JP2001255105A - Defect inspection method for axially symmetric object - Google Patents
Defect inspection method for axially symmetric objectInfo
- Publication number
- JP2001255105A JP2001255105A JP2000069024A JP2000069024A JP2001255105A JP 2001255105 A JP2001255105 A JP 2001255105A JP 2000069024 A JP2000069024 A JP 2000069024A JP 2000069024 A JP2000069024 A JP 2000069024A JP 2001255105 A JP2001255105 A JP 2001255105A
- Authority
- JP
- Japan
- Prior art keywords
- defect inspection
- data
- displacement meter
- inspection method
- defect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は軸対称物体の角部に
発生する欠け、バリ等の存在を検出するための軸対称物
体の欠陥検査方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspection method for an axisymmetric object for detecting the presence of a chip, a burr, or the like generated at a corner of an axisymmetric object.
【0002】[0002]
【従来の技術】例えば、セラミックバルブ等の高精度精
密部品の軸対称物体では、そのバルブの角部に欠けやバ
リ等の欠陥が発生しやすい。このような欠陥があると製
品として使用できないため、作製した軸対称物体の角部
を検査して、事前に角部に発生する欠けやバリ等の欠陥
を検出し、欠陥が検出された軸対称物体を除く必要があ
る。従来、軸対称物体の角部に発生する欠けやバリ等の
欠陥の存在を検出する方法として、顕微鏡を用いて角部
の欠陥を目視で検出する方法、画像処理技術を利用して
角部の欠陥を検出する方法が一般的に行われている。2. Description of the Related Art For example, in the case of an axially symmetric object of a high-precision precision part such as a ceramic valve, a defect such as a chip or a burr is easily generated at a corner of the valve. If such a defect is present, the product cannot be used as a product, so the corners of the manufactured axisymmetric object are inspected to detect defects such as chips or burrs that occur in the corners in advance, and the axisymmetric Objects need to be removed. Conventionally, as a method of detecting the presence of a defect such as a chip or a burr generated at a corner of an axisymmetric object, a method of visually detecting a corner defect using a microscope, and a method of detecting a corner using an image processing technique. A method for detecting a defect is generally used.
【0003】[0003]
【発明が解決しようとする課題】上述した従来の方法の
うち、目視で検査する方法では、軸対称物体の角部を検
査する場合、一周にわたって一度に顕微鏡画面上に収め
るのは困難であり、通常、物体を軸の回りに回転させな
がら検査を行う。この際、複数の角部に対しては順に検
査をしていく必要があり、検査のために多くの時間を要
する問題があった。また、画像処理技術を利用する方法
では、複数台のカメラを使用することで同時に画像処理
解析を行うことで検査時間の短縮は可能ではあるが、装
置の価格の上昇、カメラ配置上の物理的干渉の問題等が
あった。また、画像処理を用いて検査を自動化する場合
には、表面上のごみ、油、加工痕等の影響を受け、処理
の実現が困難であった。Among the conventional methods described above, in the method of visually inspecting, when inspecting the corners of an axisymmetric object, it is difficult to fit on the microscope screen at one time over one round. Usually, the inspection is performed while rotating the object around the axis. In this case, it is necessary to sequentially inspect a plurality of corners, and there is a problem that much time is required for the inspection. In the method using image processing technology, it is possible to shorten the inspection time by performing image processing analysis by using multiple cameras at the same time. There was a problem of interference. In addition, when the inspection is automated using image processing, it is difficult to realize the processing due to the influence of dust, oil, processing marks, and the like on the surface.
【0004】本発明の目的は上述した課題を解消して、
品質保証を目的とした製品検査において、角部に発生す
る欠けやバリ等の欠陥を、高検出精度、簡便、かつ迅速
に検査することができる軸対称物体の欠陥検査方法を提
供しようとするものである。An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a defect inspection method for an axisymmetric object capable of easily and quickly inspecting defects such as chips or burrs generated at corners in product inspection for quality assurance with high detection accuracy. It is.
【0005】[0005]
【課題を解決するための手段】本発明の軸対称物体の欠
陥検査方法は、軸対称物体を軸のまわりに回転させ、そ
の角部に設けた接触式変位計により、角部に発生する欠
け、バリ等の欠陥を検査することを特徴とするものであ
る。本発明では、接触式の変位計を用いて角部に発生す
る欠けやバリ等の欠陥を検査することで、簡便かつ迅速
な検査を実現している。A defect inspection method for an axisymmetric object according to the present invention is characterized in that an axisymmetric object is rotated around an axis, and a chip generated at a corner is provided by a contact displacement meter provided at the corner. And inspects for defects such as burrs. In the present invention, a simple and quick inspection is realized by inspecting a defect such as a chip or a burr generated at a corner using a contact type displacement meter.
【0006】本発明の好ましい態様として、変位計から
のデータf(x)からフーリエ変換式の0次と1次成分
を求め、この0次、1次成分をデータから引くことによ
り、それぞれ偏差、振れ成分の影響をなくしたデータg
(x)を求め、求めたデータg(x)に基づき欠陥検査
を行う。さらに、変位計からのデータf(x)から以下
の評価関数Fを求め、 F(l)が最小となる地点lを求め、このlから回転速
度変動を除去した回転周期を求め、求めた回転周期に基
づき欠陥検査を行う。いずれの場合も誤差となる種々の
影響をなくすことができ、高精度の検出を行うことがで
きる。In a preferred embodiment of the present invention, the zeroth and first order components of the Fourier transform equation are obtained from the data f (x) from the displacement meter, and the zeroth and first order components are subtracted from the data to obtain the deviation, Data g without influence of runout component
(X) is obtained, and a defect inspection is performed based on the obtained data g (x). Further, the following evaluation function F is obtained from the data f (x) from the displacement meter, A point 1 at which F (l) is minimized is obtained, a rotation cycle obtained by removing the rotation speed fluctuation from this 1 is obtained, and a defect inspection is performed based on the obtained rotation cycle. In any case, various effects that cause errors can be eliminated, and highly accurate detection can be performed.
【0007】[0007]
【発明の実施の形態】図1は本発明の軸対称物体の欠陥
検査方法を実施する状態の一例を示す図である。図1に
示す例において、複数の変位計1の先端に取り付けた接
触子3を被測定物である軸対称物体11の角部の所定の
位置に接触させ、軸対称物体11を回転させる。軸対称
物体11の把持は、図1に示すように、軸受6と駆動力
伝達用車輪7によって挟み込むことで、すべての角部に
ついて検査することができる。測定中の軸対称物体11
の上下動は取り込んだ信号の処理の際に悪影響を及ぼす
ため、軸対称物体11を押さえピン8と空圧シリンダ9
で挟み込むことで動きを抑えている。軸対称物体11の
回転時の抵抗を抑えるため、押さえピン8の先端は球状
もしくは尖らせて接触面積を減らすとよい。なお、5は
モータである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing an example of a state in which a defect inspection method for an axisymmetric object according to the present invention is performed. In the example shown in FIG. 1, a contact 3 attached to the tip of a plurality of displacement meters 1 is brought into contact with a predetermined position of a corner of an axisymmetric object 11 to be measured, and the axisymmetric object 11 is rotated. As shown in FIG. 1, the gripping of the axisymmetric object 11 can be inspected for all corners by being sandwiched between the bearing 6 and the driving force transmitting wheel 7. Axisymmetric object 11 being measured
The vertical movement of the cylinder has an adverse effect on the processing of the captured signal, so that the pin 8 and the pneumatic cylinder 9
The movement is suppressed by being sandwiched between. In order to suppress the resistance when the axisymmetric object 11 rotates, the tip of the holding pin 8 may be spherical or sharpened to reduce the contact area. In addition, 5 is a motor.
【0008】一周にわたる複数の変位計1の変位を、信
号変換機2と信号処理機4を使って計測、記録する。角
部に欠けあれば変位計1の接触子3は谷に落ち込み、角
部にバリがあれば変位計1の接触子3はそれを乗り越え
るため、その変位を検出する。そして、求めた一周にわ
たる変位データのうち予め定めたしきい値を超えるデー
タが検出された場合、その軸対称物体11は欠陥を有す
ると判断する。軸対称物体11には偏差や軸に対する振
れが存在するが、その場合は信号をフーリエ変換により
処理し、これを除去することが好ましい。また、軸対称
物体11の回転速度が変動する場合があるが、その場合
は所定の評価関数からその影響を求め、これを除去する
ことが好ましい。これらの好適例については後に詳細に
説明する。The displacements of the plurality of displacement meters 1 over one round are measured and recorded using the signal converter 2 and the signal processor 4. If the corner is missing, the contact 3 of the displacement meter 1 falls into the valley, and if there is a burr at the corner, the contact 3 of the displacement meter 1 gets over it, and the displacement is detected. Then, when data exceeding a predetermined threshold value is detected from the obtained displacement data over one round, it is determined that the axisymmetric object 11 has a defect. The axisymmetric object 11 has a deviation and a shake with respect to the axis. In such a case, it is preferable to process the signal by Fourier transform and remove the signal. In addition, there are cases where the rotational speed of the axisymmetric object 11 fluctuates. In such a case, it is preferable to obtain the influence from a predetermined evaluation function and remove it. These preferred examples will be described later in detail.
【0009】図2(a)〜(c)はそれぞれ本発明の軸
対称物体の欠陥検査方法で用いる接触子3の一例を示す
図である。図2(a)〜(c)に示すように、接触子3
としては、薄片(図2(a))、材料の角部(図2
(b))、もしくは細い糸、針金(図2(c))等を用
いることができる。接触子3の摩耗寿命のことを考慮に
入れ、容易に交換が可能となるように変位計1の先端を
設計しておくとよい。FIGS. 2A to 2C are views showing an example of a contact 3 used in the defect inspection method for an axisymmetric object according to the present invention. As shown in FIGS. 2A to 2C, the contact 3
As the flakes (FIG. 2A), the corners of the material (FIG. 2A)
(B)) or a thin thread, wire (FIG. 2 (c)) or the like can be used. Considering the wear life of the contact 3, it is preferable to design the tip of the displacement meter 1 so that it can be easily replaced.
【0010】次に、本発明の好適例として、(1)偏差
及び振れの影響の除去と(2)回転速度変動の影響の除
去について説明する。Next, as preferred examples of the present invention, (1) removal of the influence of deviation and runout and (2) removal of the influence of rotation speed fluctuation will be described.
【0011】(1)偏差及び振れの除去について:軸対
称物体11を回転させて測定する場合、取り込まれた信
号には偏差及び振れ成分も含まれる(図3(a))。こ
の信号をそのまま処理する場合、誤検出や検出落ちの原
因となる。この偏差及び振れを信号から分離するために
は、離散系のフーリエ変換式の0次及び1次成分を求め
る式が利用できる。(1) Removal of deviation and shake: When the measurement is performed while rotating the axisymmetric object 11, the taken-in signal includes a deviation and a shake component (FIG. 3 (a)). If this signal is processed as it is, it may cause erroneous detection or missed detection. In order to separate the deviation and the shake from the signal, an expression for obtaining the zero-order and first-order components of a discrete Fourier transform expression can be used.
【0012】[0012]
【数1】 (Equation 1)
【0013】この処理において、a0で現される0次成
分により偏差が、a1及びb1で現される1次成分によ
り振れ成分が除去される。同時に、a1とb1の2乗和
の平方根より振れ量の情報を得たことになる。この角部
の振れ情報は、加工工程にフィードバックもしくは部品
の出荷検査用の情報として利用が可能である。さらに、
本発明の構成と演算処理をそのまま利用し、変位計1を
任意の位置に取り付ければ、振れ測定機としての機能も
果たす。In this process, the deviation is removed by the zero-order component represented by a 0 and the shake component is removed by the first-order components represented by a 1 and b 1 . At the same time, the information on the amount of shake is obtained from the square root of the sum of squares of a 1 and b 1 . The corner runout information can be used as feedback for the machining process or as information for part shipment inspection. further,
If the displacement meter 1 is attached to an arbitrary position using the configuration and the arithmetic processing of the present invention as it is, the function as a shake measuring device is also achieved.
【0014】(2)回転速度変動の影響の除去につい
て:部品を回転させる気孔が摩擦を利用して駆動する場
合、すべりや摩耗によって回転速度が変化してしまう場
合がある。実際の回転速度が信号処理機に設定されてい
る値と異なる場合、上記偏差及び振れの除去処理は正常
に行われない。わずか5%ほどの回転速度の変化で、除
去されるべき振れまわりの16%が吸収されずに残って
しまう。そこで、得られた信号を演算処理することで実
際の回転周期を求め、それを利用して回転速度の影響を
除去することで測定精度を高めることができる。(2) Elimination of the influence of rotational speed fluctuation: When the pores for rotating the parts are driven by using friction, the rotational speed may change due to slippage or wear. If the actual rotation speed is different from the value set in the signal processor, the deviation and shake removal processing is not performed normally. With a change in rotational speed of only 5%, 16% of the whirling to be removed remains unabsorbed. Therefore, the actual rotation period is obtained by performing arithmetic processing on the obtained signal, and the measurement accuracy can be improved by removing the influence of the rotation speed by using the actual rotation period.
【0015】測定された信号データは総数Mとする。計
測結果の周期性を考慮に入れ、データの始めからn個に
注目すると、このデータ群に酷似したデータ群が1周期
後に現れるはずである(図4)。予測される1周期後近
傍でこのn個のデータとほぼ一致する場所を見つけれ
ば、そこが2周期目の始めといえる。測定値が全く一致
するとは考えにくいため、次のような評価関数Fを用
い、Fの値が最小となる地点lを探す。 この方式では1周期目の最初のn個と2周期目の最初の
n個を比較するため、必ず1周期分+n個のデータが必
要となる。データ数Mは部品の回転が最も遅い場合でも
必ず1周期分+n個のデータが取得されるように大きく
取る必要がある。The total number of the measured signal data is M. Taking into account the periodicity of the measurement result and focusing on the n data from the beginning of the data, a data group very similar to this data group should appear one cycle later (FIG. 4). If a location that substantially matches the n data is found in the vicinity of the predicted one cycle later, it can be said that that is the beginning of the second cycle. Since it is unlikely that the measured values coincide completely, a point 1 where the value of F is minimized is searched for using the following evaluation function F. In this method, since the first n data in the first cycle and the first n data in the second cycle are compared, data for one cycle + n data is always required. The number of data M must be large so that one cycle + n data is always obtained even when the rotation of the component is the slowest.
【0016】[0016]
【発明の効果】以上の説明から明らかなように、本発明
によれば、接触式の変位計を用いて角部に発生する欠け
やバリ等の欠陥を検査しているため、簡便かつ迅速な検
査を実現することができる。また、データの偏差の影
響、振れ成分の影響、回転速度変動の影響をを除去した
例では、誤差となる種々の影響をなくすことができ、高
精度の検出を行うことができる。As is apparent from the above description, according to the present invention, a defect such as a chip or a burr generated at a corner is inspected using a contact type displacement meter, so that it is simple and quick. Inspection can be realized. Further, in an example in which the influence of the data deviation, the influence of the shake component, and the influence of the rotational speed fluctuation are removed, various effects that cause errors can be eliminated, and highly accurate detection can be performed.
【図1】本発明の軸対称物体の欠陥検査方法を実施する
状態の一例を示す図である。FIG. 1 is a diagram showing an example of a state in which a defect inspection method for an axisymmetric object according to the present invention is performed.
【図2】(a)〜(c)はそれぞれ本発明の軸対称物体
の欠陥検査方法で用いる接触子の一例を示す図である。FIGS. 2A to 2C are diagrams illustrating examples of a contact used in the defect inspection method for an axisymmetric object according to the present invention.
【図3】(a)は本発明における振れ処理前の信号の一
例を示す図、(b)は同様に本発明における振れ処理後
の信号の一例を示す図である。3A is a diagram illustrating an example of a signal before the shake process according to the present invention, and FIG. 3B is a diagram illustrating an example of a signal after the shake process according to the present invention.
【図4】本発明における回転速度変動の影響の除去を説
明するための図である。FIG. 4 is a diagram for explaining removal of the influence of rotational speed fluctuation in the present invention.
1 変位計、2 信号変換機、3 接触子、4 信号処
理機、5 モータ、6軸受、7 駆動力伝達用車輪、8
押さえピン、9 空圧シリンダ、11 軸対称物体DESCRIPTION OF SYMBOLS 1 Displacement meter, 2 signal converters, 3 contacts, 4 signal processors, 5 motors, 6 bearings, 7 wheels for driving force transmission, 8
Holding pin, 9 Pneumatic cylinder, 11 Axisymmetric object
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F062 AA66 BB07 BB20 BC80 EE01 EE66 FF17 GG17 HH05 HH16 JJ10 2F069 AA60 AA68 BB40 CC10 DD08 DD13 DD15 DD19 GG01 GG13 GG39 GG52 GG58 GG65 GG78 HH02 JJ02 JJ17 JJ25 LL01 LL06 MM01 MM23 MM34 NN07 PP02 QQ05 2G024 AA15 BA27 CA05 FA02 FA04 FA06 ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 2F062 AA66 BB07 BB20 BC80 EE01 EE66 FF17 GG17 HH05 HH16 JJ10 2F069 AA60 AA68 BB40 CC10 DD08 DD13 DD15 DD19 GG01 GG13 GG39 GG52 GG58 GG65 GG78 GG01 GG78 GG23 PP02 QQ05 2G024 AA15 BA27 CA05 FA02 FA04 FA06
Claims (3)
角部に設けた接触式変位計により、角部に発生する欠
け、バリ等の欠陥を検査することを特徴とする軸対称物
体の欠陥検査方法。1. An axisymmetric object characterized by rotating an axisymmetric object around an axis and inspecting a chip, a burr, or other defect at the corner with a contact displacement meter provided at the corner. Defect inspection method.
(x)からフーリエ変換式の0次成分と1次成分を求
め、この0次成分、1次成分をデータから引くことによ
り、それぞれ偏差、振れ成分の影響をなくしたデータg
(x)を求め、求めたデータg(x)に基づき欠陥検査
を行う請求項1記載の軸対称物体の欠陥検査方法。2. The data f from a displacement meter during the defect inspection.
From the (x), the 0th-order component and the 1st-order component of the Fourier transform equation are obtained, and the 0th-order component and the 1st-order component are subtracted from the data, thereby eliminating the influence of the deviation and the shake component, respectively.
2. The defect inspection method for an axisymmetric object according to claim 1, wherein (x) is obtained, and a defect inspection is performed based on the obtained data g (x).
(x)から以下の評価関数Fを求め、 F(l)が最小となる地点lを求め、このlから回転速
度変動を除去した回転周期を求め、求めた回転周期に基
づき欠陥検査を行う請求項1記載の軸対称物体の欠陥検
査方法。3. The data f from a displacement meter during the defect inspection.
The following evaluation function F is obtained from (x), 2. The defect inspection method for an axisymmetric object according to claim 1, wherein a point l at which F (l) is minimized is determined, a rotation cycle obtained by removing a rotation speed fluctuation from the l, and a defect inspection is performed based on the determined rotation cycle.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000069024A JP2001255105A (en) | 2000-03-13 | 2000-03-13 | Defect inspection method for axially symmetric object |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000069024A JP2001255105A (en) | 2000-03-13 | 2000-03-13 | Defect inspection method for axially symmetric object |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001255105A true JP2001255105A (en) | 2001-09-21 |
Family
ID=18587986
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000069024A Pending JP2001255105A (en) | 2000-03-13 | 2000-03-13 | Defect inspection method for axially symmetric object |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001255105A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006071529A (en) * | 2004-09-03 | 2006-03-16 | Komatsu Machinery Corp | Inspection apparatus and method for flaws on workpiece surface |
| JP2008304332A (en) * | 2007-06-07 | 2008-12-18 | Tokyo Seimitsu Co Ltd | Apparatus and method for measuring surface roughness and shape |
| JP2016045117A (en) * | 2014-08-25 | 2016-04-04 | 株式会社ダイヘン | Wafer information processing equipment |
-
2000
- 2000-03-13 JP JP2000069024A patent/JP2001255105A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006071529A (en) * | 2004-09-03 | 2006-03-16 | Komatsu Machinery Corp | Inspection apparatus and method for flaws on workpiece surface |
| JP2008304332A (en) * | 2007-06-07 | 2008-12-18 | Tokyo Seimitsu Co Ltd | Apparatus and method for measuring surface roughness and shape |
| JP2016045117A (en) * | 2014-08-25 | 2016-04-04 | 株式会社ダイヘン | Wafer information processing equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110605613B (en) | Machine tool unit with axial runout error monitoring and method for testing | |
| Gustafsson et al. | Detection of damage in assembled rolling element bearings | |
| JP5319876B2 (en) | Surface inspection apparatus and surface inspection method | |
| KR20080068856A (en) | S / N ratio measurement method in vortex flaw detection of pipe inner surface | |
| CN113458868A (en) | Method for checking the clamping state during an acceleration phase | |
| US7499813B2 (en) | Device and method for inspecting for flaw on surface of work | |
| JP2001033233A (en) | Inspection method for tubular and rod-shaped inspection objects | |
| JP4667186B2 (en) | Rotational accuracy measurement method | |
| JP2001255105A (en) | Defect inspection method for axially symmetric object | |
| JPH07311082A (en) | Failure diagnostic device of rotating equipment | |
| JP6031697B1 (en) | Inspection device, inspection method, and semiconductor device manufacturing method | |
| JPH1089903A (en) | Dial gauge automatic inspection device | |
| CN107727023A (en) | Hybridization four-point method turn error based on line-of-sight course, deviation from circular from computational methods | |
| KR20150088925A (en) | Using a sample of large bearings precision measurement system | |
| JP4812446B2 (en) | Defect detection method for roller bearings by torque monitoring | |
| CN110349174B (en) | Sliding rail multi-parameter measurement method and measurement device | |
| CN115106840B (en) | Tool shape abnormality detection device and tool shape abnormality detection method | |
| KR101409199B1 (en) | Machine Tool Spindle precision measuring device | |
| Kim et al. | The analysis of radial/axial error motion on a precision rotation stage | |
| JP2002337042A (en) | Cutter defect detecting method | |
| JPH10307081A (en) | Bearing inspection method and device | |
| CN108169323A (en) | A kind of processing method of polymorphic structure workpiece eddy current signal | |
| TWM624881U (en) | Gear profile auto-testing equipment for medical gears | |
| Bolivar | 2D Optical Measurement For 100% Component Inspection | |
| JP6985120B2 (en) | Measurement system |