JP2001208322A - Method for judging property of molten material, method for operating surface melting furnace, and control device - Google Patents
Method for judging property of molten material, method for operating surface melting furnace, and control deviceInfo
- Publication number
- JP2001208322A JP2001208322A JP2000020009A JP2000020009A JP2001208322A JP 2001208322 A JP2001208322 A JP 2001208322A JP 2000020009 A JP2000020009 A JP 2000020009A JP 2000020009 A JP2000020009 A JP 2000020009A JP 2001208322 A JP2001208322 A JP 2001208322A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- main chamber
- primary air
- melting
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Incineration Of Waste (AREA)
- Gasification And Melting Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
(57)【要約】
【課題】 主室2内で可燃物を燃焼させて生成する熱に
より、主室2内に投入された被処理物としての不燃物を
溶融させる表面溶融炉1内に投入される被処理物の可燃
性に関する性状を判別して、被処理物中として不燃物と
共に可燃物を投入した場合にも、主室2内における可燃
物の燃焼及び不燃物の溶融を安定して維持する手段を提
供する。
【解決手段】 前記主室2内に投入された被処理物の投
入部位の表面温度を検出して、前記検出した温度の所定
時間内の変動状況に基づき、可燃物と不燃物とを識別す
る。尚、検出した温度が所定温度範囲を超えて低下する
場合には、被処理物中に可燃物が含まれていると判定す
るようにすればさらによい。また、被処理物が可燃物を
含むものであると判定する判定手段9の判定結果に基づ
き、被処理物供給装置6と燃焼装置3と一次空気供給手
段4とを制御すればなおよい。
(57) [Summary] [Problem] To be thrown into a surface melting furnace 1 for melting incombustible material as a processing object thrown into a main chamber 2 by heat generated by burning a combustible material in a main chamber 2. The properties of the flammability of the object to be processed are determined, and even when the flammable material is charged together with the non-combustible material as the object to be processed, the combustion of the combustible material and the melting of the non-combustible material in the main chamber 2 are stably performed. Provide a means to maintain. SOLUTION: A surface temperature of an input portion of an object to be processed introduced into a main chamber 2 is detected, and a combustible substance and an incombustible substance are identified based on a fluctuation state of the detected temperature within a predetermined time. . When the detected temperature falls below the predetermined temperature range, it is more preferable to determine that the combustible is contained in the object to be processed. It is more preferable to control the processing object supply device 6, the combustion device 3, and the primary air supply device 4 based on the determination result of the determination means 9 that determines that the processing object contains combustibles.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、被溶融物の性状判
別方法及び表面溶融炉の運転方法並びに制御装置に関
し、詳しくは、主室内で可燃物を燃焼させて生成する熱
により、前記主室内に投入された被処理物としての不燃
物を溶融させる表面溶融炉において、前記表面溶融炉内
に投入される被処理物の可燃性に関する性状を判別する
被溶融物の性状判別方法並びに前記表面溶融炉の運転方
法及び制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the properties of a material to be melted, a method for operating a surface melting furnace, and a control device, and more particularly, to heat generated by burning combustibles in a main chamber. In a surface melting furnace for melting an incombustible material as an object to be charged into the furnace, a method for determining the property of the material to be melted for determining the property related to the flammability of the object to be charged into the surface melting furnace, and the surface melting The present invention relates to a furnace operation method and a control device.
【0002】[0002]
【従来の技術】従来、表面溶融炉においては、例えば図
6に示すように、主室2内で可燃物を燃焼させて生成す
る熱により、前記主室2内に投入された被処理物として
の不燃物を溶融させるように構成されており、前記被処
理物に関して、その性状を炉内で判別することは行われ
ていなかった。図示の例においては、前記主室2の底部
10に円筒状に形成した内面を有する外壁部11を立設
してあり、前記主室2の天井部12は前記底部10とは
別体に形成されており、その天井部12の外周部に円筒
状に外面を形成した内壁部13を立設し、前記内壁部1
3を、前記外壁部11の内側に、前記外壁部11と同軸
心に配置して、前記外壁部11に対して軸心周りに相対
回転させるように構成してあった。前記被処理物は、前
記外壁部11と前記内壁部13との間に形成される環状
空間を被処理物装入空間14として、被処理物装入機構
15からの被処理物を、前記被処理物装入空間14内に
供給するように構成してあった。そして、前記主室2内
を所定温度(例えば1300℃)に維持するために、前
記天井部12には、前記主室2内に前記可燃物としての
燃料を供給する燃焼装置3と、前記可燃物を燃焼させる
ための一次空気を供給する一次空気供給手段4を接続し
たバーナ17を配置してあり、さらに、この燃焼装置3
からの燃料が前記主室2内で燃焼する燃焼熱により加熱
された炉内温度を検出する熱電対からなる温度検出手段
16を設けてあり、前記燃料及び一次空気は、前記温度
検出手段16で検出する温度に応じて調節される。前記
被処理物装入空間14内に供給された被処理物は、前記
被処理物装入空間14内に堆積層5を形成し、被処理物
供給装置6により、前記堆積層5から前記主室2内に投
入されて、前記堆積層5の炉内表面5aを擂り鉢状に形
成する。図示の例においては、前記被処理物供給装置6
として、前記内壁部13の下端部に配置されて、前記底
部10に対して、前記内壁部13の軸心回りに相対回転
する切出羽根6Aを設けてあり、前記堆積層5の炉内側
の前記内壁部13下端部に位置する被処理物を、前記主
室2に向けて投入するものであった。この表面溶融炉1
における被処理物の供給量は、必要処理量に基づいて定
められた所定の処理量に対して設定されており、スラグ
の排出量によって処理量を確認し、確認した処理量に応
じてこれが調節されるもので、前記底部10に立設され
た前記外壁部11の回転速度によって調節するように構
成してあった。2. Description of the Related Art Conventionally, in a surface melting furnace, as shown in FIG. 6, for example, as an object to be treated introduced into the main chamber 2 by heat generated by burning a combustible material in the main chamber 2. , And the properties of the object to be treated are not determined in a furnace. In the illustrated example, an outer wall portion 11 having a cylindrical inner surface is provided upright on a bottom portion 10 of the main chamber 2, and a ceiling portion 12 of the main chamber 2 is formed separately from the bottom portion 10. An inner wall portion 13 having a cylindrical outer surface is provided upright on the outer peripheral portion of the ceiling portion 12, and the inner wall portion 1 is provided.
3 is arranged coaxially with the outer wall 11 inside the outer wall 11 so as to rotate relative to the outer wall 11 about an axis. The object to be processed is configured such that an annular space formed between the outer wall portion 11 and the inner wall portion 13 is set as an object loading space 14 and the object to be processed from the object loading mechanism 15 is processed by the object. It was configured to be supplied into the processing object loading space 14. In order to maintain the inside of the main chamber 2 at a predetermined temperature (for example, 1300 ° C.), the ceiling 12 has a combustion device 3 for supplying fuel as the combustible material into the main chamber 2, A burner 17 connected to primary air supply means 4 for supplying primary air for burning objects is arranged.
Temperature detecting means 16 comprising a thermocouple for detecting the temperature in the furnace heated by the combustion heat of the fuel from the main chamber 2 and the fuel and primary air are detected by the temperature detecting means 16. It is adjusted according to the temperature to be detected. The processing object supplied into the processing object loading space 14 forms a deposition layer 5 in the processing object loading space 14, and the processing object supply device 6 removes the deposition layer 5 from the deposition layer 5. It is put into the chamber 2, and the furnace inner surface 5a of the deposition layer 5 is formed in a mortar shape. In the illustrated example, the workpiece supply device 6
A cutting blade 6 </ b> A is provided at the lower end of the inner wall portion 13 and relatively rotates around the axis of the inner wall portion 13 with respect to the bottom portion 10. The object to be processed, which is located at the lower end of the inner wall 13, is thrown into the main chamber 2. This surface melting furnace 1
Is set for a predetermined amount of processing determined based on the required amount of processing, the amount of processing is confirmed by the amount of slag discharged, and this is adjusted according to the confirmed amount of processing. It is configured to be adjusted by the rotation speed of the outer wall 11 erected on the bottom 10.
【0003】[0003]
【発明が解決しようとする課題】近年、表面溶融炉にお
いても、例えば被処理物の乾留残差である可燃物(例え
ばチャー)を不燃物と共に炉内に投入して、同時に処理
する廃棄物の処理方法が注目されている。しかし、上記
従来の表面溶融炉1においては、前記被処理物の性状が
変化すれば、即ち、被処理物に前記チャーで代表される
乾留残差のような可燃物が含まれておれば、前記炉内表
面5aに位置する前記可燃物が燃焼するために、前記被
処理物の減量が大きくなる。この減量が大きくなること
で、前記堆積層5の炉内表面5aが後退し、同時に、前
記被処理物装入空間14内における前記堆積層5の上面
が低下し、前記堆積層5上の環状空間と前記主室2とが
連通する好ましくない状態を生ずるおそれがある。図示
の表面溶融炉1には、前記主室2内の温度を検出するシ
ース型熱伝対を用いた温度検出手段16を設けて、前記
温度検出手段16で検出した主室内温度と前記主室2の
目標温度とに基づき燃焼装置3への燃料調節弁3aと一
次空気供給手段4に備える一次空気調節弁4bとを開度
調節するための、演算手段7aを備える溶融制御手段7
として機能する燃焼制御手段18を設けてある。前記演
算手段7aは、主室温度と、前記主室2からの排ガスの
定圧比熱と、前記主室2からの排ガスの流量と、前記主
室2に供給する燃料の低位発熱量と、前記主室2に供給
する燃料の温度と、前記燃料の定圧比熱と、燃料の追加
に伴い前記燃焼装置3、即ち前記主室2に供給される空
気の定圧比熱と、前記空気の温度と、前記燃料追加量に
対する理論空気量係数と、前記主室2における燃料に対
する所定空気比とに基づき、前記主室2内を前記目標温
度に維持するに必要とする燃料追加量を算出して、前記
演算手段7aで算出した燃料追加量を前記燃焼装置3に
加給するように前記燃料調節弁3aの開度を調節すると
ともに、前記燃料調節弁3aの開度調節に伴い、前記主
室2内を所定の空気比に維持すべく前記一次空気調節弁
4bの開度を調節するように前記燃焼制御手段18を構
成してある。In recent years, even in surface melting furnaces, for example, combustibles (eg, chars), which are residuals of dry distillation of an object to be treated, are introduced into the furnace together with non-combustibles, and wastes to be treated at the same time are treated. Attention has been paid to processing methods. However, in the above-mentioned conventional surface melting furnace 1, if the properties of the object to be treated change, that is, if the object to be treated contains combustibles such as dry distillation residues represented by the char, Since the combustibles located on the furnace inner surface 5a burn, the amount of the object to be processed is greatly reduced. As the weight loss increases, the furnace inner surface 5a of the deposition layer 5 recedes, and at the same time, the upper surface of the deposition layer 5 in the processing object charging space 14 decreases, and the annular shape on the deposition layer 5 There is a possibility that an undesired state in which the space communicates with the main chamber 2 may occur. The illustrated surface melting furnace 1 is provided with temperature detecting means 16 using a sheath-type thermocouple for detecting the temperature in the main chamber 2, and the main chamber temperature detected by the temperature detecting means 16 and the main chamber Melting control means 7 having arithmetic means 7a for adjusting the opening of the fuel control valve 3a to the combustion device 3 and the primary air control valve 4b provided in the primary air supply means 4 based on the target temperature of 2
There is provided combustion control means 18 functioning as. The calculating means 7a includes a main chamber temperature, a constant pressure specific heat of the exhaust gas from the main chamber 2, a flow rate of the exhaust gas from the main chamber 2, a lower heating value of the fuel supplied to the main chamber 2, The temperature of the fuel supplied to the chamber 2, the specific heat at a constant pressure of the fuel, the constant pressure specific heat of the air supplied to the combustion device 3, that is, the main chamber 2 with the addition of the fuel, the temperature of the air, and the temperature of the fuel. Calculating a fuel additional amount required to maintain the inside of the main chamber at the target temperature based on a theoretical air amount coefficient for the additional amount and a predetermined air ratio to fuel in the main chamber; The opening of the fuel control valve 3a is adjusted so that the fuel addition amount calculated in 7a is supplied to the combustion device 3, and the inside of the main chamber 2 is controlled by a predetermined amount with the adjustment of the opening of the fuel control valve 3a. Opening of the primary air control valve 4b to maintain the air ratio It has configured the combustion control means 18 to regulate.
【0004】しかし、投入された被処理物の性状を炉内
で判別するようには構成されていなかったから、上述の
表面溶融炉1においては、被処理物中の可燃物の量が増
加すれば、前記燃焼制御手段18のみによっては前記炉
内表面5aにおける前記可燃物の燃焼に伴う前記炉内表
面5aの後退を防止すること、及び、前記被処理物中の
可燃物を燃焼させるための一次空気量の調節は困難であ
る。従って、上述のように可燃物を含む被処理物を炉内
に投入して、適正に主室2内の燃焼状態を維持すること
は困難である。そこで、先に出願人は、図7に示すよう
に、前記天井部12の中央部に下方の主室2内に向けて
バーナ17を設け、さらに、前記バーナ17の側方の天
井部12に温度計測用の覗き窓を設けて、この覗き窓に
臨ませて表面温度検出手段8として赤外線輻射温度計8
Aを配置し、前記底部10の出滓口の周辺部に向けて姿
勢を調整し、前記周辺部上のスラグ表面に焦点を合わせ
るように調整してある表面溶融炉1で構成される廃棄物
溶融炉を提案した(特願平9−289456号)。この
廃棄物溶融炉には、前記被処理物装入空間14の上方に
設けられ、スクリューフィーダ15Aで構成された被処
理物装入機構15の排出口を気密に連結して、前記被処
理物装入空間14から前記主室2内に被処理物を安定し
て投入するために、前記主室2内への被処理物供給装置
として、前記内壁部13の下端部の所定の位置に、前記
堆積層5に対して相対的に回転する切出羽根6Aを被処
理物供給装置として備えている。さらに、前記スクリュ
ーフィーダ15Aにより供給される被処理物の炉内表面
5aにおける溶融スラグの層の位置を定常的に維持する
ために、前記スクリューフィーダ15Aの速度と前記燃
焼装置3からの熱入力を共に調節する機能を有する燃焼
制御手段18を設けてある。前記燃焼制御手段18は、
炉内温度調節手段18aを備えて、炉内温度を安定的に
維持するために前記燃焼装置3への燃料供給路に備える
燃料調節弁3aと、前記燃焼装置3に向けて一次空気を
送り込む一次空気供給手段4に備える一次空気調節弁4
bとを所定の条件の下に調節し、同時に、前記スクリュ
ーフィーダ15Aの回転速度も調節して被処理物の投入
量を調節するように構成してある。上述の表面溶融炉に
おいては、前記赤外線輻射温度計8Aが、天井部12に
固定されていながら、前記外壁部11に対する相対回転
に伴って前記底部10に対しても相対回転するから、前
記赤外線輻射温度計8Aの測定点が前記出滓口の周辺部
に沿って全周にわたり回転するから、前記外壁部11の
回転と同期して測定温度の平均値を採れば、そのまま1
回の回転の間の平均値で前記出滓口の周辺部の周方向の
平均温度を知ることが出来る。この平均温度の変化によ
って前記堆積層5の炉内表面の後退が検出できるのであ
る。[0004] However, since it is not configured to judge the properties of the charged object in the furnace, in the surface melting furnace 1 described above, if the amount of combustible material in the object increases, A primary control for preventing the furnace inner surface 5a from retreating due to the burning of the combustible material on the furnace inner surface 5a by only the combustion control means 18 and for burning the combustible material in the workpiece; It is difficult to adjust the air volume. Therefore, as described above, it is difficult to put the object to be treated including combustibles into the furnace and to properly maintain the combustion state in the main chamber 2. Therefore, as shown in FIG. 7, the applicant previously provided a burner 17 at the center of the ceiling 12 toward the lower main chamber 2, and further provided a burner 17 on the side of the ceiling 12. An inspection window for temperature measurement is provided, and an infrared radiation thermometer 8 is provided as a surface temperature detecting means 8 to face the inspection window.
A is disposed in the surface melting furnace 1 in which the position A is adjusted, the posture is adjusted toward the peripheral portion of the slag outlet of the bottom portion 10, and the slag surface on the peripheral portion is adjusted to be focused. A melting furnace was proposed (Japanese Patent Application No. 9-289456). The waste melting furnace is provided above the workpiece loading space 14 and hermetically connects the outlet of a workpiece loading mechanism 15 composed of a screw feeder 15A to the waste melting furnace. In order to stably feed the workpiece into the main chamber 2 from the charging space 14, as a workpiece supply device into the main chamber 2, at a predetermined position at the lower end of the inner wall portion 13, The cutting blade 6 </ b> A that rotates relatively to the deposition layer 5 is provided as a processing object supply device. Further, in order to constantly maintain the position of the layer of the molten slag on the furnace inner surface 5a of the workpiece supplied by the screw feeder 15A, the speed of the screw feeder 15A and the heat input from the combustion device 3 are set. A combustion control means 18 having a function of adjusting both is provided. The combustion control means 18
A fuel regulating valve 3a provided in a fuel supply path to the combustion device 3 for stably maintaining the furnace temperature, and a primary air for feeding primary air toward the combustion device 3; Primary air control valve 4 provided in air supply means 4
b is adjusted under predetermined conditions, and at the same time, the rotational speed of the screw feeder 15A is also adjusted to adjust the amount of the object to be processed. In the above-described surface melting furnace, the infrared radiation thermometer 8 </ b> A is also fixed to the ceiling 12, but also rotates relative to the bottom 10 with the relative rotation with respect to the outer wall 11. Since the measuring point of the thermometer 8A rotates over the entire circumference along the periphery of the slag port, if the average value of the measured temperature is taken in synchronization with the rotation of the outer wall portion 11, it is 1 as it is.
The average value in the circumferential direction of the periphery of the slag port can be known from the average value during the rotation. The retreat of the inner surface of the furnace of the deposition layer 5 can be detected from the change in the average temperature.
【0005】しかしながら、上記廃棄物溶融炉において
は、前記堆積層5の炉内表面の後退によって被処理物中
の可燃物が燃焼したことは察知できるにしても、前記主
室2内の温度が高くなりすぎたために前記炉内表面5a
が後退する場合もあり、前記被処理物中の可燃物の燃焼
を制御するには問題が残っていた。[0005] However, in the waste melting furnace, even if it can be detected that the combustibles in the object to be treated have burned due to the retreat of the furnace surface of the deposition layer 5, the temperature in the main chamber 2 is low. The furnace inner surface 5a was too high.
May recede, and there is still a problem in controlling the combustion of combustibles in the object.
【0006】そこで、本発明に係る被溶融物の性状判別
方法並びに表面溶融炉の運転方法及び制御装置は、上記
の問題点を解決し、被処理物中として不燃物と共に可燃
物を投入した場合にも、主室内における可燃物の燃焼及
び不燃物の溶融を安定して維持する手段を提供すること
を目的とする。Therefore, a method for determining the properties of a material to be melted, a method for operating a surface melting furnace, and a control device according to the present invention solves the above-mentioned problems, and the method according to the present invention is applied to a case where a combustible material is put into the material to be processed together with an incombustible material. Another object is to provide means for stably maintaining the combustion of combustibles and the melting of incombustibles in the main chamber.
【0007】[0007]
【課題を解決するための手段】〔被溶融物の性状判別方
法の特徴手段及び作用効果〕上記の目的のための本発明
に係る被溶融物の性状判別方法の第1特徴手段は、請求
項1に記載の如く、主室内に投入された被処理物の投入
部位の表面温度を検出して、前記検出した温度の所定時
間内の変動状況に基づき、可燃物と不燃物とを識別する
点にある。尚、請求項2に記載の如く、前記第1特徴手
段において検出した温度が所定時間内に、所定温度差を
超えて低下した後、所定温度範囲内に上昇すれば、投入
された被処理物が可燃物を含むものであると判定すれば
(第2特徴手段)さらによい。SUMMARY OF THE INVENTION [Characteristic Means and Operation and Effect of Method for Determining Property of Molten Material] The first characteristic means of the method for determining the property of a material to be melted according to the present invention for the above object is described in claims. As described in 1, a surface temperature of an input portion of an object to be treated introduced into the main chamber is detected, and a combustible substance and an incombustible substance are identified based on a fluctuation state of the detected temperature within a predetermined time. It is in. In addition, if the temperature detected by the first characteristic means falls within a predetermined time after exceeding a predetermined temperature difference and then rises within a predetermined temperature range, the loaded object to be processed is provided. It is even better if it is determined that contains combustibles (second characteristic means).
【0008】上記第1特徴手段によれば、被処理物に可
燃物が含まれている場合の温度変化の特徴を検出できる
から、前記被処理物中の可燃物を燃焼させるのに適正な
燃焼条件を維持できる。つまり、これは発明者の知見に
基づくものであって、主室内に投入された被処理物の投
入部位の表面温度を検出すれば、前記投入された被処理
物が不燃物のみの場合には、温度変化の一例をモデル的
に図示した図3(イ)に示すように、前記投入部位の表
面温度Ts は、標準炉内温度Tfs(例えば1300℃)
の上下に変動する炉内温度Tf に平衡して定常表面温度
T0 の上下に幾分変動するが、安定した温度を示す。こ
れに対し、前記投入された被処理物に可燃物が含まれる
場合には、温度変化の一例をモデル的に図示した図3
(ロ)に示すように、前記被処理物の投入部位の表面温
度Ts が、前記被処理物が投入された直後に主室内温度
Tf に対して一旦或る温度差以上に低下する。その低下
した温度は或る領域内に収まっており、その温度領域の
上限は前記定常表面温度T0以下であり、その温度領域
の下限は、前記定常表面温度T0 より低くて、前記主室
内温度Tf より或る一定の温度差だけ低い第一温度T1
と、さらに特定の温度差だけ低い第二温度T2 との間の
範囲内で変化していた。前記被処理物の投入部位の表面
温度Ts は、その後、或る一定の時間内に、不燃物を投
入した際の前記部位の表面温度Ts と同様の温度、即ち
前記定常表面温度T0 と前記第一温度T 1 との間の温度
領域内に戻った。この知見に基づけば、上述の或る一定
の時間内に被処理物の投入表面における温度の変動によ
って前記被処理物の性状を判別することが可能となるの
である。この現象について推定すれば、前記投入部位に
新たに供給された被処理物中の可燃物が炉内の高温に触
れて燃焼し、前記投入部位の表面には堆積層内の後方の
被処理物が露出するために、前記表面温度が一旦低下す
ることが推察され、その後、前記表面が、可燃物が燃焼
した後に残る不燃物で一旦形成され、これが前記主室内
の温度に触れて昇温するため、不燃物の場合と同様の温
度を示すものと考えることができる。この加熱された不
燃物が溶融すれば、溶融物は流下するから、新たに可燃
物を含む被処理物が前記投入部位の表面に露出し、上記
現象を繰り返すもの仮定すれば、上記表面温度の挙動に
対して一応の説明ができる。尚、上記第2特徴手段の構
成は、上記発明者の知見に基づくものであり、被処理物
に可燃物が含まれているか否かを容易に判別できる。つ
まり、例えば図3(イ)に示したように、上記知見にお
ける前記第一温度T1 の前記主室内温度Tfに対する温
度差に替えて、前記主室内温度Tf の代表値である前記
定常表面温度T0 に対する温度差を所定温度差ΔTと
し、不燃物のみの被処理物の場合に呈する前記投入部位
の表面温度Ts に替わる前記定常表面温度T0 と、前記
第一温度T1 との間の温度域を所定温度範囲RT とし
て、上記知見における或る一定の時間を所定時間とすれ
ばよいのである。このように構成すれば、前記被処理物
に可燃物が含まれないならば、前記投入部位の表面温度
は前記定常表面温度T0 にほぼ安定しており、たとえ変
化したとしても最低温度は前記所定温度範囲RT 内に留
まっており、前記被処理物に可燃物が含まれておれば、
前記投入部位の表面温度Ts は一旦前記所定温度差ΔT
を超えて前記第一温度T1 以下に低下するから、このよ
うな温度変化を検出した場合には被処理物に可燃物が含
まれていると判定できるのである。尚、前記主室内温度
Tf の経時的変化が大きい場合には、前記定常表面温度
T0 に前記主室内温度Tf の移動平均値を置き換えれば
よい。According to the first feature, the object to be processed is
Can detect the characteristics of temperature change when there is a burning substance
From the above, it is appropriate to burn the combustible
Combustion conditions can be maintained. In other words, this is based on the knowledge of the inventor.
This is based on the
If the surface temperature of the entry site is detected,
If the object is only non-combustible, an example of temperature change is modeled.
As shown in FIG. 3A shown in FIG.
The surface temperature Ts is the standard furnace temperature Tfs (for example, 1300 ° C.)
Equilibrium with the furnace temperature Tf fluctuating up and down
T0Fluctuates somewhat up and down, but shows a stable temperature. This
On the other hand, combustibles are contained in the input object to be treated.
In this case, FIG. 3 schematically shows an example of a temperature change.
(B) As shown in FIG.
Degree Ts is the temperature of the main room immediately after the object is charged.
The temperature once drops below a certain temperature difference with respect to Tf. Its decline
Temperature falls within a certain area, and
The upper limit is the steady surface temperature T0Below and its temperature range
Is lower than the steady surface temperature T.0Lower, said main room
First temperature T lower than internal temperature Tf by a certain temperature difference1
And a second temperature T lower by a specific temperature difference.TwoBetween
Within the range. The surface of the input portion of the object to be treated
After that, the temperature Ts is set such that incombustible substances are thrown within a certain time period.
The same temperature as the surface temperature Ts of the part when
The steady surface temperature T0And the first temperature T 1Temperature between
Returned to the area. Based on this knowledge, the above-mentioned certain
Within the time of
Therefore, it is possible to determine the properties of the object to be processed.
It is. If this phenomenon is estimated,
The combustibles in the newly supplied workpiece are exposed to the high temperature inside the furnace.
And burns, and the surface of the charging site
The surface temperature once drops because the workpiece is exposed.
It is inferred that after that, the surface
Is formed once by the incombustible material remaining after the
The temperature rises by touching the temperature of
It can be considered as an indicator of degree. This heated
If the fuel melts, the melt will flow down, making it newly flammable
The object to be treated including the object is exposed on the surface of the charging site,
Assuming that the phenomenon repeats, the behavior of the surface temperature
I can explain for a while. Incidentally, the structure of the second characteristic means described above.
The composition is based on the knowledge of the inventor, and
It can be easily determined whether or not any combustible material is contained in the. One
That is, for example, as shown in FIG.
The first temperature T1Of the main room temperature Tf
Instead of the difference, the main room temperature Tf is a representative value of the main room temperature Tf.
Steady surface temperature T0The temperature difference with respect to the predetermined temperature difference ΔT
And the input portion presented in the case of an object to be processed containing only incombustibles
The steady-state surface temperature T instead of the surface temperature Ts0And the said
First temperature T1A predetermined temperature range RTage
Therefore, when a certain time in the above knowledge is
I just need to. With this configuration, the object to be processed is
If there is no flammable material in the
Is the steady surface temperature T0Almost stable,
Even if the temperature is reduced, the minimum temperature is the predetermined temperature range RTStay in
If the object to be treated contains combustibles,
Once the predetermined temperature difference ΔT
Above the first temperature T1Because it drops below
If such a temperature change is detected, the workpiece contains combustibles.
It can be determined that it is rare. The main room temperature
If the change with time of Tf is large, the above-mentioned steady surface temperature
T0Substituting the moving average value of the main room temperature Tf into
Good.
【0009】〔表面溶融炉の運転方法の特徴手段及び作
用効果〕上記の目的のための本発明に係る表面溶融炉の
運転方法の特徴手段は、請求項3に記載の如く、上記被
溶融物の性状判別方法の第1特徴手段又は第2特徴手段
に基づき判別された被処理物の性状に基づき、主室への
被処理物投入量と、一次空気供給量と、燃料供給量との
少なくとも何れか一つを設定する点にある。[Characteristic means and operation effect of the method for operating the surface melting furnace] The characteristic means of the method for operating the surface melting furnace according to the present invention for the above object are as described in claim 3. Based on the property of the workpiece determined based on the first characteristic means or the second characteristic means of the property determining method, at least the amount of the workpiece to be charged into the main chamber, the primary air supply amount, and the fuel supply amount The point is to set one of them.
【0010】上記のように構成した表面溶融炉の運転方
法の特徴手段においては、上記被溶融物の性状判別方法
の第1特徴手段又は第2特徴手段により主室内の投入部
位に投入された被処理物中に可燃物が含まれるか否かを
判別するから、その判別結果により、前記主室内の可燃
物の量の変化を知ることができ、前記前記主室内におけ
る被処理物の減量の変化を予測し、また、前記主室内に
おける不燃物の溶融処理に要する熱量の変化を予測し、
或いは、前記主室内における可燃物の燃焼に要する一次
空気量の変化を予測することができるから、こうした予
測に従って、主室への被処理物投入量、又は、一次空気
供給量、或いは、燃料供給量の内で、必要とするものの
調節をすることで、被処理物の溶融処理を円滑に進める
ことができるようになる。殊に、上記被溶融物の性状判
別方法の第2特徴手段によれば、可燃物が被処理物中に
含まれていることが確実に判るから、燃料供給量を減少
し、且つ、燃料供給量に対する一次空気量の割合を高
め、つまり、燃料に対する空気比を高めることで、前記
被処理物中の可燃物を積極的に燃焼させ、不燃物の溶融
に有効に利用することができ、また、前記被処理物中に
可燃物が含まれておれば、主室内における被処理物の減
量が大きくなるから、必要に応じて被処理物の前記主室
内への供給量、即ち、被処理物投入量を増加すれば、前
記主室内における被処理物の炉内表面が過度に後退する
ことも防止できる。前記被処理物の炉内表面が過度に後
退することを防止するには、一次空気量を減少すること
も一策である。[0010] In the characteristic means of the method for operating the surface melting furnace constructed as described above, the first characteristic means or the second characteristic means of the above-described method for judging the property of the material to be melted is applied to the charging section charged into the main chamber. Since it is determined whether or not a combustible material is contained in the processed material, a change in the amount of combustible material in the main chamber can be known from the result of the determination, and a change in the weight reduction of the processed material in the main chamber. To predict the change in the amount of heat required for the melting treatment of incombustibles in the main chamber,
Alternatively, it is possible to predict a change in the amount of primary air required for combustion of the combustibles in the main chamber. Therefore, according to the prediction, the amount of the object to be treated or the amount of primary air supplied to the main chamber or the fuel supply By adjusting what is needed within the amount, the melting treatment of the object can be smoothly performed. In particular, according to the second characteristic means of the method for judging the property of the material to be melted, it is surely found that the combustible material is contained in the material to be processed, so that the fuel supply amount is reduced and the fuel supply is reduced. By increasing the ratio of the amount of primary air to the amount, that is, by increasing the air ratio to fuel, the combustibles in the object to be treated are actively burned, and can be effectively used for melting incombustibles, If the object to be treated contains combustibles, the amount of the object to be treated in the main chamber is greatly reduced. Therefore, the supply amount of the object to be treated into the main chamber as needed, that is, the object to be treated, If the charging amount is increased, it is possible to prevent the furnace inner surface of the workpiece in the main chamber from retreating excessively. To prevent the furnace inner surface of the object to be treated from retreating excessively, it is also a measure to reduce the amount of primary air.
【0011】〔表面溶融炉の制御装置の特徴構成及び作
用効果〕上記の目的のための本発明に係る表面溶融炉の
制御装置の第1特徴構成は、請求項4に記載の如く、主
室に供給された被処理物の投入部位の表面温度を検出す
る表面温度検出手段と、前記表面温度検出手段の検出す
る温度に基づき、被処理物供給装置の目標供給速度と、
燃焼装置の目標燃料供給量と、一次空気供給手段の目標
一次空気供給量との少なくとも何れか一つを調節するよ
うに溶融制御手段を構成してある点にある。尚、請求項
5に記載の如く、前記表面温度検出手段の検出した温度
が所定時間内に、所定温度差を超えて低下した後、所定
温度範囲内に上昇すれば、投入された被処理物が可燃物
を含むものであると判定する判定手段を備え、前記判定
手段の判定結果に基づいて、被処理物供給装置における
目標供給速度と、燃焼装置における目標燃料供給量と、
一次空気供給手段における目標一次空気供給量との少な
くとも何れか一つを調節するように溶融制御手段を構成
してあればさらによい。 〔第1特徴構成の作用効果〕上記第1特徴構成は、表面
溶融炉の制御装置に上記被溶融物の性状判別方法の第1
特徴手段に基づく上記表面溶融炉の運転方法の特徴手段
を適用したものであり、表面温度検出手段で主室内にお
ける被処理物投入部位の表面温度を検出することで、前
記被処理物投入部位における被処理物の性状を判別でき
るから、溶融制御手段においては、この判別を行うと同
時に、その判別結果に基づき、被処理物供給装置の目標
供給速度と、燃焼装置の目標燃料供給量と、一次空気供
給手段の目標一次空気供給量とを択一的に、又はその内
の二者を、或いは総合的に調節するのである。従って、
主室に供給された被処理物に可燃物が含まれている場合
の温度変化の特徴を検出できるから、前記主室内で被処
理物中の可燃物を燃焼させるのに適正な燃焼条件を維持
できる。また、上記第2特徴構成は、表面溶融炉の制御
装置に上記被溶融物の性状判別方法の第2特徴手段に基
づく上記表面溶融炉の運転方法の特徴手段を適用したも
のであり、被処理物に可燃物が含まれているか否かを容
易に判別できるから、判定手段において被処理物中に可
燃物が含まれているか否かを判定し、溶融制御手段にお
いては、その判定結果に基づき、被処理物供給装置の目
標供給速度と、燃焼装置の目標燃料供給量と、一次空気
供給手段の目標一次空気供給量とを択一的に、又はその
内の二者を、或いは総合的に調節するのである。例え
ば、判定手段において可燃物が被処理物中に含まれてい
ると判定した場合には、溶融制御手段においては、目標
燃料供給量を減少側に調節し、且つ、目標一次空気供給
量を増加側に調節することで主室内において前記被処理
物中の可燃物を積極的に燃焼させ、不燃物の溶融に有効
に利用することができ、また、主室内における被処理物
の減量が大きくなる点に関しては、目標供給速度を高め
れば、前記主室内における被処理物の炉内表面が過度に
後退することも防止できる。前記被処理物の炉内表面が
過度に後退することを防止するには、目標一次空気供給
量を減少するようにしてもよい。[Characteristic Configuration and Operation and Effect of Control Device for Surface Melting Furnace] A first characteristic configuration of the control device for a surface melting furnace according to the present invention for the above object is as described in claim 4. Surface temperature detection means for detecting the surface temperature of the input portion of the workpiece supplied to the, based on the temperature detected by the surface temperature detection means, the target supply speed of the workpiece supply device,
The melting control means is configured to adjust at least one of the target fuel supply amount of the combustion device and the target primary air supply amount of the primary air supply means. In addition, if the temperature detected by the surface temperature detecting means falls within a predetermined time, exceeds a predetermined temperature difference, and then rises within a predetermined temperature range, the object to be processed which has been input is set. Is provided with a determination unit that determines that it contains combustibles, based on the determination result of the determination unit, a target supply speed in the workpiece supply device, a target fuel supply amount in the combustion device,
It is further preferable that the melting control means is configured to adjust at least one of the target primary air supply amount in the primary air supply means. [Function and effect of first characteristic configuration] The first characteristic configuration is that the control apparatus for the surface melting furnace has the first method of determining the property of the material to be melted.
The method is characterized by applying the characteristic means of the method for operating the surface melting furnace based on the characteristic means, wherein the surface temperature detection means detects the surface temperature of the processing object input site in the main chamber, and the processing object input site Since the properties of the object to be treated can be determined, the melting control means makes this determination and, based on the result of the determination, determines the target supply speed of the workpiece supply device, the target fuel supply amount of the combustion device, and the primary fuel supply amount. The target primary air supply amount of the air supply means is adjusted alternatively, or two of them are adjusted. Therefore,
Since it is possible to detect a characteristic of a temperature change when a combustible is contained in the object supplied to the main chamber, appropriate combustion conditions for burning the combustible in the object in the main chamber are maintained. it can. Further, the second characteristic configuration is obtained by applying the characteristic means of the operation method of the surface melting furnace based on the second characteristic means of the property determination method of the material to be melted to the control device of the surface melting furnace. Since it is possible to easily determine whether or not a combustible substance is contained in the object, the determination unit determines whether or not the combustible substance is included in the object to be processed, and the melting control unit based on the determination result. Alternatively, the target supply speed of the treatment object supply device, the target fuel supply amount of the combustion device, and the target primary air supply amount of the primary air supply means can be selected, or two of them, or Adjust. For example, when the determination means determines that the combustible is contained in the object to be processed, the melting control means adjusts the target fuel supply amount to a decrease side and increases the target primary air supply amount. By adjusting to the side, the combustibles in the object to be treated are actively burned in the main chamber and can be effectively used for melting the non-combustible substances, and the amount of the object to be treated in the main chamber is greatly reduced. Regarding the point, if the target supply speed is increased, it is possible to prevent the furnace inner surface of the workpiece in the main chamber from retreating excessively. To prevent the furnace inner surface of the workpiece from retreating excessively, the target primary air supply amount may be reduced.
【0012】[0012]
【発明の実施の形態】上記本発明の被溶融物の性状判別
方法並びに表面溶融炉の運転方法及び制御装置の実施に
ついて、以下に、表面溶融炉の一例を挙げて、図面を参
照しながら説明する。図1は本発明に係る表面溶融炉の
構成を示す縦断面図であり、図2は本発明に係る溶融制
御の一例を示す流れ図であり、図3は炉内の投入部位に
おける表面温度の挙動を傾向として示す線図である。
尚、前記従来の技術において説明した要素と同じ要素並
びに同等の機能を有する要素に関しては、先の図6及び
図7に付したと同一の符号を付し、詳細の説明の一部は
省略する。BEST MODE FOR CARRYING OUT THE INVENTION The method for determining the properties of a material to be melted, the method for operating a surface melting furnace, and the implementation of a control device according to the present invention will be described below with reference to the drawings using an example of a surface melting furnace. I do. FIG. 1 is a longitudinal sectional view showing a configuration of a surface melting furnace according to the present invention, FIG. 2 is a flowchart showing an example of melting control according to the present invention, and FIG. 3 is a behavior of a surface temperature at a charging site in the furnace. It is a diagram which shows as a tendency.
The same elements as those described in the related art and elements having the same functions are denoted by the same reference numerals as those in FIGS. 6 and 7, and a part of the detailed description is omitted. .
【0013】表面溶融炉は、例えば図1に示すように、
主室2の底部10に円筒状に内面を形成した外壁部11
を立設し、前記底部10とは別体の前記主室2の天井部
12の外周部に円筒状に内面を形成した内壁部13を立
設して、前記外壁部11の内側に同軸心に前記内壁部1
3を配置し、前記内壁部13と前記外壁部11との間の
環状空間を被処理物装入空間14に形成し、前記外壁部
11を、軸心周りに回転させるように構成する。前記被
処理物装入空間14の上部にはスクリューフィーダ15
Aからなる被処理物装入機構15を配置して、前記被処
理物装入空間14と気密に接続する。前記被処理物装入
空間14には、前記スクリューフィーダ15Aから投入
された被処理物が前記底部10上に堆積層5を形成す
る。前記内壁部13の下端部には被処理物供給装置6と
して切出羽根6Aを取り付け、前記内壁部13の下端部
の位置で、前記切出羽根6Aを、前記外壁部11の軸心
周りに前記底部10に対して相対回転させて、前記被処
理物の堆積層5から前記切出羽根6Aにより切り出され
た被処理物で、前記堆積層5の炉内表面5aを前記主室
2内に擂り鉢状に形成させ、前記主室2内で可燃物を燃
焼させて生成する熱により前記炉内表面5aの不燃物を
溶融させる。前記底部10の中央部には、前記炉内表面
5aの被処理物が溶融した溶融スラグを二次室を経て排
出する出滓口を設けてある。The surface melting furnace is, for example, as shown in FIG.
An outer wall portion 11 having a cylindrical inner surface formed on a bottom portion 10 of the main chamber 2.
And an inner wall portion 13 having a cylindrical inner surface formed on an outer peripheral portion of a ceiling portion 12 of the main chamber 2 separate from the bottom portion 10, and a coaxial core is provided inside the outer wall portion 11. The inner wall part 1
3, an annular space between the inner wall portion 13 and the outer wall portion 11 is formed in the workpiece loading space 14, and the outer wall portion 11 is configured to rotate around an axis. A screw feeder 15 is provided above the workpiece loading space 14.
A processing object loading mechanism 15 made of A is arranged and connected to the processing object loading space 14 in an airtight manner. The processing object supplied from the screw feeder 15 </ b> A forms the deposition layer 5 on the bottom 10 in the processing object loading space 14. At the lower end of the inner wall portion 13, a cutting blade 6 </ b> A is attached as the workpiece supply device 6, and at the position of the lower end portion of the inner wall portion 13, the cutting blade 6 </ b> A is attached around the axis of the outer wall portion 11. By rotating relative to the bottom portion 10, the processing object cut out from the deposition layer 5 of the processing object by the cutting blade 6 </ b> A, the furnace inner surface 5 a of the deposition layer 5 is placed in the main chamber 2. The non-combustible material on the furnace inner surface 5a is melted by heat generated by burning combustible material in the main chamber 2 in a mortar shape. In the central part of the bottom part 10, there is provided a slag outlet for discharging the molten slag in which the object to be treated on the furnace inner surface 5a is melted through a secondary chamber.
【0014】前記天井部12には、前記主室2内で可燃
物を燃焼させて、前記供給された被処理物を加熱する燃
焼装置3と、前記燃焼装置3から供給される燃料を含む
前記主室2内の可燃物を燃焼させるための一次空気を前
記主室2内に供給する一次空気供給手段4とを設けて、
両者からの燃料及び一次空気を前記主室2内にバーナ1
7から供給するように構成してある。前記主室2内の温
度を所定温度に維持するために、前記燃焼装置3と、前
記一次空気供給手段4との両者を、両者の目標供給量を
基準として制御する燃焼制御手段18と、前記被処理物
供給装置6とに対して、前記燃焼制御手段18における
両者の目標供給量と、前記被処理物供給装置6における
目標供給速度とのうちの少なくとも何れか一つを調節制
御する溶融制御手段7を設ける。前記天井部12に、前
記主室2に供給された被処理物の投入部位の表面温度T
s を検出する表面温度検出手段8と、前記表面温度検出
手段8の検出する表面温度Ts に基づき、前記被処理物
供給装置6の目標供給速度と、前記燃焼装置3の目標燃
料供給量と、前記一次空気供給手段4の目標一次空気供
給量との何れをも調節可能に前記溶融制御手段7を構成
する。The ceiling section 12 includes a combustion device 3 for burning combustibles in the main chamber 2 to heat the supplied workpiece, and a fuel containing fuel supplied from the combustion device 3. Primary air supply means 4 for supplying primary air for burning combustibles in the main chamber 2 into the main chamber 2;
Fuel and primary air from both are burned into the main chamber 2 by a burner 1.
7. A combustion control means 18 for controlling both the combustion device 3 and the primary air supply means 4 on the basis of a target supply amount of both, so as to maintain the temperature in the main chamber 2 at a predetermined temperature; Melting control for adjusting and controlling at least one of the target supply amounts of the two in the combustion control means 18 and the target supply speed in the treatment object supply device 6 with respect to the treatment object supply device 6. Means 7 are provided. The surface temperature T of the site where the object to be processed supplied to the main chamber 2 is introduced into the ceiling 12
a target temperature of the workpiece supply device 6, a target fuel supply amount of the combustion device 3, and a surface temperature detection means 8 for detecting s and a surface temperature Ts detected by the surface temperature detection means 8. The melting control means 7 is configured so that any of the primary air supply means 4 and the target primary air supply amount can be adjusted.
【0015】そして、前記目標供給速度と、前記目標燃
料供給量と、前記目標一次空気供給量とを調節する条件
を前記溶融制御手段7に与える判定手段9を設け、前記
表面温度検出手段8の検出した温度が所定時間内に、所
定温度差を超えて低下した後、所定温度範囲内に上昇す
れば、前記投入された被処理物が可燃物を含むものであ
ると判定するように構成する。前記溶融制御手段7は、
前記判定手段9の判定結果に基づいて、前記目標供給速
度と、前記目標燃料供給量と、前記目標一次空気供給量
のうちの少なくとも何れか一つを調節するように構成す
る。前記三種類の目標値のうちの何れを調節するかを、
炉の状態に応じて判断する機能を前記溶融制御手段7に
与えておけば、自動制御できて便利である。A determination means 9 is provided for giving conditions for adjusting the target supply speed, the target fuel supply amount, and the target primary air supply amount to the melting control means 7. If the detected temperature decreases within a predetermined time after exceeding a predetermined temperature difference and then increases within a predetermined temperature range, it is determined that the inputted object to be processed contains combustibles. The melting control means 7 includes:
On the basis of the determination result of the determination means 9, at least one of the target supply speed, the target fuel supply amount, and the target primary air supply amount is adjusted. Which of the three target values is to be adjusted,
If the melting control means 7 is provided with a function of making a judgment in accordance with the state of the furnace, it can be automatically controlled and is convenient.
【0016】前記燃焼装置3には、前記主室2内に供給
する燃料の量を調節する燃料調節弁3aを備え、前記一
次空気供給手段4には、前記主室2内に吹き込む一次空
気の量を調節する一次空気調節弁4bを設ける。前記燃
料調節弁3a及び前記一次空気調節弁4bは、共に、前
記燃焼制御手段18により開度調節される。また、前記
被処理物供給装置6から前記被処理物装入空間14内に
投入された被処理物は、前記底部10上で堆積層5を形
成し、前記堆積層5を形成する被処理物は、前記切出羽
根6Aにより前記主室2内に面する投入部位の炉内表面
5aに向けて切り出される。ここで、前記目標供給速度
は、前記切出羽根6Aの前記底部10に対する相対回転
速度として設定され、設定された目標回転数で前記外壁
部11が回転駆動される。また、前記目標燃料供給量
は、前記燃料調節弁3aの目標開度として設定され、目
標一次空気供給量は、前記一次空気調節弁4bの目標開
度として設定される。前記溶融制御手段7は、通常は前
記天井部12に設けられた温度検出手段16により前記
主室2内の温度を検出して、検出した炉内温度Tf を予
め設定された標準炉内温度Tfsと比較し、前記炉内温度
Tf を前記標準炉内温度Tfsに近付け、且つ、予め設定
された溶融条件に対して最適化する前記燃焼制御手段1
8に制御を委ね、前記燃料調節弁3a及び前記一次空気
調節弁4bの目標開度及び前記目標回転数を設定する。The combustion device 3 is provided with a fuel control valve 3a for adjusting the amount of fuel supplied into the main chamber 2, and the primary air supply means 4 is provided with a primary air supply means 4 for supplying primary air to the main chamber 2. A primary air control valve 4b for adjusting the amount is provided. The opening of both the fuel control valve 3a and the primary air control valve 4b is adjusted by the combustion control means 18. The object to be processed introduced into the object to be processed space 14 from the object to be processed supply device 6 forms the deposition layer 5 on the bottom 10 and the processing object to form the deposition layer 5. Is cut out by the cutting blade 6A toward the furnace inner surface 5a at the charging site facing the inside of the main chamber 2. Here, the target supply speed is set as a relative rotation speed of the cutting blade 6A with respect to the bottom portion 10, and the outer wall portion 11 is driven to rotate at the set target rotation speed. The target fuel supply amount is set as a target opening of the fuel control valve 3a, and the target primary air supply amount is set as a target opening of the primary air control valve 4b. The melting control means 7 normally detects the temperature in the main chamber 2 by the temperature detecting means 16 provided in the ceiling portion 12 and changes the detected furnace temperature Tf to a preset standard furnace temperature Tfs. The combustion control means 1 for making the furnace temperature Tf closer to the standard furnace temperature Tfs and optimizing for a preset melting condition.
8 to set the target opening and the target rotational speed of the fuel control valve 3a and the primary air control valve 4b.
【0017】以上説明した表面溶融炉1において、投入
された被処理物の性状を判別して、炉の溶融制御のため
に前記目標供給速度と、前記目標燃料供給量と、前記目
標一次空気供給量とを調節する操作量を設定する手順に
つき、最も単純な例によって、以下に図2に示した流れ
図の例に沿って、図3を参照しながら説明する。ここで
は、説明を簡単にするために、主室1内の炉内温度Tf
は、ほぼ標準炉内温度Tfsに安定して維持されているも
のとする。以下の例における表面溶融炉おいては、一次
空気供給量は燃料供給量に対して予め設定された空気比
に基づき調節するようにしてあり、温度検出手段16の
検出する炉内温度Tf の標準炉内温度に対する偏差に基
づき、燃焼制御手段18によって燃料調節弁3aの目標
開度が調節され、この燃料調節弁3aの目標開度に対し
て一次空気調節弁4bが比例制御される。尚、投入され
る被処理物に関する情報を基に、予め前記目標回転数、
前記燃料調節弁3aの目標開度が設定される。また、所
定温度範囲RT 及び所定温度差ΔTを予め設定してお
く。また、不燃物を溶融する際における前記表面温度T
s の代表値である定常表面温度T0 も求めておく。In the surface melting furnace 1 described above, the properties of the material to be treated are determined, and the target supply speed, the target fuel supply amount, and the target primary air supply are controlled for melting control of the furnace. The procedure for setting the operation amount for adjusting the amount will be described below with reference to FIG. 3 by using the simplest example along the example of the flowchart shown in FIG. Here, in order to simplify the description, the furnace temperature Tf in the main chamber 1 is set.
Is stably maintained at approximately the standard furnace temperature Tfs. In the surface melting furnace in the following example, the primary air supply amount is adjusted based on a preset air ratio with respect to the fuel supply amount, and the standard of the furnace temperature Tf detected by the temperature detecting means 16 is set. The target degree of opening of the fuel control valve 3a is adjusted by the combustion control means 18 based on the deviation from the furnace temperature, and the primary air control valve 4b is proportionally controlled with respect to the target degree of opening of the fuel control valve 3a. It should be noted that the target rotation speed,
A target opening of the fuel control valve 3a is set. Further, a predetermined temperature range RT and a predetermined temperature difference ΔT are set in advance. Further, the surface temperature T at the time of melting the incombustibles is
The steady surface temperature T 0, which is a representative value of s, is also determined.
【0018】[1]被処理物の投入部位における表面温
度Ts を表面温度検出手段8で、炉内温度Tf を温度検
出手段16で、所定時間継続して夫々繰り返し検出する
(図2には*1の符号を付して表示)。 [2]判定手段9で、前記表面温度Ts を、前記炉内温
度Tf 及び前記定常表面温度T0 と比較する(図2には
*2の符号を付して表示)。 (判定手段9での上記[2]における判定) [2−1]前記判定手段9では、前記表面温度Ts が、
前記定常表面温度T0 に近いか、前記炉内温度Tf 以下
で、前記炉内温度Tf より前記所定温度差ΔT低い第一
温度T1 までの範囲内にあれば(図3(イ)参照)、投
入された被処理物が不燃物からなり、可燃物を多く含ん
でいないと判定して(図2には*2−1の符号を付して
表示)、前記燃料調節弁3aの目標開度を調節すること
なく上記[1]の手順に戻る。尚、下記[4]の手順か
ら上記[1]戻った後に、上記[2]の手順で判定を行
った場合には、下記[3]の手順で設定した燃料調節弁
3aに対する開度減少補正量と、下記[4]の手順で設
定した一次空気調節弁4bに対する開度増加補正量とを
初期値に戻した後に、上記[1]の手順に戻る(図2に
は、太い一点鎖線で囲って示した)。 [2−2]前記判定手段9では、前記表面温度Ts とし
て、前記炉内温度Tf より前記所定温度差ΔT低い第一
温度T1 以下に下がった温度を検出しておれば(図3
(ロ)参照)、投入された被処理物が可燃物を多く含ん
でいると判定して(図2には*2−2の符号を付して表
示)、下記[3]以下の手順を実行する (溶融制御手段7における操作量の設定) [3]溶融制御手段7では、前記判定手段9の判定結果
に基づき、前記可燃物の炉内発熱量に相当する燃料の差
分量を算定して、その差分量に相当する開度減少補正量
を設定して(図2には*3の符号を付して表示)、前記
燃料調節弁3aの目標開度を閉側に調節する。 [4]前記可燃物の燃焼に必要とする一次空気の差分量
を算定して、上記[3]で調節された燃料調節弁3aの
目標開度に応じて変更された一次空気調節弁4bの目標
開度に対して、その一次空気の差分量に相当する開側へ
の開度増加補正量を設定して (図2には*4の符号を
付して表示)、前記一次空気調節弁4bを開側に調節
し、上記[1]の手順に戻る。[1] The surface temperature Ts at the charging portion of the object to be processed is detected repeatedly by the surface temperature detecting means 8 and the furnace temperature Tf by the temperature detecting means 16 continuously for a predetermined time (* in FIG. 2). 1 is indicated). [2] In determining means 9, the surface temperature Ts, compared to the furnace temperature Tf and the constant surface temperature T 0 (in FIG. 2 are denoted by the sign of the * 2 display). (Judgment in the above [2] by the judgment means 9) [2-1] In the judgment means 9, the surface temperature Ts
If the temperature is close to the steady surface temperature T 0 , or lower than or equal to the furnace temperature Tf and within a range from the furnace temperature Tf to the first temperature T 1 lower than the furnace temperature Tf by the predetermined temperature difference ΔT (see FIG. 3A). It is determined that the input object is made of non-combustible material and does not contain much combustible material (indicated by the symbol * 2-1 in FIG. 2), and the target opening of the fuel control valve 3a is determined. The procedure returns to the step [1] without adjusting the degree. If the determination in the above procedure [2] is performed after returning from the above procedure [4] to the above [1], the opening reduction correction for the fuel control valve 3a set in the following procedure [3] is performed. After returning the amount and the opening increase correction amount for the primary air control valve 4b set in the following procedure [4] to the initial values, the procedure returns to the above procedure [1]. Enclosed). [2-2] In the determination means 9, the as the surface temperature Ts, if I by detecting the from the furnace temperature Tf predetermined temperature difference ΔT lower first temperature T 1 of the temperature drops below (Figure 3
(B)), it is determined that the input workpiece contains a large amount of combustibles (indicated by the symbol * 2-2 in FIG. 2), and the following procedure [3] is performed. Execute (setting of the operation amount in the melting control means 7) [3] The melting control means 7 calculates the difference amount of the fuel corresponding to the in-furnace calorific value of the combustible material based on the determination result of the determination means 9. Then, an opening reduction correction amount corresponding to the difference amount is set (indicated by the symbol * 3 in FIG. 2), and the target opening of the fuel control valve 3a is adjusted to the closing side. [4] The difference amount of the primary air required for the combustion of the combustibles is calculated, and the primary air control valve 4b changed according to the target opening of the fuel control valve 3a adjusted in the above [3]. With respect to the target opening, an opening-side opening increase correction amount corresponding to the difference amount of the primary air is set (indicated by the symbol * 4 in FIG. 2), and the primary air regulating valve is set. 4b is adjusted to the open side, and the procedure returns to the above [1].
【0019】次に、本発明の他の実施の形態について説
明する。 〈1〉上記実施の形態に於いては、図1に、燃焼装置3
からの燃料と一次空気供給手段4からの一次空気とを共
に、バーナ17から主室2内に供給する例を示して説明
したが、例えば図4に示すように、前記一次空気供給手
段4を、前記バーナ17とは別に設けられた、被処理物
中の可燃物を燃焼させる一次空気を前記主室2内に直接
供給する一次空気供給ノズル4aにも一次空気を供給す
るように構成してあってもよい。尚、図4においては、
表面温度検出手段8及び温度検出手段16は、図示を省
略した。これらは、何れも図1に示したと同様に構成す
ればよい。このように構成した場合には、上述の表面溶
融炉の溶融制御のために各操作量を設定する手順は、例
えば図5に流れ図を示すように、以下のように代えるこ
とができる。この場合には、バーナ17における一次空
気供給量は、燃焼制御手段18によって、設定された燃
料供給量に対して所定の空気比で設定され、バーナ17
への一次空気調節弁4bの目標開度は、燃料調節弁3a
の目標開度に対して比例制御され、その開度補正は行わ
なず、これとは別に、前記一次空気供給ノズル4aへの
一次空気供給量を調節するのである。つまり、図示の例
においては、燃焼制御手段18に炉内温度調節手段18
aを備えて、その炉内温度調節手段18aによって、温
度検出手段16で検出する炉内温度Tf を標準炉内温度
Tfsに維持するように設定する目標燃料供給量を設定し
て、これに対応する前記燃料調節弁3aの目標開度を設
定し、前記バーナ17への一次空気調節弁4bは、これ
に対して比例制御すして、被処理物中の可燃物の燃焼制
御は、下記の手順により溶融制御手段7において行うの
である。尚、下記の通り、[1]及び[2]の手順は、
上記実施の形態に示したと同様である。 [1]被処理物の投入部位における表面温度Ts を表面
温度検出手段8で、炉内温度Tf を温度検出手段16
で、所定時間継続して夫々繰り返し検出する(図5には
*1の符号を付して表示)。 [2]判定手段9で、前記表面温度Ts を、前記炉内温
度Tf 及び前記定常表面温度T0 と比較する(図5には
*2の符号を付して表示)。 (判定手段9での上記[2]における判定) [2−1]前記判定手段9では、前記表面温度Ts が、
前記定常表面温度T0 に近いか、前記炉内温度Tf 以下
で、前記炉内温度Tf より前記所定温度差ΔT以上低い
第一温度T1 までの範囲内にあれば(図3(イ)参
照)、投入された被処理物が不燃物からなり、可燃物を
多く含んでいないと判定して(図5には*2−1の符号
を付して表示)、前記燃料調節弁3aの目標開度を調節
することなく上記[1]の手順に戻る。尚、下記[4]
の手順から上記[1]戻った後に、上記[2]の手順で
判定を行った場合には、下記[3]の手順で設定した燃
料調節弁3aに対する開度減少補正量と、下記[4]の
手順で設定した一次空気供給ノズル4aへの一次空気調
節弁4cの目標開度とを初期値に戻した後に、上記
[1]の手順に戻る(図5には、太い一点鎖線で囲って
示した)。 [2−2]前記判定手段9では、前記表面温度Ts とし
て、前記炉内温度Tf より前記所定温度差ΔT以上低い
第一温度T1 以下に下がった温度を検出しておれば(図
3(ロ)参照)、投入された被処理物が可燃物を多く含
んでいると判定して(図5には*2−2の符号を付して
表示)、下記[3]以下の手順を実行する (溶融制御手段7における操作量の設定) [3]溶融制御手段7では、前記判定手段9の判定結果
に基づき、前記可燃物の炉内発熱量に相当する燃料の差
分量を算定して、その差分量に相当する開度減少補正量
を設定して(図2には*3の符号を付して表示)、前記
燃料調節弁3aの目標開度を閉側に調節する。 [4]前記可燃物の燃焼に必要とする一次空気の差分量
を算定して、前記一次空気供給ノズル4aへの目標一次
空気供給量を設定して(図2には*4の符号を付して表
示)、前記一次空気供給ノズル4aへの一次空気調節弁
4cを開側に調節し、上記[1]の手順に戻る。上記の
構成によって、炉内温度の維持と、被処理物中の可燃物
の量の変化に対する対応とを切り離して独立して行える
から、より決めの細かな溶融制御ができる。 〈2〉上記実施の形態に於いては、内壁部13の下端部
に被処理物供給装置6として切出羽根6Aを取り付け、
前記内壁部13の下端部の位置で、前記切出羽根6A
を、前記外壁部11の軸心周りに前記底部10に対して
相対回転させて、前記被処理物の堆積層5から前記切出
羽根6Aにより切り出された被処理物で、前記堆積層5
の炉内表面5aを形成させる例について説明したが、前
記外壁部11を前記内壁部13に対して相対回転させる
ことなく、両者を相対的に固定しておいて、前記切出羽
根6Aのみを前記内壁部13の下端部に沿って、前記底
部に対して前記内壁部13の軸心周りに回転させるよう
にしてあってもよい。 〈3〉上記実施の形態に於いては、内壁部13の下端部
に被処理物供給装置6として切出羽根6Aを取り付け、
前記内壁部13の下端部の位置で、前記切出羽根6A
を、前記外壁部11の軸心周りに前記底部10に対して
相対回転させて、前記被処理物の堆積層5から前記切出
羽根6Aにより切り出された被処理物で、前記堆積層5
の炉内表面5aを形成させる例について説明したが、前
記被処理物供給装置6は、前記切出羽根6A以外の手段
で構成してあってもよい。例えば、前記堆積層5内にプ
ッシャ或いはスクリューフィーダを配置して、被処理物
を、前記堆積層5内から前記主室2に向けて送り出すよ
うにしてもよく、前記炉内表面5aの上端部の位置で被
処理物を前記主室2内に供給可能であれば、前記被処理
物供給装置6としては任意の手段を用いることができ
る。要するに、表面温度検出手段8が、その投入部位の
炉内表面5aの温度を検出できるように構成できればよ
い。 〈4〉上記実施の形態に於いては、判定手段9による判
定結果に応じて、バーナ17を介して主室2内に供給す
る燃料と一次空気の供給量を調節する例について説明し
たが、一次空気の供給量のみを調節してもよい。また、
被処理物供給装置6による被処理物の供給速度を同時に
調節してもよく、例えば、前記判定手段9で被処理物中
に可燃物が含まれていると判定した場合には、前記被処
理物供給装置6を増速する投入量調節手段19(例えば
図4参照)を設けてもよい。尚、主室2における炉内表
面5aの位置を検出する表面検出手段を設けてあれば、
前記投入量調節手段19は、この表面検出手段で検出す
る炉内表面5aを所定の位置に維持すべく前記被処理物
供給装置6を制御するように構成してもよい。 〈5〉上記実施の形態に於いては、燃料供給量の減少補
正量を設定し、補正された燃料供給量によって設定され
た目標一次空気供給量に対する増加補正量を設定する例
について説明したが、主室2内の状況に応じて燃料及び
一次空気の各目標供給量並びに被処理物の目標供給速度
の何れか、又はその中から選択した複数に対して補正量
を設定するようにしてもよい。例えば、溶融制御手段7
にニューロコンピュータからなる演算手段7aを備えさ
せて、表面温度検出手段8の検出する投入部位の表面温
度を含む各プロセスデータから、学習結果に基づいて各
補正量を前記演算手段7aにより演算導出させるように
構成してあってもよい。 〈6〉以上は、判定手段9における被処理物の可燃性に
関する性状を、可燃物の存否として判定する場合につい
て説明したが、被処理物が可燃物を含むと判定する際
に、その可燃物の存在量を同時に判定するように構成し
てあればさらによい。例えば、可燃物が被処理物に含ま
れる場合に投入部位の表面温度が低下する下限温度(例
えば図3における第二温度T2 )と標準炉内温度Tfs
(図3参照)との差の変化に基づき前記可燃物の存在量
の変化を検出するように構成してもよい。Next, another embodiment of the present invention will be described. <1> In the above embodiment, FIG.
Although the example in which the fuel from the fuel supply and the primary air from the primary air supply means 4 are both supplied from the burner 17 into the main chamber 2 has been described, for example, as shown in FIG. The primary air is also supplied to a primary air supply nozzle 4a, which is provided separately from the burner 17 and supplies primary air for burning combustibles in an object to be processed directly into the main chamber 2. There may be. In FIG. 4,
The illustration of the surface temperature detecting means 8 and the temperature detecting means 16 is omitted. These may be configured in the same manner as shown in FIG. In the case of such a configuration, the procedure for setting each operation amount for the melting control of the surface melting furnace can be changed as follows, for example, as shown in a flowchart in FIG. In this case, the primary air supply amount in the burner 17 is set by the combustion control means 18 at a predetermined air ratio with respect to the set fuel supply amount.
The target opening of the primary air control valve 4b to the fuel control valve 3a
Is controlled proportionally to the target opening degree, and the opening degree is not corrected. Apart from this, the primary air supply amount to the primary air supply nozzle 4a is adjusted. That is, in the illustrated example, the combustion control means 18 is provided with the furnace temperature adjustment means 18.
The target fuel supply amount is set by the furnace temperature adjusting means 18a so as to maintain the furnace temperature Tf detected by the temperature detecting means 16 at the standard furnace temperature Tfs. The target opening of the fuel control valve 3a is set, and the primary air control valve 4b to the burner 17 is proportionally controlled. The combustion control of the combustibles in the processing object is performed in the following procedure. In the melting control means 7. As described below, the procedures of [1] and [2] are as follows.
This is the same as shown in the above embodiment. [1] The surface temperature Ts at the charging site of the workpiece is detected by the surface temperature detecting means 8 and the furnace temperature Tf is detected by the temperature detecting means 16.
Then, each of them is repeatedly detected for a predetermined period of time (in FIG. 5, the symbol * 1 is attached). [2] In determining means 9, the surface temperature Ts, compared to the furnace temperature Tf and the constant surface temperature T 0 (in FIG. 5 are denoted by the sign of the * 2 display). (Judgment in the above [2] by the judgment means 9) [2-1] In the judgment means 9, the surface temperature Ts
If the temperature is close to the steady-state surface temperature T 0 or within a range from the furnace temperature Tf to the first temperature T 1 lower than the furnace temperature Tf by the predetermined temperature difference ΔT or more (see FIG. 3A). ), It is determined that the input object is made of non-combustible material and does not contain much combustible material (indicated by the symbol * 2-1 in FIG. 5), and the target of the fuel control valve 3a is determined. The procedure returns to the procedure [1] without adjusting the opening. In addition, the following [4]
When the determination is made in the procedure of [2] after returning from the procedure [1] from the procedure [1], the opening reduction correction amount for the fuel control valve 3a set in the procedure of [3] below and the following [4] After returning the target opening of the primary air control valve 4c to the primary air supply nozzle 4a set in the procedure [1] to the initial value, the procedure returns to the procedure [1] above (in FIG. 5, the area surrounded by a thick dashed line is shown). Shown). [2-2] In the determination means 9, the as the surface temperature Ts, if I by detecting the furnace temperature Tf than the predetermined temperature difference lower first temperature T 1 of below lowered temperature or higher [Delta] T (FIG. 3 ( B), it is determined that the thrown object contains a large amount of combustible materials (indicated by the reference numeral * 2-2 in FIG. 5), and the following [3] and subsequent steps are executed. (Setting of the operation amount in the melting control means 7) [3] The melting control means 7 calculates the difference amount of the fuel corresponding to the in-furnace calorific value of the combustible material based on the determination result of the determination means 9. Then, an opening reduction correction amount corresponding to the difference amount is set (indicated by the symbol * 3 in FIG. 2), and the target opening of the fuel control valve 3a is adjusted to the closing side. [4] A difference amount of primary air required for combustion of the combustibles is calculated, and a target primary air supply amount to the primary air supply nozzle 4a is set (in FIG. 2, a reference sign of * 4 is attached). ), The primary air supply valve 4c to the primary air supply nozzle 4a is adjusted to the open side, and the procedure returns to the above [1]. According to the above configuration, the maintenance of the furnace temperature and the response to the change in the amount of combustibles in the processing object can be performed independently and independently, so that more detailed melting control can be performed. <2> In the above embodiment, the cutting blade 6A is attached to the lower end of the inner wall 13 as the workpiece supply device 6,
At the position of the lower end of the inner wall portion 13, the cutting blade 6A
Is rotated relative to the bottom portion 10 around the axis of the outer wall portion 11 so as to be cut out from the deposition layer 5 of the treatment object by the cutting blade 6A.
Although the example in which the furnace inner surface 5a is formed has been described, the outer wall portion 11 is relatively fixed without rotating the outer wall portion 11 relative to the inner wall portion 13 and only the cutting blade 6A is used. Along the lower end of the inner wall 13, the inner wall 13 may be rotated around the axis of the inner wall 13 with respect to the bottom. <3> In the above embodiment, the cutting blade 6A is attached to the lower end of the inner wall 13 as the workpiece supply device 6,
At the position of the lower end of the inner wall portion 13, the cutting blade 6A
Is rotated relative to the bottom portion 10 around the axis of the outer wall portion 11 so as to be cut out from the deposition layer 5 of the treatment object by the cutting blade 6A.
Although the example in which the furnace inner surface 5a is formed has been described, the workpiece supply device 6 may be configured by means other than the cutting blade 6A. For example, a pusher or a screw feeder may be arranged in the deposition layer 5 so that the object to be processed is sent out from the deposition layer 5 toward the main chamber 2, and an upper end portion of the furnace inner surface 5a may be provided. As long as the object to be processed can be supplied into the main chamber 2 at the position (1), any means can be used as the object supply device 6. In short, it suffices if the surface temperature detecting means 8 can be configured so as to be able to detect the temperature of the furnace inner surface 5a at the charging site. <4> In the above-described embodiment, an example has been described in which the supply amounts of the fuel and the primary air supplied into the main chamber 2 via the burner 17 are adjusted in accordance with the result of the determination by the determination means 9. Only the supply amount of the primary air may be adjusted. Also,
The supply speed of the object to be processed by the object to be processed supply device 6 may be adjusted at the same time. For example, if the determination means 9 determines that the object to be processed contains a combustible material, An input amount adjusting means 19 (for example, see FIG. 4) for increasing the speed of the material supply device 6 may be provided. If a surface detecting means for detecting the position of the furnace inner surface 5a in the main chamber 2 is provided,
The charging amount adjusting means 19 may be configured to control the workpiece supply device 6 so as to maintain the furnace inner surface 5a detected by the surface detecting means at a predetermined position. <5> In the above-described embodiment, an example has been described in which the decrease correction amount of the fuel supply amount is set and the increase correction amount for the target primary air supply amount set by the corrected fuel supply amount is set. Alternatively, the correction amount may be set for any one of the target supply amounts of the fuel and the primary air and the target supply speed of the object to be processed or a plurality of the target supply speeds depending on the situation in the main chamber 2. Good. For example, the melting control means 7
Is provided with an arithmetic means 7a composed of a neurocomputer, and from the respective process data including the surface temperature of the input part detected by the surface temperature detecting means 8, each correction amount is calculated and derived by the arithmetic means 7a based on the learning result. It may be configured as follows. <6> In the above description, the case has been described in which the property relating to the flammability of the object to be treated is determined as the presence or absence of a combustible material by the determination means 9; It is even better if the configuration is such that the abundances of are determined simultaneously. For example, the lower limit temperature (for example, the second temperature T 2 in FIG. 3) at which the surface temperature of the charging site is reduced when the combustible material is included in the object to be treated, and the standard furnace temperature Tfs
It may be configured to detect a change in the abundance of the combustible material based on a change in the difference from (see FIG. 3).
【0020】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.
【図1】本発明に係る表面溶融炉の一例に関する構成を
説明する縦断面図FIG. 1 is a longitudinal sectional view illustrating a configuration of an example of a surface melting furnace according to the present invention.
【図2】図1に示した表面溶融炉における溶融制御手順
の一例を示す流れ図FIG. 2 is a flowchart showing an example of a melting control procedure in the surface melting furnace shown in FIG.
【図3】表面溶融炉における投入部位の表面温度の挙動
を示す線図FIG. 3 is a diagram showing the behavior of the surface temperature at the charging site in the surface melting furnace.
【図4】本発明に係る表面溶融炉の他の例に関する構成
を説明する縦断面図FIG. 4 is a longitudinal sectional view illustrating a configuration of another example of the surface melting furnace according to the present invention.
【図5】図4に示した表面溶融炉における溶融制御手順
の一例を示す流れ図5 is a flowchart showing an example of a melting control procedure in the surface melting furnace shown in FIG.
【図6】従来の表面溶融炉における溶融制御の一例を説
明する炉の縦断面図FIG. 6 is a vertical sectional view of a furnace for explaining an example of melting control in a conventional surface melting furnace.
【図7】従来の表面溶融炉における溶融制御の他の例を
説明する炉の縦断面図FIG. 7 is a vertical cross-sectional view of a furnace for explaining another example of melting control in a conventional surface melting furnace.
1 表面溶融炉 2 主室 3 燃焼装置 4 一次空気供給手段 6 被処理物供給装置 7 溶融制御手段 8 表面温度検出手段 9 判定手段 DESCRIPTION OF SYMBOLS 1 Surface melting furnace 2 Main chamber 3 Combustion device 4 Primary air supply means 6 Processing object supply apparatus 7 Melting control means 8 Surface temperature detection means 9 Judgment means
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 25/02 B09B 3/00 303K Fターム(参考) 2G040 AB12 BA02 BA25 CA02 CA12 CA23 CB03 DA05 DA12 EA03 EB02 GA04 ZA08 3K061 AA05 AB03 AC01 BA01 BA03 BA06 CA01 DB06 DB20 3K062 AA05 AB03 AC01 BA02 CB03 DA01 DA40 DB03 DB06 4D004 AA46 CA24 CA29 DA01 DA02 DA06 DA12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 25/02 B09B 3/00 303K F term (Reference) 2G040 AB12 BA02 BA25 CA02 CA12 CA23 CB03 DA05 DA12 EA03 EB02 GA04 ZA08 3K061 AA05 AB03 AC01 BA01 BA03 BA06 CA01 DB06 DB20 3K062 AA05 AB03 AC01 BA02 CB03 DA01 DA40 DB03 DB06 4D004 AA46 CA24 CA29 DA01 DA02 DA06 DA12
Claims (5)
する熱により、前記主室(2)内に投入された被処理物
としての不燃物を溶融させる表面溶融炉(1)におい
て、前記表面溶融炉(1)内に投入される被処理物の可
燃性に関する性状を判別する被溶融物の性状判別方法で
あって、 前記主室(2)内に投入された被処理物の投入部位の表
面温度を検出して、前記検出した温度の所定時間内の変
動状況に基づき、可燃物と不燃物とを識別する被溶融物
の性状判別方法。1. A surface melting furnace (1) for melting an incombustible material as an object to be processed, which is introduced into the main chamber (2), by heat generated by burning combustibles in the main chamber (2). In the above, there is provided a method for judging the property of a material to be melted for determining the property of combustibility of the material to be thrown into the surface melting furnace (1), wherein the material to be thrown into the main chamber (2). A method for determining the property of a material to be melted, which detects a surface temperature of a charging portion of the object and discriminates a combustible substance and an incombustible substance based on a fluctuation state of the detected temperature within a predetermined time.
温度差を超えて低下した後、所定温度範囲内に上昇すれ
ば、前記投入された被処理物が可燃物を含むものである
と判定する請求項1記載の被溶融物の性状判別方法。2. If the detected temperature falls within a predetermined time after exceeding a predetermined temperature difference and then rising within a predetermined temperature range, it is determined that the thrown object contains combustibles. The method for determining the property of a material to be melted according to claim 1.
する熱により、前記主室(2)内に投入された被処理物
を溶融させる表面溶融炉の運転方法であって、 請求項1又は2に記載の被溶融物の性状判別方法に基づ
き判別された被処理物の性状に基づき、前記主室(2)
への被処理物投入量と、一次空気供給量と、燃料供給量
との少なくとも何れか一つを設定する溶融炉の運転方
法。3. A method for operating a surface melting furnace for melting an object to be treated introduced into the main chamber (2) by heat generated by burning a combustible material in the main chamber (2), The main chamber (2) based on the property of the object determined based on the property determination method of the object according to claim 1 or 2.
A method for operating a melting furnace, wherein at least one of an input amount of an object to be processed, a primary air supply amount, and a fuel supply amount is set.
給する被処理物供給装置(6)と、前記主室(2)内で
可燃物を燃焼させて、前記供給された被処理物を加熱す
る燃焼装置(3)と、前記燃焼装置(3)から供給され
る燃料を含む前記主室(2)内の可燃物を燃焼させるた
めの一次空気を前記主室(2)内に供給する一次空気供
給手段(4)とを備え、前記主室(2)内の温度を所定
温度に維持するために、前記被処理物供給装置(6)
と、前記燃焼装置(3)と、前記一次空気供給手段
(4)との少なくとも何れかを調節制御する溶融制御手
段(7)を備える溶融炉の制御装置であって、 前記主室(2)に供給された被処理物の投入部位の表面
温度を検出する表面温度検出手段(8)を備え、前記表
面温度検出手段(8)の検出する温度に基づき、前記被
処理物供給装置(6)の目標供給速度と、前記燃焼装置
(3)の目標燃料供給量と、前記一次空気供給手段
(4)の目標一次空気供給量との少なくとも何れか一つ
を調節するように前記溶融制御手段(7)を構成してあ
る溶融炉の制御装置。4. A processing object supply device (6) for supplying the input processing object into the main chamber (2), and combustible material is burned in the main chamber (2) to supply the processing object. A combustion device (3) for heating an object to be treated, and primary air for burning combustibles in the main chamber (2) containing fuel supplied from the combustion device (3). And a primary air supply means (4) for supplying the inside of the main chamber (2), and in order to maintain the temperature in the main chamber (2) at a predetermined temperature, the object supply device (6).
A melting furnace control device comprising a melting control means (7) for adjusting and controlling at least one of the combustion device (3) and the primary air supply means (4), wherein the main chamber (2) Surface temperature detecting means (8) for detecting the surface temperature of the input portion of the processing object supplied to the apparatus, and the processing object supply device (6) based on the temperature detected by the surface temperature detecting means (8). , The melting control means (3) so as to adjust at least one of the target supply speed of the combustion device (3), the target fuel supply amount of the combustion device (3), and the target primary air supply amount of the primary air supply means (4). 7. A control device for a melting furnace, which constitutes 7).
温度が所定時間内に、所定温度差を超えて低下した後、
所定温度範囲内に上昇すれば、前記投入された被処理物
が可燃物を含むものであると判定する判定手段(9)を
備え、前記判定手段(9)の判定結果に基づいて、前記
目標供給速度と、前記目標燃料供給量と、前記目標一次
空気供給量との少なくとも何れか一つを調節するように
前記溶融制御手段(7)を構成してある請求項4記載の
溶融炉の制御装置。5. After the temperature detected by said surface temperature detecting means (8) drops within a predetermined time and exceeds a predetermined temperature difference,
When the temperature rises within a predetermined temperature range, there is provided a determining means (9) for determining that the inputted object to be treated contains combustibles, and the target supply speed is determined based on the determination result of the determining means (9). The control apparatus for a melting furnace according to claim 4, wherein the melting control means (7) is configured to adjust at least one of the target fuel supply amount and the target primary air supply amount.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000020009A JP2001208322A (en) | 2000-01-28 | 2000-01-28 | Method for judging property of molten material, method for operating surface melting furnace, and control device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000020009A JP2001208322A (en) | 2000-01-28 | 2000-01-28 | Method for judging property of molten material, method for operating surface melting furnace, and control device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001208322A true JP2001208322A (en) | 2001-08-03 |
Family
ID=18546632
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000020009A Pending JP2001208322A (en) | 2000-01-28 | 2000-01-28 | Method for judging property of molten material, method for operating surface melting furnace, and control device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001208322A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103047676A (en) * | 2012-12-28 | 2013-04-17 | 刘建松 | Extinguishment preventing, deflagration preventing and combustion stabilizing automatic control method on basis of single nozzle for hearth |
-
2000
- 2000-01-28 JP JP2000020009A patent/JP2001208322A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103047676A (en) * | 2012-12-28 | 2013-04-17 | 刘建松 | Extinguishment preventing, deflagration preventing and combustion stabilizing automatic control method on basis of single nozzle for hearth |
| CN103047676B (en) * | 2012-12-28 | 2015-10-07 | 刘建松 | Based on single nozzles burner hearth fire extinguishing, explosion-proof, surely fire autocontrol method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| SU648113A3 (en) | Method of controling process of roasting in incline rotary furnace | |
| TWI526664B (en) | Method and apparatus for heating metals | |
| EP0543480B1 (en) | Apparatus for incinerating waste material | |
| US9360253B2 (en) | Metal kiln temperature control system and method | |
| JPH03156206A (en) | Waste treatment method | |
| TW201641907A (en) | Selective oxy-fuel burner and method for rotary kiln | |
| JPH11337035A (en) | Method of controlling the thermal power of an incinerator | |
| US8985472B2 (en) | Wireless temperature sensing and control system for metal kiln and method of using the same | |
| US5957064A (en) | Method and apparatus for operating a multiple hearth furnace | |
| JP4276247B2 (en) | Boiler equipment | |
| JP2001208322A (en) | Method for judging property of molten material, method for operating surface melting furnace, and control device | |
| JP5261963B2 (en) | Method and apparatus for controlling plate temperature of heating furnace | |
| KR101038116B1 (en) | Low pressure control method of regenerative heating furnace and its device | |
| US5113770A (en) | Apparatus for incinerating waste materials | |
| JP3152586B2 (en) | Dry distillation gasification and incineration of waste | |
| JP3607058B2 (en) | Incinerator and operation control method for incinerator | |
| KR100334581B1 (en) | Cooling system of the exhaust gas in the annealing furnace | |
| JPH01302018A (en) | Automatic combustion control method of rotary type incinerator | |
| JP2002213724A (en) | Afterburner of ash melting furnace and operating method of the afterburner | |
| US20250003587A1 (en) | Combustion system with automated control of primary and secondary airflows | |
| JPH09159161A (en) | Combustion device | |
| JPH10318520A (en) | Secondary combustion chamber temperature control method and control device | |
| JP2003287212A (en) | Waste melting furnace | |
| JPH036407B2 (en) | ||
| JP3320905B2 (en) | Combustion control device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040430 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060814 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060914 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070125 |