薄膜細線自体を抵抗
として用いる本発明の構成の方が容易に大きな抵抗値を
実現できるという利点がある。Prior Art 3 discloses a configuration in which a current equal to or more than a critical current value is passed through a Josephson junction and used as a heater. Compared to using a point like a Josephson junction (more precisely, a weakly-bonded portion such as an oxide layer sandwiched between superconductors) as a heater, the structure of the present invention in which the superconducting thin film itself is used as a resistor is used. There is an advantage that a larger resistance value can be easily realized.
【0017】超伝導細線からなるヒータと常伝導体の配
線とが絶縁層を介して2層構造をなすヒータモジュール
の、ヒータと常伝導体の配線に互いに逆向きで大きさの
等しい電流が流れるように、ヒータと常伝導体の配線を
電源に接続する。簡単な構成とするために、少なくとも
1箇所で絶縁層にコンタクトホールを設け、ヒータと配
線が電気的に直列な平行往復導線をなすようにすれば、
ヒータと配線を電源に接続した時、ヒータと配線には互
いに逆向きで大きさの等しい電流が流れる。必要な発熱
は超伝導薄膜細線であるヒータ部分から発生するので、
配線は発熱に寄与する必要はない。従って、配線には高
抵抗の材料を用いる必要はなく、SQUIDに用いられ
る適当な金属材料、例えば、AlやAuで構成すれば良
い。むしろヒータの発熱で溶融しないように、ヒータの
線幅に比べて配線の線幅を広くとる方が良い。In a heater module in which a heater made of a superconducting thin wire and a normal conductor wiring form a two-layer structure with an insulating layer interposed therebetween, currents of opposite magnitudes flow through the heater and the normal conductor wiring. As described above, the wires of the heater and the normal conductor are connected to the power supply. In order to provide a simple configuration, at least one contact hole is provided in the insulating layer so that the heater and the wiring form an electrically serial parallel reciprocating conductor.
When the heater and the wiring are connected to a power source, currents of opposite magnitudes and the same flow through the heater and the wiring. The necessary heat is generated from the heater portion, which is a superconducting thin film wire.
Wiring need not contribute to heat generation. Therefore, it is not necessary to use a high-resistance material for the wiring, and the wiring may be made of a suitable metal material used for the SQUID, for example, Al or Au. Rather, it is better to make the wiring line width wider than the heater line width so that the heater does not melt due to heat generation.
【0018】本発明の構成の特徴は、超伝導薄膜を配線
としてではなくヒータとして用いている点で従来技術3
と異なり、2層構造の一方が発熱に寄与しない配線であ
る点で従来技術1と異なる。本発明の構成の特徴によれ
ば、常伝導体の配線は金属でありさえすればよく、Mo
等の高抵抗材料に限定される必要がなくなる。SQUI
Dの形成工程には、常伝導金属の成膜、加工の工程が例
外なく含まれるから、SQUIDの形成工程で、磁場を
発生しないヒータモデュールが形成できる。The feature of the configuration of the present invention is that the superconducting thin film is used not as a wiring but as a heater, as in the prior art 3.
Unlike the first conventional example, one of the two-layer structures is a wiring that does not contribute to heat generation. According to a feature of the configuration of the present invention, the wiring of the normal conductor only needs to be metal, and
It is not necessary to be limited to high resistance materials such as. SQUI
Since the step of forming D includes the steps of forming and processing a normal metal without exception, a heater module that does not generate a magnetic field can be formed in the step of forming a SQUID.
【0019】なお、ヒータと配線が2層構造をなしてい
れば、ヒータ部分、及び配線部分の個々の構造は任意で
あって、磁場の発生の少ない構造にする必要はない。円
形や直線状であっても良いが、ヒータモデュールが必要
以上の面積を占めないよう適当な折り返しをつける等す
れば実用的である。If the heater and the wiring have a two-layer structure, the individual structures of the heater portion and the wiring portion are arbitrary, and it is not necessary to use a structure that generates less magnetic field. The shape may be circular or linear, but it is practical if the heater module is appropriately folded so as not to occupy an unnecessary area.
【0020】本発明の代表的な磁場計測装置は、基板に
SQUIDが形成され、同一の基板に、電流を流した時
にSQUIDを常伝導に転移させるヒータが形成される
SQUID基板の複数個を使用し、複数のSQUID基
板のヒータのうちの2個以上が電気的に直列又は並列に
接続され、直列又は並列に接続された2個以上のヒータ
が1組の配線を介して電源に接続され、SQUIDは同
じ電源により駆動され、ヒータを構成する超伝導体は、
SQUIDを構成する超伝導体と同じ材質で構成され、
配線を構成する常伝導体は、SQUIDを構成する常伝
導体と同じ材質で構成されている。ヒータを構成する超
伝導体と配線は電源に接続した時に電気的に直列になる
よう少なくとも1箇所で電気的に接触しており、ヒータ
を構成する超伝導体と配線に互いに逆向きで大きさが等
しく、超伝導体の臨界電流値以上の電流が流され、SQ
UIDの磁束トラップを解除することができる。A typical magnetic field measuring apparatus of the present invention uses a plurality of SQUID substrates on which a SQUID is formed on a substrate and a heater for transferring the SQUID to normal conduction when an electric current is applied to the same substrate. Then, two or more of the heaters of the plurality of SQUID substrates are electrically connected in series or in parallel, and two or more heaters connected in series or in parallel are connected to a power supply through a set of wirings, The SQUID is driven by the same power supply, and the superconductor constituting the heater is:
Made of the same material as the superconductor that constitutes the SQUID,
The normal conductor forming the wiring is made of the same material as the normal conductor forming the SQUID. The superconductor and the wiring constituting the heater are in electrical contact with each other in at least one place so as to be electrically connected in series when connected to the power supply. Are equal to each other and a current equal to or greater than the critical current value of the superconductor flows, and SQ
The magnetic flux trap of the UID can be released.
【0021】複数のSQUID基板のヒータを互いに電
気的に直列、又は並列に接続して電源に接続するので、
同時に複数のSQUIDを加熱できる。必要に応じて、
全SQUIDを複数のグループに分け、各グループ内の
SQUIDのヒータを直列、又は並列に接続して同時に
通電するようにすれば良い。この時、ヒータの電源や電
源ラインはグループの数だけあればよく、大幅に、ヒー
タの電源や電源ラインの数を減少できる。Since the heaters of the plurality of SQUID substrates are electrically connected in series or in parallel with each other and connected to a power source,
Multiple SQUIDs can be heated simultaneously. If necessary,
All the SQUIDs may be divided into a plurality of groups, and the heaters of the SQUIDs in each group may be connected in series or in parallel to energize simultaneously. At this time, the number of power supplies and power supply lines of the heater only needs to be equal to the number of groups, and the number of power supplies and power supply lines of the heater can be greatly reduced.
【0022】更に、各ヒータの抵抗値は超伝導薄膜細線
の線幅や長さで決まるから、各ヒータの抵抗値は適切に
設定でき、ヒータの電源電圧を、SQUIDを駆動する
駆動回路の電源と共用しても、各ヒータに十分な電力を
供給できる。具体的な電源電圧値や抵抗値等の詳細につ
いては後述する。複数のSQUID基板のヒータを1つ
の電源で加熱し、更に、ヒータの電源を、SQUIDを
駆動する駆動回路の電源と共用することにより、構成が
簡単で、冷媒への熱流入の少ない磁場計測装置が実現で
きる。Further, since the resistance value of each heater is determined by the line width and length of the superconducting thin film, the resistance value of each heater can be appropriately set, and the power supply voltage of the heater is reduced by the power supply of the drive circuit for driving the SQUID. , Sufficient electric power can be supplied to each heater. Details such as specific power supply voltage values and resistance values will be described later. By heating the heaters of a plurality of SQUID substrates with a single power supply and sharing the power supply of the heater with the power supply of a drive circuit for driving the SQUID, the magnetic field measuring device has a simple configuration and less heat flow into the refrigerant. Can be realized.
【0023】[0023]
【発明の実施の形態】本発明の実施例を図を参照して説
明する。なお、図が煩雑になるのを防ぐため、図で説明
すべき部分以外は適宜省略して図示する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. In addition, in order to prevent the figure from being complicated, parts other than those to be described in the figure are omitted as appropriate.
【0024】(ヒータ、及び配線の構成)図1は、本発
明の実施例のヒータモデュールの例を説明する図であ
り、基板に薄膜で形成されるヒータモデュールとその周
辺部を示す上面図、図2はヒータモデュールの断面図で
あり、図2(a)は、図1に示すA−A'(パッド部
分)に於ける断面図、図2(b)は、図1に示すB−
B'(接続部分)に於ける断面図、図2(c)は、図1
に示すC−C'(ヒータモデュール部分)に於ける断面
図である。FIG. 1 is a view for explaining an example of a heater module according to an embodiment of the present invention. FIG. 1 is a top view showing a heater module formed of a thin film on a substrate and its peripheral portion. 2A and 2B are cross-sectional views of the heater module. FIG. 2A is a cross-sectional view of AA ′ (pad portion) shown in FIG. 1, and FIG. 2B is a cross-sectional view of B-B shown in FIG.
FIG. 2C is a cross-sectional view at B ′ (connection part).
FIG. 5 is a cross-sectional view of CC ′ (a heater module part) shown in FIG.
【0025】図2に示すように、絶縁層13を挾んで、
下層に抵抗層12が、上層にNb層(超伝導層)11が
形成される。但し、図1に示すコンタクトホール3の部
分で抵抗層12と超伝導層11とは電気的に接触してい
る。図1に示すように、ヒータモデュール5は、線幅が
共に細く形成された超伝導層と抵抗層とが屈曲部を有す
る。超伝導層11はヒータ1、抵抗層12は配線2をな
す。パッド4、4'に、電源を接続すれば、ヒータ1と
配線2はコンタクトホール3で接続される直列回路を構
成し、平行往復導線をなす。従って、ヒータ1と配線2
には大きさが等しく方向が逆向きの電流が流れ、ヒータ
モデュール5が全体として発生する磁場は無視できるほ
ど小さい。As shown in FIG. 2, the insulating layer 13 is sandwiched between
A resistance layer 12 is formed as a lower layer, and an Nb layer (superconducting layer) 11 is formed as an upper layer. However, the resistance layer 12 and the superconducting layer 11 are in electrical contact with each other at the contact hole 3 shown in FIG. As shown in FIG. 1, in the heater module 5, the superconducting layer and the resistance layer each having a narrow line width have a bent portion. The superconductive layer 11 forms the heater 1, and the resistance layer 12 forms the wiring 2. If a power supply is connected to the pads 4 and 4 ', the heater 1 and the wiring 2 form a series circuit connected by the contact hole 3, and form a parallel reciprocating conductor. Therefore, the heater 1 and the wiring 2
, A current having the same magnitude and the opposite direction flows, and the magnetic field generated by the heater module 5 as a whole is negligibly small.
【0026】以下、具体的に数値を挙げて説明するが、
本発明の構成はこの数値に限定されるものではない。ヒ
ータモデュール5に於いて、ヒータ1はNbの超伝導薄
膜細線であり、厚さ250nm、幅3μm、長さ600
μmである。ヒータ1に臨界電流値以上の電流を流した
時、ヒータ部分は約100Ωの抵抗値を持つ。配線2は
Alの薄膜であり、厚さ100nm、幅8μm、長さ6
00μmである。配線部分の抵抗値は10Ω以下であっ
て、ヒータ部分の抵抗値に比べて一桁以上小さい。ヒー
タ1と配線2に流れる電流値は等しいから、ヒータと配
線の発熱量もまた一桁以上の差があり、発熱はもっぱら
ヒータが担っている。図2(b)、図2(c)に示すよ
うに、ヒータモデュール5とパッド4、4'との間の接
続部分は、ヒータモデュール5と同じくNbとAlの2
層膜であるが、ヒータモデュール5とパッド4、4'と
の間でのNbとAlの線幅は各々ヒータモデュール部分
の線幅より広ければ任意である。In the following, specific explanations will be given using numerical values.
The configuration of the present invention is not limited to this numerical value. In the heater module 5, the heater 1 is a superconducting thin film of Nb having a thickness of 250 nm, a width of 3 μm, and a length of 600 mm.
μm. When a current greater than the critical current value is passed through the heater 1, the heater portion has a resistance of about 100Ω. The wiring 2 is a thin film of Al having a thickness of 100 nm, a width of 8 μm, and a length of 6
00 μm. The resistance value of the wiring portion is 10Ω or less, which is smaller by one digit or more than the resistance value of the heater portion. Since the current values flowing through the heater 1 and the wiring 2 are equal, the amount of heat generated between the heater and the wiring also has a difference of one digit or more, and the heat is solely generated by the heater. As shown in FIGS. 2B and 2C, the connection between the heater module 5 and the pads 4, 4 'is made of Nb and Al, similarly to the heater module 5.
Although it is a layer film, the line width of Nb and Al between the heater module 5 and the pads 4, 4 'is arbitrary as long as it is wider than the line width of the heater module portion.
【0027】以上の説明では、金属系超伝導材料である
Nbを超伝導薄膜材料として使用しいるが、SQUID
を構成する超伝導材料が、YBa2Cu3O7-x、Bi2S
r2CaCu2O8、Tl2Ba2CaCu2O8等の酸化物
系超伝導薄膜である場合は、これらの酸化物系超伝導薄
膜を細線状に加工して、金属系超伝導材料を使用する場
合と同様にしてヒータモデュールが構成できる。In the above description, the metal-based superconducting material Nb is used as the superconducting thin film material.
Is composed of YBa 2 Cu 3 O 7-x , Bi 2 S
In the case of an oxide-based superconducting thin film such as r 2 CaCu 2 O 8 or Tl 2 Ba 2 CaCu 2 O 8 , these oxide-based superconducting thin films are processed into a thin line shape, and a metal-based superconducting material is formed. The heater module can be configured in the same manner as when used.
【0028】即ち、超伝導体は、幅5μm以下及び/又
は厚さ1μm以下である、ニオブ、ニオブ化合物、イッ
トリウム、ビスマス、タリウムの何れかを含む超伝導体
(金属系超伝導薄膜、又は酸化物系超伝導薄膜)の薄膜
細線で形成される。That is, the superconductor is a superconductor having a width of 5 μm or less and / or a thickness of 1 μm or less and containing any one of niobium, a niobium compound, yttrium, bismuth, and thallium (a metal-based superconducting thin film or an oxide). (Superconductor thin film).
【0029】(SQUID基板の構成)図3は、本発明
の実施例のSQUIDとヒータモデュールを搭載したS
QUID基板の上面図、図4は、SQUID基板の断面
の概略を示す図である。図4に示すように、SQUI
D、及びヒータモデュールが形成された層16は、絶縁
層14を介してシリコン基板15に形成されている。(Structure of SQUID Substrate) FIG. 3 shows an SQUID board according to an embodiment of the present invention on which a SQUID and a heater module are mounted.
FIG. 4 is a top view of the QUID substrate, and FIG. 4 is a view schematically showing a cross section of the SQUID substrate. As shown in FIG.
D and the layer 16 on which the heater module is formed are formed on the silicon substrate 15 via the insulating layer 14.
【0030】図3に示すように、SQUID部分は公知
の構造を有し、ワッシャリング21、ジョゼフソン接合
22、入力コイル23、帰還コイル24からなる。図3
には、SQUIDにバイアス電流を供給する電極パッド
6、7、出力電圧を計測するための電極用パッド6'、
7'、入力コイル23と検出コイルとを接続するパッド
8、8'、帰還コイル24とSQUIDを駆動する駆動
回路を接続するパッド9、9'が示されている。As shown in FIG. 3, the SQUID portion has a known structure, and includes a washer ring 21, a Josephson junction 22, an input coil 23, and a feedback coil 24. FIG.
Include electrode pads 6 and 7 for supplying a bias current to the SQUID, electrode pads 6 ′ for measuring an output voltage,
7 ', pads 8 and 8' for connecting the input coil 23 and the detection coil, and pads 9 and 9 'for connecting the feedback coil 24 and a drive circuit for driving the SQUID.
【0031】図5は、超伝導層、抵抗層の関係を説明す
るための図であり、本発明の実施例のSQUID基板の
構成を層別に示す斜視図である。実際にはSQUIDは
もっと多数の層で形成されるが、図5では適宜省略して
いる。SQUIDのワッシャリング21、及びジョゼフ
ソン接合22は超伝導層10で形成される。超伝導層1
0の上に抵抗層12があり、ヒータモデュール5の配線
2が形成される。小さいために図5には図示しないが、
シャント抵抗やダンピング抵抗と呼ばれるSQUID内
の抵抗も抵抗層12で形成される。抵抗層12の上に、
別の超伝導層11があり、SQUIDの入力コイル23
や帰還コイル24と共にヒータ1が形成される。各層の
間には図5に図示しない絶縁層があり、必要な部分には
コンタクトホールが開いている。図5の構成から明らか
なように、ヒータモデュール5はSQUIDの製造工程
を全く増やすことなく、容易に形成できる。FIG. 5 is a diagram for explaining the relationship between the superconducting layer and the resistance layer, and is a perspective view showing the structure of the SQUID substrate according to the embodiment of the present invention for each layer. Actually, the SQUID is formed of a larger number of layers, but is omitted as appropriate in FIG. The SQUID washer 21 and the Josephson junction 22 are formed of the superconducting layer 10. Superconducting layer 1
There is a resistance layer 12 on 0, and the wiring 2 of the heater module 5 is formed. Although not shown in FIG. 5 because of its small size,
A resistance in the SQUID called a shunt resistance or a damping resistance is also formed by the resistance layer 12. On the resistance layer 12,
There is another superconducting layer 11 and the SQUID input coil 23
The heater 1 is formed together with the feedback coil 24. There is an insulating layer (not shown in FIG. 5) between the layers, and a contact hole is opened at a necessary portion. As is clear from the configuration in FIG. 5, the heater module 5 can be easily formed without increasing the number of manufacturing steps of the SQUID.
【0032】図3に示すように、ヒータモデュール5は
ジョゼフソン接合22の近傍に配置されるが、この理由
は以下の2点である。第1の理由は、最も磁束トラップ
の影響が大きく出るジョゼフソン接合部を効率よく加熱
するためである。磁束は超伝導薄膜のどこにでもトラッ
プする可能性があるが、実用上最も障害となるのはSQ
UIDの磁束−電圧変換の感度を低下させるジョゼフソ
ン接合へのトラップである。第2の理由は、ワッシャリ
ング部分の再冷却時に温度勾配を生じさせるためであ
る。SQUIDを加熱してトラップを解除する場合、再
冷却時に温度勾配を持つように冷却すると特に有効であ
ることは、従来技術1、従来技術3等で周知である。As shown in FIG. 3, the heater module 5 is arranged near the Josephson junction 22 for the following two reasons. The first reason is to efficiently heat the Josephson junction where the influence of the magnetic flux trap is most significant. The magnetic flux may be trapped anywhere in the superconducting thin film, but the most important obstacle in practical use is the SQ
It is a trap to a Josephson junction that reduces the sensitivity of the UID to magnetic flux-to-voltage conversion. The second reason is that a temperature gradient is generated when the washer portion is recooled. It is well known in the prior art 1, the prior art 3 and the like that when the SQUID is heated to release the trap, it is particularly effective to cool the SQUID so as to have a temperature gradient during recooling.
【0033】図6は、図3に示す構成のSQUID基板
で、ヒータモデュールを用いてSQUIDを加熱した時
の、加熱電力とSQUIDの端子間抵抗との関係を示す
測定値を示す図である。図6に示す結果は、図3に示す
SQUIDの電極パッド6、7を用いて一定のバイアス
電流を流し、出力電圧を計測するための電極用パッド
6'、7'の間の電圧を測定しながら、ヒータモデュール
5に電流を流してSQUIDを加熱して得た結果であ
る。SQUIDが加熱されて温度が上昇し、超伝導性を
失うと感度が消失すると共に端子間抵抗が大きくなるか
ら、図6に示す結果より、SQUIDの超伝導性を消失
させるのに必要な電力が求められる。図6から、感度の
消失とSQUIDの端子間抵抗の上昇が起こる加熱電力
は230mW以上であり、ヒータモデュール5に最小2
30mWの加熱電力を与えれば、SQUIDの超伝導性
が消失し、磁束トラップが解除できることがわかる。FIG. 6 is a graph showing measured values showing the relationship between the heating power and the resistance between terminals of the SQUID when the SQUID is heated using the heater module on the SQUID substrate having the structure shown in FIG. The result shown in FIG. 6 is obtained by applying a constant bias current using the electrode pads 6 and 7 of the SQUID shown in FIG. 3 and measuring the voltage between the electrode pads 6 ′ and 7 ′ for measuring the output voltage. The result is obtained by applying a current to the heater module 5 to heat the SQUID. When the SQUID is heated and the temperature rises, and the superconductivity is lost, the sensitivity is lost and the inter-terminal resistance is increased. Therefore, from the result shown in FIG. 6, the power required to eliminate the superconductivity of the SQUID is reduced. Desired. From FIG. 6, the heating power at which the loss of sensitivity and the increase in the resistance between the terminals of the SQUID are 230 mW or more,
It can be seen that when a heating power of 30 mW is applied, the superconductivity of the SQUID disappears and the magnetic flux trap can be released.
【0034】(SQUID基板の実装)図7は、本発明
の実施例のSQUID磁束計50の構成例を示す斜視図
である。ヒータモデュール5が形成されたSQUID基
板20を検出コイル31と接続している。検出コイル3
1は、直径18mmの樹脂製のボビン40に溝を切り、
溝内にNb−Ti線を巻いて構成する。図7に示すSQ
UID磁束計50の構成では、環境雑音磁場を除去する
ため、空間の差分磁場を計測するいわゆるグラジオメー
タの構成であって、センシングコイル31aと、キャン
セレーションコイル31bが互いに逆向きに巻かれてい
る。SQUID基板20はコネクタ34を有する実装基
板33に接着され、SQUID基板20の各パッドがワ
イヤボンディングで実装基板33の電極に接続される。(Mounting of SQUID Board) FIG. 7 is a perspective view showing a configuration example of the SQUID magnetometer 50 according to the embodiment of the present invention. The SQUID substrate 20 on which the heater module 5 is formed is connected to the detection coil 31. Detection coil 3
1 cuts a groove in a resin bobbin 40 having a diameter of 18 mm,
An Nb-Ti wire is wound in the groove. SQ shown in FIG.
The configuration of the UID magnetometer 50 is a configuration of a so-called gradiometer that measures a differential magnetic field in a space in order to remove an environmental noise magnetic field, in which a sensing coil 31a and a cancellation coil 31b are wound in opposite directions. . The SQUID board 20 is bonded to a mounting board 33 having a connector 34, and each pad of the SQUID board 20 is connected to an electrode of the mounting board 33 by wire bonding.
【0035】入力コイル23と検出コイル31とを接続
する、図3に示すパッド8、8'は、Pb−In−Au
の超伝導ボンディングワイヤを介して検出コイル31の
超伝導線17と超伝導接続され、パッド8、8'以外の
パッドは、Alのボンディングワイヤと実装基板33の
電極を介してコネクタ34に接続される。ヒータモデュ
ール5がSQUID基板20に形成されているため、実
装基板33にSQUID基板20を接着するだけでよ
く、部品点数の少ない簡潔な構成で、SQUID磁束計
50を製作できる。The pads 8, 8 'shown in FIG. 3 for connecting the input coil 23 and the detection coil 31 are formed of Pb-In-Au.
Is superconductively connected to the superconducting wire 17 of the detection coil 31 via the superconducting bonding wire of No. 7, and the pads other than the pads 8 and 8 'are connected to the connector 34 via the Al bonding wire and the electrode of the mounting board 33. You. Since the heater module 5 is formed on the SQUID substrate 20, it is only necessary to bond the SQUID substrate 20 to the mounting substrate 33, and the SQUID magnetometer 50 can be manufactured with a simple configuration with a small number of components.
【0036】(SQUID磁束計の配置とヒータの配
線)図8は、心磁計測装置の低温容器の底部に配置され
る、図7に示すSQUID磁束計50の配列例とヒータ
への配線例とを説明する図である。心磁計測装置では、
SQUID磁束計の配置は平面的であって、例えば、8
×8個のマトリクス状に配置され、冷媒の満たされた低
温容器の底部に設置され、SQUID磁束計のアレイ
(センサアレイ)を形成する。合計64個のSQUID
磁束計は、8個づつのグループに分けられ、各グループ
内のヒータは各々電気的に並列になるように配線されて
いる。図8では、1グループの配線のみを示している。(Arrangement of SQUID magnetometer and wiring of heater) FIG. 8 shows an arrangement example of the SQUID magnetometer 50 shown in FIG. 7 and an example of wiring to the heater, which are arranged at the bottom of the low-temperature container of the magnetocardiograph. FIG. In the magnetocardiograph,
The arrangement of the SQUID magnetometer is planar, for example, 8
It is arranged in the form of a matrix of 8 pieces and is placed at the bottom of a cryogenic vessel filled with a refrigerant to form an array (sensor array) of SQUID magnetometers. 64 SQUIDs in total
The magnetometers are divided into groups of eight, and the heaters in each group are wired so as to be electrically parallel to each other. FIG. 8 shows only one group of wires.
【0037】図8に示すように、8個のヒータは一組の
電源ライン18を介して室温の電源100に接続され
る。室温と冷媒間をつなぐ電源ライン18の材質は熱伝
導の小さい金属である必要があり、図8に示す例では、
マンガニン線を用いている。マンガニン線は電気抵抗が
大きく、長さ1mで15Ω程度である。そのため、各ヒ
ータの抵抗が小さいと、電力の大部分が途中のマンガニ
ン線で消費されてしまい、ヒータの発熱が不十分にな
る。しかし、図1に示す構成のヒータモジュールを用い
れば、各ヒータは100Ωの抵抗を持つので、電源とし
てSQUIDを駆動する駆動回路の電源(12V電源)
を用いても、各ヒータに流れる電流は55mAであり、
各ヒータの発熱量は300mWになる。図6に示すよう
に、300mWの加熱電力でSQUIDは十分に加熱さ
れ、磁束トラップが解除できる。As shown in FIG. 8, the eight heaters are connected to a room temperature power supply 100 through a pair of power supply lines 18. The material of the power supply line 18 connecting between the room temperature and the refrigerant needs to be a metal with low heat conductivity, and in the example shown in FIG.
Manganin wire is used. The manganin wire has a large electric resistance and is about 15Ω at a length of 1 m. Therefore, if the resistance of each heater is small, most of the power is consumed by the manganin wire on the way, and the heat generation of the heater becomes insufficient. However, if the heater module having the configuration shown in FIG. 1 is used, since each heater has a resistance of 100Ω, the power supply (12 V power supply) of the drive circuit for driving the SQUID is used as the power supply.
, The current flowing through each heater is 55 mA,
The heat value of each heater is 300 mW. As shown in FIG. 6, the SQUID is sufficiently heated by the heating power of 300 mW, and the magnetic flux trap can be released.
【0038】また、図示しないが、グループ内のヒータ
が電気的に直列になるように接続しても、同様の効果が
期待できる。この場合は、1グループ内のSQUID磁
束計の数は16個とし、各ヒータの抵抗値が各々80Ω
になるようにしておく。具体的には、図1に示すヒータ
モデュールに於いて、ヒータや配線の薄膜の厚さや線幅
を同じにして、長さだけを480μmにすれば良い。ヒ
ータの電源電圧は商用電源電圧と同じ100Vに設定す
る。この場合は、各ヒータ流れる電流は55mAであ
り、各ヒータの加熱電力は240mWになる。図6で示
すように、240mWの発熱でも、磁束トラップが解除
できる。Although not shown, similar effects can be expected even if the heaters in the group are electrically connected in series. In this case, the number of SQUID magnetometers in one group is 16, and the resistance value of each heater is 80Ω.
So that Specifically, in the heater module shown in FIG. 1, the thickness and the line width of the thin film of the heater and the wiring may be the same, and only the length may be 480 μm. The power supply voltage of the heater is set to 100 V, which is the same as the commercial power supply voltage. In this case, the current flowing through each heater is 55 mA, and the heating power of each heater is 240 mW. As shown in FIG. 6, the magnetic flux trap can be released even with the heat generation of 240 mW.
【0039】以上説明した例では、たとえ、磁束トラッ
プしたSQUIDが1個でも、8個又は16個のSQU
IDが加熱されることになるが、実用上何ら問題はな
い。また、加熱する場合のスイッチ19は、制御用コン
ピュータで開閉制御するのが現実的である。In the example described above, even if one SQUID is trapped in a magnetic flux, eight or sixteen SQUIDs can be used.
The ID will be heated, but there is no practical problem. Further, it is practical to control the opening and closing of the switch 19 for heating by a control computer.
【0040】(心磁計測装置、脳磁計測装置)図9は、
本発明の実施例のSQUID磁束計を使用する磁場計測
装置の例として、心磁計測装置の構成例を示す図であ
る。図8に示すSQUID磁束計50のアレイ(センサ
アレイ)が、液体ヘリウムが満たされた低温容器200
の底部に設置されている。低温容器200は磁気シール
ドルーム160の中に設置され、磁気シールドルーム1
60の内部はカメラ150でモニターされている。磁気
シールドルーム160の外には、SQUIDを駆動する
駆動回路110、制御及びデータ収集用コンピュータ
(信号収集手段)130、解析用コンピュータ140が
設置されている。また、心電計120も設置され、心臓
磁場の計測データと共に心電データが制御及びデータ収
集用コンピュータ130に収集される。ヒータモジュー
ルに電力を供給する電源100は、SQUIDを駆動す
る駆動回路の電源と共有され12Vである。電源100
から、8組16本の電源ライン18がセンサアレイに伸
び、各電源ラインは、センサアレイの近傍で分流して並
列接続されている8個のヒータモジュールに電力を供給
する。ヒータモジュールへの電力の供給は、制御及びデ
ータ収集用コンピュータ130が各センサグループ毎に
制御する。(Magnetocardiographic measuring device, magnetoencephalographic measuring device) FIG.
1 is a diagram illustrating a configuration example of a magnetocardiographic measurement device as an example of a magnetic field measurement device using a SQUID magnetometer according to an embodiment of the present invention. The array (sensor array) of the SQUID magnetometer 50 shown in FIG.
It is installed at the bottom. The cryogenic container 200 is installed in the magnetic shield room 160 and the magnetic shield room 1
The inside of 60 is monitored by a camera 150. Outside the magnetic shield room 160, a drive circuit 110 for driving the SQUID, a control and data collection computer (signal collection means) 130, and an analysis computer 140 are provided. An electrocardiograph 120 is also installed, and electrocardiographic data is collected by the control and data collection computer 130 together with cardiac magnetic field measurement data. The power supply 100 that supplies power to the heater module is 12 V shared with the power supply of the drive circuit that drives the SQUID. Power supply 100
Thus, eight sets of 16 power supply lines 18 extend to the sensor array, and each power supply line shunts near the sensor array and supplies power to eight heater modules connected in parallel. The control and data collection computer 130 controls the supply of power to the heater module for each sensor group.
【0041】図10は、本発明の実施例のSQUID磁
束計を使用する磁場計測装置の例として、脳磁計測装置
の構成例を示す図である。FIG. 10 is a diagram showing an example of the configuration of a magnetoencephalograph as an example of a magnetic field measuring apparatus using the SQUID magnetometer according to the embodiment of the present invention.
【0042】脳磁計測装置では、頭蓋の形に合わせて図
8に示すSQUID磁束計50のアレイ(センサアレ
イ)が球面状に配列される。SQUID磁束計50の数
も多く、128個設置されている。また、図9に示す心
電計の代わりに、脳波計170が設置される。脳磁場計
測では被験者に刺激を与える必要があるが、ここでは聴
覚刺激のための小型スピーカ190と音響装置180を
例示している。これ以外の構成は、図9に示す心磁計測
装置と同じであって、ヒータモジュールに電力を供給す
る電源100から、16組32本の電源ライン18がセ
ンサアレイに伸び、各電源ラインはセンサアレイの近傍
で分流し、並列接続されている8個のヒータモジュール
に電力を供給する。In the magnetoencephalograph, an array (sensor array) of SQUID magnetometers 50 shown in FIG. 8 is arranged in a spherical shape according to the shape of the skull. The number of SQUID magnetometers 50 is also large, and 128 are provided. Also, an electroencephalograph 170 is installed instead of the electrocardiograph shown in FIG. Although it is necessary to apply a stimulus to a subject in the brain magnetic field measurement, a small speaker 190 and an acoustic device 180 for auditory stimulation are illustrated here. The other configuration is the same as that of the magnetocardiographic measuring device shown in FIG. 9. From a power supply 100 for supplying power to the heater module, 16 sets of 32 power supply lines 18 extend to a sensor array, and each power supply line is connected to a sensor array. Electric power is supplied to eight heater modules connected in parallel and shunted near the array.
【0043】以上説明した、心磁計測装置、脳磁計測装
置では、ヒータモジュールに電力を供給するための電源
を新たに設ける必要がなく、簡潔な構成でSQUIDの
磁束トラップを解除することが可能である。また、電源
ラインの数が各SQUID磁束計毎に電力を供給する場
合の1/8ですみ、冷媒の熱蒸発量が抑えられる。In the magnetocardiographic measuring device and the magnetoencephalographic measuring device described above, it is not necessary to newly provide a power supply for supplying electric power to the heater module, and the magnetic flux trap of the SQUID can be canceled with a simple configuration. It is. Further, the number of power supply lines is only 1/8 of the case where electric power is supplied to each SQUID magnetometer, and the amount of heat evaporation of the refrigerant is suppressed.
【0044】[0044]
【発明の効果】本発明によれば、製造工程を増加するこ
となく磁束トラップが解除可能なSQUID、及びこれ
を用いるSQUID磁束計が実現でき、このSQUID
磁束計を使用して、新たな電源を増やすことなく磁束ト
ラップが解除可能な磁場計測装置が実現できる。According to the present invention, a SQUID capable of releasing a magnetic flux trap without increasing the number of manufacturing steps and a SQUID magnetometer using the same can be realized.
Using the magnetometer, it is possible to realize a magnetic field measuring device capable of releasing the magnetic flux trap without increasing a new power supply.
【図1】本発明の実施例のヒータモデュールの例とその
周辺部を示す上面図。FIG. 1 is a top view showing an example of a heater module according to an embodiment of the present invention and a peripheral portion thereof.
【図2】本発明の実施例のヒータモデュールの断面図で
あり、(a)は図1に示すA−A'に於ける断面図、
b)は図1に示すB−B'に於ける断面図、(c)は図
1に示すC−C'に於ける断面図。FIG. 2 is a cross-sectional view of the heater module according to the embodiment of the present invention, in which (a) is a cross-sectional view along AA ′ shown in FIG. 1;
FIG. 2B is a cross-sectional view taken along the line BB ′ shown in FIG. 1, and FIG. 2C is a cross-sectional view taken along the line CC ′ shown in FIG.
【図3】本発明の実施例のSQUIDとヒータモデュー
ルを搭載したSQUID基板の上面図。FIG. 3 is a top view of the SQUID board on which the SQUID and the heater module according to the embodiment of the present invention are mounted.
【図4】本発明の実施例のSQUID基板の断面の概略
を示す図。FIG. 4 is a view schematically showing a cross section of a SQUID substrate according to the embodiment of the present invention.
【図5】本発明の実施例のSQUID基板の構成を層別
に示す斜視図。FIG. 5 is a perspective view showing the configuration of the SQUID substrate according to the embodiment of the present invention for each layer.
【図6】図3に示す構成のSQUID基板で、ヒータモ
デュールを用いてSQUIDを加熱した時の、加熱電力
とSQUIDの端子間抵抗との関係を示す測定値を示す
図。FIG. 6 is a view showing measured values showing a relationship between heating power and resistance between terminals of the SQUID when the SQUID is heated using a heater module on the SQUID substrate having the configuration shown in FIG. 3;
【図7】本発明の実施例のSQUID磁束計の構成例を
示す斜視図。FIG. 7 is a perspective view showing a configuration example of a SQUID magnetometer according to the embodiment of the present invention.
【図8】図7のSQUID磁束計を用いる心磁計測装置
の、低温容器の底部に配置されるSQUID磁束計の配
列例とヒータへの配線例をを説明する図。FIG. 8 is a diagram illustrating an example of an arrangement of SQUID magnetometers arranged at the bottom of the low-temperature container and an example of wiring to heaters in the magnetocardiograph using the SQUID magnetometer of FIG. 7;
【図9】本発明の実施例の心磁計測装置の構成例を示す
図。FIG. 9 is a diagram showing a configuration example of a magnetocardiograph according to an embodiment of the present invention.
【図10】本発明の実施例の脳磁計測装置の構成例を示
す図。FIG. 10 is a diagram illustrating a configuration example of a magnetoencephalograph according to an embodiment of the present invention.
1…ヒータ、2…配線、3…コンタクトホール、4、4
…ヒータモデュール用電極パッド、5…ヒータモデュー
ル、6、6…SQUID用電極パッド、7、7…SQU
ID用電極パッド、8、8…入力コイル用パッド、9、
9…帰還コイル用パッド、10…超伝導層、11…超伝
導層、12…抵抗層、13…絶縁層、14…絶縁層、1
5…シリコン基板、16…SQUID、及びヒータモデ
ュールが形成された層、17…超伝導ワイヤ、18…電
源ライン、19…スイッチ、20…SQUID基板、2
1…ワッシャリング、22…ジョゼフソン接合、23…
入力コイル、24…帰還コイル、31…検出コイル、3
1a…センシングコイル、31b…キャンセレーション
コイル、33…実装基板、34…コネクタ、40…ボビ
ン、50…センサ、100…ヒータ及び駆動回路の電
源、110…駆動回路、120…心電計、130…制御
及びデータ収集用コンピュータ、140…解析用コンピ
ュータ、150…モニタカメラ、160…シールドルー
ム、170…脳波計、180…音響装置、190…スピ
ーカ、200…低温容器。DESCRIPTION OF SYMBOLS 1 ... Heater, 2 ... Wiring, 3 ... Contact hole, 4, 4
... Electrode pad for heater module, 5 ... Header module, 6,6 ... Electrode pad for SQUID, 7,7 ... SQUA
ID electrode pad, 8, 8 ... input coil pad, 9,
9: feedback coil pad, 10: superconducting layer, 11: superconducting layer, 12: resistive layer, 13: insulating layer, 14: insulating layer, 1
5: Silicon substrate, 16: Layer on which SQUID and heater module are formed, 17: Superconducting wire, 18: Power supply line, 19: Switch, 20: SQUID substrate, 2
1: Washer, 22: Josephson junction, 23:
Input coil, 24: feedback coil, 31: detection coil, 3
1a: sensing coil, 31b: cancellation coil, 33: mounting board, 34: connector, 40: bobbin, 50: sensor, 100: power supply of heater and drive circuit, 110: drive circuit, 120: electrocardiograph, 130 ... Computer for control and data collection, 140: Computer for analysis, 150: Monitor camera, 160: Shield room, 170: EEG, 180: Sound device, 190: Speaker, 200: Cryogenic container.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成12年8月9日(2000.8.9)[Submission date] August 9, 2000 (200.8.9)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】特許請求の範囲[Correction target item name] Claims
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【特許請求の範囲】[Claims]
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 39/24 ZAA H01L 39/24 ZAAZ (72)発明者 鈴木 大介 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 鵜飼 征一 茨城県ひたちなか市市毛882番地 株式会 社日立製作所計測器グループ内 Fターム(参考) 2G017 AA04 AC04 AD06 AD32 AD33 AD36 AD40 4C027 AA02 AA10 EE01 KK01 KK07 4M113 AC08 AC33 AD04 AD34 AD36 AD44 AD51 AD56 CA13 CA17 CA34 CA35 CA36 4M114 AA13 AA19 AA27 BB03 CC08 CC16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 39/24 ZAA H01L 39/24 ZAAZ (72) Inventor Daisuke Suzuki 1-280, Higashi Koikebo, Kokubunji-shi, Tokyo Stock Central Research Laboratory, Hitachi, Ltd. (72) Inventor Seiichi Ukai 882, Ma, Hitachinaka-shi, Ibaraki Prefecture F-term in the Hitachi Measuring Instruments Group (reference) 2G017 AA04 AC04 AD06 AD32 AD33 AD36 AD40 4C027 AA02 AA10 EE01 KK01 KK07 4M113 AC08 AC33 AD04 AD34 AD36 AD44 AD51 AD56 CA13 CA17 CA34 CA35 CA36 4M114 AA13 AA19 AA27 BB03 CC08 CC16
Claims (20)
成される基板と、前記SQUIDの動作温度に於いて超
伝導となる超伝導体で前記基板に構成されるヒータとを
有し、前記ヒータに前記超伝導体の臨界電流値以上の電
流を流し、前記超伝導体を常伝導に転移させて発熱させ
ることにより、前記SQUIDの磁束トラップを解除す
ることを特徴とするSQUID基板。1. A substrate on which a SQUID having a Josephson junction is formed, and a heater formed on the substrate with a superconductor that becomes superconductive at an operating temperature of the SQUID, wherein the heater includes A SQUID substrate, wherein a current higher than the critical current value of the superconductor is passed to cause the superconductor to transition to normal conduction and generate heat, thereby canceling the magnetic flux trap of the SQUID.
て、前記超伝導体は、幅5μm以下及び/又は厚さ1μ
m以下である、ニオブ、ニオブ化合物、イットリウム、
ビスマス、タリウムの何れかを含む超伝導体の薄膜細線
で形成されることを特徴とするSQUID基板。2. The SQUID substrate according to claim 1, wherein the superconductor has a width of 5 μm or less and / or a thickness of 1 μm.
m, niobium, a niobium compound, yttrium,
A SQUID substrate formed of a thin film of a superconductor containing either bismuth or thallium.
基板に於いて、前記超伝導体と絶縁体を介して常伝導体
から構成される配線を有し、前記超伝導体と前記配線に
互いに逆向きで大きさの等しい電流が流されることを特
徴とするSQUID基板。3. The SQUID according to claim 1 or claim 2.
In the substrate, a wiring composed of a normal conductor is provided via the superconductor and the insulator, and currents of the same magnitude are applied to the superconductor and the wiring in opposite directions to each other. SQUID substrate.
基板に於いて、前記超伝導体と絶縁体を介して常伝導体
から構成される配線を有し、前記超伝導体と前記配線は
電源に接続した時に電気的に直列になるよう少なくとも
1箇所で電気的に接触していることを特徴とするSQU
ID基板。4. The SQUID according to claim 1 or claim 2.
The substrate has a wiring composed of a normal conductor via the superconductor and the insulator, and the superconductor and the wiring are connected at least at one position so as to be electrically in series when connected to a power supply. Characterized by being in electrical contact with each other
ID board.
基板に於いて、前記配線の幅が、前記超伝導体の線幅よ
り広いことを特徴とするSQUID基板。5. The SQUID according to claim 3 or claim 4.
A SQUID substrate, wherein a width of the wiring is wider than a line width of the superconductor.
QUID基板に於いて、前記ヒータを構成する前記超伝
導体は、前記SQUIDを構成する超伝導体と同じ材質
で構成され、前記配線を構成する前記常伝導体は、前記
SQUIDを構成する常伝導体と同じ材質で構成される
ことを特徴とするSQUID基板。6. The S according to claim 3, wherein
In the QUID substrate, the superconductor forming the heater is formed of the same material as the superconductor forming the SQUID, and the normal conductor forming the wiring is formed of the normal conductor forming the SQUID. A SQUID substrate comprising the same material as the body.
に形成され、電流を流した時に前記SQUIDの少なく
とも一部を常伝導に転移させるヒータとを有するSQU
ID基板の複数と、前記複数のSQUID基板の前記ヒ
ータのうちの2個以上が電気的に直列又は並列に接続さ
れ、直列又は並列に接続された2個以上の前記ヒータが
1組の配線を介して接続される電源とを有することを特
徴とする磁場計測装置。7. A SQUID having a substrate on which a SQUID is formed, and a heater formed on the substrate and for transferring at least a portion of the SQUID to normal conduction when a current is applied.
A plurality of ID boards and two or more of the heaters of the plurality of SQUID boards are electrically connected in series or parallel, and two or more heaters connected in series or parallel form one set of wires. A magnetic field measurement device, comprising: a power source connected via the power supply.
前記SQUIDが前記電源により駆動されることを特徴
とする磁場計測装置。8. The magnetic field measuring apparatus according to claim 7,
The magnetic field measuring device, wherein the SQUID is driven by the power supply.
前記電源の電圧が、前記SQUIDを駆動する駆動回路
の電源電圧と同じであることを特徴とする磁場計測装
置。9. The magnetic field measuring apparatus according to claim 7, wherein
A magnetic field measuring apparatus, wherein a voltage of the power supply is the same as a power supply voltage of a drive circuit for driving the SQUID.
て、前記電源の電圧が商用電源電圧と同じであることを
特徴とする磁場計測装置。10. The magnetic field measuring apparatus according to claim 7, wherein the voltage of the power supply is the same as a commercial power supply voltage.
て、前記ヒータは、前記SQUIDの動作温度に於いて
超伝導となる超伝導体で構成され、前記超伝導体は、幅
5μm以下及び/又は厚さ1μm以下である、ニオブ、
ニオブ化合物、イットリウム、ビスマス、タリウムの何
れかを含む超伝導体の薄膜細線で形成されることを特徴
とする磁場計測装置。11. The magnetic field measuring apparatus according to claim 7, wherein the heater is made of a superconductor that becomes superconducting at the operating temperature of the SQUID, and the superconductor has a width of 5 μm or less. And / or niobium having a thickness of 1 μm or less,
A magnetic field measuring device comprising a superconducting thin film containing any one of a niobium compound, yttrium, bismuth and thallium.
て、前記超伝導体と絶縁体を介して常伝導体から構成さ
れる配線を有し、前記超伝導体と前記配線に互いに逆向
きで大きさの等しい電流が流されることを特徴とする磁
場計測装置。12. The magnetic field measuring apparatus according to claim 11, further comprising a wiring composed of a normal conductor via said superconductor and an insulator, wherein said superconductor and said wiring are opposite to each other. A magnetic field measuring apparatus characterized in that currents having the same magnitude in directions are passed.
て、前記超伝導体と絶縁体を介して常伝導体から構成さ
れる配線を有し、前記超伝導体と前記配線は前記電源に
接続した時に電気的に直列になるよう少なくとも1箇所
で電気的に接触していることを特徴とする磁場計測装
置。13. A magnetic field measuring apparatus according to claim 11, further comprising a wiring composed of a normal conductor via said superconductor and an insulator, wherein said superconductor and said wiring are connected to said power source. A magnetic field measuring device, wherein the magnetic field measuring device is in electrical contact with at least one location so as to be electrically in series when connected to the device.
計測装置に於いて、前記配線の幅が、前記超伝導体の線
幅より広いことを特徴とする磁場計測装置。14. The magnetic field measuring apparatus according to claim 12, wherein a width of said wiring is wider than a line width of said superconductor.
載の磁場計測装置に於いて、前記ヒータを構成する前記
超伝導体は、前記SQUIDを構成する超伝導体と同じ
材質で構成され、前記配線を構成する前記常伝導体は、
前記SQUIDを構成する常伝導体と同じ材質で構成さ
れることを特徴とする磁場計測装置。15. The magnetic field measuring apparatus according to claim 12, wherein the superconductor forming the heater is made of the same material as the superconductor forming the SQUID. , The normal conductor constituting the wiring,
A magnetic field measuring device comprising the same material as a normal conductor constituting the SQUID.
形成される基板と、前記SQUIDの動作温度に於いて
超伝導となる超伝導体で前記基板に構成されるヒータ
と、前記超伝導体と絶縁体を介して常伝導体から構成さ
れる配線とを有するSQUID基板を具備し検査対象か
ら発生する磁場を検出する複数のSQUID磁束計と、
前記SQUID磁束計を冷却する低温容器と、前記SQ
UID磁束計を駆動する駆動回路と、前記駆動回路及び
前記ヒータに接続される電源とを有し、前記ヒータを構
成する前記超伝導体は、前記SQUIDを構成する超伝
導体と同じ材質で構成され、前記配線を構成する前記常
伝導体は、前記SQUIDを構成する常伝導体と同じ材
質で構成され、前記ヒータを構成する前記超伝導体と前
記配線は前記電源に接続した時に電気的に直列になるよ
う少なくとも1箇所で電気的に接触しており、前記ヒー
タを構成する前記超伝導体と前記配線に互いに逆向きで
大きさが等しく、前記超伝導体の臨界電流値以上の電流
が流され、前記SQUIDの磁束トラップを解除するこ
とを特徴とする磁場計測装置。16. A substrate on which a SQUID having a Josephson junction is formed, a heater formed on the substrate with a superconductor that becomes superconducting at the operating temperature of the SQUID, and the superconductor and an insulator. A plurality of SQUID magnetometers comprising a SQUID substrate having a wiring composed of a normal conductor through the SQUID magnetometer for detecting a magnetic field generated from the inspection object,
A cryogenic vessel for cooling the SQUID magnetometer;
It has a drive circuit for driving a UID magnetometer, and a power supply connected to the drive circuit and the heater, and the superconductor forming the heater is formed of the same material as the superconductor forming the SQUID. The normal conductor forming the wiring is made of the same material as the normal conductor forming the SQUID, and the superconductor and the wiring forming the heater are electrically connected when connected to the power supply. Electrical contact is made in at least one place so as to be in series, the superconductor and the wiring constituting the heater are equal in size in opposite directions to each other, and a current equal to or more than the critical current value of the superconductor is applied. A magnetic field measuring device, wherein the magnetic flux is released and the magnetic flux trap of the SQUID is released.
て、前記超伝導体は、幅5μm以下及び/又は厚さ1μ
m以下である、ニオブ、ニオブ化合物、イットリウム、
ビスマス、タリウムの何れかを含む超伝導体の薄膜細線
で形成されることを特徴とする磁場計測装置。17. The magnetic field measuring apparatus according to claim 16, wherein the superconductor has a width of 5 μm or less and / or a thickness of 1 μm.
m, niobium, a niobium compound, yttrium,
A magnetic field measuring device comprising a thin film of a superconductor containing any of bismuth and thallium.
計測装置に於いて、前記配線の幅が、前記ヒータを構成
する前記超伝導体の線幅より広いことを特徴とする磁場
計測装置。18. The magnetic field measuring apparatus according to claim 17, wherein a width of the wiring is wider than a line width of the superconductor constituting the heater. .
て、前記SQUIDが前記電源により駆動されることを
特徴とする磁場計測装置。19. A magnetic field measuring apparatus according to claim 16, wherein said SQUID is driven by said power supply.
て、前記電源の電圧が商用電源電圧と同じであることを
特徴とする磁場計測装置。20. The magnetic field measuring apparatus according to claim 16, wherein the voltage of the power supply is the same as a commercial power supply voltage.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP30348199A JP3379492B2 (en) | 1999-10-26 | 1999-10-26 | SQUID board |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP30348199A JP3379492B2 (en) | 1999-10-26 | 1999-10-26 | SQUID board |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000247918A Division JP3379520B2 (en) | 2000-08-09 | 2000-08-09 | Magnetic field measurement device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2001127352A true JP2001127352A (en) | 2001-05-11 |
| JP3379492B2 JP3379492B2 (en) | 2003-02-24 |
Family
ID=17921481
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP30348199A Expired - Fee Related JP3379492B2 (en) | 1999-10-26 | 1999-10-26 | SQUID board |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3379492B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009276197A (en) * | 2008-05-14 | 2009-11-26 | Sumitomo Heavy Ind Ltd | Squid device, biomagnetism measurement device, magnetoencephalograph, magnetocardiograph, squid magnetic inspection device, squid microscope and squid metal detector |
| WO2010042735A3 (en) * | 2008-10-09 | 2010-07-01 | D-Wave Systems Inc. | Systems, methods and apparatus for measuring magnetic fields |
| JP2018007821A (en) * | 2016-07-13 | 2018-01-18 | 株式会社アドバンテスト | Magnetic field measuring apparatus and magnetic field measuring method |
| US10910545B2 (en) | 2016-12-30 | 2021-02-02 | Teknologian Tutkimuskeskus Vtt Oy | Superconductive junction, superconducting apparatus, method of manufacturing superconducting junction and control method of superconducting junction |
-
1999
- 1999-10-26 JP JP30348199A patent/JP3379492B2/en not_active Expired - Fee Related
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009276197A (en) * | 2008-05-14 | 2009-11-26 | Sumitomo Heavy Ind Ltd | Squid device, biomagnetism measurement device, magnetoencephalograph, magnetocardiograph, squid magnetic inspection device, squid microscope and squid metal detector |
| WO2010042735A3 (en) * | 2008-10-09 | 2010-07-01 | D-Wave Systems Inc. | Systems, methods and apparatus for measuring magnetic fields |
| US20110065585A1 (en) * | 2008-10-09 | 2011-03-17 | D-Wave Systems Inc. | Systems, methods and apparatus for measuring magnetic fields |
| US8812066B2 (en) | 2008-10-09 | 2014-08-19 | D-Wave Systems Inc. | Systems, methods and apparatus for measuring magnetic fields |
| US20150346291A1 (en) * | 2008-10-09 | 2015-12-03 | D-Wave Systems Inc. | Systems, methods and apparatus for measuring magnetic fields |
| US9335385B2 (en) | 2008-10-09 | 2016-05-10 | D-Wave Systems Inc. | Systems, methods and apparatus for measuring magnetic fields |
| JP2018007821A (en) * | 2016-07-13 | 2018-01-18 | 株式会社アドバンテスト | Magnetic field measuring apparatus and magnetic field measuring method |
| US10910545B2 (en) | 2016-12-30 | 2021-02-02 | Teknologian Tutkimuskeskus Vtt Oy | Superconductive junction, superconducting apparatus, method of manufacturing superconducting junction and control method of superconducting junction |
| US11581473B2 (en) | 2016-12-30 | 2023-02-14 | Teknologian Tutkimuskeskus Vtt Oy | Superconductive junction, superconducting apparatus, method of manufacturing superconducting junction and control method of superconducting junction |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3379492B2 (en) | 2003-02-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2893714B2 (en) | Thin film type SQUID magnetometer and biomagnetism measuring device using the same | |
| JP5669832B2 (en) | Measuring instrument, electric resistance element and measuring system for measuring time-varying magnetic field or magnetic field gradient | |
| US5909004A (en) | Thermocouple array and method of fabrication | |
| US5767043A (en) | Multiple squid direct signal injection device formed on a single layer substrate | |
| US4982157A (en) | Superconducting gradiometer loop system of a multichannel measuring device | |
| JPS61250577A (en) | Measuring device for weak magnetic field | |
| JPH1048303A (en) | SQUID with integrated detection coil | |
| JP2001127352A (en) | SQUID substrate and magnetic field measuring device using the same | |
| JP3379520B2 (en) | Magnetic field measurement device | |
| JPH10242537A (en) | Superconducting quantum interference device | |
| US11137455B2 (en) | Magnetic field measuring element, magnetic field measuring device, and magnetic field measuring system | |
| JP2001091611A (en) | High magnetic field resolution magnetometer | |
| JP2004286715A (en) | Superconducting radiation detector | |
| JP4081834B2 (en) | Chip carrier for superconducting circuit chip and measuring apparatus using the same | |
| Kawai et al. | Fabrication and characterization of an integrated 9-channel superconducting quantum interference device magnetometer array | |
| JPH0815398A (en) | Superconducting magnetic sensor | |
| JPH08186300A (en) | Oxide SQUID pickup coil | |
| JPH05297093A (en) | Magnetic sensor | |
| JPH1126824A (en) | Superconducting quantum interference device | |
| JPH06252456A (en) | Josephson device | |
| JPH10300832A (en) | Superconducting system | |
| JPH0499979A (en) | Squid fluxmeter | |
| Kawai et al. | A 9-channel relaxation oscillation SQUID magnetometer system integrated in a 16 mm× 16 mm area | |
| Chinone et al. | DC-SQUID system with flexible pickup coil connected by a novel superconducting technique | |
| JPH04125981A (en) | Squid fluxmeter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071213 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081213 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081213 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091213 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101213 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101213 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111213 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111213 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121213 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131213 Year of fee payment: 11 |
|
| LAPS | Cancellation because of no payment of annual fees |