[go: up one dir, main page]

JP2001293442A - Optical element cleaning method - Google Patents

Optical element cleaning method

Info

Publication number
JP2001293442A
JP2001293442A JP2000115162A JP2000115162A JP2001293442A JP 2001293442 A JP2001293442 A JP 2001293442A JP 2000115162 A JP2000115162 A JP 2000115162A JP 2000115162 A JP2000115162 A JP 2000115162A JP 2001293442 A JP2001293442 A JP 2001293442A
Authority
JP
Japan
Prior art keywords
optical element
cleaning
optical
heating
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000115162A
Other languages
Japanese (ja)
Inventor
Ryuji Hiroo
竜二 枇榔
Kenji Ando
謙二 安藤
Minoru Otani
実 大谷
Yasuyuki Suzuki
康之 鈴木
Hidehiro Kanazawa
秀宏 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000115162A priority Critical patent/JP2001293442A/en
Publication of JP2001293442A publication Critical patent/JP2001293442A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning

Landscapes

  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Surface Treatment Of Glass (AREA)
  • Lasers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

(57)【要約】 【課題】 本発明は、SiO2系光学素子に限らず、CaF2
系の光学素子にも適用可能な光学素子表面の吸着有機物
を除去する洗浄方法を提案すること及び光学素子が、反
射防止膜等の光学的薄膜を有していても適用可能な洗浄
方法を提案することを課題とする。 【解決手段】 本発明は、光学素子の洗浄方法におい
て、(1)該光学素子を有機溶剤で洗浄する工程と、
(2)該光学素子を酸素を含む雰囲気中で紫外光を照射
して洗浄する工程と、(3)該光学素子を加熱して洗浄
する工程とを少なくとも有する光学素子の洗浄方法を提
案する。
(57) Abstract: The present invention is not limited to SiO 2 based optical element, CaF 2
Of a cleaning method that removes adsorbed organic matter on the surface of an optical element that can be applied to optical elements of a system, and a cleaning method that can be applied even if the optical element has an optical thin film such as an antireflection film. The task is to The present invention provides a method for cleaning an optical element, comprising: (1) a step of cleaning the optical element with an organic solvent;
The present invention proposes a method for cleaning an optical element, which comprises at least (2) a step of irradiating the optical element with ultraviolet light in an atmosphere containing oxygen and a step of (3) heating and cleaning the optical element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ArFエキシマレ
ーザー光を用いる装置の光学系に用いられる光学素子の
洗浄方法に関するものである。本発明で、光学素子とは
光学素子用の材料を所定の形状に加工したものを指す。
この場合、表面に光学的薄膜(例えば反射防止膜等)が
成膜されたものも光学素子に含まれるものとする。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for cleaning an optical element used in an optical system of an apparatus using ArF excimer laser light. In the present invention, an optical element refers to a material obtained by processing a material for an optical element into a predetermined shape.
In this case, the optical element includes an optical thin film (for example, an antireflection film) formed on the surface.

【0002】[0002]

【従来の技術】半導体素子の高集積化の進行とともに、
半導体製造工程のリソグラフィー工程で使用される露出
光は短波長化している。最近、次世代の露光光として1
93nmの波長のArFエキシマレーザー光が注目されて
いる。
2. Description of the Related Art As semiconductor devices become more highly integrated,
Exposure light used in a lithography process in a semiconductor manufacturing process is becoming shorter in wavelength. Recently, as next-generation exposure light,
An ArF excimer laser beam having a wavelength of 93 nm has attracted attention.

【0003】ArFエキシマレーザー光用の光学装置で
用いられる光学素子としては、短波長光でも充分な光透
過性及び光反射性を有し光学的に等方的である人工石英
と蛍石が用いられる。
[0003] As an optical element used in an optical device for ArF excimer laser light, artificial quartz and fluorite, which are optically isotropic and have sufficient light transmittance and light reflectivity even with short wavelength light, are used. Can be

【0004】従来これらの光学素子の洗浄は、水溶液系
洗浄液による洗浄と有機溶媒系による洗浄を組み合わせ
た洗浄法が主流であった。また、比較的新しい試みとし
て、特開平9−155309に記載されるように有機溶
剤洗浄シーケンスの後加熱乾燥するのみ、もしくは特開
平10−158035に記載されるように酸洗浄後、光
学素子を加熱し、最後にUVまたはレーザーを照射する
試みが為されている。
Conventionally, the mainstream of cleaning these optical elements is a cleaning method that combines cleaning with an aqueous cleaning solution and cleaning with an organic solvent system. In addition, as a relatively new attempt, an optical element is heated and dried only after an organic solvent washing sequence as described in JP-A-9-155309, or after acid cleaning as described in JP-A-10-158435. Finally, attempts have been made to irradiate UV or laser.

【0005】しかし、これらの洗浄法では、光学素子表
面に吸着した雰囲気中の微量の有機物及び水による汚染
を充分に取り除くことができなかった。これらの物質
は、大気中(クリーンルーム大気にも)に浮遊してお
り、建材、壁面等より発生するするフタレート類、シロ
キサン類等である。
However, these cleaning methods have not been able to sufficiently remove contamination by trace amounts of organic substances and water in the atmosphere adsorbed on the optical element surface. These substances are suspended in the atmosphere (also in the clean room atmosphere), and are phthalates, siloxanes, and the like generated from building materials, wall surfaces, and the like.

【0006】これらの有機物が光学素子表面に吸着され
ると明らかに光学素子の光学特性を劣化させる。例え
ば、特開平10−158035号公報には合成石英ガラ
ス製光学素子をクリーンルームに24時間放置すること
で、特定波長光に対する透過率が0.5%近く低下する
という報告がされている。
When these organic substances are adsorbed on the surface of the optical element, the optical characteristics of the optical element obviously deteriorate. For example, Japanese Patent Application Laid-Open No. 10-158035 reports that the transmittance of light having a specific wavelength decreases by about 0.5% when an optical element made of synthetic quartz glass is left in a clean room for 24 hours.

【0007】これらの吸着有機物による光学素子表面の
汚染は、一つ一つの光学素子については僅かなものであ
るが、光学装置中には、通常100枚程度光学素子が使
用されているため、光学特性の劣化は相乗的に大きくな
り、装置の不具合を引き起こすという問題点があった。
[0007] The contamination of the surface of the optical element by these adsorbed organic substances is slight for each optical element. However, since about 100 optical elements are usually used in an optical device, the optical element is contaminated. Deterioration of the characteristics is synergistically increased, causing a problem that the device is malfunctioned.

【0008】従来技術の中でも、特開平10−1580
35号公報は、光学素子に吸着する有機物の存在を指摘
し、その有機物を除去するとともに、その再付着を抑制
する洗浄方法を提案している。
[0008] Among the prior art, Japanese Patent Application Laid-Open No. 10-1580
No. 35 points out the presence of an organic substance adsorbed on an optical element, and proposes a cleaning method for removing the organic substance and suppressing its re-adhesion.

【0009】それは作成した光学素子にHF処理を施
し、光学素子表面のSi終端をフッ化または水素化によ
り不活性化し、その後加熱処理を行なうことを必須とし
ており、その後必要に応じて、UVまたはエキシマレー
ザーによる光洗浄を行なう工程からなる。
[0009] It is necessary to perform HF treatment on the produced optical element, inactivate the Si terminal on the surface of the optical element by fluorination or hydrogenation, and then perform a heat treatment. It comprises a step of performing light cleaning by an excimer laser.

【0010】特開平10−158035号公報の方法
は、有機物汚染を除去するだけでなく、再付着を抑制す
るという非常に優れた洗浄方法である。しかし、光学素
子のHF処理は、反応温度、反応時間、HF濃度を非常
に厳密にコントロールしなければならず、さらに、失敗
した場合、光学素子の表面粗さを増加するというリスク
を伴ったものであった。
The method disclosed in Japanese Patent Application Laid-Open No. 10-158035 is a very excellent cleaning method that not only removes organic matter contamination but also suppresses re-adhesion. However, HF treatment of optical elements requires very strict control of the reaction temperature, reaction time, and HF concentration, and, if unsuccessful, involves the risk of increasing the surface roughness of the optical element. Met.

【0011】また、特開平10−158035号公報の
方法は、HF処理により光学素子表面のSiをフッ素化
又は水素化する方法であるので、実質的にSiO2を主成分
とする光学素子にしか適用できなかった。
Further, the method of JP-A-10-158035 Patent Publication, since a method of fluorination or hydrogenation of the Si of the optical element surface by HF treatment, substantially only an optical element composed mainly of SiO 2 Could not be applied.

【0012】さらに、光学素子表面に反射防止膜等の異
なる材料から成る薄膜を成膜した場合には、光学素子表
面に吸着する有機物よりも、この薄膜表面に吸着する有
機物が光学素子の光学特性を劣化させる主原因となる
が、特開平10−158035号公報の方法では対応す
ることができなかった。
Further, when a thin film made of a different material such as an anti-reflection film is formed on the surface of the optical element, the organic substance adsorbed on the surface of the thin film has a higher optical characteristic than the organic substance adsorbed on the surface of the optical element. However, the method described in Japanese Patent Application Laid-Open No. H10-158035 could not cope with this.

【0013】[0013]

【発明が解決しようとする課題】本発明は、これらの問
題点に鑑みなされたものであり、SiO2系光学素子に限ら
ず、CaF2系の光学素子にも適用可能な光学素子表面の吸
着有機物を除去する洗浄方法を提案することが課題であ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of these problems, and is not limited to SiO 2 -based optical elements, but is also applicable to CaF 2 -based optical elements. The problem is to propose a cleaning method for removing organic substances.

【0014】また、光学素子が、反射防止膜等の光学的
薄膜を有していても適用可能な洗浄方法を提案すること
を課題とする。
Another object of the present invention is to propose a cleaning method applicable even when the optical element has an optical thin film such as an antireflection film.

【0015】光学素子はその表面状態によって光学特性
が敏感に変動する。通常、大気中にこれら光学素子を放
置すると、大気中の有機物が徐々に素子表面に付着し光
学特性を変化させていく。特に光学特性のうち透過率
は、反射率よりその傾向が顕箸で、有機物の付着により
透過率が減少する。さらにこの現象は、可視域より紫外
域の波長帯で顕著である。
The optical characteristics of the optical element fluctuate sensitively depending on the surface condition. Normally, when these optical elements are left in the air, organic substances in the air gradually adhere to the element surface and change the optical characteristics. In particular, among the optical characteristics, the transmittance tends to be more pronounced than the reflectance, and the transmittance is reduced due to the attachment of an organic substance. Further, this phenomenon is more remarkable in a wavelength band in an ultraviolet region than in a visible region.

【0016】従来例の洗浄方法では、大部分の有機物の
除去は可能であるが、わずかな有機物の残さや有機溶剤
が残さとして残るため、光学特性が微妙に劣化した。
Although most of the organic substances can be removed by the conventional cleaning method, optical characteristics are slightly deteriorated because a small amount of organic substances and organic solvents remain as residues.

【0017】個々の光学素子の光学特性の劣化は僅かで
あっても、多数の光学素子を内蔵した光学機器では、光
学特性変動が相乗するために所望の性能を得られない等
の問題があった。
Even if the optical characteristics of individual optical elements are slightly deteriorated, there is a problem that desired performance cannot be obtained in an optical device having a large number of optical elements built therein because the fluctuations of the optical characteristics are synergistic. Was.

【0018】[0018]

【課題を解決するための手段】本発明は、光学素子の洗
浄方法において、(1)該光学素子を有機溶剤で洗浄す
る工程と、(2)該光学素子を酸素を含む雰囲気中で紫
外光を照射して洗浄する工程と、(3)該光学素子を加
熱して洗浄する工程とを少なくとも有する光学素子の洗
浄方法を提案する。
According to the present invention, there is provided a method for cleaning an optical element, comprising: (1) a step of cleaning the optical element with an organic solvent; and (2) a step of cleaning the optical element with ultraviolet light in an atmosphere containing oxygen. And (3) a step of heating and cleaning the optical element to provide an optical element cleaning method.

【0019】本発明は、光学素子を有機溶剤で洗浄後、
紫外光を照射洗浄し、さらに加熱乾燥させる洗浄方法で
ある。
According to the present invention, after cleaning the optical element with an organic solvent,
This is a cleaning method of performing irradiation cleaning with ultraviolet light, and further heating and drying.

【0020】特に、ArFエキシマレーザーを扱う光学
装置に用いられる光学素子の洗浄に好適である。
In particular, it is suitable for cleaning an optical element used in an optical device that handles an ArF excimer laser.

【0021】大気中に放置することで光学素子表面に吸
着する有機物は、まず有機溶剤で拭き取ることによりよ
り大部分が除去される。しかし、これだけでは完璧に取
り除くことができず、素子表面に微量ながら有機物は残
留する。
Most of organic substances adsorbed on the surface of the optical element when left in the atmosphere are removed by first wiping with an organic solvent. However, this alone cannot be completely removed, and a small amount of organic matter remains on the element surface.

【0022】それを除去するために酸素を含む雰囲気中
で紫外光を光学素子表面に照射する。これにより、素子
表面で発生した活性酸素が残留有機物と反応し、ガス
(H2O、CO2等)となり素子表面から脱離する。この
ようにして、素子表面の徴量な有機物を除去できる。
In order to remove it, the surface of the optical element is irradiated with ultraviolet light in an atmosphere containing oxygen. As a result, active oxygen generated on the element surface reacts with the residual organic matter to become a gas (H 2 O, CO 2, etc.) and is desorbed from the element surface. In this way, a trace amount of organic substances on the element surface can be removed.

【0023】一方、有機溶剤は揮発性が高いとは言え、
その一部は容易には蒸発せず、紫外線照射の後も試料表
面に残留する。そこでこれを除去するために加熱乾燥を
行なう。
On the other hand, although the organic solvent is highly volatile,
Some of them do not evaporate easily and remain on the sample surface even after irradiation with ultraviolet light. Therefore, heating and drying are performed to remove this.

【0024】ここで、紫外光照射の後に加熱を実施する
理由は、有機物が残存している状態で加熱を行うと有機
物が光学素子表面に炭化付着してしまい、除去不可能と
なるからである。
Here, the reason why the heating is performed after the irradiation with the ultraviolet light is that if the heating is performed in a state where the organic substance remains, the organic substance carbonizes and adheres to the surface of the optical element and cannot be removed. .

【0025】本発明では、これらの工程を経ることによ
り、光学素子の表面を従来法以上に清浄化することが可
能となる。
In the present invention, through these steps, the surface of the optical element can be cleaned more than the conventional method.

【0026】また、本発明の洗浄法は、光学素子の材料
によらず幅広い適用が可能であるが、光学素子がSiO2
又はCaF2製の場合に特に有効である。さらに本発明の洗
浄方法は、光学素子が表面に反射防止膜等の光学的薄膜
を有していても適用可能である。
The cleaning method of the present invention can be widely applied regardless of the material of the optical element, but is particularly effective when the optical element is made of SiO 2 or CaF 2 . Further, the cleaning method of the present invention is applicable even if the optical element has an optical thin film such as an antireflection film on the surface.

【0027】本発明で、洗浄用に用いられる有機溶媒と
しては速乾性物質を用いることが好ましい。具体的に
は、有機溶媒として、メチルアルコールとエーテルとを
1:9の質量比で混合したものが好適である。
In the present invention, it is preferable to use a quick-drying substance as the organic solvent used for washing. Specifically, a mixture of methyl alcohol and ether at a mass ratio of 1: 9 is preferable as the organic solvent.

【0028】ここで前記工程(1)の有機溶媒による洗
浄は光学素子表面に吸着した有機物汚染を充分に除去す
ることが可能であり、かつ、光学素子表面を傷つけない
方法であれば任意であるが、例えば、洗浄用布、洗浄用
ペーパーを用いての手作業による洗浄によっても充分な
清浄度を確保することが可能である。
Here, the washing with the organic solvent in the step (1) is optional as long as it can remove organic contaminants adsorbed on the surface of the optical element sufficiently and does not damage the surface of the optical element. However, sufficient cleanliness can be ensured by, for example, manual cleaning using a cleaning cloth or cleaning paper.

【0029】ただ、手作業で洗浄を行なう場合には、汚
染の再付着には充分に注意をする必要がある。
However, when cleaning is performed manually, it is necessary to pay close attention to reattachment of contamination.

【0030】有機溶媒による洗浄終了後に直ちに、紫外
線照射による洗浄を行なうことが望ましい。洗浄後の放
置時間が長くなるほど、大気からの有機物付着量が多く
なるからである。
Immediately after the completion of the washing with the organic solvent, it is desirable to carry out washing by irradiation with ultraviolet rays. This is because the longer the standing time after the washing, the larger the amount of organic substances attached from the atmosphere.

【0031】紫外線照射雰囲気における酸素濃度が5%
以上であることが望ましい。さらに酸素分圧が0.1Pa
以上であることが望ましい。酸素分圧がこの範囲であれ
ば、充分な量の活性酸素が光学素子表面近傍で発生し、
素子表面に残留する有機物を効果的にガス化する。ま
た、前記紫外光として波長が300nm以下の紫外光を
用いることが望ましい。特に好適には185、254n
mの紫外線を照射することである。この波長の紫外線
は、特に活性酸素の生成率が高いからである。工程
(2)の酸素雰囲気中における紫外線照射工程は、専用
の容器中で行うことが望ましい。該容器は少なくとも所
定の波長の紫外線を発する光源を有する。さらに、必要
であれば容器中に酸素を供給するための酸素源を有して
いてもよい。ここで酸素雰囲気とは、必ずしも酸素10
0%でなくとも良く、紫外線照射により充分な量の活性
酸素を発生可能な雰囲気であれば良い。例えば、容器中
に大気を導入して紫外線照射を行なうことも可能であ
る。ただし、大気中には有機物及び水分が含まれるの
で、フィルターなどを通して清浄化した大気を容器中に
導入することが望ましい。
When the oxygen concentration in the ultraviolet irradiation atmosphere is 5%
It is desirable that this is the case. Furthermore, oxygen partial pressure is 0.1Pa
It is desirable that this is the case. If the oxygen partial pressure is within this range, a sufficient amount of active oxygen is generated near the optical element surface,
Organic substances remaining on the element surface are effectively gasified. It is desirable to use ultraviolet light having a wavelength of 300 nm or less as the ultraviolet light. Particularly preferably 185, 254n
m ultraviolet rays. This is because ultraviolet light of this wavelength has a particularly high active oxygen generation rate. The ultraviolet irradiation step in the oxygen atmosphere in the step (2) is desirably performed in a dedicated container. The container has a light source that emits ultraviolet light of at least a predetermined wavelength. Further, if necessary, the container may have an oxygen source for supplying oxygen. Here, the oxygen atmosphere is necessarily oxygen 10
The atmosphere may not be 0%, and may be any atmosphere that can generate a sufficient amount of active oxygen by ultraviolet irradiation. For example, ultraviolet irradiation can be performed by introducing air into the container. However, since the atmosphere contains organic matter and moisture, it is desirable to introduce purified air into the container through a filter or the like.

【0032】さらに、前記工程(3)の加熱を1Pa以
下の圧力で行なうことが望ましい。
Further, it is desirable that the heating in the step (3) is performed at a pressure of 1 Pa or less.

【0033】本発明者らは加熱時の圧力を変化して、加
熱時の圧力と光学特性の回復率との関係を調査したが
(図4)、その結果、光学素子の透過率が回復するため
に要する時間は、減圧下の方が短いという結果を得た。
このように、減圧下で加熱を行なうことで光学素子の洗
浄に要する時間を短縮することが可能となる。
The present inventors investigated the relationship between the pressure during heating and the recovery rate of the optical characteristics by changing the pressure during heating (FIG. 4). As a result, the transmittance of the optical element was recovered. Required time was shorter under reduced pressure.
As described above, by performing heating under reduced pressure, the time required for cleaning the optical element can be reduced.

【0034】また、前記工程(3)において、加熱温度
は70℃以上、300℃以下とすることが望ましい。
In the step (3), the heating temperature is desirably 70 ° C. or more and 300 ° C. or less.

【0035】光学素子の加熱温度は、主に光学素子の材
質により好適な範囲が選択される。SiO2製の光学素子
は、500℃以下であれば変形することなく加熱を行な
うことができる。
A suitable range for the heating temperature of the optical element is selected mainly depending on the material of the optical element. The optical element made of SiO 2 can be heated without deformation at 500 ° C. or lower.

【0036】蛍石の場合は、300℃以下であれば、ク
ラックを生じることなく加熱を行なうことができる。
In the case of fluorite, if the temperature is 300 ° C. or lower, heating can be performed without generating cracks.

【0037】加熱温度の下限は、付着した有機物が脱離
可能な温度以上であれば良く、発明者等の実験によれば
70℃以上であることが望ましい。
The lower limit of the heating temperature may be at least the temperature at which the attached organic substance can be desorbed, and according to the experiments conducted by the inventors, it is preferable that the heating temperature be at least 70 ° C.

【0038】また、前記工程(3)において、加熱時間
は40分以上であることが望ましい。本発明者らが加熱
時間と光学特性(透過率)との関係を調査したところに
よると、加熱時間とともに透過率は増加し、材料によっ
て決まっている上限値に至り一定となる。加熱温度は、
この上限値に至るまでの加熱時間に関わっている。加熱
温度が高いほど、上限値に達するまでの時間が短い。大
気圧で加熱を行なった場合でも、40分間加熱を行なえ
ば、透過率の上限値に達することから、加熱時間は40
分以上であることが望ましい。
In the step (3), the heating time is desirably 40 minutes or more. The present inventors have investigated the relationship between the heating time and the optical characteristics (transmittance), and found that the transmittance increases with the heating time, reaches an upper limit determined by the material, and becomes constant. The heating temperature is
It is related to the heating time up to this upper limit. The higher the heating temperature, the shorter the time to reach the upper limit. Even when heating is performed at atmospheric pressure, if heating is performed for 40 minutes, the upper limit of the transmittance is reached.
Desirably, it is at least minutes.

【0039】[0039]

【実施例】(実施例1)研磨した平行な2面を持つ厚さ
2mmの合成石英基板を、洗浄しない状態で透過率及び
反射率を測定した。その後、メチルアルコール:エーテ
ル=1:9(質量比)の割合で混合して洗浄用の有機溶
剤を作成した。
(Example 1) The transmittance and reflectance of a polished synthetic quartz substrate having a thickness of 2 mm having two parallel surfaces were measured without cleaning. Thereafter, the mixture was mixed at a ratio of methyl alcohol: ether = 1: 9 (mass ratio) to prepare an organic solvent for washing.

【0040】この有機溶剤を洗浄用布に適量染み込ませ
て、手作業で拭き取り洗浄を行なった。洗浄用布中に取
り込まれた汚れが再付着しないように1枚の洗浄用布で
行なう拭き取りは一方向のみとして、戻し拭きを行なわ
なかった。また、一回の拭き取り毎に新しい洗浄用布を
用いて拭き取りを行なった。そして、一つの洗浄面につ
いて拭き取り洗浄を少なくとも異なる3方向(例えばタ
テ、ヨコ、ナナメ)について行なった。
An appropriate amount of this organic solvent was impregnated into a cleaning cloth, and the cloth was wiped and cleaned by hand. In order to prevent the dirt taken into the cleaning cloth from re-adhering, the wiping with one cleaning cloth was performed only in one direction, and the back wiping was not performed. In addition, each time of wiping, wiping was performed using a new cleaning cloth. Then, wiping and cleaning was performed on at least three different directions (for example, vertical, horizontal, and slug) on one cleaning surface.

【0041】本実施例では、手作業による拭き取り洗浄
を行なったが、本洗浄操作は拭き取りに限らず、例えば
超音波洗浄法等公知の方法を用いることが可能である。
In the present embodiment, the wiping and cleaning is performed manually. However, the main cleaning operation is not limited to the wiping, and a known method such as an ultrasonic cleaning method can be used.

【0042】拭き取り洗浄した光学素子に直ちに紫外線
照射を行なった。
The wiped and cleaned optical element was immediately irradiated with ultraviolet light.

【0043】紫外線照射は酸素を80%含む雰囲気中に
おいて室温で行なった。紫外線照射ランプとして低圧水
銀ランプを用い10分間にわたり紫外線照射を行なっ
た。紫外線照射に用いられる光源としては、この他に、
重水素ランプ及びキセノンランプが挙げられるがランプ
の寿命等を考えると低圧水銀ランプがもっとも好適であ
る。
The ultraviolet irradiation was performed at room temperature in an atmosphere containing 80% oxygen. Ultraviolet irradiation was performed for 10 minutes using a low-pressure mercury lamp as the ultraviolet irradiation lamp. In addition to the light source used for UV irradiation,
Although a deuterium lamp and a xenon lamp are mentioned, a low-pressure mercury lamp is most preferable in consideration of the life of the lamp.

【0044】紫外線照射実験の結果によると、紫外線照
射時の酸素濃度は5%以上が好適である。酸素濃度が下
限値以上であれば実用上許容可能なレベルで活性酸素が
発生し、洗浄面に残留する微量な有機物の除去に効果が
見られる。
According to the results of the ultraviolet irradiation experiment, the oxygen concentration at the time of ultraviolet irradiation is preferably 5% or more. If the oxygen concentration is equal to or higher than the lower limit, active oxygen is generated at a practically acceptable level, which is effective in removing trace organic substances remaining on the cleaning surface.

【0045】用いる紫外線の波長は300nm以下が好
適である。特に、紫外線照射により活性酸素を効率良く
発生することが可能な185nm、254nmの紫外線が最
も好適である。
The wavelength of the ultraviolet light used is preferably 300 nm or less. In particular, ultraviolet rays of 185 nm and 254 nm, which can generate active oxygen efficiently by ultraviolet irradiation, are most preferable.

【0046】また、紫外線の照射時間は、事前洗浄の程
度、洗浄面に対する紫外線の入射角に、用いる紫外線の
波長にも依存するが、上記波長範囲の紫外線を垂直入射
する場合には5分以上照射することで表面の残留有機物
を除去する事が可能となる。より望ましくは垂直入射条
件で10分以上照射することが望ましい。
The irradiation time of the ultraviolet ray depends on the degree of pre-cleaning, the incident angle of the ultraviolet ray on the cleaning surface, and the wavelength of the ultraviolet ray to be used. Irradiation makes it possible to remove residual organic matter on the surface. More desirably, irradiation is performed for 10 minutes or more under the vertical incidence condition.

【0047】また、本実施例のように光学素子が、複数
の面を有している場合には、それぞれの面について、紫
外線照射を行なうことが望ましい。
When the optical element has a plurality of surfaces as in this embodiment, it is desirable to irradiate each surface with ultraviolet rays.

【0048】紫外光を10分間照射した後に、さらに、
該光学素子を加熱炉中で、大気雰囲気で150度30分
間加熱を行ない洗浄を終了した。
After irradiating with ultraviolet light for 10 minutes,
The optical element was heated in an air atmosphere at 150 ° C. for 30 minutes in a heating furnace to complete the cleaning.

【0049】洗浄の各段階において、光学素子の透過率
及び反射率を測定した。得られた結果の内透過率のデー
タについて図1に示した。この結果より、洗浄前、(有
機溶剤)洗浄、(有機溶剤+紫外光照射)洗浄、(有機
溶剤+紫外光照射+加熱)洗浄の順に透過率が上昇して
いることがわかる。そして最終的にこの石英基板の透過
率は、波長193nmで90.7%程度であった。これ
は、厚さ2mmの合成石英基板の理想透過率とほぼ一致
しており、本発明の洗浄方法により十分な洗浄が行われ
たことを示唆している。
At each stage of the washing, the transmittance and the reflectance of the optical element were measured. FIG. 1 shows the data of the internal transmittance of the obtained results. From this result, it can be seen that the transmittance increases in the order of cleaning before cleaning, (organic solvent) cleaning, (organic solvent + ultraviolet light irradiation) cleaning, and (organic solvent + ultraviolet light irradiation + heating) cleaning. Finally, the transmittance of this quartz substrate was about 90.7% at a wavelength of 193 nm. This almost coincides with the ideal transmittance of the synthetic quartz substrate having a thickness of 2 mm, which suggests that the cleaning method of the present invention has sufficiently cleaned the substrate.

【0050】(実施例2)次に研磨した平行な2面を持
つ厚さ2mmの蛍石基板を実施例1と同様の方法で洗浄
を行なった。
Example 2 Next, a polished fluorite substrate having two parallel surfaces and a thickness of 2 mm was washed in the same manner as in Example 1.

【0051】また、実施例1と同様に、洗浄前、(有機
溶剤)洗浄、(有機溶剤+紫外光照射)洗浄、(有機溶
剤+紫外光照射+加熱)洗浄の各工程で、透過率及び反
射率の評価を行なった。
In the same manner as in Example 1, before the cleaning, (organic solvent) cleaning, (organic solvent + ultraviolet light irradiation) cleaning, and (organic solvent + ultraviolet light irradiation + heating) cleaning, the transmittance and The reflectance was evaluated.

【0052】透過率について得られた結果を図2に示
す。それによると、この順番に透過率が上昇しているの
が判る。またこの結果が示すように、蛍石においては、
波長が170nm以下の紫外光領域で各洗浄の差異が顕
著に見られることから、本発明の洗浄方法形態は、紫外
光領域で特に有効であると言える。
FIG. 2 shows the results obtained for the transmittance. According to this, it can be seen that the transmittance increases in this order. Also, as the results show, in fluorite,
Since the difference between the cleanings is remarkably observed in the ultraviolet region having a wavelength of 170 nm or less, it can be said that the cleaning method of the present invention is particularly effective in the ultraviolet region.

【0053】(実施例3)研磨した平行な2面を持つ厚
さ2mmの合成石英基板を用意し、この研磨した2面
に、SiO2、Al2O3の積層構造からなる反射防止膜を真空
蒸着法でコーティングし、そしてこれを3ケ月間通常大
気中に放置した。
EXAMPLE 3 A 2 mm thick synthetic quartz substrate having two polished parallel surfaces was prepared, and an antireflection film having a laminated structure of SiO 2 and Al 2 O 3 was formed on the two polished surfaces. Coated by vacuum evaporation and left in the normal atmosphere for 3 months.

【0054】放置終了後、実施例1と同様の方法で洗浄
を行なった。その結果を図3に示す。
After the standing, cleaning was performed in the same manner as in Example 1. The result is shown in FIG.

【0055】図3より(有機溶剤)洗浄と(有機溶剤+
紫外光照射)洗浄はほとんど差はないが、(有機溶剤+
紫外光照射+加熱)洗浄により顕著に透過率が上昇して
いることが判る。
FIG. 3 shows that (organic solvent) cleaning and (organic solvent +
(Ultraviolet light irradiation) Cleaning is almost the same, but (organic solvent +
It can be seen that the transmittance was significantly increased by washing with (ultraviolet light irradiation + heating) washing.

【0056】実施例1及び実施例2においては、本実施
例ほど加熱の効果が顕著でないことから、薄膜をコーテ
ィングした光学素子は、コーティングを施さない素子よ
りも加熱の効果が大きいといえる。これは、有機溶剤が
コーティング膜中に入り込み、コーティングを施してい
ない素子と比較して蒸発しにくくなるためで、それが加
熱によって容易に除去されるからと思われる。
In Examples 1 and 2, since the effect of heating is not so remarkable as in this example, it can be said that an optical element coated with a thin film has a larger effect of heating than an element not coated. This is because the organic solvent penetrates into the coating film and is less likely to evaporate as compared with the element without the coating, which is considered to be easily removed by heating.

【0057】一方透過率の測定と同時に反射率も測定し
たが、反射率は各洗浄工程如何にかかわらず、ほとんど
変動しないことから、本発明は特に透過率のアップに寄
与していると判断される。
On the other hand, the reflectance was measured simultaneously with the measurement of the transmittance. However, since the reflectance hardly fluctuated irrespective of each washing step, it was judged that the present invention particularly contributed to the improvement of the transmittance. You.

【0058】(実施例4)研磨した平行な2面を持つ厚
さ2mmの合成石英基板をメチルアルコール1に対して
エーテル9の割合で混合した有機溶剤で表面を洗浄し、
その後酸素を含む雰囲気中で低圧水銀ランプにより10
分間紫外光を照射し、透過率を測定した。そしてこれを
半分に分割し一方を大気中で150度加熱、一方を真空
中で同様に150度加熱し、測定波長193nmにおけ
る透過率の時間に対する変化を観察した。その結果をグ
ラフ4に示す。このグラフより、真空中で加熱した方
が、透過率の回復が早いことが判る。
(Example 4) A 2 mm thick synthetic quartz substrate having two parallel polished surfaces was washed with an organic solvent in which methyl alcohol was mixed with ether at a ratio of 9 to 1 and the surface was washed.
Then, a low-pressure mercury lamp was used in an atmosphere containing oxygen for 10 minutes.
The sample was irradiated with ultraviolet light for one minute, and the transmittance was measured. This was divided into halves, and one was heated at 150 ° C. in the air and the other was similarly heated at 150 ° C. in a vacuum, and the change in transmittance at a measurement wavelength of 193 nm with respect to time was observed. The results are shown in Graph 4. From this graph, it can be seen that the recovery in transmittance is faster when heating in vacuum.

【0059】[0059]

【発明の効果】本発明の洗浄方法により、SiO2系光学素
子に限らず、CaF2系の光学素子表面の吸着有機物をも除
去することが可能となった。また、本発明の洗浄方法は
反射防止膜等の光学的薄膜を有した光学素子にも適用が
可能である。
According to the cleaning method of the present invention, it is possible to remove not only the SiO 2 optical element but also the adsorbed organic substances on the surface of the CaF 2 optical element. Further, the cleaning method of the present invention can be applied to an optical element having an optical thin film such as an antireflection film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】石英基板の各洗浄による透過率変化を示す図で
ある。
FIG. 1 is a diagram showing a change in transmittance due to each cleaning of a quartz substrate.

【図2】蛍石基板の各洗浄による透過率変化を示す図で
ある。
FIG. 2 is a diagram showing a change in transmittance due to each cleaning of a fluorite substrate.

【図3】反射防止膜付の石英基板の各洗浄による透過率
変化を示す図である。
FIG. 3 is a diagram showing a change in transmittance due to each cleaning of a quartz substrate provided with an antireflection film.

【図4】加熱雰囲気の差による透過率の変化を示す図で
ある。
FIG. 4 is a diagram showing a change in transmittance due to a difference in a heating atmosphere.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大谷 実 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 鈴木 康之 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 金沢 秀宏 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 3B201 AA01 BA22 BB82 BB95 BC01 CB15 CC21 4G059 AA11 AB01 AB09 AB11 AC30 5F046 AA28 CA04 CB01 5F071 AA06 JJ05  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Minoru Otani 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Yasuyuki Suzuki 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (72) Inventor Hidehiro Kanazawa 3-30-2 Shimomaruko, Ota-ku, Tokyo F-term in Canon Inc. (reference) 3B201 AA01 BA22 BB82 BB95 BC01 CB15 CC21 4G059 AA11 AB01 AB09 AB11 AC30 5F046 AA28 CA04 CB01 5F071 AA06 JJ05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光学素子の洗浄方法において、 (1)該光学素子を有機溶剤で洗浄する工程と、 (2)該光学素子を酸素を含む雰囲気中で紫外光を照射
して洗浄する工程と、 (3)該光学素子を加熱して洗浄する工程とを少なくと
も有する光学素子の洗浄方法。
1. A method for cleaning an optical element, comprising: (1) a step of cleaning the optical element with an organic solvent; and (2) a step of irradiating the optical element with ultraviolet light in an atmosphere containing oxygen. (3) a method for cleaning an optical element, comprising at least a step of heating and cleaning the optical element.
【請求項2】 前記光学素子がSiO2製又はCaF2製である
請求項1記載の光学素子の洗浄方法
2. The method for cleaning an optical element according to claim 1, wherein the optical element is made of SiO 2 or CaF 2 .
【請求項3】 前記工程(2)において、前記雰囲気に
おける酸素濃度が5%以上である請求項1又は2に記載
の光学素子の洗浄方法。
3. The method for cleaning an optical element according to claim 1, wherein in the step (2), the oxygen concentration in the atmosphere is 5% or more.
【請求項4】 前記工程(2)において、前記紫外光と
して波長が300nm以下の紫外光を用いる請求項1〜
3のいずれか一項に記載の光学素子の洗浄方法。
4. The method according to claim 1, wherein in the step (2), ultraviolet light having a wavelength of 300 nm or less is used as the ultraviolet light.
4. The method for cleaning an optical element according to claim 3.
【請求項5】 前記工程(3)の加熱を1Pa以下の圧
力で行なう請求項1〜4のいずれか一項に記載の光学素
子の洗浄方法。
5. The method for cleaning an optical element according to claim 1, wherein the heating in the step (3) is performed at a pressure of 1 Pa or less.
【請求項6】 前記工程(3)において、加熱温度を7
0℃以上、300℃以下とする請求項1〜5のいずれか
一項に記載の光学素子の製造方法。
6. In the step (3), the heating temperature is set to 7
The method for producing an optical element according to claim 1, wherein the temperature is 0 ° C. or more and 300 ° C. or less.
JP2000115162A 2000-04-17 2000-04-17 Optical element cleaning method Pending JP2001293442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000115162A JP2001293442A (en) 2000-04-17 2000-04-17 Optical element cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000115162A JP2001293442A (en) 2000-04-17 2000-04-17 Optical element cleaning method

Publications (1)

Publication Number Publication Date
JP2001293442A true JP2001293442A (en) 2001-10-23

Family

ID=18626861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000115162A Pending JP2001293442A (en) 2000-04-17 2000-04-17 Optical element cleaning method

Country Status (1)

Country Link
JP (1) JP2001293442A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10211611A1 (en) * 2002-03-12 2003-09-25 Zeiss Carl Smt Ag Process and device for decontamination of optical surfaces
EP1312984A3 (en) * 2001-11-19 2005-05-25 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
DE102004021336A1 (en) * 2004-04-30 2005-11-24 Mitsubishi Heavy Industries, Ltd. Optical characteristic recovery method of optical element e.g. light transmissive window of ultraviolet lamp, involves forming vacuum region of activity energy existence, at side of photo-irradiation surface of optical system
US7190512B2 (en) 2004-04-29 2007-03-13 Mitsubishi Heavy Industries, Ltd. Optical properties restoration apparatus, the restoration method, and an optical system used in the apparatus
KR100706076B1 (en) * 2001-11-19 2007-04-11 에이에스엠엘 네델란즈 비.브이. Lithographic projection apparatus, device manufacturing method, device, cleaning unit and method for cleaning contaminated object
JP2007153679A (en) * 2005-12-06 2007-06-21 Fujikura Ltd Manufacturing method of quartz glass base material
CN100574905C (en) * 2004-05-31 2009-12-30 三菱重工业株式会社 Optical performance recovery apparatus and recovery method
JP2011170092A (en) * 2010-02-18 2011-09-01 Fujifilm Corp Optical element and method of manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767829B1 (en) * 2001-11-19 2007-10-17 에이에스엠엘 네델란즈 비.브이. Device manufacturing method
EP1312984A3 (en) * 2001-11-19 2005-05-25 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7115886B2 (en) 2001-11-19 2006-10-03 Asml Netherlands B.V. Lithographic projection apparatus, device manufacturing method and device manufactured thereby
KR100706076B1 (en) * 2001-11-19 2007-04-11 에이에스엠엘 네델란즈 비.브이. Lithographic projection apparatus, device manufacturing method, device, cleaning unit and method for cleaning contaminated object
US6796664B2 (en) 2002-03-12 2004-09-28 Carl Zeiss Smt Ag Method and device for decontaminating optical surfaces
DE10211611A1 (en) * 2002-03-12 2003-09-25 Zeiss Carl Smt Ag Process and device for decontamination of optical surfaces
US7440206B2 (en) 2004-04-29 2008-10-21 Mitsubishi Heavy Industries, Ltd. Optical properties restoration apparatus, the restoration method, and an optical system used in the apparatus
US7190512B2 (en) 2004-04-29 2007-03-13 Mitsubishi Heavy Industries, Ltd. Optical properties restoration apparatus, the restoration method, and an optical system used in the apparatus
US7453630B2 (en) 2004-04-29 2008-11-18 Mitsubishi Heavy Industries, Ltd. Optical properties apparatus, the restoration method, and an optical system used in the apparatus
US7733563B2 (en) 2004-04-29 2010-06-08 Mitsubishi Heavy Industries, Ltd. Optical properties restoration apparatus, the restoration method, and an optical system used in the apparatus
US7813036B2 (en) 2004-04-29 2010-10-12 Mitsubishi Heavy Industries, Ltd. Optical properties restoration apparatus, the restoration method, and an optical system used in the apparatus
DE102004021336A1 (en) * 2004-04-30 2005-11-24 Mitsubishi Heavy Industries, Ltd. Optical characteristic recovery method of optical element e.g. light transmissive window of ultraviolet lamp, involves forming vacuum region of activity energy existence, at side of photo-irradiation surface of optical system
DE102004021336B4 (en) * 2004-04-30 2008-11-27 Mitsubishi Heavy Industries, Ltd. Apparatus and method for improving optical properties and optical system used in the apparatus
CN100574905C (en) * 2004-05-31 2009-12-30 三菱重工业株式会社 Optical performance recovery apparatus and recovery method
JP2007153679A (en) * 2005-12-06 2007-06-21 Fujikura Ltd Manufacturing method of quartz glass base material
JP2011170092A (en) * 2010-02-18 2011-09-01 Fujifilm Corp Optical element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8263294B2 (en) Lithographic mask and manufacturing method thereof
JP5432143B2 (en) Cleaning method for extending the life of optical elements for DUV
JP2006247650A (en) Method for removing residue from chamber
JP4941472B2 (en) Method for removing foreign matter from substrate surface
JP2000294530A (en) Semiconductor substrate cleaning method and cleaning apparatus
JP2001293442A (en) Optical element cleaning method
US6391117B2 (en) Method of washing substrate with UV radiation and ultrasonic cleaning
JP2002082211A (en) Optical element manufacturing method
KR20090118833A (en) Pellicle
JP2001300453A (en) Method and apparatus for cleaning article surface, method and apparatus for manufacturing optical element by these, optical system, exposure method, exposure apparatus, device manufacturing method
JP2012122991A (en) Surface contamination measurement method
TWI822240B (en) Method for cleaning substrate for blank mask, substrate for blank mask and blank mask comprising the same
CN102512002B (en) Ultraviolet ozone drying cabinet for cleaning and storing vacuum ultraviolet optical elements
JPH11323576A (en) Wet etching method
JPS63271938A (en) Cleaning of hard surface
JPH10158035A (en) Ultraviolet optical element and method of manufacturing the same
JP3823408B2 (en) Optical element manufacturing method and optical element cleaning method
KR101672735B1 (en) Uv cleaner of substrate for photomask blank and cleanning method
JPS62210467A (en) Coating method for resist
TWI435166B (en) Method for manufacturing photomasks and device for its implementation
US6835661B2 (en) Method for manufacturing optical element
JP2001342041A (en) Optical member and cleaning method thereof
JP2010066619A (en) Pellicle and method for manufacturing the same
JP2003238208A (en) Method for cleaning optical element material, method for manufacturing optical element using the optical element material, optical element, optical system having the optical element, optical apparatus, exposure apparatus, and device manufacturing method
JP2001201608A (en) Method for forming optical thin film, optical element and exposure apparatus