JP2001261442A - Production process of recrystallized silicon carbide - Google Patents
Production process of recrystallized silicon carbideInfo
- Publication number
- JP2001261442A JP2001261442A JP2000076457A JP2000076457A JP2001261442A JP 2001261442 A JP2001261442 A JP 2001261442A JP 2000076457 A JP2000076457 A JP 2000076457A JP 2000076457 A JP2000076457 A JP 2000076457A JP 2001261442 A JP2001261442 A JP 2001261442A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- weight
- recrystallized
- clay
- recrystallized sic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title 1
- 229910010271 silicon carbide Inorganic materials 0.000 title 1
- 239000004927 clay Substances 0.000 claims abstract description 26
- 239000002994 raw material Substances 0.000 claims abstract description 16
- 238000005245 sintering Methods 0.000 claims abstract 2
- 239000002245 particle Substances 0.000 claims description 16
- 238000010304 firing Methods 0.000 claims description 11
- 239000010419 fine particle Substances 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 238000001125 extrusion Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000001354 calcination Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010427 ball clay Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、耐酸化性、耐食
性、熱伝導性に優れた高純度の再結晶SiCを製造する
方法に関する。TECHNICAL FIELD The present invention relates to a method for producing high-purity recrystallized SiC having excellent oxidation resistance, corrosion resistance and thermal conductivity.
【0002】[0002]
【従来の技術】 高純度の再結晶SiCは、耐酸化性、
耐食性、熱伝導性に優れ、それらの特性が要求される多
様な分野での利用が期待されている。このような再結晶
SiCの製造方法として、USP2964823には、
45〜150μmのSiC粉10〜60重量%と0.1
〜8μmのSiC微粉40〜90重量%とを水で混ぜ、
スリップキャストで成形し、還元雰囲気中において21
00〜2450℃で焼成する方法が開示されている。2. Description of the Related Art High-purity recrystallized SiC has oxidation resistance,
It is excellent in corrosion resistance and thermal conductivity, and is expected to be used in various fields where those properties are required. As a method for producing such recrystallized SiC, US Pat.
10 to 60% by weight of SiC powder of 45 to 150 μm and 0.1
88 μm SiC fine powder 40-90% by weight mixed with water,
Molded by slip casting, 21% in reducing atmosphere
A method of firing at 00 to 2450 ° C is disclosed.
【0003】 また、特開昭61−17472号公報に
は、β型SiC微粒に平均粒径が5μm以下のα型又は
β型SiC微粉末を混合、成形し、1750〜2500
℃で焼成する方法が開示されている。Japanese Patent Application Laid-Open No. Sho 61-17472 discloses that β-type SiC fine particles are mixed with an α-type or β-type SiC fine powder having an average particle diameter of 5 μm or less, and then molded and mixed.
A method of firing at ℃ is disclosed.
【0004】 更に、特開平10−167854号公報
には、SiO2含有率が0.1〜5重量%で平均粒径が
0.3〜50μmのSiC原料粉と有機樹脂バインダー
を混合して成形し、その成形体を酸素含有率が1〜10
%の雰囲気中において該成形体中の熱分解炭素の含有率
が0.5〜5重量%となるように加熱した後、該成形体
を1500〜2000℃の非酸化雰囲気で焼成する方法
が示されている。Further, Japanese Patent Application Laid-Open No. 10-167854 discloses a method in which a SiC raw material powder having an SiO 2 content of 0.1 to 5% by weight and an average particle size of 0.3 to 50 μm is mixed with an organic resin binder to form a mixture. The molded product has an oxygen content of 1 to 10
%, The content of pyrolytic carbon in the compact is heated to 0.5 to 5% by weight, and then the compact is fired in a non-oxidizing atmosphere at 1500 to 2000 ° C. Have been.
【0005】[0005]
【発明が解決しようとする課題】 しかしながら、これ
ら従来の再結晶SiCの製造法では、原料を所望の製品
形状に成形することが難しく、最終的に得られる再結晶
SiC焼結体の純度を低下させることなく成形性を向上
させる製造技術の確立が望まれていた。However, in these conventional methods for producing recrystallized SiC, it is difficult to form a raw material into a desired product shape, and the purity of the finally obtained recrystallized SiC sintered body is reduced. It has been desired to establish a manufacturing technique for improving the formability without causing the formation.
【0006】 本発明は、このような従来の事情に鑑み
てなされたものであり、その目的とするところは、成形
性が良く、耐酸化性、耐食性に優れるとともに高い熱伝
導率を有する高純度の再結晶SiC焼結体が得られるよ
うな再結晶SiCの製造方法を提供することにある。[0006] The present invention has been made in view of such conventional circumstances, and has as its object to provide a high-purity high moldability, excellent oxidation resistance and corrosion resistance, and high heat conductivity. It is an object of the present invention to provide a method for producing recrystallized SiC so that a recrystallized SiC sintered body can be obtained.
【0007】[0007]
【課題を解決するための手段】 本発明によれば、粒径
5μm以下の微粒を10重量%以上含むSiC原料に、
外配で1〜12重量%の粘土を添加し、混合して、これ
を所望の形状に成形し、得られた成形体を2000℃以
上の非活性雰囲気で焼成することを特徴とする再結晶S
iCの製造方法、が提供される。According to the present invention, a SiC raw material containing 10% by weight or more of fine particles having a particle size of 5 μm or less is provided.
A recrystallization characterized by adding and mixing 1 to 12% by weight of clay as an external material, mixing and shaping the clay into a desired shape, and firing the obtained molded body in an inert atmosphere at 2000 ° C or higher. S
iC manufacturing method is provided.
【0008】[0008]
【発明の実施の形態】 前記のとおり、本発明の製造方
法は、粒径5μm以下の微粒を10重量%以上含むSi
C原料に対し所定量の粘土を添加することを特徴として
おり、これにより、SiC原料の成形性が大幅に向上す
る。また、再結晶SiCは通常2000℃以上の非活性
雰囲気で焼成されるが、このような高温雰囲気で焼成を
行うと、粘土成分であるSiO2やAl2O3などの酸化
物は蒸発するため、最終的に得られる焼結体には、粘土
を添加したことよる純度の低下はほとんど見られず、高
純度の再結晶SiCが得られる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the production method of the present invention provides a method of manufacturing a semiconductor device comprising a Si containing 10% by weight or more of fine particles having a particle size of 5 μm or less.
It is characterized in that a predetermined amount of clay is added to the C raw material, thereby greatly improving the formability of the SiC raw material. In addition, recrystallized SiC is usually fired in an inert atmosphere of 2000 ° C. or higher. However, if fired in such a high temperature atmosphere, oxides such as SiO 2 and Al 2 O 3 as clay components evaporate. In the finally obtained sintered body, there is hardly any decrease in purity due to the addition of clay, and high-purity recrystallized SiC can be obtained.
【0009】 SiC原料に対する具体的な粘土の添加
量は、外配で1〜12重量%、好ましくは1〜8重量%
である。粘土の添加量が12重量%を超えると、焼成時
に粘土成分が蒸発しきれず、残留するSiやAlの量が
多くなって再結晶SiCの生成が阻害され、熱伝導率が
低くなる。一方、粘土の添加量が1重量%未満では成形
性の向上がほとんど見られない。The specific amount of clay to be added to the SiC raw material is 1 to 12% by weight, preferably 1 to 8% by weight.
It is. If the added amount of the clay exceeds 12% by weight, the clay component cannot be completely evaporated at the time of firing, the amount of the remaining Si or Al increases, the generation of recrystallized SiC is inhibited, and the thermal conductivity decreases. On the other hand, when the added amount of the clay is less than 1% by weight, almost no improvement in the moldability is observed.
【0010】 SiC原料は、α型、β型のいずれを用
いてもよいが、粒径5μm以下の微粒を10重量%以上
含むものを使用する。SiC原料に含まれる粒径5μm
以下の微粒が10重量%未満である場合には、再結晶S
iCが十分に生成し難く、強度や熱伝導率が低くなる。As the SiC raw material, any of α-type and β-type may be used, but a material containing 10% by weight or more of fine particles having a particle size of 5 μm or less is used. Particle size 5μm contained in SiC raw material
When the following fine particles are less than 10% by weight, recrystallization S
It is difficult to generate iC sufficiently, and strength and thermal conductivity are reduced.
【0011】 SiC原料に添加する粘土としては、可
塑性を有するのもであれば特に限定はされず、例えば、
ガイロメ粘土、木節粘土、カオリン、ハロイサイト、ボ
ールクレイ等を単独で、あるいは2種以上を混合して用
いることができる。The clay to be added to the SiC raw material is not particularly limited as long as it has plasticity.
Geirome clay, Kibushi clay, kaolin, halloysite, ball clay and the like can be used alone or as a mixture of two or more.
【0012】 このような粘土をSiC原料に添加して
混合し、更に水を加えて全体を可塑化することによりペ
ーストが作製される。なお、必要に応じて有機質バイン
ダーや、界面活性剤等の成形助剤を加えてもよい。[0012] Such a clay is added to and mixed with the SiC raw material, and water is further added to plasticize the whole to produce a paste. In addition, a molding aid such as an organic binder and a surfactant may be added as necessary.
【0013】 こうして得られたペーストを、プレス成
形、押出し成形等の成形方法で、所望の形状に成形す
る。例えば、押出し成形によりハニカム形状の成形体を
作製すれば、これを焼成することにより、排ガス浄化用
の触媒担体や、ディーゼルエンジンの排ガスに含まれる
微粒子(パティキュレート)を捕集するためのフィルタ
ー(ディーゼルパティキュレートフィルター)として好
適に使用できるハニカム構造体が得られる。The paste thus obtained is formed into a desired shape by a molding method such as press molding or extrusion molding. For example, if a honeycomb-shaped molded body is produced by extrusion molding, it is fired to form a catalyst carrier for purifying exhaust gas or a filter (trapping) for collecting fine particles (particulates) contained in exhaust gas of a diesel engine. A honeycomb structure which can be suitably used as a diesel particulate filter) is obtained.
【0014】 成形体は、乾燥後、必要であればバイン
ダーを仮焼して燃焼又は蒸発させ、その後非活性雰囲気
で焼成する。焼成温度は、2000℃以上、好ましくは
2100℃以上とする。このような高温での焼成によ
り、再結晶SiCが十分に生成されるとともに、粘土を
構成するSiO2やAl2O3等が蒸発し、高純度な再結
晶SiCが得られる。なお、焼成温度が2000℃未満
の場合は、再結晶SiCが十分に生成せず、強度や熱伝
導率が低くなる。After drying, if necessary, the molded body is calcined to burn or evaporate the binder, and then calcined in an inert atmosphere. The firing temperature is 2000 ° C. or higher, preferably 2100 ° C. or higher. By firing at such a high temperature, recrystallized SiC is sufficiently generated, and at the same time, SiO 2 , Al 2 O 3, etc. constituting the clay are evaporated, and high-purity recrystallized SiC is obtained. When the firing temperature is lower than 2000 ° C., recrystallized SiC is not sufficiently generated, and the strength and the thermal conductivity are reduced.
【0015】[0015]
【実施例】 以下、本発明を実施例に基づいて更に詳細
に説明するが、本発明はこれらの実施例に限定されるも
のではない。EXAMPLES Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
【0016】(実施例1)粒径5μm以下の粒子を16
重量%含む平均粒径20μmのSiC粉末100重量%
に対し、外配でガイロメ粘土5重量%、メチルセルロー
ス3重量%、界面活性剤1重量%、及び水25重量%を
加え、混合後、押出し成形により、外径φ100mm、
長さ100mm、セル密度16セル/cm2、リブ厚4
30μmのハニカム形状の成形体を成形した。この成形
体を酸化雰囲気中にて400℃で仮焼してバインダー成
分を除去した後、Ar雰囲気中にて2200℃で焼成し
てハニカム構造の再結晶SiC焼結体を得た。こうして
得られた再結晶SiC焼結体について、強度、熱伝導
率、及び粘土成分の蒸発せず残留したSiO2とAl2O
3の量を測定し、その結果を表1に示した。Example 1 16 particles having a particle size of 5 μm or less
100% by weight of SiC powder having an average particle size of 20 μm
5% by weight of gailome clay, methylcellulose
3% by weight, 1% by weight of surfactant and 25% by weight of water
In addition, after mixing, by extrusion molding, the outer diameter φ 100 mm,
Length 100 mm, cell density 16 cells / cmTwo, Rib thickness 4
A 30 μm honeycomb-shaped formed body was formed. This molding
The body is calcined in an oxidizing atmosphere at 400 ° C to form a binder.
After elimination, baking was performed at 2200 ° C. in an Ar atmosphere.
Thus, a recrystallized SiC sintered body having a honeycomb structure was obtained. In this way
Strength and thermal conductivity of the obtained recrystallized SiC sintered body
Rate and SiO remaining without evaporation of clay componentTwoAnd AlTwoO
ThreeWas measured, and the results are shown in Table 1.
【0017】 なお、強度は、ハニカムの流路方向に1
セル分を切出し、スパン35mmの3点曲げで測定し
た。また、残留したSiO2とAl2O3の量は、湿式化
学分析及びガス分析により測定した。The strength is 1 in the flow direction of the honeycomb.
The cell was cut out and measured by three-point bending with a span of 35 mm. The amounts of the remaining SiO 2 and Al 2 O 3 were measured by wet chemical analysis and gas analysis.
【0018】(実施例2〜7)表1に示されるSiC原
料及びガイロメ粘土を使用し、実施例1と同様の方法で
成形、仮焼を行い、表1に示す焼成温度で、実施例1と
同様の焼成を実施した。こうして得られた再結晶SiC
焼結体について、実施例1と同様の測定を行い、その結
果を同じく表1に示した。(Examples 2 to 7) Using the SiC raw materials and gairome clay shown in Table 1, molding and calcination were carried out in the same manner as in Example 1. The same baking was performed. Recrystallized SiC thus obtained
The same measurement as in Example 1 was performed on the sintered body, and the results are also shown in Table 1.
【0019】(比較例1)粒径5μm以下の粒子を10
重量%含む平均粒径46μmのSiC粉末100重量%
に対し、外配でガイロメ粘土15重量%、メチルセルロ
ース3重量%、界面活性剤1重量%、及び水25重量%
を加え、混合後、押出し成形により、外径φ100m
m、長さ100mm、セル密度16セル/cm2、リブ
厚430μmのハニカム形状の成形体を成形した。この
成形体を酸化雰囲気中にて400℃で仮焼してバインダ
ー成分を除去した後、Ar雰囲気中にて2000℃で焼
成してハニカム構造の再結晶SiC焼結体を得た。こう
して得られた再結晶SiC焼結体について、前記実施例
1と同様に強度、熱伝導率、及び残留したSiO2とA
l2O3の量を測定し、その結果を表1に示した。Comparative Example 1 10 particles having a particle size of 5 μm or less
100% by weight of SiC powder having an average particle size of 46 μm
In contrast, 15% by weight of Geirome clay, 3% by weight of methylcellulose, 1% by weight of a surfactant, and 25% by weight of water
After mixing, the mixture is extruded to form an outer diameter of 100 m.
m, a length of 100 mm, a cell density of 16 cells / cm 2 and a rib thickness of 430 μm were formed into a honeycomb shaped body. The molded body was calcined at 400 ° C. in an oxidizing atmosphere to remove a binder component, and then calcined at 2000 ° C. in an Ar atmosphere to obtain a recrystallized SiC sintered body having a honeycomb structure. The thus obtained recrystallized SiC sintered body had the same strength, thermal conductivity, residual SiO 2 and A
The amount of l 2 O 3 was measured and the results are shown in Table 1.
【0020】(比較例2及び3)表1に示されるSiC
原料及びガイロメ粘土を使用し、比較例1と同様の方法
で成形、仮焼を行い、表1に示す焼成温度で、比較例1
と同様の焼成を実施した。こうして得られた再結晶Si
C焼結体について、実施例1と同様の測定を行い、その
結果を同じく表1に示した。(Comparative Examples 2 and 3) SiC shown in Table 1
Forming and calcining were performed in the same manner as in Comparative Example 1 using the raw materials and Gairome clay, and at the firing temperature shown in Table 1, Comparative Example 1 was used.
The same baking was performed. Recrystallized Si thus obtained
The same measurement as in Example 1 was performed on the C sintered body, and the results are also shown in Table 1.
【0021】(比較例4)粒径5μm以下の粒子を28
重量%含む平均粒径15μmのSiC粉末100重量%
に対し、外配でメチルセルロース3重量%、界面活性剤
1重量%、及び水25重量%を加え、混合後、押出し成
形を試みたが、成形性が悪く、前記実施例1〜7及び比
較例1〜3のようなハニカム形状の成形体を得ることが
できなかった。Comparative Example 4 28 particles having a particle size of 5 μm or less
100% by weight of SiC powder having an average particle size of 15 μm
On the other hand, 3% by weight of methylcellulose, 1% by weight of a surfactant, and 25% by weight of water were externally added, and after mixing, extrusion molding was attempted. However, the moldability was poor, and the above Examples 1 to 7 and Comparative Examples It was not possible to obtain honeycomb-shaped molded articles such as 1-3.
【0022】[0022]
【表1】 [Table 1]
【0023】 表1に示すとおり、本発明の製造方法で
得られた実施例の再結晶SiC焼結体は、成形時におけ
る成形性に優れるとともに、添加した粘土の構成成分で
あるSiO2とAl2O3の残留もほとんど見られず、比
較例の再結晶SiC焼結体に比して強度、熱伝導率とも
優れた結果を示した。As shown in Table 1, the recrystallized SiC sintered body of the example obtained by the production method of the present invention has excellent moldability at the time of molding, and has SiO 2 and Al which are constituent components of the added clay. Almost no residual 2 O 3 was observed, and the strength and thermal conductivity of the recrystallized SiC sintered body of the comparative example were excellent.
【0024】[0024]
【発明の効果】 以上説明したように、本発明の再結晶
SiCの製造方法によれば、SiC原料に対して所定量
の粘土を添加することにより、従来の製造方法に比べ成
形性が大幅に改善される。また、成形体中の粘土成分は
焼成時に蒸発するので、粘土添加による純度の低下はな
く、耐酸化性、耐食性、熱伝導性に優れた高純度の再結
晶SiCが得られる。本発明にて得られる再結晶SiC
は、耐火物やフィルター等の用途に好適に使用でき、特
に、ハニカム形状に成形し焼成して得られたハニカム構
造体は、触媒担体やディーゼルパティキュレートフィル
ターとして最適である。As described above, according to the method for producing recrystallized SiC of the present invention, by adding a predetermined amount of clay to the SiC raw material, the formability is greatly improved as compared with the conventional production method. Be improved. In addition, since the clay component in the molded body evaporates during firing, the purity does not decrease due to the addition of clay, and high-purity recrystallized SiC excellent in oxidation resistance, corrosion resistance, and heat conductivity can be obtained. Recrystallized SiC obtained by the present invention
Can be suitably used for applications such as refractories and filters. In particular, a honeycomb structure obtained by forming into a honeycomb shape and firing is most suitable as a catalyst carrier or a diesel particulate filter.
Claims (5)
含むSiC原料に、外配で1〜12重量%の粘土を添加
し、混合して、これを所望の形状に成形し、得られた成
形体を2000℃以上の非活性雰囲気で焼成することを
特徴とする再結晶SiCの製造方法。1. An externally added 1 to 12% by weight of clay is added to a SiC raw material containing 10% by weight or more of fine particles having a particle size of 5 μm or less, mixed and formed into a desired shape, thereby obtaining a desired shape. A method for producing recrystallized SiC, comprising firing the compact in an inert atmosphere at 2000 ° C. or higher.
量が外配で1〜8重量%である請求項1記載の再結晶S
iCの製造方法。2. The recrystallized S according to claim 1, wherein an amount of the clay added to the SiC raw material is 1 to 8% by weight in an external manner.
iC production method.
1又は2に記載の再結晶SiCの製造方法。3. The method for producing recrystallized SiC according to claim 1, wherein the sintering temperature is 2100 ° C. or higher.
る請求項1ないし3のいずれか1項に記載の再結晶Si
Cの製造方法。4. The recrystallized Si according to claim 1, wherein the molding method of the molded body is extrusion molding.
C manufacturing method.
ものである請求項1ないし4のいずれか1項に記載の再
結晶SiCの製造方法。5. The method for producing recrystallized SiC according to claim 1, wherein the green body is formed into a honeycomb shape.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000076457A JP4468541B2 (en) | 2000-03-17 | 2000-03-17 | Method for producing recrystallized SiC |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000076457A JP4468541B2 (en) | 2000-03-17 | 2000-03-17 | Method for producing recrystallized SiC |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2001261442A true JP2001261442A (en) | 2001-09-26 |
| JP4468541B2 JP4468541B2 (en) | 2010-05-26 |
Family
ID=18594195
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000076457A Expired - Lifetime JP4468541B2 (en) | 2000-03-17 | 2000-03-17 | Method for producing recrystallized SiC |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4468541B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004106265A1 (en) * | 2003-05-29 | 2004-12-09 | Ngk Insulators, Ltd. | Method for producing honeycomb structure and silicon carbide particles used for producing honeycomb structure |
| WO2016114036A1 (en) * | 2015-01-16 | 2016-07-21 | イビデン株式会社 | Continuous firing furnace |
-
2000
- 2000-03-17 JP JP2000076457A patent/JP4468541B2/en not_active Expired - Lifetime
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004106265A1 (en) * | 2003-05-29 | 2004-12-09 | Ngk Insulators, Ltd. | Method for producing honeycomb structure and silicon carbide particles used for producing honeycomb structure |
| US7569201B2 (en) | 2003-05-29 | 2009-08-04 | Ngk Insulators, Ltd. | Method of manufacturing honeycomb structure and silicon carbide particle for manufacturing the same |
| WO2016114036A1 (en) * | 2015-01-16 | 2016-07-21 | イビデン株式会社 | Continuous firing furnace |
| JP2016132581A (en) * | 2015-01-16 | 2016-07-25 | イビデン株式会社 | Continuous firing furnace |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4468541B2 (en) | 2010-05-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4307781B2 (en) | Silicon carbide based porous material and method for producing the same | |
| JP3581879B2 (en) | Alumina porous body and method for producing the same | |
| EP1364928B1 (en) | Honeycomb structure | |
| KR101679883B1 (en) | Method for making porous acicular mullite bodies | |
| JP5036008B2 (en) | Cordierite formation | |
| JP5587420B2 (en) | Exhaust gas purification filter and manufacturing method thereof | |
| JPWO2012105478A1 (en) | Silicon carbide-based material, honeycomb structure, and electrically heated catalyst carrier | |
| JP3698143B2 (en) | Porous Si3N4 for filter and manufacturing method thereof | |
| JP5365794B2 (en) | Ceramic filter for supporting catalyst and method for manufacturing the same | |
| JP4455786B2 (en) | Method for producing porous material and method for producing hollow granules used therefor | |
| JP5208900B2 (en) | Process for producing conductive silicon carbide based porous material for diesel particulate filter | |
| JP2000016872A (en) | Porous silicon carbide sintered body and its production | |
| JPH0751459B2 (en) | Method for manufacturing cordierite honeycomb structure | |
| JP4468541B2 (en) | Method for producing recrystallized SiC | |
| JP4574044B2 (en) | Porous silicon nitride and method for producing the same | |
| JPS61423A (en) | Filter comprising silicon carbide sintered body | |
| JP3099195B2 (en) | Silicon nitride-bonded silicon carbide support and method for producing the same | |
| WO2011118025A1 (en) | Columnar aluminum titanate and method for producing same | |
| JP5274209B2 (en) | Columnar aluminum titanate and method for producing the same | |
| 楊建鋒 et al. | Fabrication and mechanical properties of porous silicon nitride ceramics from low-purity powder | |
| JPH0829977B2 (en) | High strength / low thermal expansion ceramic and method for manufacturing the same | |
| JP5120793B2 (en) | Method for producing porous silicon carbide | |
| JP3228890B2 (en) | Manufacturing method of porous inorganic material | |
| JP5695127B2 (en) | Method for producing columnar aluminum titanate powder | |
| JPH11217270A (en) | Honeycomb structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081002 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090924 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091111 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100223 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100225 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4468541 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
| EXPY | Cancellation because of completion of term |