[go: up one dir, main page]

JP2001266680A - Composite insulator - Google Patents

Composite insulator

Info

Publication number
JP2001266680A
JP2001266680A JP2000076431A JP2000076431A JP2001266680A JP 2001266680 A JP2001266680 A JP 2001266680A JP 2000076431 A JP2000076431 A JP 2000076431A JP 2000076431 A JP2000076431 A JP 2000076431A JP 2001266680 A JP2001266680 A JP 2001266680A
Authority
JP
Japan
Prior art keywords
composite insulator
high dielectric
substance
dielectric constant
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000076431A
Other languages
Japanese (ja)
Inventor
Yukihiro Etsuno
幸広 越野
Takanori Kondo
高徳 近藤
Itsuki Umeda
逸樹 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2000076431A priority Critical patent/JP2001266680A/en
Publication of JP2001266680A publication Critical patent/JP2001266680A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulators (AREA)
  • Insulating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite insulator which can prolong the life and achieve compaction. SOLUTION: In a composite insulator 1 wherein an insulating polymer material is used as a substance of a sheath, a constitution is given in which the entirety or a part of a sheath 3 contains a substance of high dielectric constant. It is possible to make the entirety or a part of the sheath of the composite insulator strong against the electric field by allowing the entirety or a part of the sheath comprised of the insulating polymer material such as silicone rubber contain a specified quantity of a substance of high dielectric constant having a specified powder size. As the result, the electric field added is eased so that the corona discharge is got under control then the longer life span is attained. Furthermore, entirety or a part of the sheathe can be a constitution strong for the electric field so that the shell diameter and total length thereof can be made small, and the shape of the compound insulator can be attained of a space-saving.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コアと、コアの周
囲に形成した複数の笠と胴部からなる外被とを備え、絶
縁性高分子材料を外被材として用いる複合がいしに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite insulator having a core, a plurality of caps formed around the core, and a cover comprising a body, and using an insulating polymer material as a cover material. is there.

【0002】[0002]

【従来の技術】従来から、コアと、コアの周囲に形成し
た複数の笠と胴部からなる外被とを備え、絶縁性高分子
材料を外被材として用いる複合がいしは、種々の形状の
ものが知られている。図3はこのような従来の複合がい
しの一例の構成を示す図である。図3に示す例におい
て、複合がいし51は、FRPコア52と、FRPコア
52の周囲に形成したシリコーンゴムからなる外被55
と、FRPコア52の両端に設けた把持金具56とから
構成されている。そして、外被55は、複数の笠53と
胴部54とから構成されている。
2. Description of the Related Art Conventionally, composite insulators having a core, a plurality of caps formed around the core, and a jacket comprising a body, and using an insulating polymer material as a jacket material have been known. Things are known. FIG. 3 is a diagram showing a configuration of an example of such a conventional composite insulator. In the example shown in FIG. 3, the composite insulator 51 includes an FRP core 52 and a jacket 55 made of silicone rubber formed around the FRP core 52.
And gripping metal fittings 56 provided at both ends of the FRP core 52. The outer cover 55 includes a plurality of caps 53 and a trunk 54.

【0003】[0003]

【発明が解決しようとする課題】上述した構成の複合が
いし51は、一方の課電側の把持金具56を電力を送電
するための送電線に接続するとともに、他方の接地側の
把持金具56を鉄塔等に接続して使用されている。その
ため、複合がいし51の外被55には高い電界が加わ
り、外被55の表面にコロナ放電が発生し、このコロナ
放電のために高い寿命を達成できない問題があった。ま
た、近年、複合がいし51の形状のコンパクト化の要望
も高くなっていた。
In the composite insulator 51 having the above-described structure, the holding metal fitting 56 on one power supply side is connected to a power transmission line for transmitting electric power, and the other holding metal fitting 56 on the ground side is connected to the power holding wire 56. It is used connected to a steel tower. Therefore, a high electric field is applied to the outer cover 55 of the composite insulator 51, and corona discharge occurs on the surface of the outer cover 55, so that there is a problem that a long life cannot be achieved due to the corona discharge. In recent years, there has been an increasing demand for a compact insulator 51 in shape.

【0004】本発明の目的は上述した課題を解消して、
高寿命化とコンパクトかを達成できる複合がいしを提供
しようとするものである。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a composite insulator capable of achieving a long life and compactness.

【0005】[0005]

【課題を解決するための手段】本発明の複合がいしは、
絶縁性高分子材料を外被材として用いる複合がいしにお
いて、外被全体または外被の一部が高誘電率物質を含む
ことを特徴とするものである。本発明では、シリコーン
ゴム等の絶縁性高分子材料からなる外被の全部または一
部に好ましくは所定の粒径で所定量の高誘電率物質を含
有させることで、複合がいしの外被全体または一部を電
界に強い構成とすることができる。その結果、加わる電
界を緩和してコロナ放電を抑制でき、長寿命化を達成で
きる。また、外被全体または一部を電界に強い構成とで
きるため、その胴径、全長を小さくでき、複合がいしの
形状のコンパクト化を達成することができる。
Means for Solving the Problems The composite insulator of the present invention comprises:
A composite insulator using an insulating polymer material as a jacket material is characterized in that the entire jacket or a part of the jacket contains a high dielectric substance. In the present invention, the whole or part of the outer cover made of an insulating polymer material such as silicone rubber preferably contains a predetermined amount of a high dielectric substance with a predetermined particle diameter, thereby enabling the entire outer cover of the composite insulator or Part of the structure can be made resistant to an electric field. As a result, the applied electric field can be relaxed to suppress corona discharge, and a longer life can be achieved. In addition, since the whole or a part of the outer cover can be configured to be resistant to an electric field, its body diameter and overall length can be reduced, and the shape of the composite insulator can be made more compact.

【0006】本発明の好適例としては、絶縁性高分子材
料が、シリコーンゴム、エチレン-プロピレン-ジエン共
重合体(EPDM)またはエポキシ樹脂のいずれかから
なり、前記高誘電率物質が、酸化チタン、酸化亜鉛、酸
化銅、酸化錫またはチタン酸バリウムのいずれかからな
る。また、高誘電率物質の平均粒径が0.1〜50μm
であり、その配合量が絶縁性高分子材料のポリマー分1
00重量部に対して1−100重量部である。さらに、
複合がいしの成形方法が、流し込み、液状ゴムインジェ
クションモールディング(LIM)、圧縮、インジェク
ション、熱収縮、コールドシュリンクのいずれかの方法
である。さらにまた、高誘電率物質として誘電率が10
以上である物質を使用する。いずれの場合も、本発明を
さらに好適に実施することができるため、好ましい態様
となる。
According to a preferred embodiment of the present invention, the insulating polymer material is made of one of silicone rubber, ethylene-propylene-diene copolymer (EPDM) and epoxy resin, and the high dielectric substance is titanium oxide. , Zinc oxide, copper oxide, tin oxide or barium titanate. Further, the average particle diameter of the high dielectric constant substance is 0.1 to 50 μm.
And the compounding amount is 1% of the polymer content of the insulating polymer material.
It is 1-100 parts by weight with respect to 00 parts by weight. further,
The method of molding the composite insulator is any of casting, liquid rubber injection molding (LIM), compression, injection, heat shrinkage, and cold shrink. Furthermore, as a high dielectric substance, a dielectric constant of 10
Use the above substances. In any case, the present invention can be carried out more suitably, and thus is a preferable embodiment.

【0007】[0007]

【発明の実施の形態】図1(a)、(b)はそれぞれ本
発明の複合がいしの一例の構成を示す図である。図1
(a)、(b)に示す例において、複合がいし1は、F
RPコア2と、FRPコア2の周囲に形成した絶縁性高
分子材料からなる外被5と、FRPコア2の両端に設け
た把持金具6とから構成されている。そして、外被5
は、複数の笠3と胴部4とから構成されている。上述し
た構成は従来と同じ構成である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 (a) and 1 (b) are diagrams showing the configuration of an example of a composite insulator according to the present invention. FIG.
In the examples shown in (a) and (b), the composite insulator 1
The FRP core 2 includes an RP core 2, a jacket 5 formed of an insulating polymer material formed around the FRP core 2, and gripping metal fittings 6 provided at both ends of the FRP core 2. And the jacket 5
Is composed of a plurality of caps 3 and a trunk 4. The above-described configuration is the same as the conventional configuration.

【0008】本発明の複合がいし1の特徴は、外被5の
全部または一部が好ましくは所定の粒径で所定量の高誘
電率物質を含んでいることである。すなわち、図1
(a)に示す例では、笠3と胴部4からなる外被5の全
部分が高誘電率物質を含んでいる。また、図1(b)に
示す例では、外被5のうち課電側の一部分5Aが高誘電
率物質を含むとともに、それ以外の部分5Bは高誘電率
物質を含んでいない。
A feature of the composite insulator 1 of the present invention is that the whole or a part of the jacket 5 preferably contains a predetermined amount of a high dielectric substance with a predetermined particle size. That is, FIG.
In the example shown in (a), the entire portion of the jacket 5 including the cap 3 and the body 4 contains a high dielectric substance. In the example shown in FIG. 1B, a part 5A on the power application side of the jacket 5 contains a high dielectric substance, and the other part 5B does not contain a high dielectric substance.

【0009】本発明の複合がいし1において、高誘電率
物質としては比較的高い誘電率を有す物質であれば何で
も使用することができるが、誘電率10以上の高誘電率
無機材料物質を使用することが好ましい。以下の表1
に、本発明で好適に使用できる高誘電率物質の例をそれ
ぞれの比誘電率とともに示す。
In the composite insulator 1 of the present invention, any substance having a relatively high dielectric constant can be used as the high dielectric constant substance, but a high dielectric constant inorganic material having a dielectric constant of 10 or more is used. Is preferred. Table 1 below
Examples of high dielectric constant materials that can be suitably used in the present invention are shown below along with their relative dielectric constants.

【0010】[0010]

【表1】 [Table 1]

【0011】高誘電率物質の粒径についても特に限定し
ないが、その平均粒径が0.1〜50μm、好ましくは
0.1〜5μmであると好ましい。その理由は、高誘電
率物質の平均粒径が0.1μm未満であると表面積が大
きくなりすぎ、吸水しやすくなるとともに、50μmを
超えると絶縁性高分子材料との混合性が悪く、充分な機
械強度が発揮できないためである。また、高誘電率物質
の配合量についても特に限定しないが、絶縁性高分子材
料のポリマー分100重量部に対して1〜100重量
部、好ましくは10〜30重量部であると好ましい。そ
の理由は、配合量が1重量部未満だと適用部の誘電率が
大きくならず、放電抑制の効果がないとともに、100
重量部を超えると外被材として要求される機械強度が発
揮できないためである。
The particle diameter of the high dielectric substance is not particularly limited, but the average particle diameter is preferably 0.1 to 50 μm, and more preferably 0.1 to 5 μm. The reason is that if the average particle size of the high dielectric constant substance is less than 0.1 μm, the surface area becomes too large and water is easily absorbed, and if the average particle diameter exceeds 50 μm, the mixing property with the insulating polymer material is poor, and the This is because mechanical strength cannot be exhibited. The amount of the high dielectric substance is not particularly limited, but is preferably 1 to 100 parts by weight, more preferably 10 to 30 parts by weight, per 100 parts by weight of the polymer of the insulating polymer material. The reason is that if the compounding amount is less than 1 part by weight, the dielectric constant of the applied portion does not become large, there is no effect of suppressing discharge,
If the amount exceeds the weight part, the mechanical strength required for the jacket material cannot be exhibited.

【0012】外被5を構成する絶縁性高分子材料の種類
についても特に限定しないが、シリコーンゴム、エチレ
ン-プロピレン-ジエン共重合体(EPDM)またはエポ
キシ樹脂等を使用することが好ましい。また、外被5が
シリコーンゴムからなる場合は、その組成が、シリコー
ンポリマー分100重量部に対してシリカ微粉末1〜5
0重量部、 水酸化アルミニウム粉末0〜300重量部
含むゴムに、上記高誘電率物質を配合したゴムを使用す
ることが好ましい。上記好適な組成は、液状ゴムを使用
する際液状ゴムの硬化形態が2液型の場合は2液を混合
したときの割合である。
There is no particular limitation on the type of insulating polymer material forming the jacket 5, but it is preferable to use silicone rubber, ethylene-propylene-diene copolymer (EPDM), epoxy resin, or the like. When the jacket 5 is made of silicone rubber, its composition is such that silica fine powder 1 to 5 is added to 100 parts by weight of silicone polymer.
It is preferable to use a rubber in which the high dielectric substance is mixed with a rubber containing 0 parts by weight and 0 to 300 parts by weight of aluminum hydroxide powder. The preferred composition is a ratio when two liquids are mixed when the cured form of the liquid rubber is a two-part liquid rubber.

【0013】本発明の複合がいし1は、流し込み、液状
ゴムインジェクションモールディング(LIM)、圧
縮、インジェクション、熱収縮、コールドシュリンクの
いずれかの成形方法で好適に作製することができる。図
2(a)、(b)は圧縮成形法を用いて図1(b)に示
す本発明の複合がいしを作製する方法の一例を説明する
ための図である。図2(a)、(b)に示す例では、ガ
ム状または粘土状のゴムを使用した場合を説明する。
The composite insulator 1 of the present invention can be suitably manufactured by any one of a molding method such as casting, liquid rubber injection molding (LIM), compression, injection, heat shrinkage, and cold shrink. FIGS. 2A and 2B are views for explaining an example of a method for producing the composite insulator of the present invention shown in FIG. 1B using a compression molding method. In the example shown in FIGS. 2A and 2B, a case in which gum-like or clay-like rubber is used will be described.

【0014】まず、図2(a)に示すように、金型11
(ここでは下型のみを示す)において4枚ある笠の上か
ら3枚目と4枚目の間の胴部のところに堰12を設け
る。そして、FRPコア2を金型11にセットするとと
もに、上から3枚の部分のみに通常のゴム13が充填さ
れるようにして圧縮成形を行い、上から笠3枚目までの
外被5をFRPコア2の周囲に設けた複合がいしを圧縮
成形で得る。次に、図2(b)に示すように、得られた
上から笠3枚目までの外被5を形成したFRPコア2を
金型11にセットし、笠4枚目に対応する位置にゴムに
高誘電率物質を含有させた高誘電率ゴム14が充填され
るようにして圧縮成形を行うことで、図1(b)に示す
一部に高誘電率物質を含有させた複合がいし1を得るこ
とができる。液状ゴムを使用したLIM成形の場合は、
堰を設けた金型を上型、下型とも閉じておき、まず、図
2(b)に示すの部分より通常の液状ゴムを注入し、
次いで、図2(b)に示すの部分より高誘電率物質を
含有する液状ゴムを注入することで、成形を行うことが
できる。その際、の部分との部分からそれぞれの液
状ゴムを同時に注入してもよい。
First, as shown in FIG.
In this case (only the lower mold is shown), weirs 12 are provided at the trunk between the third and fourth sheets from the top of the four shades. Then, while setting the FRP core 2 in the mold 11, compression molding is performed so that only the three parts from the top are filled with the normal rubber 13, and the jacket 5 from the top to the third piece of the cap is removed. A composite insulator provided around the FRP core 2 is obtained by compression molding. Next, as shown in FIG. 2 (b), the obtained FRP core 2 having the outer cover 5 formed from the top to the third cap is set in the mold 11, and the FRP core 2 is positioned at a position corresponding to the fourth cap. By performing compression molding so that the rubber is filled with the high dielectric constant rubber 14 containing a high dielectric constant substance, a composite insulator 1 containing a high dielectric constant substance in a part shown in FIG. Can be obtained. In the case of LIM molding using liquid rubber,
The mold with the weir is closed both in the upper mold and the lower mold. First, ordinary liquid rubber is injected from the part shown in FIG.
Then, molding can be performed by injecting a liquid rubber containing a high dielectric substance from the part shown in FIG. At this time, the respective liquid rubbers may be simultaneously injected from the part and the part.

【0015】[0015]

【実施例】以下、実際の例について説明する。上述した
圧縮成形方法に従って、以下の表2に示す種類のゴム、
及び、以下の表2に示す種類、配合量、平均粒径を有す
る高誘電率物質を使用して、以下の表2に示す適用部位
に高誘電率物質を含有させた本発明例の実施例1〜9と
比較例の比較例1〜3の複合がいしを準備した。ここ
で、適用部位の課電側のみとは、図1(b)に示すよう
に、下から1枚目と2枚目の笠の中間胴部までを意味す
る。準備した各複合がいしに対し、耐トラッキング性
能、最大電界、コロナ発生電圧を求めた。耐トラッキン
グ性能は、IEC60587規格、方法1の耐トラッキ
ング試験に従って求めた。最大電界は、比較例1を10
0とした時の割合を、各物質の誘電率と配合量によりコ
ンピュータシミュレーションして求めた。ここで、10
0%は約300V/mmである。コロナ発生電圧は複合
がいしに、印加する電圧を変えて電圧を加え、コロナが
発生する電圧とした。結果を以下の表2に示す。
An actual example will be described below. According to the compression molding method described above, rubber of the type shown in Table 2 below,
Examples of the present invention in which a high dielectric substance having a type, a blending amount, and an average particle diameter shown in Table 2 below and a high dielectric substance was contained in an application site shown in Table 2 below were used. Composite insulators of Comparative Examples 1 to 9 and Comparative Examples 1 to 3 were prepared. Here, only the power-applied side of the application site means up to the middle trunk of the first and second shades from below, as shown in FIG. 1B. For each prepared composite insulator, tracking resistance, maximum electric field, and corona generation voltage were determined. The tracking resistance was determined according to the tracking resistance test of Method 1 of IEC60587 standard. The maximum electric field was 10 in Comparative Example 1.
The ratio when it was set to 0 was determined by computer simulation based on the dielectric constant and compounding amount of each substance. Where 10
0% is about 300 V / mm. The corona generation voltage was applied to the composite insulator by changing the applied voltage to obtain a voltage at which corona was generated. The results are shown in Table 2 below.

【0016】[0016]

【表2】 [Table 2]

【0017】表2の結果から、ゴムの全体または一部に
高誘電率物質を含有させた実施例1〜9は、高誘電率材
料を含有させなかった比較例1及び誘電率が10以下の
物質を含有させた比較例2と比べて、耐トラッキング性
能は同等で、加わる電界は低く、コロナ発生電圧は高く
なることがわかった。また、誘電率が10以上のカーボ
ンを含有させた場合は、実施例1〜9と比べて、加わる
電界及びコロナ発生電圧は同等だが、耐トラッキング性
能が悪化することがわかった。
From the results in Table 2, it can be seen that Examples 1 to 9 in which a high dielectric substance is contained in the whole or a part of the rubber are Comparative Example 1 in which the high dielectric material is not contained and Comparative Example 1 in which the dielectric constant is 10 or less. As compared with Comparative Example 2 containing the substance, it was found that the tracking resistance was the same, the applied electric field was low, and the corona generation voltage was high. When carbon having a dielectric constant of 10 or more was contained, the applied electric field and corona generation voltage were equal to those in Examples 1 to 9, but it was found that the tracking resistance deteriorated.

【0018】[0018]

【発明の効果】以上の説明から明らかなように、本発明
によれば、シリコーンゴム等の絶縁性高分子材料からな
る外被の全部または一部に好ましくは所定の粒径で所定
量の高誘電率物質を含有させているため、複合がいしの
外被全体または一部を電界に強い構成とすることができ
る。その結果、加わる電界を緩和してコロナ放電を抑制
でき、長寿命化を達成できる。また、外被全体または一
部を電界に強い構成とできるため、その胴径、全長を小
さくでき、複合がいしの形状のコンパクト化を達成する
ことができる。
As is apparent from the above description, according to the present invention, all or a part of the jacket made of an insulating polymer material such as silicone rubber is preferably of a predetermined particle size and a predetermined amount. Since the dielectric material is contained, the whole or part of the outer cover of the composite insulator can be made to be resistant to an electric field. As a result, the applied electric field can be relaxed to suppress corona discharge, and a longer life can be achieved. In addition, since the whole or a part of the outer cover can be configured to be resistant to an electric field, its body diameter and overall length can be reduced, and the shape of the composite insulator can be made more compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)、(b)はそれぞれ本発明の複合がいし
の一例の構成を示す図である。
FIGS. 1A and 1B are diagrams each showing a configuration of an example of a composite insulator of the present invention.

【図2】(a)、(b)はそれぞれ圧縮成形法を用いて
本発明の複合がいしを作製する方法の一例を説明するた
めの図である。
FIGS. 2A and 2B are diagrams for explaining an example of a method for producing a composite insulator of the present invention using a compression molding method.

【図3】従来の複合がいしの一例の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of an example of a conventional composite insulator.

【符号の説明】[Explanation of symbols]

1 複合がいし、2 FRPコア、3 笠、4 胴部、
5 外被、5A 課電側の一部分、5B 課電側以外の
部分、11 金型、12 堰、13 ゴム、14高誘電
率ゴム
1 composite insulator, 2 FRP core, 3 shades, 4 torso,
5 Enclosure, 5A Part of the power receiving side, 5B Part other than the power receiving side, 11 Mold, 12 Weir, 13 Rubber, 14 High dielectric constant rubber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅田 逸樹 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 Fターム(参考) 5G331 AA02 AA03 AA06 BA05 CA01 CA04 CA05 CA06 DA01 5G333 AA11 AB01 AB28 AB29 BA01 CA01 CC17 DA04 DA05 DA21 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Itsuki Umeda 2-56, Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Japan F Co., Ltd. F-term (reference) 5G331 AA02 AA03 AA06 BA05 CA01 CA04 CA05 CA06 DA01 5G333 AA11 AB01 AB28 AB29 BA01 CA01 CC17 DA04 DA05 DA21

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】絶縁性高分子材料を外被材として用いる複
合がいしにおいて、外被全体または外被の一部が高誘電
率物質を含むことを特徴とする複合がいし。
1. A composite insulator using an insulating polymer material as a jacket material, wherein the entire jacket or a part of the jacket contains a high dielectric substance.
【請求項2】前記絶縁性高分子材料が、シリコーンゴ
ム、エチレン-プロピレン-ジエン共重合体(EPDM)
またはエポキシ樹脂のいずれかからなり、前記高誘電率
物質が、酸化チタン、酸化亜鉛、酸化銅、酸化錫または
チタン酸バリウム、炭化珪素、チタン酸鉛、ニオブ酸リ
チウム、ニオブ酸鉛のいずれかからなる請求項1記載の
複合がいし。
2. The insulating polymer material is a silicone rubber, an ethylene-propylene-diene copolymer (EPDM).
Or made of any one of epoxy resins, wherein the high dielectric constant material is titanium oxide, zinc oxide, copper oxide, tin oxide or barium titanate, silicon carbide, lead titanate, lithium niobate, or lead niobate. A composite insulator according to claim 1.
【請求項3】前記高誘電率物質の平均粒径が0.1〜5
0μmであり、その配合量が絶縁性高分子材料のポリマ
ー分100重量部に対して1−100重量部である請求
項1または2記載の複合がいし。
3. The high dielectric constant substance has an average particle size of 0.1 to 5
3. The composite insulator according to claim 1, wherein the amount is 0 μm, and the compounding amount is 1 to 100 parts by weight based on 100 parts by weight of the polymer component of the insulating polymer material.
【請求項4】複合がいしの成形方法が、流し込み、液状
ゴムインジェクションモールディング(LIM)、圧
縮、インジェクション、熱収縮、コールドシュリンクの
いずれかの方法である請求項1〜3のいずれか1項に記
載の複合がいし。
4. The method according to claim 1, wherein the molding method of the composite insulator is any one of casting, liquid rubber injection molding (LIM), compression, injection, heat shrinkage, and cold shrink. Composite insulator.
【請求項5】前記高誘電率物質として誘電率が10以上
である物質を使用する請求項1〜4のいずれか1項に記
載の複合がいし。
5. The composite insulator according to claim 1, wherein a substance having a dielectric constant of 10 or more is used as said high dielectric substance.
JP2000076431A 2000-03-17 2000-03-17 Composite insulator Pending JP2001266680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000076431A JP2001266680A (en) 2000-03-17 2000-03-17 Composite insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000076431A JP2001266680A (en) 2000-03-17 2000-03-17 Composite insulator

Publications (1)

Publication Number Publication Date
JP2001266680A true JP2001266680A (en) 2001-09-28

Family

ID=18594174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000076431A Pending JP2001266680A (en) 2000-03-17 2000-03-17 Composite insulator

Country Status (1)

Country Link
JP (1) JP2001266680A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531112B2 (en) * 2004-05-04 2009-05-12 Samsung Electro-Mechanics Co., Ltd. Composition for forming dielectric, capacitor produced using composition, and printed circuit board provided with capacitor
JP2010277914A (en) * 2009-05-29 2010-12-09 Shin Etsu Polymer Co Ltd Capacitance type input device
WO2011052614A1 (en) 2009-10-28 2011-05-05 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Silicone rubber composition
CN106653242A (en) * 2016-11-09 2017-05-10 郑州电力高等专科学校 Insulator for high-voltage power transmission line and manufacturing method of insulator
US10584227B2 (en) 2015-09-17 2020-03-10 Shin-Etsu Chemical Co., Ltd. Silicone rubber composition and power cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531112B2 (en) * 2004-05-04 2009-05-12 Samsung Electro-Mechanics Co., Ltd. Composition for forming dielectric, capacitor produced using composition, and printed circuit board provided with capacitor
JP2010277914A (en) * 2009-05-29 2010-12-09 Shin Etsu Polymer Co Ltd Capacitance type input device
WO2011052614A1 (en) 2009-10-28 2011-05-05 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Silicone rubber composition
US10584227B2 (en) 2015-09-17 2020-03-10 Shin-Etsu Chemical Co., Ltd. Silicone rubber composition and power cable
CN106653242A (en) * 2016-11-09 2017-05-10 郑州电力高等专科学校 Insulator for high-voltage power transmission line and manufacturing method of insulator

Similar Documents

Publication Publication Date Title
TWI529746B (en) Elastomeric composition, electrical stress control device and method of making the electrical stress control device
CN1248341A (en) Polymer composition
EP4582478A1 (en) Semi-conductive shielding material based on compound resin, preparation method therefor and use thereof
US8696939B2 (en) High voltage insulating materials
JP2001266680A (en) Composite insulator
Jing et al. PVDF-based composites filled with PZT@ Ag core-shell structured particles for enhanced dielectric properties
US11491706B2 (en) Material for 3D printing and a 3D printed device
JP2005327580A (en) Insulation spacer and gas insulation equipment
DE2746296B2 (en) Cable set for plastic-insulated power cables
JP2006252893A (en) Gradient dielectric constant electric insulation mold manufacturing method and electric insulation mold
DE3008264C2 (en) Permanently elastic dielectric material for influencing electrical fields, as well as its use in field control elements
JPH11134944A (en) High thermal conductive insulating material and superconducting cable
DE69601649T2 (en) FIELD CONTROL FOR HIGH VOLTAGE CABLE TERMINAL
KR101480009B1 (en) Semi-conductive compound for ultra-high voltage power cables and ultra-high voltage power cables using thereof
Nazar et al. Electrical tree propagation in XLPE containing untreated and treated silica nanofiller
EP2252651A1 (en) Insulating medium and its use in high voltage devices
DE102019125962A1 (en) Dry, syntactic foam as an electrically insulating material
JP2601512B2 (en) Epoxy resin composition for casting
JPH02212545A (en) Epoxy resin composition for casting
JP3428203B2 (en) Epoxy resin composition for sulfur hexafluoride gas insulation equipment
JP3030387B2 (en) High dielectric constant composite material
Head et al. Modification of the dielectric properties of polymeric materials
Eid et al. Estimation of Breakdown Voltage of Epoxy/SiO 2 Nanocomposites Insulators Using Machine Learning Algorithm
Walsh et al. Electrical and mechanical characterizations of nanocomposite insulation for HTS systems
JP2004002497A (en) High dielectric constant substrate material