JP2001200096A - Electroconductive thermoplastic resin composition - Google Patents
Electroconductive thermoplastic resin compositionInfo
- Publication number
- JP2001200096A JP2001200096A JP2000012258A JP2000012258A JP2001200096A JP 2001200096 A JP2001200096 A JP 2001200096A JP 2000012258 A JP2000012258 A JP 2000012258A JP 2000012258 A JP2000012258 A JP 2000012258A JP 2001200096 A JP2001200096 A JP 2001200096A
- Authority
- JP
- Japan
- Prior art keywords
- boron
- thermoplastic resin
- resin composition
- carbon fiber
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005992 thermoplastic resin Polymers 0.000 title claims abstract description 32
- 239000011342 resin composition Substances 0.000 title claims abstract description 28
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 70
- 239000004917 carbon fiber Substances 0.000 claims abstract description 70
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052796 boron Inorganic materials 0.000 claims abstract description 43
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 21
- 150000001639 boron compounds Chemical class 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 7
- 238000002441 X-ray diffraction Methods 0.000 claims description 3
- 239000000835 fiber Substances 0.000 description 43
- 238000010438 heat treatment Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 19
- 239000000945 filler Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 11
- 238000000465 moulding Methods 0.000 description 8
- -1 polyethylene Polymers 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 238000005087 graphitization Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 238000005885 boration reaction Methods 0.000 description 4
- 239000002134 carbon nanofiber Substances 0.000 description 4
- 239000002657 fibrous material Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 101100321669 Fagopyrum esculentum FA02 gene Proteins 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Landscapes
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、優れた導電性を有
するとともに、静電防止、電磁波遮蔽に優れ、さらに経
済性、機械特性等に優れた導電性熱可塑性樹脂組成物に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive thermoplastic resin composition which has excellent conductivity, is excellent in antistatic and electromagnetic wave shielding, and is also excellent in economy, mechanical properties and the like.
【0002】[0002]
【従来の技術】エレクトロニクス技術の発展に伴い、電
磁波シールドや静電気防止のための材料として、軽量で
しかも高い導電性を有する材料が求められるようになっ
てきた。このような目的に用いられる導電性材料とし
て、粉末状、繊維状の金属や、カーボンブラック、炭素
繊維等の炭素等の導電性材料を、ゴム・プラスチック等
の合成樹脂に配合した樹脂複合材料が使用され始めてい
る。2. Description of the Related Art With the development of electronics technology, a material having a light weight and high conductivity has been required as a material for shielding electromagnetic waves and preventing static electricity. As the conductive material used for such a purpose, a resin composite material in which a conductive material such as powdered or fibrous metal or carbon such as carbon black or carbon fiber is blended with a synthetic resin such as rubber or plastic is used. Has begun to be used.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、導電性
材料として金属を用いたものは高価で重量が重く、また
腐食環境では導電性が不安定であるという欠点があり、
耐食性のよい貴金属を用いると極めて高価になるという
問題がある。また、炭素系の導電性材料は金属に比べて
導電性が低く、十分な性能が得られないという欠点があ
り、これを補うために配合量を多くすると加工性や機械
的特性が低下するという問題が生じる。また、炭素繊維
を用いた場合、配合量が多くなると表面平滑性まで低下
してしまうという問題も生じる。However, those using a metal as a conductive material are disadvantageous in that they are expensive and heavy, and their conductivity is unstable in a corrosive environment.
There is a problem that the use of a noble metal having good corrosion resistance is extremely expensive. In addition, carbon-based conductive materials have a drawback that they have low conductivity compared to metals and do not provide sufficient performance.If the compounding amount is increased to compensate for this, workability and mechanical properties are reduced. Problems arise. In addition, when carbon fibers are used, there is a problem that the surface smoothness is lowered when the amount of the carbon fibers is increased.
【0004】したがって、本発明は、安価で軽く、優れ
た導電性を有するとともに、腐食環境下でも安定であ
り、加工性、機械特性、表面平滑性等に優れた導電性熱
可塑性樹脂組成物を提供することを目的とする。Accordingly, the present invention provides a conductive thermoplastic resin composition which is inexpensive, light, has excellent conductivity, is stable even in a corrosive environment, and has excellent workability, mechanical properties, surface smoothness and the like. The purpose is to provide.
【0005】[0005]
【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究した結果、直径が0.01〜5μ
m、アスペクト比が10以上で、ホウ素を0.1〜3重
量%含有した微細な炭素繊維を、0.1〜50重量%用
いた導電性熱可塑性樹脂組成物であれば、安価で軽く、
優れた導電性を有するとともに、腐食環境下でも安定で
あり、加工性、機械特性、表面平滑性に優れていること
を見出し、本発明を完成した。The inventor of the present invention has conducted intensive studies to achieve the above object, and as a result, has a diameter of 0.01 to 5 μm.
m, an aspect ratio of 10 or more, a conductive thermoplastic resin composition using 0.1 to 50% by weight of fine carbon fiber containing 0.1 to 3% by weight of boron is inexpensive and light,
The inventors have found that they have excellent conductivity, are stable even in a corrosive environment, and are excellent in workability, mechanical properties, and surface smoothness, and have completed the present invention.
【0006】すなわち、本発明は、微細な炭素繊維を含
有する導電性熱可塑性樹脂組成物であって、該微細な炭
素繊維は、ホウ素又はホウ素化合物を、該微細な炭素繊
維の炭素量に対してホウ素原子換算で0.1〜3重量%
含有し、該微細な炭素繊維の直径は0.01〜5μm及
びアスペクト比は10以上であり、かつ該微細な炭素繊
維の含有量が0.1〜50重量%であることを特徴とす
る導電性熱可塑性樹脂組成物を提供するものである。That is, the present invention relates to a conductive thermoplastic resin composition containing fine carbon fibers, wherein the fine carbon fibers contain boron or a boron compound with respect to the carbon content of the fine carbon fibers. 0.1 to 3% by weight in terms of boron atom
The conductive material is characterized in that the fine carbon fiber has a diameter of 0.01 to 5 μm and an aspect ratio of 10 or more, and the content of the fine carbon fiber is 0.1 to 50% by weight. The present invention provides a thermoplastic resin composition.
【0007】[0007]
【発明の実施の形態】本発明に用いる微細な炭素繊維
は、原料としてホウ素又はホウ素化合物を、該微細な炭
素繊維の炭素量に対してホウ素原子換算で好ましくは1
0重量%以下、特に好ましくは5重量%以下配合して得
られるものであり、ホウ素をその結晶内に含有し、その
触媒的な作用により高結晶化して製造することができ
る。ホウ素又はホウ素化合物を、該微細な炭素繊維の炭
素量に対してホウ素原子換算で10重量%超配合する
と、処理コストが高くなるだけでなく、熱処理の段階で
溶融焼結しやすく、固まったり繊維表面を被覆して電気
抵抗が上昇しやすくなるなど、フィラー特性が失われる
ことがあるので好ましくない。また、炭素にホウ素をド
ーピングできる量は一般的に3重量%以下であり、反応
率を考慮すると、この点からも10重量%超配合するこ
とは好ましくない。熱処理して炭素繊維を有効に高結晶
化させたときの、炭素繊維中のホウ素又はホウ素化合物
量は、微細な炭素繊維の炭素量に対してホウ素原子換算
で0.1〜3重量%であることが必要であり、0.2〜
3重量%が好ましい。なお、ホウ素又はホウ素化合物
は、熱処理して炭素繊維を高結晶化させる際に上記量存
在していればよく、含有量が0.1重量%を下回らなけ
れば、その後さらに高熱で処理する等によりホウ素が揮
散し、添加した量よりも濃度が低くなってもよい。BEST MODE FOR CARRYING OUT THE INVENTION The fine carbon fiber used in the present invention is preferably prepared by adding boron or a boron compound as a raw material to the fine carbon fiber in an amount of preferably 1 atom in terms of boron atom with respect to the carbon content of the fine carbon fiber.
It is obtained by blending 0% by weight or less, particularly preferably 5% by weight or less, and can be produced by containing boron in its crystal and highly crystallization by its catalytic action. When boron or a boron compound is added in an amount of more than 10% by weight in terms of boron atom with respect to the carbon content of the fine carbon fiber, not only the processing cost is increased, but also it is easy to melt and sinter in the heat treatment stage, and the fiber is hardened. It is not preferable because filler properties may be lost, for example, the surface may be coated to increase electric resistance. Further, the amount of carbon that can be doped with boron is generally 3% by weight or less, and considering the reaction rate, it is not preferable to add more than 10% by weight from this point as well. The amount of boron or boron compound in the carbon fiber when the heat treatment is performed to effectively crystallize the carbon fiber is 0.1 to 3% by weight in terms of boron atoms based on the carbon amount of the fine carbon fiber. It is necessary that
3% by weight is preferred. The boron or boron compound may be present in the above amount when the heat treatment is performed to highly crystallize the carbon fiber. If the content is not less than 0.1% by weight, then the heat treatment may be further performed with higher heat. The concentration of boron may be lower than the amount of boron added.
【0008】本発明に用いる微細な炭素繊維は、直径が
0.01〜5μm、好ましくは0.01〜1μmであ
り、アスペクト比が10以上、好ましくは50以上であ
る。直径が0.01μm未満であると繊維の強度が弱
く、フィラーとして使用した場合に繊維の切断が多くな
り、繊維としての機能が損なわれやすい。一方、直径が
5μmより太くなると、フィラーとしての添加率(重量
%)を一定とした場合、繊維の本数が少なくなりすぎ、
フィラーとしての繊維の機能が十分発揮されない。ま
た、繊維自体の生産性が著しく低下するので、工業的に
コストが高くなる。また、アスペクト比が10未満で
は、繊維としての機能が十分でない。The fine carbon fiber used in the present invention has a diameter of 0.01 to 5 μm, preferably 0.01 to 1 μm, and an aspect ratio of 10 or more, preferably 50 or more. When the diameter is less than 0.01 μm, the strength of the fiber is weak, and when used as a filler, the fiber is frequently cut, and the function as the fiber is easily impaired. On the other hand, when the diameter is larger than 5 μm, the number of fibers becomes too small when the addition ratio (% by weight) as a filler is fixed,
The function of the fiber as a filler is not sufficiently exhibited. Further, since the productivity of the fiber itself is significantly reduced, the cost is industrially high. If the aspect ratio is less than 10, the function as a fiber is not sufficient.
【0009】繊維の長さ自体に特に制限はなく、その下
限はアスペクト比の下限から定まる長さが好ましい。例
えばアスペクト比が50以上の場合、直径が0.01μ
mでは繊維長さは0.5μm以上、直径が1μmでは長
さは50μm以上にが好ましい。ただし、繊維の長さ
は、長すぎると繊維の絡み合い等によりフィラーとして
の分散性に問題が生じたり、樹脂成形物表面に凹凸を生
じやすいので、400μm以下が好ましく、さらに好ま
しくは100μm以下である。The length of the fiber itself is not particularly limited, and the lower limit is preferably a length determined from the lower limit of the aspect ratio. For example, when the aspect ratio is 50 or more, the diameter is 0.01 μm.
For m, the fiber length is preferably 0.5 μm or more, and for 1 μm diameter, the length is preferably 50 μm or more. However, the length of the fiber is preferably 400 μm or less, more preferably 100 μm or less, because if the length is too long, problems may occur in the dispersibility as a filler due to entanglement of the fiber or the like, and irregularities may easily occur on the surface of the resin molded product. .
【0010】本発明に用いる微細な炭素繊維は、X線回
折法で測定した炭素の面間隔d002が3.385Å以下
であり、かつ結晶のc軸方向の厚さLcが400Å以下
である。また、d002が3.385Å以下であり、かつ
Lcが400Å以下であるとともに、ラマン吸収スペク
トルのR値(1580cm-1の吸収強度IGと1360
cm-1の吸収強度IDの比R=ID/IG)が0.5以上
となる特徴を有する。The fine carbon fiber used in the present invention has an interplanar spacing d 002 of carbon of 3.385 ° or less as measured by X-ray diffraction, and a thickness Lc in the c-axis direction of the crystal of 400 ° or less. Further, d 002 is less 3.385A, and together with Lc is less than 400 Å, the absorption intensity I G of R value of Raman absorption spectrum (1580 cm -1 1360
It is characterized in that the ratio (R = I D / I G ) of the absorption intensity ID at cm −1 is 0.5 or more.
【0011】本発明に用いる微細な炭素繊維は、嵩密度
0.8g/cm3のときの粉体抵抗が、0.01Ω・c
m以下であることが好ましく、0.005Ω・cm以下
であることが特に好ましい。The fine carbon fiber used in the present invention has a powder resistance of 0.01 Ω · c at a bulk density of 0.8 g / cm 3.
m, particularly preferably 0.005 Ω · cm or less.
【0012】次に本発明で使用する微細な炭素繊維の製
造法について説明する。−出発原料としての炭素繊維−
出発原料とする炭素繊維は、ベンゼン等の有機化合物を
熱分解することにより気相で成長させた微細な炭素繊維
を用いることができる。この炭素繊維は、例えば特開平
7−150419号公報、特開平5−321039号公
報、特開昭60−215816号公報、特開昭61−7
0014号公報、特公平5−36521号公報、特公平
3−61768号公報等に示される方法で製造すること
ができる。Next, a method for producing fine carbon fibers used in the present invention will be described. -Carbon fiber as starting material-
As the carbon fiber as a starting material, fine carbon fiber grown in a gas phase by thermally decomposing an organic compound such as benzene can be used. This carbon fiber is used, for example, in JP-A-7-150419, JP-A-5-321039, JP-A-60-215816, and JP-A-61-7.
0014, Japanese Patent Publication No. 5-36521, Japanese Patent Publication No. 3-61768, and the like.
【0013】この微細な炭素繊維は、熱処理で結晶性を
ある程度向上させることはできるが、d002は3.38
5Åが限界であり、それ以上結晶性を向上させるには、
ホウ素又はホウ素化合物を添加することが必要である。Although the crystallinity of this fine carbon fiber can be improved to some extent by heat treatment, d 002 is 3.38.
5% is the limit, and to further improve the crystallinity,
It is necessary to add boron or boron compounds.
【0014】通常の炭素材料については、ホウ素を添加
して熱処理し結晶性を高めることは種々検討されている
(例えば、「炭素」1996,N0172,89〜94
頁、特開平3−245458号公報、特開平5−251
080号公報、特開平5−266880号公報、特開平
7−73898号公報、特開平8−31422号公報、
特開平8−306359号公報、特開平9−63584
号公報、特開平9−63585号公報等)。しかし、直
径が5μm以下の微細な気相法炭素繊維に対して、ホウ
素を導入して特性を改善した例は今までにない。その理
由は、以下に示すように、形状の特徴から、ホウ素を用
いた黒鉛化が行いにくいことと、繊維が特殊な構造を持
つためにホウ素の触媒効果が発揮しにくいためである。
(ア)気相法炭素繊維は、繊維の切断面の結晶構造が同
心円状に発達した長ねぎ状の繊維である。(イ)繊維の
長さは、製造条件によって異なるが、例えば0.01〜
0.5μm程度の直径の繊維では、単繊維だけでなく枝
分かれした繊維も多く存在するので明確には規定しがた
いが、直線部分を走査型電子顕微鏡で測定した場合、平
均が5μm以上あるものがほとんどである。(ウ)ま
た、この繊維は長繊維に加えて枝分かれした微細な繊維
も含むために、長い繊維はもちろんのこと、5μm程度
の短い繊維であっても、少なくとも大きさが10μm以
上、場合によっては100μm以上の大きなフロック状
になりやすい。(エ)したがって、集合体としての嵩密
度は小さく、0.05g/cm3以下、通常は0.01
g/cm3以下である。しかもフロック状の立体構造を
持っ ているので、黒鉛化触媒との接触が難しく、
均一にホウ素化しがたい。(オ)また、微細な炭素繊維
は表面がしっかりしたべ一サルブレーン(六角網目構造
の平面)で覆われているので、ホウ素を用いて黒鉛化し
てもポリゴニゼーション時に立体障害のため結晶性の向
上が阻害される。Various studies have been made on increasing the crystallinity of ordinary carbon materials by heat treatment by adding boron (for example, "Carbon" 1996, N0172, 89-94).
Page, JP-A-3-245458, JP-A-5-251
080, JP-A-5-266880, JP-A-7-73898, JP-A-8-31422,
JP-A-8-306359, JP-A-9-63584
JP-A-9-63585, etc.). However, there is no example in which boron is introduced into fine vapor-grown carbon fibers having a diameter of 5 μm or less to improve the characteristics. The reason is that, as shown below, graphitization using boron is difficult to be performed due to the shape characteristics, and the catalytic effect of boron is difficult to exert because the fiber has a special structure.
(A) Vapor-grown carbon fiber is an onion-like fiber in which the crystal structure of the cut surface of the fiber has developed concentrically. (A) The length of the fiber varies depending on the manufacturing conditions, but is, for example, 0.01 to
In the case of a fiber having a diameter of about 0.5 μm, not only a single fiber but also a large number of branched fibers are present, so it is difficult to specify clearly. However, when the straight line portion is measured with a scanning electron microscope, the average is 5 μm or more. Is the most. (C) In addition, since these fibers include fine fibers branched in addition to long fibers, not only long fibers but also short fibers of about 5 μm have a size of at least 10 μm or more, in some cases. A large floc of 100 μm or more tends to be formed. (D) Therefore, the bulk density of the aggregate is small, 0.05 g / cm 3 or less, usually 0.01 g / cm 3 or less.
g / cm 3 or less. Moreover, it has a floc-like three-dimensional structure, making it difficult to contact with the graphitization catalyst.
It is difficult to uniformly borate. (E) Also, since the fine carbon fibers are covered with a solid surface of beesalbrain (a hexagonal network structure plane), even if they are graphitized using boron, they are crystalline due to steric hindrance during polygonization. Improvement is hindered.
【0015】ホウ素をドーピングするためには、原料の
微細な炭素繊維として、ドーピングしやすい、あまり結
晶の発達していない低温処理品、好ましくは1500℃
以下で熱処理された炭素繊維を用いる。低温処理の炭素
繊維であっても、ホウ素又はホウ素化合物を触媒として
用いた処理(ホウ素化処理)の時に最終的には黒鉛化温
度まで加熱処理されるので、結晶の未発達の未熱処理品
でも十分使用できる。2000℃以上、さらには230
0℃以上の温度で黒鉛化処理された炭素繊維を用いるこ
ともできるが、エネルギーの削減の面から、前もって黒
鉛化処理しておく必要はなく、むしろ低温処理品を用い
て黒鉛化と同時に触媒作用を働かせるほうが好ましい。
また、炭素中のホウ素の含有量が最も多くかつドープし
やすい温度は2000〜2300℃との報告もあり、こ
れより高い温度で処理されて結晶化した材料では触媒効
果が小さい。In order to dope boron, as a raw material fine carbon fiber, a low-temperature treated product which is easy to dope and has little crystal growth, preferably 1500 ° C.
The heat-treated carbon fiber is used below. Even in the case of low-temperature-treated carbon fiber, it is finally heated to the graphitization temperature during the treatment using boron or a boron compound as a catalyst (boronation treatment). Can be used enough. 2000 ° C or higher, further 230
Carbon fiber that has been graphitized at a temperature of 0 ° C or higher can be used, but it is not necessary to perform graphitization in advance from the viewpoint of energy reduction. It is preferable to work.
Further, there is a report that the temperature at which the content of boron in carbon is the highest and the doping is easy is 2000 to 2300 ° C., and a material which is treated at a higher temperature and crystallized has a small catalytic effect.
【0016】原料の微細な炭素繊維として、取扱容易の
ためあらかじめ解砕、粉砕したものを用いることができ
るが、解砕、粉砕はホウ素又はホウ素化合物との混合が
できる程度になされていれば十分である。すなわち、ホ
ウ素化処理した後に、解砕、粉砕、分級等のフィラー化
処理を行うので、ホウ素化処理の前にフィラーとしての
適正な長さにする必要はない。気相成長法で一般的に得
られる直径0.01〜5μm程度、長さ0.5〜400
μm程度の炭素繊維をそのまま用いることができる。こ
れらはフロック状になっていてもよい。また原料繊維は
熱処理したものでもよいが、熱処理温度は1500℃以
下とすることが好ましい。The fine carbon fiber used as the raw material may be crushed or crushed in advance for easy handling, but crushing and crushing are sufficient if the crushing and crushing are performed to such an extent that boron or a boron compound can be mixed. It is. In other words, after the boration treatment, a filler treatment such as crushing, pulverization, and classification is performed, so that it is not necessary to make the filler a proper length before the boration treatment. Diameter of about 0.01 to 5 μm and length of 0.5 to 400 generally obtained by vapor phase growth
Carbon fibers of about μm can be used as they are. These may be flocked. The raw fiber may be a heat-treated fiber, but the heat treatment temperature is preferably 1500 ° C. or lower.
【0017】−ホウ素化処理−ホウ素化処理は2000
℃以上の温度で行われるので、少なくとも2000℃に
達する前に分解等によっても蒸発しない物質、例えば、
元素状ボウ素、B203、ホウ酸、B4C、BN、その他
のホウ素化合物を使用することが好ましい。ホウ酸等を
用いる場合は、水溶液として添加し、予め水分を蒸発さ
せる方法や、加熱過程で水分を蒸発させる方法を用いる
こともできる。水溶液を均一に混合すれば、水分蒸発後
はホウ素化合物を繊維表面に均一に付着させることがで
きる。-Boration treatment-Boration treatment is 2000
Since it is carried out at a temperature of at least 2000 ° C., a substance which does not evaporate even by decomposition before reaching at least 2000 ° C.
Elemental Bow element, B 2 0 3, boric acid, B 4 C, BN, it is preferred to use other boron compounds. When boric acid or the like is used, a method of adding water as an aqueous solution and evaporating water in advance, or a method of evaporating water in a heating process can be used. If the aqueous solution is uniformly mixed, the boron compound can be uniformly attached to the fiber surface after water evaporation.
【0018】微細な炭素繊維は、三次元の立体構造を持
ち、フロック状を形成しやすいだけでなく、嵩密度がき
わめて小さく空隙率が非常に大きい。しかも添加するホ
ウ素量は10重量%以下、好ましくは5重量%以下と少
ないので、単に両者を混合しただけでは均一に接触させ
ることは難しい。ホウ素の導入反応を効率よく行うに
は、炭素繊維とホウ素又はホウ素化合物とをよく混合
し、両者をできるだけ均一に接触させることが好まし
い。そのためには、ホウ素又はホウ素化合物の粒子はで
きるだけ粒径の小さいものを使用することが好ましい。
粒子が大きいと、部分的に高濃度領域が発生することに
なり、固結化しやすいので、粒度は平均粒径で100μ
m以下であることが好ましく、より好ましくは50μm
以下、特に好ましくは20μm以下である。The fine carbon fiber has a three-dimensional structure and is easy to form a floc shape, and has a very small bulk density and a very large porosity. Moreover, since the amount of boron to be added is as small as 10% by weight or less, preferably 5% by weight or less, it is difficult to make uniform contact only by mixing both. In order to efficiently carry out the boron introduction reaction, it is preferable to mix the carbon fiber and boron or the boron compound well, and to contact both as uniformly as possible. For this purpose, it is preferable to use boron or boron compound particles having the smallest possible particle size.
If the particles are large, a high-concentration region is partially generated, and it is easy to consolidate.
m, more preferably 50 μm
The thickness is particularly preferably 20 μm or less.
【0019】気相法により製造した微細な炭素繊維は、
嵩密度が非常に小さいため、炭素繊維とホウ素又はホウ
素化合物とを混合しそのまま熱処理してもよいが、混合
したものを高密度化し、かつその状態をできるだけ維持
(固定化)して熱処理することが好ましい。その好まし
い方法として、例えば両者を混合した後、混合物に圧力
を加えて圧縮し、高密度化して固定化する方法が挙げら
れる。炭素繊維とホウ素又はホウ素化合物との混合は、
均一性が保持できればいずれの方法でもよい。混合機と
しては市販の混合機のいずれも用いることができるが、
微細な炭素繊維はフロック状になりやすいので、これを
解砕するためのチョッパーを有するヘンシェルミキサー
タイプのものがより好ましい。使用する原料炭素繊維は
先に述べたように製造されたままのものでも、その15
00℃以下の温度での処理品でもよい。ただし、経済的
には製造されたままのものが好ましい。炭素繊維とホウ
素またはホウ素化合物との混合物を高密度化し、両者が
分離しないように固定化する方法としては、成形法、造
粒法、あるいは混合物をるつぼに入れて一定の形状に圧
縮して詰め込む方法等、いずれの方法でもよい。また成
形法の場合、成形体の形状は円柱状、板状、直方体等、
いずれの形状でもよい。Fine carbon fibers produced by the gas phase method
Since the bulk density is very small, the carbon fiber and boron or boron compound may be mixed and heat-treated as it is. However, it is necessary to increase the density of the mixture and to maintain (fix) the state as much as possible and to heat-treat the mixture. Is preferred. As a preferable method, for example, there is a method in which the mixture is mixed, and then the mixture is compressed by applying pressure to thereby increase the density and immobilize the mixture. Mixing of carbon fiber and boron or boron compound,
Any method may be used as long as uniformity can be maintained. As the mixer, any of commercially available mixers can be used,
Since the fine carbon fibers tend to form flocs, a Henschel mixer type having a chopper for crushing the fine fibers is more preferable. The raw carbon fiber to be used may be as manufactured as described above,
A processed product at a temperature of 00 ° C. or less may be used. However, it is preferable to use it as it is manufactured economically. As a method of densifying the mixture of carbon fiber and boron or boron compound and fixing them so that they do not separate, molding method, granulation method, or putting the mixture in a crucible and compressing it into a certain shape and filling it Any method may be used. In the case of the molding method, the shape of the molded body is cylindrical, plate-like, rectangular parallelepiped, or the like.
Any shape may be used.
【0020】このようにしてホウ素又はホウ素化合物を
添加し、嵩密度を高めた炭素繊維は次に熱処理する。ホ
ウ素を炭素の結晶内に導入するために必要な処理温度
は、2000℃以上、特に2300℃以上が好ましい。
処理温度が2000℃未満であると、ホウ素と炭素との
反応性が悪くなりやすく、ホウ素の導入が難しくなりや
すい。ホウ素の導入を一層促進し、かつ炭素の結晶性を
向上させ、特にd002を3.385Å以下にするには、
2300℃以上に保つことが好ましい。熱処理温度に特
に制限はないが、装置等の制約から3200℃程度以下
であることが好ましい。使用する熱処理炉は、2000
℃以上、好ましくは2300℃以上に保持できる炉であ
ればよく、通常のアチソン炉、抵抗炉、高周波炉等の何
れの装置でもよい。また、場合によっては、粉体または
成形体に直接通電して加熱する方法も使用できる。熱処
理の雰囲気は、非酸化性の雰囲気、特にアルゴン等の希
ガス雰囲気であることが好ましい。熱処理の時間は、生
産性の面からはできるだけ短いほうが好ましい。特に長
時間加熱していると、焼結が進行するので収率も悪化す
る。したがって、成形体等の中心部の温度が目標温度に
達した後、1時間以下の保持時間で十分である。[0020] The carbon fiber thus added with boron or boron compound to increase the bulk density is then heat-treated. The processing temperature required for introducing boron into the carbon crystal is preferably 2000 ° C. or higher, particularly preferably 2300 ° C. or higher.
If the treatment temperature is lower than 2000 ° C., the reactivity between boron and carbon tends to be poor, and it becomes difficult to introduce boron. In order to further promote the introduction of boron and improve the crystallinity of carbon, and particularly to reduce d 002 to 3.385 ° or less,
It is preferable to keep the temperature at 2300 ° C. or higher. Although there is no particular limitation on the heat treatment temperature, it is preferably about 3200 ° C. or less due to limitations of the apparatus and the like. The heat treatment furnace used is 2000
Any furnace can be used as long as it can be maintained at a temperature of not less than 2 ° C., preferably not less than 2300 ° C., and any device such as an ordinary Acheson furnace, a resistance furnace or a high-frequency furnace may be used. In some cases, a method in which the powder or the molded body is directly energized and heated may be used. The heat treatment atmosphere is preferably a non-oxidizing atmosphere, particularly a rare gas atmosphere such as argon. The heat treatment time is preferably as short as possible from the viewpoint of productivity. In particular, when heating is performed for a long time, the sintering proceeds, so that the yield also decreases. Therefore, a holding time of one hour or less is sufficient after the temperature of the central part of the molded body or the like reaches the target temperature.
【0021】圧縮成形等により高密度化した炭素繊維
は、熱処理すると一部が焼結し、ブロック状になる。し
たがって、そのままではフィラーとして適する形態では
ないので、成形体を解砕することが好ましい。そのた
め、このブロックを解砕、粉砕、分級等してフィラーと
して適するように処理すると同時に、非繊維物を分離す
る。その際に粉砕しすぎるとフィラー性能が低下し、ま
た粉砕が不十分だと樹脂組成物主剤との混合がうまくい
かず添加効果が出にくい。フィラーとして望ましい形態
にするためには、例えば熱処理後のブロック状物をまず
2mm以下の大きさに解砕し、さらに粉砕機で粉砕する
ことが好ましい。解砕機としては通常使用されるアイス
クラッシャーやロートプレックス等の装置が使用でき
る。粉砕機としては衝撃式粉砕機のパルベライザーや自
由粉砕機、またミクロジェット等の粉砕機が使用でき
る。非繊維物を分離する分級は、気流式分級機等で行う
ことができる。粉砕分級条件は、粉砕機の種類や操作条
件によって異なるが、フィラー特性を発揮させるために
は、繊維の長さを5〜400μmにするのが好ましい。
また、粉砕分級後の高密度は、0.001〜0.2g/
cm3が好ましく、より好ましくは0.005〜0.1
5g/cm3、特に好ましくは0.01〜0.1g/c
m3である。嵩密度が0.2g/cm3超になると、径に
よっては繊維の長さが5μm以下のように短くなりフィ
ラー効果が低下しやすい。また、0.001g/cm3
より小さいと、径によっては400μmを超えるような
長いものとなり、フィラーとしての詰まりが悪くなる。
なお、嵩密度とは、容器に繊維を充填して振動させ、体
積がほぽ一定に達したときの体積と重量から求めたタッ
ピング嵩密度である。When heat-treated, carbon fibers densified by compression molding or the like partially sinter to form blocks. Therefore, since the form is not suitable as a filler as it is, it is preferable to crush the molded body. Therefore, this block is crushed, crushed, classified, etc., and processed so as to be suitable as a filler, and at the same time, non-fibrous materials are separated. At that time, if the pulverization is too much, the filler performance is deteriorated, and if the pulverization is insufficient, the mixing with the resin composition base material does not work well, and the addition effect is hardly obtained. In order to obtain a desirable form as a filler, for example, it is preferable to first crush the heat-treated block into a size of 2 mm or less, and then pulverize it with a pulverizer. As the crusher, a commonly used device such as an ice crusher or a rotoplex can be used. As a pulverizer, a pulverizer or a free pulverizer of an impact type pulverizer, or a pulverizer such as a micro jet can be used. Classification for separating non-fibrous materials can be performed by an airflow classifier or the like. The conditions for pulverization and classification vary depending on the type and operation conditions of the pulverizer. However, in order to exhibit filler characteristics, the fiber length is preferably 5 to 400 μm.
The high density after the pulverization classification is 0.001 to 0.2 g /
cm 3 is preferable, and more preferably 0.005 to 0.1
5 g / cm 3 , particularly preferably 0.01 to 0.1 g / c
m is 3. If the bulk density exceeds 0.2 g / cm 3 , the length of the fiber may be as short as 5 μm or less depending on the diameter, and the filler effect tends to be reduced. 0.001 g / cm 3
If it is smaller, it will be longer than 400 μm depending on the diameter, and clogging as a filler will be poor.
The bulk density is a tapping bulk density determined from the volume and weight when the container is filled with fibers and vibrated to reach a substantially constant volume.
【0022】前記したような方法で製造した、繊維中に
ホウ素を含有する微細な炭素繊維は、嵩密度0.8g/
cm3のときの粉体抵抗が、0.01Ω・cm以下にな
る。一方、これと同形状で繊維中にホウ素を含まない気
相成長法による微細な炭素繊維は、嵩密度0.8g/c
m3のときの粉体抵抗が0.01〜0.03Ωcm程度
である。これは、黒鉛化時にホウ素を触媒として添加す
ると結晶性が向上し、その結果、導電性が向上したこと
による。このように、従来より導電性がほぽ1桁向上し
た微細な炭素繊維を用いることにより、電気抵抗が低
く、静電気防止や電磁波遮蔽等の目的に好適に使用され
る本発明の導電性熱可塑性樹脂組成物を得ることができ
る。The fine carbon fiber containing boron in the fiber produced by the method described above has a bulk density of 0.8 g /
The powder resistance at cm 3 is 0.01 Ω · cm or less. On the other hand, fine carbon fibers of the same shape and formed by a vapor growth method containing no boron in the fibers have a bulk density of 0.8 g / c.
The powder resistance at m 3 is about 0.01 to 0.03 Ωcm. This is because when boron is added as a catalyst during graphitization, crystallinity is improved, and as a result, conductivity is improved. As described above, the use of the fine carbon fiber whose conductivity is improved by about one digit compared to the conventional technology has a low electric resistance and is suitable for the purpose of preventing static electricity and shielding electromagnetic waves. A resin composition can be obtained.
【0023】−樹脂成分−本発明で用いる熱可塑性樹脂
としては、成形分野で使用される樹脂であれば特に制限
はなく、例えばポリエチレン、ポリプロピレン等のポリ
オレフィン樹脂、ポリスチレン、ABS、AS樹脂等の
スチレン系樹脂、ナイロン6、ナイロン66、ナイロン
12等のポリアミド樹脂、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、ポリアセタール、ボ
リフェニレンサルファイト、ポリスルホン、ポリエーテ
ルケトン、ポリエーテルスルホン等のエンジニアリング
プラスチック等が挙げられる。本発明においては、これ
らの熱可塑性樹脂を1種又は2種以上組合せて使用する
ことができる。またこれらの熱可塑性樹脂に、通常使用
される種々の添加剤、たとえば酸化防止剤、潤滑剤、可
塑剤、安定剤等を予め配合してもよい。-Resin component- The thermoplastic resin used in the present invention is not particularly limited as long as it is a resin used in the field of molding. For example, polyolefin resins such as polyethylene and polypropylene, and styrenes such as polystyrene, ABS and AS resins. System resins, polyamide resins such as nylon 6, nylon 66 and nylon 12, engineering plastics such as polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyphenylene sulfite, polysulfone, polyether ketone, polyether sulfone, and the like. In the present invention, these thermoplastic resins can be used alone or in combination of two or more. Further, various additives usually used, such as antioxidants, lubricants, plasticizers, stabilizers, and the like, may be previously added to these thermoplastic resins.
【0024】このような熱可塑性樹脂に、微細な炭素繊
維を配合し、分散させるにあたっては、通常の熱可塑性
樹脂の配合方法を用いることができるが、このような場
合に一般的に使用されるバンバリミキサー、ニーダー等
の混練機を利用することもできる。本発明の導電性熱可
塑性樹脂組成物は、かかる熱可塑性樹脂に微細な炭素繊
維を配合、分散した後、常法に従って製造することがで
きる。In blending and dispersing fine carbon fibers into such a thermoplastic resin, a usual thermoplastic resin blending method can be used, but such a method is generally used. A kneading machine such as a Banbury mixer or a kneader can also be used. The conductive thermoplastic resin composition of the present invention can be produced according to a conventional method after blending and dispersing fine carbon fibers into the thermoplastic resin.
【0025】かくして得られた本発明の導電性熱可塑性
樹脂組成物は、その導電性を十分確保するため、抵抗値
が0.01Ω・cm以下であることが好ましく、0.0
05Ω・cm以下であることが特に好ましい。かかる観
点から、本発明の導電性熱可塑性樹脂組成物中の、微細
な炭素繊維の含有量は、0.1重量%以上であることが
必要であり、1重量%以上であることが好ましい。0.
1重量%未満では、樹脂中で導電性が付与できる程度の
凝集構造が形成されず、成形体としての導電性が十分で
はない。一方、含有量が多すぎると、溶融時の流動性が
低下し、成形が困難となる。また、高充填率で含有して
も、高充填率水準に見合うだけの導電性の向上は見られ
ない。以上の観点から、本発明の導電性熱可塑性樹脂組
成物中の、微細な炭素繊維の含有量は、0.1〜50重
量%であることが必要であり、1〜50重量%であるこ
とが好ましい。The conductive thermoplastic resin composition of the present invention thus obtained preferably has a resistance value of 0.01 Ω · cm or less, in order to secure sufficient conductivity.
It is particularly preferred that the resistance is not more than 05 Ω · cm. From such a viewpoint, the content of the fine carbon fibers in the conductive thermoplastic resin composition of the present invention needs to be 0.1% by weight or more, and preferably 1% by weight or more. 0.
If the amount is less than 1% by weight, a coagulated structure to the extent that conductivity can be imparted in the resin is not formed, and the conductivity as a molded article is not sufficient. On the other hand, if the content is too large, the fluidity at the time of melting decreases, and molding becomes difficult. In addition, even if it is contained at a high filling rate, no improvement in conductivity corresponding to the high filling rate level is observed. From the above viewpoints, the content of fine carbon fibers in the conductive thermoplastic resin composition of the present invention needs to be 0.1 to 50% by weight, and 1 to 50% by weight. Is preferred.
【0026】本発明の導電性熱可塑性樹脂組成物には、
本発明の目的を阻害しない範囲で必要に応じて、公知の
種々の添加剤を添加することができる。添加剤として
は、酸化防止剤、紫外線吸収剤、可塑剤、安定剤、充填
剤、補強剤、難燃剤、滑剤、溶剤、加工助剤等を挙げる
ことができる。さらには、金属系や他の炭素系導電材料
等を添加、併用することもできる。The conductive thermoplastic resin composition of the present invention comprises:
Various known additives can be added, if necessary, as long as the object of the present invention is not hindered. Examples of the additive include an antioxidant, an ultraviolet absorber, a plasticizer, a stabilizer, a filler, a reinforcing agent, a flame retardant, a lubricant, a solvent, and a processing aid. Further, a metal-based or other carbon-based conductive material or the like can be added and used in combination.
【0027】本発明の導電性熱可塑性樹脂組成物を、押
出成形、射出成形、トランスファー成形、プレス成形な
ど各種の成形方法の中から、ベース樹脂および成形物の
形状に応じた適宜の方法を選択して、成形することによ
って、目的の成形物を得ることができる。具体的には、
ファクシミリなどの低抵抗パンド、非帯電コンベアベル
ト、導電タイヤ、IC収納ケース、コピー機用ロール、
加熱用エレメント、過電流・過熱防止用素子、電磁波シ
ールド筺体、キーボードスイッチ、コネクター素子等を
挙げることができる。The conductive thermoplastic resin composition of the present invention is selected from various molding methods such as extrusion molding, injection molding, transfer molding, and press molding, by selecting an appropriate method according to the shape of the base resin and the molded product. Then, by molding, an intended molded product can be obtained. In particular,
Low resistance band such as facsimile, uncharged conveyor belt, conductive tire, IC storage case, roll for copy machine,
Examples include a heating element, an overcurrent / overheat prevention element, an electromagnetic wave shielding housing, a keyboard switch, and a connector element.
【0028】[0028]
【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明は以下の実施例に限定されるものではな
い。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
【0029】実施例1〜4及び比較例1〜2出発原料で
ある微細な炭素繊維は、遷移金属を含有する有機金属化
合物の存在のもとにベンゼンを熱分解する公知の方法
(例えば特開平7−150419号公報参照)で得た炭
素繊維を、さらに1200℃で熱処理して得た。得られ
た炭素繊維はフロック状に集合していたが、これを解砕
し、嵩密度を0.02g/cm 3、繊維の長さを10〜
100μmとした。繊維径は大部分が0.5μm以下
(電子顕微鏡写真で観察した平均的な繊維径は0.2μ
m)であった。この炭素繊維のX線回折による炭素の面
間隔d002は3.407Åで、結晶のc軸方向の厚さL
cは56Åであった。この繊維2.88kgに平均粒径
15μmのB4C粉末を120g添加し、ヘンシェルミ
キサーで十分に混合した。この混合物を容量50リット
ルの円筒状の黒鉛ルツボに詰め込み圧縮して、嵩密度を
0.075g/cm3とした。黒鉛製の加圧板で圧縮し
たまま蓋をし、アチソン炉に入れて加熱処理した。この
ときの温度は2900℃であり、2900℃になってか
ら60分間加熱した。加熱処理後冷却し、ルツボから炭
素繊維を取り出し、バンタムミルで粉砕し、その後、非
繊維状物を気流分級機で分離した。得られた繊維径は、
2900℃で熱処理する前と変わらず大部分が0.5μ
m以下、長さは5〜30μm、嵩密度は0.04g/c
m3であった。また、この繊維のホウ素含有量は1.0
3重量%、d002、Lcはそれぞれ3.380Å、29
0Åであった。また、嵩密度0.8g/cm3のときの
粉体抵抗は0.003Ω・cmであった。Examples 1 to 4 and Comparative Examples 1 to 2
Some fine carbon fibers are metallized with transition metals
Known method of pyrolyzing benzene in the presence of a compound
(See, for example, JP-A-7-150419)
The raw fibers were further heat-treated at 1200 ° C. Obtained
Carbon fibers were flocculated, but were broken up
And the bulk density is 0.02 g / cm Three, Fiber length is 10
The thickness was 100 μm. Most fiber diameter is 0.5μm or less
(The average fiber diameter observed by electron micrograph is 0.2μ
m). Surface of carbon by X-ray diffraction of this carbon fiber
Interval d002Is 3.407 ° and the thickness L of the crystal in the c-axis direction is
c was 56 °. The average particle size of 2.88 kg of this fiber
15 μm BFourC powder 120g, add
Mix well with Kisa. 50 liters of this mixture
Into a cylindrical graphite crucible and compress it to reduce bulk density.
0.075g / cmThreeAnd Compress with a graphite pressure plate
The lid was closed, and placed in an Acheson furnace for heat treatment. this
The temperature at that time is 2900 ° C.
And heated for 60 minutes. After heat treatment, cool,
Take out the raw fiber, pulverize it with a bantam mill, and then
The fibrous material was separated by an air classifier. The obtained fiber diameter is
Mostly 0.5μ as before heat treatment at 2900 ° C
m, length is 5 to 30 μm, and bulk density is 0.04 g / c.
mThreeMet. The fiber has a boron content of 1.0.
3% by weight, d002, Lc are 3.380 ° and 29, respectively.
It was 0 °. In addition, bulk density 0.8 g / cmThreeAt the time
The powder resistance was 0.003Ω · cm.
【0030】次に、この微細な炭素繊維を用いて、以下
のように導電性熱可塑性樹脂組成物(ペレット)を製造
した。すなわち、ポリプロピレン(日本ポリオレフィン
(株)製SMA410)と前記のホウ素を含む微細な気
相法炭素繊維を、表1に示す割合で配合し、押出機にて
溶融混練してペレットを得た。Next, using the fine carbon fibers, a conductive thermoplastic resin composition (pellet) was produced as follows. That is, polypropylene (SMA410 manufactured by Nippon Polyolefin Co., Ltd.) and the fine vapor-grown carbon fibers containing boron were blended in the ratio shown in Table 1 and melt-kneaded with an extruder to obtain pellets.
【0031】比較例3及び4実施例1で用いた微細な炭
素繊維3.0kgを容量50リットルの円筒状の黒鉛ル
ツボに詰め込み圧縮して、嵩密度を0.075g/cm
3とした。黒鉛製の加圧板で圧縮したまま蓋をし、アチ
ソン炉に入れて加熱処理した。このときの温度は290
0℃であり、2900℃になってから60分間加熱し
た。加熱処理後冷却し、ルツボから炭素繊維を取り出
し、バンタムミルで粉砕し、その後、非繊維状物を気流
分級機で分離した。得られた繊維径は、2900℃で熱
処理する前と変わらず、大部分が0.5μm以下、長さ
は5〜30μm、嵩密度は0.04g/cm3であっ
た。また、この繊維のd002、Lcは、それぞれ3.3
88Å、280Åであり、嵩密度0.8g/cm3のと
きの粉体抵抗は0.013Ω・cmであった。次いで、
上記ポリプロピレンを用い、表1に示す配合で上記同様
にしてペレットを得た。Comparative Examples 3 and 4 3.0 kg of the fine carbon fibers used in Example 1 were packed in a cylindrical graphite crucible having a capacity of 50 liters and compressed to obtain a bulk density of 0.075 g / cm.
It was set to 3 . While being compressed with a graphite pressing plate, the lid was closed, and the plate was placed in an Acheson furnace and heat-treated. The temperature at this time is 290
The temperature was 0 ° C, and heating was performed for 60 minutes after the temperature reached 2900 ° C. After the heat treatment, the mixture was cooled, the carbon fiber was taken out of the crucible, pulverized by a bantam mill, and then the non-fibrous material was separated by a gas classifier. The fiber diameter obtained was the same as before the heat treatment at 2900 ° C., mostly 0.5 μm or less, the length was 5 to 30 μm, and the bulk density was 0.04 g / cm 3 . Further, d 002 and Lc of this fiber are 3.3, respectively.
It was 88 ° and 280 °, and the powder resistance at a bulk density of 0.8 g / cm 3 was 0.013 Ω · cm. Then
Pellets were obtained in the same manner as described above, using the above-mentioned polypropylene and with the composition shown in Table 1.
【0032】比較例5微細な気相法炭素繊維の代わり
に、カーボンブラックを使用した以外は実施例1と同様
の方法でペレットを得た。Comparative Example 5 Pellets were obtained in the same manner as in Example 1 except that carbon black was used instead of fine vapor grown carbon fiber.
【0033】試験例1上記で得られた各ペレットを、通
常行われているポリプロピレンの成形条件でプレス成形
し、テストピースを得た。得られた各テストピースにつ
いて、三菱化学(株)の表面抵抗計を用いて体積固有抵
抗を測定した。その結果を表1に示す。また、表面平滑
性を表面粗さ計(指触式)により測定した。Test Example 1 Each of the pellets obtained above was press-molded under the usual polypropylene molding conditions to obtain a test piece. For each of the obtained test pieces, the volume resistivity was measured using a surface resistance meter manufactured by Mitsubishi Chemical Corporation. Table 1 shows the results. The surface smoothness was measured by a surface roughness meter (finger touch type).
【0034】[0034]
【表1】 [Table 1]
【0035】表1から明らかなように、実施例1〜4の
導電性熱可塑性樹脂組成物は、優れた導電性を示した。
また、実施例1〜4の導電性熱可塑性樹脂組成物は、い
ずれも表面平滑性が良好であったが、比較例2の導電性
熱可塑性樹脂組成物は、導電性は優れていたが、表面平
滑性が低下していた。比較例3〜5の導電性熱可塑性樹
脂組成物は、導電性が低かった。また、実施例3と比較
例4から明らかなように、微細な炭素繊維の添加量が同
じ場合、本発明の導電性熱可塑性樹脂組成物の抵抗値
は、従来のものの1/2以下とすることができる。As is clear from Table 1, the conductive thermoplastic resin compositions of Examples 1 to 4 exhibited excellent conductivity.
Further, the conductive thermoplastic resin compositions of Examples 1 to 4 all had good surface smoothness, but the conductive thermoplastic resin composition of Comparative Example 2 had excellent conductivity. The surface smoothness was reduced. The conductive thermoplastic resin compositions of Comparative Examples 3 to 5 had low conductivity. Further, as is clear from Example 3 and Comparative Example 4, when the addition amount of the fine carbon fibers is the same, the resistance value of the conductive thermoplastic resin composition of the present invention is set to 1/2 or less of the conventional one. be able to.
【0036】[0036]
【発明の効果】本発明の導電性熱可塑性樹脂組成物は、
高い導電性を有する微細な炭素繊維が多くの接触点で接
触しながら樹脂中に均一に分散しているので、極めて高
い導電性を有しており、また安価で軽く、腐食環境下で
も安定であり、加工性、機械特性、表面平滑性等に優れ
ている。このため、静電気防止や電磁波シールドの目的
に好適に使用できる。The conductive thermoplastic resin composition of the present invention comprises:
Fine carbon fibers with high conductivity are uniformly dispersed in the resin while contacting at many contact points, so they have extremely high conductivity, and are inexpensive, light, and stable even in a corrosive environment. Has excellent workability, mechanical properties, surface smoothness, etc. Therefore, it can be suitably used for the purpose of preventing static electricity and shielding electromagnetic waves.
フロントページの続き Fターム(参考) 4J002 BB031 BB121 BC031 BC061 BN151 CB001 CF061 CF071 CH091 CL011 CL031 CN011 CN031 DA016 DK007 FA046 FB076 FD106 FD116 GQ00 4L037 AT02 AT05 CS03 FA02 FA03 FA05 FA12 PA13 UA02 UA04 5G301 DA02 DA20 DA22 DA42 DA44 DD05 DD06 DD10 Continued on front page F term (reference) 4J002 BB031 BB121 BC031 BC061 BN151 CB001 CF061 CF071 CH091 CL011 CL031 CN011 CN031 DA016 DK007 FA046 FB076 FD106 FD116 GQ00 4L037 AT02 AT05 CS03 FA02 FA03 FA05 FA12 DA04 DD02 DA02 DA02 DA02 DA02
Claims (4)
性樹脂組成物であって、該微細な炭素繊維は、ホウ素又
はホウ素化合物を、該微細な炭素繊維の炭素量に対して
ホウ素原子換算で0.1〜3重量%含有し、該微細な炭
素繊維の直径は0.01〜5μm及びアスペクト比は1
0以上であり、かつ該微細な炭素繊維の含有量が0.1
〜50重量%であることを特徴とする導電性熱可塑性樹
脂組成物。1. A conductive thermoplastic resin composition containing fine carbon fibers, wherein said fine carbon fibers convert boron or a boron compound into boron atoms in terms of the amount of carbon in said fine carbon fibers. And the fine carbon fiber has a diameter of 0.01 to 5 μm and an aspect ratio of 1
0 or more, and the content of the fine carbon fibers is 0.1
The conductive thermoplastic resin composition is characterized by being in an amount of from 50 to 50% by weight.
た炭素の面間隔d00 2が3.385Å以下であり、かつ
結晶のc軸方向の厚さLcが400Å以下である請求項
1記載の導電性熱可塑性樹脂組成物。2. A fine carbon fibers, according to claim interplanar spacing d 00 2 carbons as measured by X-ray diffractometry is not more than 3.385A, and the thickness Lc of the c-axis direction of the crystal is not more than 400Å 2. The conductive thermoplastic resin composition according to 1.
0.8g/cm3のとき0.01Ω・cm以下である請
求項1又は2記載の導電性熱可塑性樹脂組成物。3. The conductive thermoplastic resin composition according to claim 1, wherein the powder resistance of the fine carbon fibers is 0.01 Ω · cm or less when the bulk density is 0.8 g / cm 3 .
請求項1〜3のいずれか1項記載の導電性熱可塑性樹脂
組成物。4. The conductive thermoplastic resin composition according to claim 1, which has a resistance value of 0.01 Ω · cm or less.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000012258A JP3708390B2 (en) | 2000-01-20 | 2000-01-20 | Conductive thermoplastic resin composition |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000012258A JP3708390B2 (en) | 2000-01-20 | 2000-01-20 | Conductive thermoplastic resin composition |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2001200096A true JP2001200096A (en) | 2001-07-24 |
| JP3708390B2 JP3708390B2 (en) | 2005-10-19 |
Family
ID=18540002
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000012258A Expired - Fee Related JP3708390B2 (en) | 2000-01-20 | 2000-01-20 | Conductive thermoplastic resin composition |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3708390B2 (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002088249A (en) * | 2000-09-12 | 2002-03-27 | Polymatech Co Ltd | Thermoconductive polymer composition and thermoconductive molded body |
| WO2003055054A1 (en) * | 2001-12-21 | 2003-07-03 | Kitagawa Industries Co., Ltd. | Ultrasonic motor, and electronic timepiece having ultrasonic motor |
| JP2004339484A (en) * | 2003-04-24 | 2004-12-02 | Showa Denko Kk | Resin crystallization promoter and resin composition |
| WO2005023937A1 (en) * | 2003-09-02 | 2005-03-17 | Showa Denko K.K. | Electrically conducting polymer and production method and use thereof |
| WO2005026430A1 (en) * | 2003-09-16 | 2005-03-24 | Showa Denko K. K. | Composite of vapor grown carbon fiber and inorganic fine particle and use thereof |
| JP2005113363A (en) * | 2003-09-16 | 2005-04-28 | Showa Denko Kk | Composite of vapor grown carbon fiber and inorganic fine particle and use thereof |
| JP2005281690A (en) * | 2004-03-03 | 2005-10-13 | Showa Denko Kk | Conductive resin composition and molded body thereof |
| JP2006225648A (en) * | 2005-01-21 | 2006-08-31 | Showa Denko Kk | Conductive resin composition, its production method and use |
| JP2007169461A (en) * | 2005-12-22 | 2007-07-05 | Showa Denko Kk | Semi-electroconductive structure, electroconductive and/or thermo-conductive structure, and method for production thereof and use thereof |
| US7575800B2 (en) | 2001-11-02 | 2009-08-18 | Kitagawa Industries Co., Ltd. | Sliding parts, precision parts and timepieces and electronic equipment using the same |
| CN1538612B (en) * | 2003-03-27 | 2011-04-13 | 奥林巴斯株式会社 | Ultrasonic vibrator and ultrosonic electric machine |
| KR101122610B1 (en) * | 2003-04-24 | 2012-03-15 | 쇼와 덴코 가부시키가이샤 | Carbon fiber-containing resin dispersion solution and resin composite material |
| JP2012158889A (en) * | 2011-01-31 | 2012-08-23 | Bunka Shutter Co Ltd | Grille shutter |
| JP2013108201A (en) * | 2011-10-27 | 2013-06-06 | Showa Denko Kk | Method for producing carbon fiber |
-
2000
- 2000-01-20 JP JP2000012258A patent/JP3708390B2/en not_active Expired - Fee Related
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002088249A (en) * | 2000-09-12 | 2002-03-27 | Polymatech Co Ltd | Thermoconductive polymer composition and thermoconductive molded body |
| US7575800B2 (en) | 2001-11-02 | 2009-08-18 | Kitagawa Industries Co., Ltd. | Sliding parts, precision parts and timepieces and electronic equipment using the same |
| WO2003055054A1 (en) * | 2001-12-21 | 2003-07-03 | Kitagawa Industries Co., Ltd. | Ultrasonic motor, and electronic timepiece having ultrasonic motor |
| CN100446400C (en) * | 2001-12-21 | 2008-12-24 | 北川工业株式会社 | Ultrasonic motor and electronic clock with ultrasonic motor |
| CN1538612B (en) * | 2003-03-27 | 2011-04-13 | 奥林巴斯株式会社 | Ultrasonic vibrator and ultrosonic electric machine |
| JP2004339484A (en) * | 2003-04-24 | 2004-12-02 | Showa Denko Kk | Resin crystallization promoter and resin composition |
| KR101122610B1 (en) * | 2003-04-24 | 2012-03-15 | 쇼와 덴코 가부시키가이샤 | Carbon fiber-containing resin dispersion solution and resin composite material |
| KR100795876B1 (en) | 2003-09-02 | 2008-01-21 | 쇼와 덴코 가부시키가이샤 | Electrically conducting polymer and production method and use thereof |
| WO2005023937A1 (en) * | 2003-09-02 | 2005-03-17 | Showa Denko K.K. | Electrically conducting polymer and production method and use thereof |
| US7569161B2 (en) | 2003-09-02 | 2009-08-04 | Showa Denko K.K. | Electrically conducting polymer and production method and use thereof |
| EP1660589A4 (en) * | 2003-09-02 | 2007-07-04 | Showa Denko Kk | Electrically conducting polymer and production method and use thereof |
| KR100779124B1 (en) | 2003-09-16 | 2007-11-28 | 쇼와 덴코 가부시키가이샤 | Composite of vapor grown carbon fiber and inorganic fine particle and use thereof |
| CN100540765C (en) * | 2003-09-16 | 2009-09-16 | 昭和电工株式会社 | Composite of vapor grown carbon fiber and inorganic fine particles and use thereof |
| US7879442B2 (en) | 2003-09-16 | 2011-02-01 | Showa Denko K.K. | Composite of vapor grown carbon fiber and inorganic fine particle and use thereof |
| JP2005113363A (en) * | 2003-09-16 | 2005-04-28 | Showa Denko Kk | Composite of vapor grown carbon fiber and inorganic fine particle and use thereof |
| WO2005026430A1 (en) * | 2003-09-16 | 2005-03-24 | Showa Denko K. K. | Composite of vapor grown carbon fiber and inorganic fine particle and use thereof |
| JP2005281690A (en) * | 2004-03-03 | 2005-10-13 | Showa Denko Kk | Conductive resin composition and molded body thereof |
| JP2006225648A (en) * | 2005-01-21 | 2006-08-31 | Showa Denko Kk | Conductive resin composition, its production method and use |
| JP2007169461A (en) * | 2005-12-22 | 2007-07-05 | Showa Denko Kk | Semi-electroconductive structure, electroconductive and/or thermo-conductive structure, and method for production thereof and use thereof |
| JP2012158889A (en) * | 2011-01-31 | 2012-08-23 | Bunka Shutter Co Ltd | Grille shutter |
| JP2013108201A (en) * | 2011-10-27 | 2013-06-06 | Showa Denko Kk | Method for producing carbon fiber |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3708390B2 (en) | 2005-10-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3502490B2 (en) | Carbon fiber material and method for producing the same | |
| JP3461805B2 (en) | Carbon fiber, method for producing the same, and battery electrode | |
| JP3708390B2 (en) | Conductive thermoplastic resin composition | |
| US7390593B2 (en) | Fine carbon fiber, method for producing the same and use thereof | |
| US7150911B2 (en) | Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof | |
| JP3850427B2 (en) | Carbon fiber bonded body and composite material using the same | |
| KR20190074313A (en) | Negative electrode material and lithium ion battery | |
| US4664900A (en) | Electrically conductive compositions | |
| JP2004003097A (en) | Carbon fiber, process for producing the same and electrode for electric batteries | |
| US20080099732A1 (en) | Electroconductive Resin Composition, Production Method and Use Thereof | |
| JP3406470B2 (en) | Particulate acetylene black and its production method and use | |
| JP3881332B2 (en) | Carbon fiber material and composite material thereof | |
| JP3606782B2 (en) | Conductive paint | |
| JP4920135B2 (en) | Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof | |
| JP3535972B2 (en) | Highly conductive carbon fiber and method for producing the same | |
| JPH03140369A (en) | Electrically conductive resin composition | |
| JP3722965B2 (en) | Carbon material for electric double layer capacitors | |
| JP3580689B2 (en) | Thermoplastic resin composition | |
| CN111601770A (en) | Agglomerated solid materials prepared from loose carbon nanotubes | |
| JP2010024343A (en) | Composition for preparing powder molding material excellent in heat-conductivity | |
| JPH0791417B2 (en) | Conductive resin composition | |
| JP3799344B2 (en) | Thermoplastic resin composition | |
| JPH01101372A (en) | Electrically conductive composite resin composition | |
| JPS63286469A (en) | Composition for molding carbon fiber composite resin | |
| JP2004225003A (en) | Antistatic resin composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040430 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040511 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040630 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040824 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041008 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041008 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050726 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050803 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080812 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090812 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090812 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110812 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110812 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 9 |
|
| LAPS | Cancellation because of no payment of annual fees |