[go: up one dir, main page]

JP2001208116A - Compression coil spring - Google Patents

Compression coil spring

Info

Publication number
JP2001208116A
JP2001208116A JP2000021484A JP2000021484A JP2001208116A JP 2001208116 A JP2001208116 A JP 2001208116A JP 2000021484 A JP2000021484 A JP 2000021484A JP 2000021484 A JP2000021484 A JP 2000021484A JP 2001208116 A JP2001208116 A JP 2001208116A
Authority
JP
Japan
Prior art keywords
coil spring
compression coil
seat
seat surface
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000021484A
Other languages
Japanese (ja)
Inventor
Masahiro Yasui
雅博 安井
Toshiyuki Imaizumi
敏幸 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP2000021484A priority Critical patent/JP2001208116A/en
Publication of JP2001208116A publication Critical patent/JP2001208116A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/426Coil springs having a particular shape, e.g. curved axis, pig-tail end coils

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)

Abstract

(57)【要約】 【課題】 圧縮荷重が付与されたときにも反力軸が座面
中心線と一致し得るように構成した圧縮コイルばねを提
供する。 【解決手段】 上側座3と下側座4との間に圧縮コイル
ばね2を介装し、この圧縮コイルばねに平行圧縮荷重を
付与したときに発生する横力の方向に対して垂直な軸を
中心に、上側座及び下側座の少くとも何れか一方を傾斜
させ、圧縮コイルばねに生ずる反力軸RAが圧縮コイル
ばねの上側座面USの中心と下側座面LSの中心を結ぶ
座面中心線CLと平行になるときの傾斜角度(例えば
α)に保持する。この状態で、座面中心線からの反力軸
の偏心方向と反対側に圧縮コイルばねの胴部2cが膨出
する方向に、反力軸が座面中心線と略一致するまで胴部
を湾曲形成する。
(57) [Problem] To provide a compression coil spring configured so that a reaction axis can coincide with a center line of a bearing surface even when a compression load is applied. SOLUTION: A compression coil spring 2 is interposed between an upper seat 3 and a lower seat 4, and an axis perpendicular to a direction of a lateral force generated when a parallel compression load is applied to the compression coil spring. , At least one of the upper seat and the lower seat is inclined, and the reaction force axis RA generated in the compression coil spring connects the center of the upper seat surface US of the compression coil spring to the center of the lower seat surface LS. It is maintained at an inclination angle (for example, α) when it becomes parallel to the seat surface center line CL. In this state, in the direction in which the body portion 2c of the compression coil spring bulges in the direction opposite to the eccentric direction of the reaction force axis from the seat surface center line, the body portion is moved until the reaction force axis substantially matches the seat surface center line. Form a curve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮コイルばねに
関し、特に、圧縮荷重付与時に横力及び荷重偏心の何れ
も発生させない圧縮コイルばねに係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression coil spring, and more particularly to a compression coil spring which does not generate any lateral force or load eccentricity when a compressive load is applied.

【0002】[0002]

【従来の技術】従来より、種々の圧縮コイルばねが知ら
れており、圧縮荷重を付与したときに横力を発生させな
いようにするため、種々の手段が講じられている。例え
ば、「サスペンション設計における懸架コイルばねの横
力低減技術」と題する論文(ばね技術研究会、1995
年8月28日発行)には、圧縮コイルばねの横力を最小
化することが課題とされ、マクファーソンストラット型
サスペンションに供する圧縮コイルばねに対し巻数規制
を行なうと共に座を傾けることが提案されている。
2. Description of the Related Art Conventionally, various compression coil springs have been known, and various measures have been taken to prevent a lateral force from being generated when a compressive load is applied. For example, a paper entitled "Technique to reduce lateral force of suspension coil spring in suspension design" (Spring Technology Research Society, 1995)
(August 28, 2008), it is an issue to minimize the lateral force of the compression coil spring, and it has been proposed to restrict the number of turns and tilt the seat of the compression coil spring used for the McPherson strut type suspension. I have.

【0003】上記の文献には、「ばね座をコイル軸方向
にだけ偏位させてばねを圧縮する平行圧縮の場合でも、
ばね座に作用する荷重は偏心し、コイル軸に直角方向の
荷重成分(以下横力と呼ぶ)も発生する」と記載され、
例えば平行圧縮時に下側ばね座に作用する横力の向きと
反対方向に座を傾ければ、横力は最小となる旨記載され
ている。
[0003] The above-mentioned document states that even in the case of parallel compression in which the spring is compressed by displacing the spring seat only in the coil axis direction,
The load acting on the spring seat is eccentric, and a load component perpendicular to the coil axis (hereinafter referred to as lateral force) also occurs. "
For example, it is described that when the seat is inclined in a direction opposite to the direction of the lateral force acting on the lower spring seat during the parallel compression, the lateral force is minimized.

【0004】また、特開平9−2039号公報には、サ
スペンション装置のダンパに発生する摩擦を低減するこ
とを目的として、コイルばねの荷重軸線がダンパロッド
の軸線と略一致するようにコイルばねの幾何学的軸線を
ダンパロッドの軸線に対してコイルばねの上下方向中央
を中心として上下対称に傾斜させてコイルばねの荷重軸
線をダンパロッドの軸線と一致させる旨記載されてお
り、ダブルウイッシュボーン型サスペンションに適用し
た実施例が開示されている。
Japanese Patent Application Laid-Open No. 9-2039 discloses that a coil spring is provided so that the load axis of the coil spring substantially coincides with the axis of the damper rod in order to reduce the friction generated in the damper of the suspension device. It is stated that the geometric axis is inclined symmetrically about the center of the coil spring in the vertical direction with respect to the axis of the damper rod so that the load axis of the coil spring coincides with the axis of the damper rod. An embodiment applied to a suspension is disclosed.

【0005】[0005]

【発明が解決しようとする課題】然し乍ら、上記公報に
記載のサスペンション装置においては、コイルばねと、
その装着対象のダンパロッドとの関係を調整する必要が
あり、具体的な手段として、例えば両者のレイアウト、
コイル座の形状等、従前の構成に対し大幅な変更が必要
となる。つまり、基本的にコイルばねに対する改良のみ
によって、ダンパに発生する摩擦を低減することが企図
されたものではなく、従ってサスペンション装置全体の
変更となっている。
However, in the suspension device described in the above publication, a coil spring,
It is necessary to adjust the relationship with the mounting target damper rod, and as specific means, for example, the layout of both,
Significant changes are required to the previous configuration, such as the shape of the coil seat. That is, basically, it is not intended to reduce the friction generated in the damper only by improving the coil spring, and therefore, the entire suspension device is changed.

【0006】一方、前掲の文献においては「マルチリン
クサスペンションやダブルウイッシュボーン式サスペン
ションではスプリングオフセットが行なわれていないた
め、上述の方法で横力を低減することはできない」とし
て、上側ばね座の傾斜角を変更することが試みられてい
るが、解決策を見出すまでには至っていない。
[0006] On the other hand, the above-mentioned document states that "since the spring offset is not performed in the multi-link suspension or the double wishbone suspension, the lateral force cannot be reduced by the above-described method". Attempts to change the corner have been made, but have not yet found a solution.

【0007】上記ダブルウイッシュボーン式サスペンシ
ョンに供する圧縮コイルばね等、支持対象の軸に対して
横力を発生させないように設定することが必要な圧縮コ
イルばねにおいては、従前の横力低減方法では横力は低
減されても荷重偏心が増大する場合もあり、その対策を
講ずる必要があるが、基本的に圧縮コイルばねのみによ
る解決は困難であった。
In the case of a compression coil spring which needs to be set so as not to generate a lateral force on the shaft to be supported, such as a compression coil spring provided for the above-mentioned double wishbone type suspension, the conventional lateral force reduction method employs a lateral coil. Even if the force is reduced, the load eccentricity may increase, and it is necessary to take a countermeasure. However, basically, it is difficult to solve the problem by using only the compression coil spring.

【0008】そこで、本発明は、圧縮荷重が付与された
ときにも反力軸が座面中心線と一致し得るように構成し
た圧縮コイルばねを提供することを課題とする。
Accordingly, an object of the present invention is to provide a compression coil spring configured such that the reaction force axis can coincide with the center line of the bearing surface even when a compression load is applied.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の圧縮コイルばねは請求項1に記載のよう
に、上側座と下側座との間に圧縮コイルばねを介装し、
該圧縮コイルばねに平行圧縮荷重を付与したときに発生
する横力の方向に対して垂直な軸を中心に、前記上側座
及び前記下側座の少くとも何れか一方を傾斜させ、前記
圧縮コイルばねに生ずる反力軸が前記圧縮コイルばねの
上側座面の中心と下側座面の中心を結ぶ座面中心線と平
行になるときの傾斜角度に保持した状態で、前記座面中
心線からの前記反力軸の偏心方向と反対側に前記圧縮コ
イルばねの胴部が膨出する方向に、前記反力軸が前記座
面中心線と略一致するまで前記胴部を湾曲形成するよう
に構成したものである。而して、このように湾曲形成さ
れた圧縮コイルばねを上側座と下側座との間に配置する
ときには、上側座及び下側座の少くとも何れか一方を傾
斜させるだけで、両者間に圧縮荷重が付与されたときに
は反力軸が座面中心線と一致することとなる。
In order to solve the above-mentioned problems, a compression coil spring according to the present invention has a compression coil spring interposed between an upper seat and a lower seat. ,
Tilting at least one of the upper seat and the lower seat about an axis perpendicular to a direction of a lateral force generated when a parallel compressive load is applied to the compression coil spring; In a state in which the reaction force axis generated in the spring is held at an inclination angle when it is parallel to the center line of the seat surface connecting the center of the upper seat surface and the center of the lower seat surface of the compression coil spring, from the center line of the seat surface In the direction in which the body of the compression coil spring bulges in the direction opposite to the eccentric direction of the reaction axis, so that the body is curved until the reaction axis substantially matches the center line of the bearing surface. It is composed. Thus, when the thus formed compression coil spring is disposed between the upper seat and the lower seat, only at least one of the upper seat and the lower seat is inclined, and between them. When a compressive load is applied, the reaction axis coincides with the center line of the bearing surface.

【0010】あるいは、請求項2に記載のように、上側
座と下側座との間に圧縮コイルばねを介装し、該圧縮コ
イルばねに平行圧縮荷重を付与したときの横力の方向に
対して垂直な軸を中心に、前記圧縮コイルばねの上側座
面及び下側座面の少くとも何れか一方を夫々前記上側座
又は前記下側座に対して傾斜するように前記圧縮コイル
ばねの上側座巻及び下側座巻の少くとも何れか一方のピ
ッチを設定し、前記圧縮コイルばねに生ずる反力軸が前
記圧縮コイルばねの上側座面の中心と下側座面の中心を
結ぶ座面中心線と平行になるときの傾斜角度にて、前記
上側座面及び下側座面の少くとも何れか一方を前記上側
座又は前記下側座に対して傾斜させた状態で、前記座面
中心線からの前記反力軸の偏心方向と反対側に前記圧縮
コイルばねの胴部が膨出する方向に、前記反力軸が前記
座面中心線と略一致するまで前記胴部を湾曲形成するよ
うに構成してもよい。而して、このように湾曲形成され
た圧縮コイルばねを平行な上側座と下側座との間に介装
するだけで、両者間に圧縮荷重が付与されたときには反
力軸が座面中心線と一致することとなる。
Alternatively, as described in claim 2, a compression coil spring is interposed between the upper seat and the lower seat, and a direction of a lateral force when a parallel compression load is applied to the compression coil spring. The compression coil spring is arranged such that at least one of an upper seat surface and a lower seat surface of the compression coil spring is inclined with respect to the upper seat or the lower seat, respectively, about an axis perpendicular to the axis. A pitch in which at least one of the upper winding and the lower winding is set, and a reaction force axis generated in the compression coil spring connects the center of the upper bearing surface to the center of the lower bearing surface of the compression coil spring. At a tilt angle when parallel to the plane center line, at least one of the upper seat surface and the lower seat surface is inclined with respect to the upper seat or the lower seat, and the seat surface is inclined. A body of the compression coil spring on a side opposite to an eccentric direction of the reaction axis from a center line; In the direction of bulging, the configuration may be such that bending the body portion to the reaction force axis is substantially coincident with the bearing surface centerline. Thus, by simply interposing the compression coil spring thus formed between the upper and lower parallel seats, when a compressive load is applied between the two, the reaction force axis moves to the center of the seat surface. Will match the line.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。図1は本発明の一実施形態に係る圧
縮コイルばね2を示すもので、二点鎖線で示す上側座3
と下側座4との間に介装される。この圧縮コイルばね2
は、上側座3及び下側座4間、ひいては圧縮コイルばね
2に平行圧縮荷重が付与されたときに発生する横力の方
向に対して垂直な軸を中心に、上側座3及び下側座4の
少くとも何れか一方(例えば下側座4)を傾斜させ、圧
縮コイルばね2に生ずる反力軸RAが圧縮コイルばね2
の上側座面USの中心と下側座面LSの中心を結ぶ座面
中心線CL(図1では反力軸RAと一致)と平行になる
ときの傾斜角度(例えば、上側座3の傾斜角度βが0°
のときの下側座4の傾斜角度α)に保持した状態で、座
面中心線CLからの反力軸RAの偏心方向と反対側に胴
部2cが膨出する方向(図1の左方)に、反力軸RAが
座面中心線CLと略一致するまで(即ち、図1の状態と
なるまで)、胴部2cが湾曲形成されたものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a compression coil spring 2 according to an embodiment of the present invention, and an upper seat 3 shown by a two-dot chain line.
And the lower seat 4. This compression coil spring 2
The upper seat 3 and the lower seat 4 are centered on an axis perpendicular to the direction of a lateral force generated when a parallel compressive load is applied to the compression coil spring 2 between the upper seat 3 and the lower seat 4. 4 is inclined (for example, the lower seat 4), and the reaction force axis RA generated in the compression coil spring 2 is
The inclination angle (for example, the inclination angle of the upper seat 3) when it is parallel to a seat surface center line CL (coincident with the reaction force axis RA in FIG. β is 0 °
In the state where the lower seat 4 is held at the inclination angle α at the time of (1), the direction in which the body 2c bulges out on the opposite side to the eccentric direction of the reaction force axis RA from the seat surface center line CL (leftward in FIG. 1). ), The trunk portion 2c is curved until the reaction force axis RA substantially matches the seat surface center line CL (that is, until the state shown in FIG. 1 is reached).

【0012】而して、図1に示すように、圧縮コイルば
ね2のコイル軸CAが、自由状態において所定の曲率
(曲率半径R)で湾曲するように形成されており、胴曲
がり量dの初期胴曲がりを有する。この圧縮コイルばね
2が、前述の上側座3と、傾斜角度αで傾斜配置された
下側座4との間に介装され、平行圧縮荷重が付与される
と、反力軸RAが座面中心線CLと一致し、横力及び荷
重偏心の何れも生ずることなく、安定した状態でスプリ
ング作動が行なわれる。この場合において、下側座面L
Sと下側座4との関係は相対的であり、図1では下側座
4が水平で、これに対し下側座面LSが所定角度α傾斜
する関係にあるが、逆に図1において下側座4の当接面
を水平とし、これに対し下側座面LSが所定角度α傾斜
する関係としてもよい。尚、この具体的な態様について
は後述する。
As shown in FIG. 1, the coil axis CA of the compression coil spring 2 is formed to be curved at a predetermined curvature (radius of curvature R) in a free state. Has an initial torsion. The compression coil spring 2 is interposed between the above-described upper seat 3 and the lower seat 4 inclined at the inclination angle α, and when a parallel compression load is applied, the reaction force axis RA causes the seat surface to move. The spring operation is performed in a stable state without any lateral force or load eccentricity, which coincides with the center line CL. In this case, the lower seating surface L
The relationship between S and the lower seat 4 is relative. In FIG. 1, the lower seat 4 is horizontal, and the lower seat surface LS is inclined by a predetermined angle α. The contact surface of the lower seat 4 may be horizontal and the lower seat surface LS may be inclined by a predetermined angle α. This specific mode will be described later.

【0013】次に、上記の構成になる圧縮コイルばね2
を製造する方法の一例について説明する。先ず、検出工
程として、図2にモデル圧縮コイルばね(2xで表す)
を示すように、上側座(図示せず)と下側座(図示せ
ず)との間に圧縮コイルばね2xが介装され、コイル軸
(常態では、上側座面USの中心と下側座面LSの中心
を結ぶ座面中心線CLと一致)に沿って平行圧縮荷重が
付与され、これによって発生する横力Fの方向が検出さ
れる。このとき、反力軸RAは図2に一点鎖線で示すよ
うに偏心している(偏心量をeで表す)。尚、図3に、
平面図における横力Fの方向を矢印で示し、角度θで表
している。
Next, the compression coil spring 2 having the above configuration
An example of a method for manufacturing the will be described. First, as a detection step, FIG. 2 shows a model compression coil spring (represented by 2x).
As shown, a compression coil spring 2x is interposed between an upper seat (not shown) and a lower seat (not shown), and a coil shaft (normally, the center of the upper seat surface US and the lower seat). A parallel compression load is applied along the center line CL of the bearing surface LS connecting the center of the surface LS, and the direction of the lateral force F generated thereby is detected. At this time, the reaction force axis RA is eccentric as shown by the one-dot chain line in FIG. 2 (the amount of eccentricity is represented by e). In FIG. 3,
The direction of the lateral force F in the plan view is indicated by an arrow, and is represented by an angle θ.

【0014】続いて、保持工程に進み、検出工程で検出
された横力Fの方向に対して垂直な軸(図2及び図3に
TAで示す)を中心に、例えば下側座面LSが図4に示
すように回転駆動されて傾斜配置される。そして、圧縮
コイルばね2xに生ずる反力軸CAが、図5に示すよう
に座面中心線CLと平行になるときの傾斜角度(α)に
保持される。
Subsequently, the process proceeds to a holding process, in which, for example, the lower seating surface LS is centered on an axis (indicated by TA in FIGS. 2 and 3) perpendicular to the direction of the lateral force F detected in the detecting process. As shown in FIG. 4, it is rotated and driven to be inclined. Then, the reaction force axis CA generated in the compression coil spring 2x is maintained at the inclination angle (α) when it becomes parallel to the seat surface center line CL as shown in FIG.

【0015】次に、図6の湾曲量検出工程に進み、上記
保持工程にて下側座面LSを傾斜させた状態で、座面中
心線CLからの反力軸RAの偏心方向(図5の右方)と
反対側(図5の左方)に圧縮コイルばね2xの胴部が膨
出する方向に、反力軸RAが座面中心線CLと略一致す
るまで胴部を湾曲させ、その湾曲量(図6に示す胴曲が
り量d)が検出される。
Next, the process proceeds to the bending amount detecting step of FIG. 6 and, in a state where the lower seating surface LS is inclined in the holding step, the eccentric direction of the reaction force axis RA from the seating center line CL (FIG. 5). In the direction in which the body of the compression coil spring 2x bulges to the opposite side (to the left in FIG. 5), until the reaction force axis RA substantially coincides with the center line CL of the bearing surface. The amount of bending (the amount of body bending d shown in FIG. 6) is detected.

【0016】そして、上記の湾曲量検出工程の検出結果
に基づき、コイル加工工程において、コイリングマシン
(図示せず)により、胴曲がり量dが形成されるように
圧縮コイルばね2xが湾曲形成される。即ち、NC装置
(図示せず)によって、予めプログラムにピッチ、コイ
ル径等と共に胴曲がり量dが設定されており、このプロ
グラムに従ってコイリングマシンが駆動される。
On the basis of the detection result of the above-described bending amount detecting step, in the coil processing step, the compression coil spring 2x is formed by a coiling machine (not shown) so as to form the body bending amount d. . That is, an NC device (not shown) previously sets the body bending amount d together with the pitch, coil diameter, and the like in a program, and the coiling machine is driven according to the program.

【0017】図7は、図2に示すように圧縮コイルばね
2xを平行圧縮した状態で、図5に示すように横力Fの
方向に対して直角な軸を中心に下側座面LSを傾斜角度
α傾斜させ、この傾斜角度αを増加した場合のばね反力
軸の変化を示すもので、傾斜角度αの変化(図7の矢印
は増加方向を示す)に応じた複数のばね反力軸を破線で
示し、0点位置の実線の座面中心線CLに平行な反力軸
RAを一点鎖線で示す。この一点鎖線の反力軸RAの荷
重偏心量を発生させる下側座面LSの傾斜角度αは図8
に示すように略5°となっている。尚、図8は下側座面
LSの傾斜角度αに応じた、上側座面US及び下側座面
LSに生ずる荷重偏心量eを示すもので、破線が上側座
面US、実線が下側座面LSを表している。そして、図
9は下側座面LSの傾斜角度αと発生する横力Fの関係
を示すもので、同図から明らかなように、下側座面LS
の傾斜角度αが略5°のときに横力Fが最小となる。
FIG. 7 shows a state in which the compression coil spring 2x is compressed in parallel as shown in FIG. 2, and the lower seat surface LS is centered on an axis perpendicular to the direction of the lateral force F as shown in FIG. FIG. 7 shows the change in the spring reaction force axis when the inclination angle α is increased and the inclination angle α is increased. A plurality of spring reaction forces corresponding to the change in the inclination angle α (the arrow in FIG. 7 indicates the increasing direction). The axis is indicated by a broken line, and the reaction force axis RA parallel to the solid line center line CL of the solid line at the point 0 is indicated by an alternate long and short dash line. The inclination angle α of the lower bearing surface LS that generates the load eccentricity of the reaction force axis RA indicated by the dashed line is shown in FIG.
As shown in FIG. FIG. 8 shows the load eccentricity e generated on the upper seat surface US and the lower seat surface LS according to the inclination angle α of the lower seat surface LS, and the broken line indicates the upper seat surface US and the solid line indicates the lower side. It shows the seat surface LS. FIG. 9 shows the relationship between the inclination angle α of the lower seating surface LS and the generated lateral force F. As is apparent from FIG.
When the inclination angle α is approximately 5 °, the lateral force F is minimized.

【0018】更に、図10は反力軸の位置を荷重偏心量
eで表したもので、一点鎖線で示す反力軸RAが湾曲量
(胴曲がり量d)の増加に応じて右矢印で示す方向に変
化し、荷重偏心量eが0に接近する。そして、図11は
湾曲量(d)に応じた荷重偏心量eの変化を示すもの
で、湾曲量(d)の増加に応じて荷重偏心量eの絶対値
が減少し、所定の湾曲量(本例ではd=1.1 mm)で反力
軸が0点位置のばね中心線CL(実線で示す)と略一致
する。結局、図7乃至図11に示した例では、傾斜角度
αを5°とし湾曲量(d)を1.1 mmとすれば、横力が0
で、荷重偏心量が0となる。
FIG. 10 shows the position of the reaction force axis by the load eccentricity e, and the reaction force axis RA indicated by the dashed line is indicated by the right arrow in accordance with the increase in the amount of bending (the amount of body bending d). The load eccentricity e approaches zero. FIG. 11 shows a change in the load eccentricity e according to the bending amount (d). The absolute value of the load eccentricity e decreases as the bending amount (d) increases, and the predetermined bending amount ( In this example, d = 1.1 mm), and the reaction axis substantially coincides with the spring center line CL (shown by a solid line) at the zero point position. After all, in the examples shown in FIGS. 7 to 11, if the inclination angle α is 5 ° and the amount of bending (d) is 1.1 mm, the lateral force becomes 0.
, The load eccentricity becomes zero.

【0019】上記のように構成される圧縮コイルばね2
は横力も荷重偏心も生ずることはないので、例えば図1
2に示すダブルウイッシュボーン式サスペンション用の
懸架コイルばねとして好適である。先ず、この懸架装置
を簡単に説明すると、車輪WLがアッパアームUAとロ
アアームLAに揺動自在に支持されると共に、ショック
アブソーバ1を介して車体(図示せず)に支持され、こ
のショックアブソーバ1に圧縮コイルばね2が装着され
たものであり、基本的な構成は従前のものと同様であ
る。
The compression coil spring 2 constructed as described above
Since neither lateral force nor load eccentricity occurs, for example, FIG.
2 is suitable as a suspension coil spring for a double wishbone type suspension. First, the suspension device will be briefly described. The wheels WL are swingably supported by an upper arm UA and a lower arm LA, and are supported by a vehicle body (not shown) via a shock absorber 1. The compression coil spring 2 is mounted, and the basic configuration is the same as the conventional one.

【0020】このような構成になるダブルウイッシュボ
ーン式サスペンションにおいては、ショックアブソーバ
1の軸に対して直交する方向の横力は0であることが望
まれ、圧縮コイルばね2による横力を極力抑えるように
設計されるが、本実施形態の圧縮コイルばね2は前述の
ように構成されており、例えば図1と同様に、下側座L
Sを所定角度α傾斜させれば、横力も荷重偏心も実質的
に0近傍の値に抑えることができるので、懸架コイルば
ねとして好適である。
In the double wishbone type suspension having such a configuration, it is desirable that the lateral force in the direction orthogonal to the axis of the shock absorber 1 is zero, and the lateral force by the compression coil spring 2 is suppressed as much as possible. The compression coil spring 2 of the present embodiment is configured as described above, and for example, as in FIG.
If S is inclined by a predetermined angle α, the lateral force and the load eccentricity can be substantially suppressed to values close to 0, so that it is suitable as a suspension coil spring.

【0021】次に、本発明の他の実施形態について図1
を参照して説明する。前述の実施形態においては圧縮コ
イルばね2の上側座面US及び下側座面LSは傾斜して
形成されることなく、上側座3及び下側座4の少くとも
何れか一方が傾斜配置されるように構成されているが、
本発明は他の実施形態として以下のように構成すること
ができる。以下、図1を参照して前述の実施形態と異な
る点を中心に説明する。
Next, another embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. In the above-described embodiment, the upper seat surface US and the lower seat surface LS of the compression coil spring 2 are not formed to be inclined, and at least one of the upper seat 3 and the lower seat 4 is arranged to be inclined. Is configured as
The present invention can be configured as follows as another embodiment. Hereinafter, with reference to FIG. 1, a description will be given focusing on differences from the above-described embodiment.

【0022】即ち、本実施形態に係る圧縮コイルばね
は、平行に配置される上側座又は下側座(図示せず)に
対して、図1の上側座面US及び下側座面LSの少くと
も何れか一方が傾斜するように上側座巻2a及び下側座
巻2bの少くとも何れか一方のピッチが設定され、圧縮
コイルばね2に生ずる反力軸RAが上側座面USの中心
と下側座面LSの中心を結ぶ座面中心線CLと平行にな
るときの傾斜角度(例えば、上側座面USの傾斜角度β
が0°のときの下側座面LSの傾斜角度α)にて、上側
座面US及び下側座面LSの少くとも何れか一方を上側
座又は下側座に対して傾斜した状態で、座面中心線CL
からの反力軸RAの偏心方向と反対側に圧縮コイルばね
2の胴部2cが膨出する方向に、反力軸RAが座面中心
線CLと略一致するまで胴部2cが湾曲形成されたもの
である。
That is, the compression coil spring according to the present embodiment has less upper seat surface US and lower seat surface LS in FIG. 1 than an upper seat or a lower seat (not shown) arranged in parallel. The pitch of at least one of the upper end turn 2a and the lower end turn 2b is set so that either one of them is inclined, and the reaction force axis RA generated in the compression coil spring 2 is located between the center of the upper seat surface US and the lower end. An inclination angle (for example, an inclination angle β of the upper seat surface US) when it is parallel to a seat surface center line CL connecting the centers of the side seat surfaces LS.
At an inclination angle α of the lower seating surface LS when 0 is 0 °, at least one of the upper seating surface US and the lower seating surface LS is inclined with respect to the upper seat or the lower seat, Seat center line CL
The body 2c is curved in the direction in which the body 2c of the compression coil spring 2 bulges in the direction opposite to the eccentric direction of the reaction axis RA from the body 2c until the reaction axis RA substantially coincides with the seat surface center line CL. It is a thing.

【0023】要するに、本発明の他の実施形態に係る圧
縮コイルばねは、上側座面及び下側座面の少くとも何れ
か一方が上側座又は下側座に対して傾斜するように、上
側座巻2a及び下側座巻2bの少くとも何れか一方のピ
ッチが設定されており、且つ、胴曲がり量dの初期胴曲
がりを有する。而して、上側座(図示せず)と、これと
平行な下側座(図示せず)との間に、本実施形態の圧縮
コイルばねが介装され、平行圧縮荷重が付与されると、
反力軸が座面中心線と一致し、横力及び荷重偏心の何れ
も生ずることなく、安定した状態でスプリング作動が行
なわれる。
In short, the compression coil spring according to another embodiment of the present invention is configured such that at least one of the upper seat surface and the lower seat surface is inclined with respect to the upper seat or the lower seat. The pitch of at least one of the winding 2a and the lower end winding 2b is set, and has an initial bending of the bending amount d. Thus, the compression coil spring of the present embodiment is interposed between the upper seat (not shown) and the lower seat (not shown) parallel to the upper seat (not shown), and when a parallel compression load is applied. ,
The reaction force axis coincides with the center line of the bearing surface, and the spring operation is performed in a stable state without any lateral force or load eccentricity.

【0024】次に、上記の構成になる他の実施形態に係
る圧縮コイルばねを製造する方法について説明する。先
ず、検出工程として、図2と同様に上側座(図示せず)
と下側座(図示せず)との間に圧縮コイルばね2xが介
装され、コイル軸CAに沿って平行圧縮荷重が付与さ
れ、これによって発生する横力Fの方向(θ)が検出さ
れる。このとき、反力軸RAは図2に一点鎖線で示すよ
うに偏心している。
Next, a method of manufacturing a compression coil spring according to another embodiment having the above configuration will be described. First, as a detection step, an upper seat (not shown) as in FIG.
And a lower seat (not shown), a compression coil spring 2x is interposed, a parallel compression load is applied along the coil axis CA, and the direction (θ) of the lateral force F generated thereby is detected. You. At this time, the reaction axis RA is eccentric as shown by the dashed line in FIG.

【0025】続いて座巻設定工程に進み、検出工程で検
出された横力の方向に垂直な軸を中心に、圧縮コイルば
ね2xの上側座面US及び下側座面LSの少くとも何れ
か一方が夫々上側座又は下側座に対して傾斜するように
圧縮コイルばね2xの上側座巻及び下側座巻の少くとも
何れか一方のピッチが設定される。
Subsequently, the process proceeds to an end-turn setting process, in which at least one of the upper seat surface US and the lower seat surface LS of the compression coil spring 2x is centered on an axis perpendicular to the direction of the lateral force detected in the detection process. The pitch of at least one of the upper end turn and the lower end turn of the compression coil spring 2x is set so that one is inclined with respect to the upper seat or the lower seat, respectively.

【0026】更に、湾曲量検出工程に進み、圧縮コイル
ばね2xに生ずる反力軸RAが、座面中心線CLと平行
になるときの傾斜角度にて、上側座面US及び下側座面
LSの少くとも何れか一方を上側座又は下側座に対して
傾斜させた状態で、座面中心線CLからの反力軸RAの
偏心方向と反対側に圧縮コイルばね2xの胴部が膨出す
る方向に、反力軸軸RAが座面中心線CLと略一致する
まで胴部を湾曲させ、湾曲量(胴曲がり量d)が検出さ
れる。
Further, the process proceeds to the bending amount detecting step, and the upper seat surface US and the lower seat surface LS are set at the inclination angle when the reaction force axis RA generated in the compression coil spring 2x becomes parallel to the seat surface center line CL. The body of the compression coil spring 2x bulges out in a state opposite to the eccentric direction of the reaction force axis RA from the seat surface center line CL with at least one of them inclined with respect to the upper seat or the lower seat. In this direction, the trunk is curved until the reaction force axis RA substantially coincides with the seat surface center line CL, and the amount of curvature (the amount of trunk bending d) is detected.

【0027】そして、上記の湾曲量検出工程の検出結果
及び座巻設定工程の設定結果に基づき、コイル加工工程
において、コイリングマシン(図示せず)によりプログ
ラムに従って、上側座面及び/又は下側座面の傾斜角度
(例えばα)が形成されるように上側座巻及び/又は下
側座巻のピッチ設定が行なわれると共に、胴曲がり量d
が形成されるように胴部が湾曲形成される。而して、検
出結果の湾曲量(胴曲がり量d)だけ湾曲した胴部を有
すると共に、設定された傾斜角度(α)だけ傾斜した上
側座面及び/又は下側座面を有する圧縮コイルばねが形
成される。
In the coil machining step, based on the detection result of the above-mentioned bending amount detection step and the setting result of the end turn setting step, a coiling machine (not shown) according to a program according to a program. The pitch of the upper end turn and / or the lower end turn is set so that an inclination angle (for example, α) of the surface is formed, and the body bending amount d
Is formed so as to form the body. Thus, a compression coil spring having a torso portion curved by the amount of curvature (torso bending amount d) of the detection result and having an upper seat surface and / or a lower seat surface inclined by a set inclination angle (α). Is formed.

【0028】図13は内燃機関の動弁系を示すものであ
るが、これに供せられる圧縮コイルばねも前述のダブル
ウィッシュボーン式サスペンションに供せられる圧縮コ
イルばねと同様、横力が0であることが望まれる。図1
3において、内燃機関EGに装着されるバルブ10(吸
気弁あるいは排気弁)は、そのバルブステム10aがス
テムガイドSGに摺動自在に支持され、バルブステム1
0aの先端にはリテーナ13が固定され、バルブリフタ
14を介してカム11に押接されるように配置されてい
る。そして、ステムガイドSG回りの内燃機関EG上に
スプリングシート15が配置され、このスプリングシー
ト15とリテーナ13との間に圧縮コイルばね12が介
装されており、この圧縮コイルばね12によってバルブ
10がカム11方向に付勢されている。
FIG. 13 shows the valve train of an internal combustion engine. The compression coil spring provided for this valve has a lateral force of 0, similarly to the compression coil spring provided for the aforementioned double wishbone type suspension. It is desirable. FIG.
3, a valve stem (intake valve or exhaust valve) mounted on the internal combustion engine EG has a valve stem 10a slidably supported by a stem guide SG, and the valve stem 1
A retainer 13 is fixed to the tip of Oa, and is disposed so as to be pressed against the cam 11 via a valve lifter 14. A spring seat 15 is arranged on the internal combustion engine EG around the stem guide SG, and a compression coil spring 12 is interposed between the spring seat 15 and the retainer 13, and the valve 10 is operated by the compression coil spring 12. It is urged in the direction of the cam 11.

【0029】上記のように構成された内燃機関の動弁系
においても、バルブステム10aとステムガイドSGと
の間に摺動抵抗を極力抑えることが必要である。この場
合には、例えば本発明の他の実施形態として説明した、
上側座面及び下側座面の少くとも何れか一方が上側座又
は下側座に対して傾斜するように、上側座巻及び下側座
巻の少くとも何れか一方のピッチが設定されており、且
つ初期胴曲がりを有する圧縮コイルばね(図13に12
で示す)が用いられる。而して、リテーナ13とスプリ
ングシート15との間に平行圧縮荷重が付与されると、
圧縮コイルばね12の反力軸が座面中心線と一致し、横
力も荷重偏心も生ずることなく、バルブステム10aと
ステムガイドSGとの間の摺動抵抗が抑えられ、安定し
た状態でバルブ10の開閉が行なわれる。また、ステム
ガイドSGの細径化も可能となる。
In the valve train of the internal combustion engine configured as described above, it is necessary to minimize the sliding resistance between the valve stem 10a and the stem guide SG. In this case, for example, described as another embodiment of the present invention,
The pitch of at least one of the upper end turn and the lower end turn is set so that at least one of the upper seat surface and the lower seat surface is inclined with respect to the upper seat or the lower seat. And a compression coil spring having an initial bending (12 in FIG. 13).
) Are used. Thus, when a parallel compressive load is applied between the retainer 13 and the spring seat 15,
The reaction force axis of the compression coil spring 12 coincides with the center line of the bearing surface, and no lateral force or load eccentricity occurs, the sliding resistance between the valve stem 10a and the stem guide SG is suppressed, and the valve 10 Is opened and closed. Further, the diameter of the stem guide SG can be reduced.

【0030】[0030]

【発明の効果】本発明は上述のように構成されているの
で以下の効果を奏する。即ち、請求項1に記載のように
湾曲形成された圧縮コイルばねを上側座と下側座との間
に配置するときには、上側座及び下側座の少くとも何れ
か一方を傾斜させるだけで、両者間に圧縮荷重が付与さ
れたときには反力軸が座面中心線と一致することとなる
ので、横力及び荷重偏心の何れも発生せることなく、適
切に支持することができる。しかも、巻数設計に頼るこ
となく容易に応力設計することができるので、ダブルウ
ィッシュボーン式サスペンション用の懸架コイルばね、
動弁系のコイルばね等に好適である。
The present invention has the following effects because it is configured as described above. That is, when the compression coil spring curved as described in claim 1 is disposed between the upper seat and the lower seat, only at least one of the upper seat and the lower seat is inclined, When a compressive load is applied between the two, the reaction force axis coincides with the center line of the bearing surface, so that the support can be appropriately performed without any lateral force or load eccentricity. Moreover, since the stress can be easily designed without depending on the winding number design, the suspension coil spring for the double wishbone type suspension,
It is suitable for a coil spring or the like of a valve train.

【0031】また、請求項2に記載のように構成した場
合には、湾曲形成された圧縮コイルばねを平行な上側座
と下側座との間に介装するだけで、両者間に圧縮荷重が
付与されたときには反力軸が座面中心線と一致すること
となるので、横力及び荷重偏心の何れも発生せることな
く、適切に支持することができる。従って、ダブルウィ
ッシュボーン式サスペンション用の懸架コイルばね、動
弁系のコイルばね等に装着する際、これらに変更を加え
る必要はないので、容易に適用できる。
Further, in the case of the structure as described in claim 2, the curved compression coil spring is simply interposed between the parallel upper and lower seats, and the compression load is applied between the two. Is applied, the reaction force axis coincides with the center line of the bearing surface, so that it is possible to appropriately support without generating any lateral force or load eccentricity. Therefore, when mounting on a suspension coil spring for a double wishbone type suspension, a coil spring of a valve operating system, or the like, there is no need to change them, so that the present invention can be easily applied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る圧縮コイルばねを示
す正面図である。
FIG. 1 is a front view showing a compression coil spring according to an embodiment of the present invention.

【図2】本発明のモデル圧縮コイルばねを平行圧縮した
状態を示す斜視図である。
FIG. 2 is a perspective view showing a state in which a model compression coil spring of the present invention is compressed in parallel.

【図3】本発明のモデル圧縮コイルばねを平行圧縮した
ときの下側座面の状態を示す平面図である。
FIG. 3 is a plan view showing a state of a lower seat surface when a model compression coil spring of the present invention is compressed in parallel.

【図4】本発明のモデル圧縮コイルばねを平行圧縮した
状態で下側座面を傾斜させる状態を示す正面図である。
FIG. 4 is a front view showing a state where the lower seating surface is inclined in a state where the model compression coil spring of the present invention is compressed in parallel.

【図5】本発明のモデル圧縮コイルばねを平行圧縮した
状態で下側座面を傾斜させた状態を示す斜視図である。
FIG. 5 is a perspective view showing a state in which the lower bearing surface is inclined with the model compression coil spring of the present invention compressed in parallel.

【図6】本発明のモデル圧縮コイルばねを平行圧縮した
状態で下側座面を傾斜させた状態で、更に胴部を湾曲さ
せた状態を示す斜視図である。
FIG. 6 is a perspective view showing a state where the model compression coil spring of the present invention is parallel-compressed, the lower seating surface is inclined, and the trunk is further curved.

【図7】図2の圧縮コイルばねを平行圧縮した状態で下
側座面を傾斜させた場合のばね反力軸の変化を示すグラ
フである。
7 is a graph showing a change in a spring reaction force axis when the lower bearing surface is inclined in a state where the compression coil spring of FIG. 2 is compressed in parallel.

【図8】図2の圧縮コイルばねを平行圧縮した状態で下
側座面を傾斜させた場合の上側座面及び下側座面に発生
する荷重偏心量を示すグラフである。
8 is a graph showing the amount of load eccentricity generated on the upper seat surface and the lower seat surface when the lower seat surface is inclined in a state where the compression coil spring of FIG. 2 is compressed in parallel.

【図9】図2の圧縮コイルばねを平行圧縮した状態で下
側座面を傾斜させた場合の傾斜角と横力の関係を示すグ
ラフである。
9 is a graph showing a relationship between an inclination angle and a lateral force when the lower bearing surface is inclined in a state where the compression coil spring of FIG. 2 is compressed in parallel.

【図10】図2の圧縮コイルばねを平行圧縮した状態で
下側座面を傾斜させた状態で、更に胴部を湾曲させた場
合の、湾曲量(胴曲がり量d)に応じた反力軸の位置を
示すグラフである。
10 shows a reaction force corresponding to the amount of bending (the amount of body bending d) when the lower part of the seat is inclined while the compression coil spring of FIG. 2 is compressed in parallel, and the body is further bent. It is a graph which shows the position of an axis.

【図11】図2の圧縮コイルばねを平行圧縮した状態で
下側座面を傾斜させた状態で、更に胴部を湾曲させた場
合の、湾曲量(d)に応じた荷重偏心量の変化を示すグ
ラフである。
11 is a diagram showing a change in the load eccentricity according to the amount of bending (d) when the lower bearing surface is inclined while the compression coil spring of FIG. 2 is parallel-compressed and the trunk is further bent. FIG.

【図12】図1の圧縮コイルばねを適用したダブルウイ
ッシュボーン式サスペンションの一例を示す斜視図であ
る。
12 is a perspective view showing an example of a double wishbone type suspension to which the compression coil spring of FIG. 1 is applied.

【図13】本発明の他の実施形態に係る圧縮コイルばね
を内燃機関の動弁系に適用した一例を示す断面図であ
る。
FIG. 13 is a sectional view showing an example in which a compression coil spring according to another embodiment of the present invention is applied to a valve train of an internal combustion engine.

【符号の説明】[Explanation of symbols]

2 圧縮コイルばね, 3 上側座, 4 下側座,
CA コイル軸,RA 反力軸, CL 座面中心線,
US 上側座面, LS 下側座面
2 compression coil spring, 3 upper seat, 4 lower seat,
CA coil axis, RA reaction axis, CL seat center line,
US Upper seat, LS Lower seat

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上側座と下側座との間に圧縮コイルばね
を介装し、該圧縮コイルばねに平行圧縮荷重を付与した
ときに発生する横力の方向に対して垂直な軸を中心に、
前記上側座及び前記下側座の少くとも何れか一方を傾斜
させ、前記圧縮コイルばねに生ずる反力軸が前記圧縮コ
イルばねの上側座面の中心と下側座面の中心を結ぶ座面
中心線と平行になるときの傾斜角度に保持した状態で、
前記座面中心線からの前記反力軸の偏心方向と反対側に
前記圧縮コイルばねの胴部が膨出する方向に、前記反力
軸が前記座面中心線と略一致するまで前記胴部を湾曲形
成して成る圧縮コイルばね。
1. A compression coil spring is interposed between an upper seat and a lower seat, and a center is set about an axis perpendicular to a direction of a lateral force generated when a parallel compression load is applied to the compression coil spring. To
At least one of the upper seat and the lower seat is inclined, and a reaction force axis generated in the compression coil spring connects a center of the upper seat surface to a center of the lower seat surface of the compression coil spring. While maintaining the inclination angle when it becomes parallel to the line,
In the direction in which the body of the compression coil spring bulges in a direction opposite to the eccentric direction of the reaction force axis from the seat surface center line, the body portion until the reaction force axis substantially matches the seat surface center line. A compression coil spring formed by bending.
【請求項2】 上側座と下側座との間に圧縮コイルばね
を介装し、該圧縮コイルばねに平行圧縮荷重を付与した
ときの横力の方向に対して垂直な軸を中心に、前記圧縮
コイルばねの上側座面及び下側座面の少くとも何れか一
方を夫々前記上側座又は前記下側座に対して傾斜するよ
うに前記圧縮コイルばねの上側座巻及び下側座巻の少く
とも何れか一方のピッチを設定し、前記圧縮コイルばね
に生ずる反力軸が前記圧縮コイルばねの上側座面の中心
と下側座面の中心を結ぶ座面中心線と平行になるときの
傾斜角度にて、前記上側座面及び下側座面の少くとも何
れか一方を前記上側座又は前記下側座に対して傾斜させ
た状態で、前記座面中心線からの前記反力軸の偏心方向
と反対側に前記圧縮コイルばねの胴部が膨出する方向
に、前記反力軸が前記座面中心線と略一致するまで前記
胴部を湾曲形成して成る圧縮コイルばね。
2. A compression coil spring is interposed between an upper seat and a lower seat, and a center is formed about an axis perpendicular to a direction of a lateral force when a parallel compression load is applied to the compression coil spring. The upper and lower end turns of the compression coil spring are arranged such that at least one of the upper and lower seating surfaces of the compression coil spring is inclined with respect to the upper and lower seats, respectively. When at least one pitch is set, the reaction force axis generated in the compression coil spring is parallel to a seat surface center line connecting the center of the upper seat surface and the center of the lower seat surface of the compression coil spring. At an inclination angle, in a state where at least one of the upper seat surface and the lower seat surface is inclined with respect to the upper seat or the lower seat, the reaction force axis from the seat surface center line is In the direction in which the body of the compression coil spring bulges out on the opposite side to the eccentric direction, the reaction force axis is A compression coil spring in which the body is curved until it substantially coincides with the center line of the seat surface.
JP2000021484A 2000-01-31 2000-01-31 Compression coil spring Pending JP2001208116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021484A JP2001208116A (en) 2000-01-31 2000-01-31 Compression coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021484A JP2001208116A (en) 2000-01-31 2000-01-31 Compression coil spring

Publications (1)

Publication Number Publication Date
JP2001208116A true JP2001208116A (en) 2001-08-03

Family

ID=18547887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021484A Pending JP2001208116A (en) 2000-01-31 2000-01-31 Compression coil spring

Country Status (1)

Country Link
JP (1) JP2001208116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173536A (en) * 2006-12-18 2013-09-05 Muhr & Bender Kg Wheel suspension

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173536A (en) * 2006-12-18 2013-09-05 Muhr & Bender Kg Wheel suspension

Similar Documents

Publication Publication Date Title
US6328290B1 (en) Helical compression spring for a vehicle suspension
JP2001208115A (en) Curved coil spring and method of manufacturing the curved coil spring
EP0976591B1 (en) Vehicle wheel suspension
US6543757B2 (en) Helical compression spring for a vehicle suspension
JP2001227367A (en) Reciprocating internal combustion engine
JPH11129721A (en) Vehicle suspension system
US20250229588A1 (en) Suspension apparatus
US6712346B2 (en) Helical compression spring for a vehicle suspension
US6616131B2 (en) Helical compression spring for a vehicle suspension
US8485505B2 (en) Wheel suspension
JP2001208116A (en) Compression coil spring
JP2000351311A (en) Suspension coil spring for automobile and strut type suspension provided with the suspension coil spring
JP4605845B2 (en) Suspension coil spring for automobile
JP4212311B2 (en) Suspension coil spring
JP2001026208A (en) Spring seat
JP4098898B2 (en) Strut type suspension system
JPH08332823A (en) Suspension device for vehicle
JP2000110873A (en) Automotive suspension coil springs
JP2004156654A (en) Helical compression spring for circular arc movement
JP2002283820A (en) Strut type suspension device
JP2000055096A (en) Coil spring for valve spring
JP4210557B2 (en) shock absorber
JPH08326807A (en) Compression coil spring
JPH1163069A (en) Compression coil spring extrapolation shock absorber
JPH1163066A (en) Compression coil spring extrapolation shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Effective date: 20050920

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613