[go: up one dir, main page]

JP2001211045A - Manufacturing method of surface acoustic wave device - Google Patents

Manufacturing method of surface acoustic wave device

Info

Publication number
JP2001211045A
JP2001211045A JP2000017057A JP2000017057A JP2001211045A JP 2001211045 A JP2001211045 A JP 2001211045A JP 2000017057 A JP2000017057 A JP 2000017057A JP 2000017057 A JP2000017057 A JP 2000017057A JP 2001211045 A JP2001211045 A JP 2001211045A
Authority
JP
Japan
Prior art keywords
thin film
acoustic wave
surface acoustic
manufacturing
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000017057A
Other languages
Japanese (ja)
Inventor
Hiroshi Okano
寛 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000017057A priority Critical patent/JP2001211045A/en
Publication of JP2001211045A publication Critical patent/JP2001211045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

(57)【要約】 【課題】 耐電力性に優れた弾性表面波素子とすること
を目的とする。 【解決手段】 圧電性基板11上にAl薄膜12から成る
電極を形成した後、SiO2から成る誘電体薄膜16を形成
する。そして誘電体薄膜16上方より、赤外線ランプを
用いたRTA処理によって赤外線17を照射し、誘電体
薄膜16の下に存在するAl薄膜12が800℃程度とな
るように加熱処理し、その後、ゆっくりと冷却処理(冷
却速度:5℃/min程度)し、Al薄膜12の結晶性を向
上させる。
(57) [Problem] To provide a surface acoustic wave device having excellent power durability. After forming an electrode made of an Al thin film on a piezoelectric substrate, a dielectric thin film made of SiO 2 is formed. Then, an infrared ray 17 is irradiated from above the dielectric thin film 16 by RTA using an infrared lamp, and the Al thin film 12 under the dielectric thin film 16 is heated to about 800 ° C., and then slowly. A cooling process (cooling rate: about 5 ° C./min) improves the crystallinity of the Al thin film 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、弾性表面波(Surf
ace Acoustic Wave:SAW)を利用してなるSAWフ
ィルタ,SAW共振器,SAWコンボルバ,SAWデュ
プレクサ,遅延線素子等の弾性表面波素子の製造方法に
関するものである。
The present invention relates to a surface acoustic wave (Surf)
The present invention relates to a method for manufacturing a surface acoustic wave device such as a SAW filter, a SAW resonator, a SAW convolver, a SAW duplexer, and a delay line device using ace acoustic wave (SAW).

【0002】[0002]

【従来の技術】近年、自動車電話機や携帯電話機等の通
信機器に於いては、回路素子として弾性表面波素子が広
く利用されている。例えばSAWフィルタは、図2に示
すように、圧電基板1の表面に入力側櫛型インターデジ
タル電極2,出力側櫛型インターデジタル電極3,反射
器4,反射器5を形成したものであって、電気信号と弾
性表面波の相互の変換を行うものである。そして、前記
入力側櫛型インターデジタル電極2、出力側櫛型インタ
ーデジタル電極3、反射器4、反射器5の電極として
は、Al薄膜あるいはAlにCu等の他元素を添加した多結晶
材料の合金薄膜等が用いられている。
2. Description of the Related Art In recent years, surface acoustic wave devices have been widely used as circuit elements in communication devices such as automobile telephones and mobile telephones. For example, as shown in FIG. 2, the SAW filter has a structure in which an input side interdigital electrode 2, an output side interdigital electrode 3, a reflector 4, and a reflector 5 are formed on the surface of a piezoelectric substrate 1. , And performs mutual conversion between electric signals and surface acoustic waves. The electrodes of the input-side interdigitated interdigital electrode 2, the output-side interdigitated interdigital electrode 3, the reflector 4, and the reflector 5 are made of an Al thin film or a polycrystalline material obtained by adding Al or another element such as Cu to Al. An alloy thin film or the like is used.

【0003】[0003]

【発明が解決しようとする課題】然し乍ら、上記の如き
多結晶の合金薄膜から成る電極は耐電力性に乏しく、弾
性表面波素子の中でもとりわけSAWデュプレクサ等の
ように大パワーの信号が入力されるデバイスには不向き
である。このため、電極の耐電力性を改善するために、
従来より以下のような薄膜から成る電極が検討されてい
る。 Al単結晶薄膜 圧電性の基板の上に単結晶のAl薄膜を形成することで耐
電力性が向上することが知られている。然し乍ら、圧電
性の基板の上に単結晶のAl薄膜を形成する製造装置や製
造プロセス等にコストがかかるという問題がある。 Al合金薄膜 電極をAl−Cu(例えばCu:0.5〜1.0重量%)合金薄膜と
することで耐電力性が向上することが知られている。こ
のほかにも、Al−Ti合金薄膜やAl−Si合金薄膜等も同様
に耐電力性が向上することが知られている。然し乍ら、
このような電極についても、製造装置や製造プロセス等
にコストがかかるという問題がある。 積層薄膜 電極を例えばAl(1層目)−Cu(2層目)−Al(3層
目)というように、積層薄膜とすることで耐電力性が向
上することが知られている。然し乍ら、このような電極
についても、製造装置や製造プロセス等にコストがかか
るという問題がある。
However, the electrode made of a polycrystalline alloy thin film as described above has poor power durability, and a high-power signal such as a SAW duplexer is input, particularly among surface acoustic wave devices. Not suitable for devices. Therefore, in order to improve the power durability of the electrode,
Conventionally, an electrode composed of the following thin film has been studied. Al single crystal thin film It is known that the power durability is improved by forming a single crystal Al thin film on a piezoelectric substrate. However, there is a problem in that a manufacturing apparatus and a manufacturing process for forming a single-crystal Al thin film on a piezoelectric substrate are costly. Al alloy thin film It is known that power durability is improved by using an Al-Cu (for example, Cu: 0.5 to 1.0% by weight) alloy thin film as an electrode. In addition, it is known that an Al—Ti alloy thin film, an Al—Si alloy thin film, and the like also have improved power durability. However,
Even with such an electrode, there is a problem that a manufacturing apparatus, a manufacturing process, and the like are costly. It is known that power durability is improved by forming a laminated thin film electrode such as Al (first layer) -Cu (second layer) -Al (third layer), for example. However, such an electrode also has a problem in that the manufacturing apparatus and the manufacturing process are costly.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め本発明の弾性表面波素子の製造方法では、圧電性の基
板上に電極薄膜を形成すると共に、前記電極薄膜上に熱
透過性の高い材料からなる保護薄膜を形成し、さらに加
熱処理及び冷却処理を施して前記保護薄膜下にある電極
薄膜の結晶性を向上させることを特徴とする。
In order to solve the above-mentioned problems, in the method of manufacturing a surface acoustic wave device according to the present invention, an electrode thin film is formed on a piezoelectric substrate, and a heat permeable material is formed on the electrode thin film. The method is characterized in that a protective thin film made of a high material is formed, and a heat treatment and a cooling treatment are further performed to improve the crystallinity of the electrode thin film under the protective thin film.

【0005】また本発明では、前記電極薄膜は、Alまた
はAlを含む合金から成ることを特徴とする。
According to the present invention, the electrode thin film is made of Al or an alloy containing Al.

【0006】また本発明では、前記保護薄膜は、誘電体
材料から成ることを特徴とする。
According to the present invention, the protective thin film is made of a dielectric material.

【0007】また本発明では、前記保護薄膜は、SiO2
Al2O3,Ta2O5のいずれかから成ることを特徴とする。
In the present invention, the protective thin film is made of SiO 2 ,
It is characterized by being made of one of Al 2 O 3 and Ta 2 O 5 .

【0008】また本発明では、前記加熱処理は、RTA
処理によって行うことを特徴とする。
Further, in the present invention, the heat treatment is performed by RTA
It is characterized by processing.

【0009】また本発明では、前記加熱処理は、レーザ
ーアニールによって行うことを特徴とする。
In the present invention, the heat treatment is performed by laser annealing.

【0010】また本発明では、前記加熱処理は、電極薄
膜を融点以上に加熱することを特徴とする。
In the present invention, the heat treatment is characterized in that the electrode thin film is heated to a temperature equal to or higher than a melting point.

【0011】また本発明では、前記加熱処理は、電極薄
膜を600℃以上に加熱することを特徴とする。
Further, in the present invention, the heat treatment is characterized in that the electrode thin film is heated to 600 ° C. or higher.

【0012】また本発明では、前記冷却処理は、電極薄
膜を5℃/min以下の冷却速度で冷却することを特徴と
する。
In the present invention, the cooling process is characterized in that the electrode thin film is cooled at a cooling rate of 5 ° C./min or less.

【0013】[0013]

【発明の実施の形態】以下、図面を参照しつつ本発明の
一実施形態について詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

【0014】図1(a)〜(j)は、本発明の弾性表面
波素子の製造方法における各工程を説明するための図で
ある。
FIGS. 1A to 1J are diagrams for explaining each step in the method of manufacturing a surface acoustic wave device according to the present invention.

【0015】先ず、図1(a)に示す圧電性基板11上
に、図1(b)に示すように、スパッタ法を用いて膜厚
約400nmのAl薄膜12を形成する。ここで、前記圧電性
基板11の材料としてはLiTa3を用いた。尚、これ以外
にもLiNbO3等を圧電性基板11の材料として用いてもよ
い。また、前記Al薄膜12の膜厚も用途に応じて例えば
100nm〜700nmの範囲で用いられる。さらに、この段階で
は前記Al薄膜12は多結晶の状態にある。
First, as shown in FIG. 1B, an Al thin film 12 having a thickness of about 400 nm is formed on a piezoelectric substrate 11 shown in FIG. Here, LiTa 3 was used as the material of the piezoelectric substrate 11. In addition, LiNbO 3 or the like may be used as the material of the piezoelectric substrate 11. In addition, the thickness of the Al thin film 12 may be, for example, depending on the application.
It is used in the range of 100 nm to 700 nm. Further, at this stage, the Al thin film 12 is in a polycrystalline state.

【0016】次に、図1(c)に示すように、フォトリ
ソグラフィーにより前記Al薄膜12上に光硬化性材料か
ら成るレジストパターン13を形成する。
Next, as shown in FIG. 1C, a resist pattern 13 made of a photocurable material is formed on the Al thin film 12 by photolithography.

【0017】そして、図1(d)に示すように、レジス
トパターン13上に配備したマスク14を介して紫外線
15を照射し、図1(e)に示すように、レジストパタ
ーン13の露光処理を行う。
Then, as shown in FIG. 1D, ultraviolet rays 15 are radiated through a mask 14 provided on the resist pattern 13, and as shown in FIG. Do.

【0018】次に、図1(f)に示すように、ドライエ
ッチング処理を行い、配線幅が0.8μmの電極(図2の
入力側櫛型インターデジタル電極2,出力側櫛型インタ
ーデジタル電極3,反射器4,反射器5を参照)を形成
し、さらに、図1(g)に示すように、レジストパター
ン13を除去する。尚、前記各電極の配線幅についても
用途に応じて例えば0.28μm〜1.5μmの範囲で用いら
れる。
Next, as shown in FIG. 1 (f), dry etching is performed to form an electrode having a wiring width of 0.8 μm (the input-side interdigital electrode 2 and the output-side interdigital electrode 3 shown in FIG. 2). , Reflector 4 and reflector 5), and the resist pattern 13 is removed as shown in FIG. In addition, the wiring width of each of the electrodes is used in the range of, for example, 0.28 μm to 1.5 μm depending on the application.

【0019】以上の工程は、弾性表面波素子の製造方法
として従来よりよく知られている工程である。本発明で
は、以下に説明する工程を追加することで、耐電力性に
優れた弾性表面波素子とすることに特徴がある。
The above process is a process well known as a method of manufacturing a surface acoustic wave device. The present invention is characterized in that a surface acoustic wave device having excellent power durability is obtained by adding the steps described below.

【0020】前記図1(a)〜(g)に示す工程により
圧電性基板11の上にAl薄膜12から成る電極を形成し
た後、図1(h)に示すように、電極形状にパターニン
グしたAl薄膜12上にスパッタ法によって200nmのSiO2
から成る誘電体薄膜16を形成する。また、前述のよう
に、Al薄膜12は多結晶の状態にある。尚、誘電体薄膜
16としては、前記SiO2以外にも、Al2O3やTa2O5等を用
いることができ、膜厚についても上記に限らず用途に応
じて200nm〜500nm程度の範囲で用いられる。さらに、誘
電体薄膜16を形成する方法として、前記スパッタ法以
外にもCVD法やEB蒸着法等を用いることも可能であ
る。
After an electrode made of an Al thin film 12 was formed on the piezoelectric substrate 11 by the steps shown in FIGS. 1A to 1G, it was patterned into an electrode shape as shown in FIG. 1H. 200 nm of SiO 2 is formed on the Al thin film 12 by sputtering.
Is formed. As described above, the Al thin film 12 is in a polycrystalline state. In addition, as the dielectric thin film 16, other than the above-mentioned SiO 2 , Al 2 O 3 , Ta 2 O 5 or the like can be used. Used in Further, as a method of forming the dielectric thin film 16, it is also possible to use a CVD method, an EB vapor deposition method, or the like other than the sputtering method.

【0021】次に、図1(i)に示すように、前記誘電
体薄膜16上方より、赤外線ランプを用いたRTA(Ra
pid Thermal Anneal)処理によって赤外線17を照射す
る。このとき、誘電体薄膜16の下に存在するAl薄膜1
2が融点以上(好ましくは600℃以上)となるように
加熱処理し、その後、ゆっくりと冷却処理(例えば冷却
速度:5℃/min程度)し、Al薄膜12の結晶性を向上
させ、図1(i)に示すように、結晶性の向上したAl薄
膜12を有する弾性表面波素子を得る。
Next, as shown in FIG. 1 (i), the RTA (Ra) using an infrared lamp is
Irradiation of infrared rays 17 is performed by a pid thermal annealing process. At this time, the Al thin film 1 existing under the dielectric thin film 16
2 is heated to a melting point or higher (preferably 600 ° C. or higher), and then slowly cooled (for example, at a cooling rate of about 5 ° C./min) to improve the crystallinity of the Al thin film 12. As shown in (i), a surface acoustic wave device having an Al thin film 12 with improved crystallinity is obtained.

【0022】尚、前記誘電体薄膜16は赤外線の吸収率
が低く、前記RTA処理によってAl薄膜12を融点以上
に加熱した際にも溶解せず、よってAl薄膜12が溶解し
て電極の形状が崩れたりするのを防ぐ型のような役割を
担っている。従って、上述のように例えば誘電体薄膜1
6等の形状保持用の保護膜は、電極上面及び側面を覆っ
て形成されるのが良い。
The dielectric thin film 16 has a low infrared absorptance and does not melt even when the Al thin film 12 is heated to a melting point or higher by the RTA process. It plays a role like a mold that prevents it from collapsing. Therefore, as described above, for example, the dielectric thin film 1
The shape-preserving protective film such as 6 is preferably formed to cover the top and side surfaces of the electrode.

【0023】また、加熱処理の方法としては、前記赤外
線ランプを用いたRTA処理以外にも、エキシマレーザ
ー等を用いたレーザーアニールによって加熱処理しても
よい。さらに、加熱温度は前記温度に限定されるもので
はなく、要するにAl薄膜12の融点を越える温度まで加
熱処理することでAlが溶融し、その後、ゆっくりと冷
却処理(除冷処理)することでAlが再結晶化する際にAl
薄膜12の結晶性が向上するものである。即ち、本発明
では、Al薄膜12の加熱処理後にゆっくりと冷却処理す
ることが重要である。そして、上記の如き加熱・冷却処
理を施すことにより、前記Al薄膜12の結晶性が向上
し、耐電力性が向上するが、前記Al薄膜12が略完全に
単結晶化しているのがより理想的である。
As a heat treatment method, besides the RTA treatment using the infrared lamp, heat treatment may be performed by laser annealing using an excimer laser or the like. Further, the heating temperature is not limited to the above-mentioned temperature. In other words, Al is melted by performing a heat treatment to a temperature exceeding the melting point of the Al thin film 12, and then slowly cooled (de-cooled), whereby Al is melted. When recrystallized
This improves the crystallinity of the thin film 12. That is, in the present invention, it is important to slowly cool the Al thin film 12 after the heat treatment. By performing the heating / cooling treatment as described above, the crystallinity of the Al thin film 12 is improved, and the power durability is improved. However, it is more ideal that the Al thin film 12 is almost completely monocrystallized. It is a target.

【0024】前述の如く、圧電性の基板の上に単結晶の
Al薄膜を形成することで耐電力性が向上することは知ら
れていたが、圧電性の基板の上に単結晶のAl薄膜を形成
する製造装置や製造プロセス等にコストがかかるという
問題があった。本発明では、前記図1(a)〜(g)に
示す従来の工程に加えて、前記図1(h)〜(i)に示
すように、Al薄膜上にSiO2薄膜を形成して加熱・冷却処
理する工程を追加するだけで、結晶性の向上したAl薄
膜、あるいは単結晶のAl薄膜を容易に形成することがで
きる。
As described above, a single-crystal substrate is placed on a piezoelectric substrate.
Although it has been known that the power durability can be improved by forming an Al thin film, there is a problem that a manufacturing apparatus and a manufacturing process for forming a single-crystal Al thin film on a piezoelectric substrate are costly. Was. In the present invention, in addition to the conventional steps shown in FIGS. 1A to 1G, as shown in FIGS. 1H to 1I, a SiO 2 thin film is formed on an Al thin film and heated. An Al thin film with improved crystallinity or a single-crystal Al thin film can be easily formed only by adding a cooling process.

【0025】ところで、上記の実施例において、冷却処
理は5℃/min以下の冷却速度で冷却すると説明した
が、格別な冷却装置を用いず、前記条件を満たせば自然
冷却によって処理しても良く、また、本発明を前述の如
きAl薄膜から成る電極以外の合金電極や積層型電極に用
いても良いことは言うまでも無い。
In the above embodiment, the cooling process is described as cooling at a cooling rate of 5 ° C./min or less. However, the process may be performed by natural cooling if the above conditions are satisfied without using a special cooling device. Needless to say, the present invention may be used for alloy electrodes and stacked electrodes other than the electrodes made of the Al thin film as described above.

【0026】[0026]

【発明の効果】以上、詳述した如く本発明に依れば、圧
電性の基板上に電極薄膜を形成すると共に、前記電極薄
膜上に熱透過性の高い材料からなる保護薄膜を形成し、
さらに加熱処理及び冷却処理を施して前記保護薄膜下に
ある電極薄膜の結晶性を向上させるので、弾性表面波素
子の耐電力性を大幅に向上させることができる。
As described in detail above, according to the present invention, an electrode thin film is formed on a piezoelectric substrate, and a protective thin film made of a material having high heat permeability is formed on the electrode thin film.
Further, since heat treatment and cooling treatment are performed to improve the crystallinity of the electrode thin film under the protective thin film, the power durability of the surface acoustic wave device can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の弾性表面波素子の製造方法を説明する
ための工程図である。
FIG. 1 is a process chart for explaining a method of manufacturing a surface acoustic wave device according to the present invention.

【図2】弾性表面波素子の電極構成を示す平面図であ
る。
FIG. 2 is a plan view showing an electrode configuration of the surface acoustic wave element.

【符号の説明】[Explanation of symbols]

11 圧電性基板 12 Al薄膜 13 レジストパターン 14 マスク 15 紫外線 16 誘電体薄膜 17 赤外線 Reference Signs List 11 piezoelectric substrate 12 Al thin film 13 resist pattern 14 mask 15 ultraviolet ray 16 dielectric thin film 17 infrared ray

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 圧電性の基板上に電極薄膜を形成すると
共に、前記電極薄膜上に熱透過性の高い材料からなる保
護薄膜を形成し、さらに加熱処理及び冷却処理を施して
前記保護薄膜下にある電極薄膜の結晶性を向上させるこ
とを特徴とする弾性表面波素子の製造方法。
An electrode thin film is formed on a piezoelectric substrate, a protective thin film made of a material having high heat permeability is formed on the electrode thin film, and a heating process and a cooling process are performed on the electrode thin film. A method for manufacturing a surface acoustic wave device, comprising: improving the crystallinity of an electrode thin film according to claim 1.
【請求項2】 前記電極薄膜は、AlまたはAlを含む合金
から成ることを特徴とする請求項1記載の弾性表面波素
子の製造方法。
2. The method according to claim 1, wherein the electrode thin film is made of Al or an alloy containing Al.
【請求項3】 前記保護薄膜は、誘電体材料から成るこ
とを特徴とする請求項1乃至請求項2記載の弾性表面波
素子の製造方法。
3. The method according to claim 1, wherein the protective thin film is made of a dielectric material.
【請求項4】 前記保護薄膜は、SiO2,Al2O3,Ta2O5
いずれかから成ることを特徴とする請求項1乃至請求項
3記載の弾性表面波素子の製造方法。
4. The method for manufacturing a surface acoustic wave device according to claim 1, wherein said protective thin film is made of any one of SiO 2 , Al 2 O 3 and Ta 2 O 5 .
【請求項5】 前記加熱処理は、RTA処理によって行
うことを特徴とする請求項1乃至請求項4記載の弾性表
面波素子の製造方法。
5. The method of manufacturing a surface acoustic wave device according to claim 1, wherein the heat treatment is performed by an RTA process.
【請求項6】 前記加熱処理は、レーザーアニールによ
って行うことを特徴とする請求項1乃至請求項4記載の
弾性表面波素子の製造方法。
6. The method according to claim 1, wherein the heat treatment is performed by laser annealing.
【請求項7】 前記加熱処理は、電極薄膜を融点以上に
加熱することを特徴とする請求項1乃至請求項6記載の
弾性表面波素子の製造方法。
7. The method for manufacturing a surface acoustic wave device according to claim 1, wherein the heat treatment heats the electrode thin film to a temperature equal to or higher than a melting point.
【請求項8】 前記加熱処理は、電極薄膜を600℃以
上に加熱することを特徴とする請求項1乃至請求項7記
載の弾性表面波素子の製造方法。
8. The method according to claim 1, wherein the heat treatment heats the electrode thin film to 600 ° C. or higher.
【請求項9】 前記冷却処理は、電極薄膜を5℃/min
以下の冷却速度で冷却することを特徴とする請求項1乃
至請求項8記載の弾性表面波素子の製造方法。
9. The cooling treatment includes the step of: heating the electrode thin film at 5 ° C./min.
9. The method for manufacturing a surface acoustic wave device according to claim 1, wherein cooling is performed at the following cooling rate.
JP2000017057A 2000-01-26 2000-01-26 Manufacturing method of surface acoustic wave device Pending JP2001211045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000017057A JP2001211045A (en) 2000-01-26 2000-01-26 Manufacturing method of surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017057A JP2001211045A (en) 2000-01-26 2000-01-26 Manufacturing method of surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2001211045A true JP2001211045A (en) 2001-08-03

Family

ID=18544097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017057A Pending JP2001211045A (en) 2000-01-26 2000-01-26 Manufacturing method of surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2001211045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030025204A (en) * 2001-09-19 2003-03-28 가부시키가이샤 무라타 세이사쿠쇼 Method of forming electrode pattern of surface acoustic wave device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277011A (en) * 1988-04-28 1989-11-07 Toko Inc Manufacturing method of surface acoustic wave resonator
JPH06209222A (en) * 1993-01-11 1994-07-26 Hitachi Ltd Method for manufacturing surface acoustic wave element
JPH08139050A (en) * 1994-11-14 1996-05-31 Murata Mfg Co Ltd Method of manufacturing aluminum thin film electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277011A (en) * 1988-04-28 1989-11-07 Toko Inc Manufacturing method of surface acoustic wave resonator
JPH06209222A (en) * 1993-01-11 1994-07-26 Hitachi Ltd Method for manufacturing surface acoustic wave element
JPH08139050A (en) * 1994-11-14 1996-05-31 Murata Mfg Co Ltd Method of manufacturing aluminum thin film electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030025204A (en) * 2001-09-19 2003-03-28 가부시키가이샤 무라타 세이사쿠쇼 Method of forming electrode pattern of surface acoustic wave device

Similar Documents

Publication Publication Date Title
CN108493326A (en) The acoustic resonator and preparation method thereof of based single crystal piezoelectric membrane
US7331092B2 (en) Method and manufacturing surface acoustic wave device
JP3317274B2 (en) Surface acoustic wave device and method of manufacturing surface acoustic wave device
JP2023080110A (en) Bonded body of piezoelectric material substrate and support substrate, manufacturing method thereof, and acoustic wave device
CN203851109U (en) Composite substrate
JP5548303B2 (en) Tunable filter and manufacturing method thereof
JPH1155070A (en) Surface acoustic wave device and method of manufacturing the same
JP2011135245A (en) Elastic wave device, manufacturing method thereof, and electronic device using the same
JP2016100729A (en) Manufacturing method of acoustic wave device
JP2001196896A (en) Surface acoustic wave device
CN110994097A (en) High-frequency large-bandwidth thin-film bulk wave filter structure and preparation method thereof
JP2006135443A (en) Surface acoustic wave device and method of manufacturing surface acoustic wave device
JP2001211045A (en) Manufacturing method of surface acoustic wave device
JP2010178013A (en) Method for manufacturing composite board
JP2004282232A (en) Surface acoustic wave device
Qian et al. Heterogeneous Interface-Enhanced Thin-Film SAW Devices Using Lithium Niobate on Si
CN101939829A (en) Thin film transistor manufacturing method and thin film transistor
CN114499432B (en) Heterogeneous thin film substrate, preparation method thereof and filter
JP2006246050A (en) Composite piezoelectric wafer and surface acoustic wave device
JP2000295060A (en) Surface acoustic wave device and frequency adjustment method thereof
JP3975924B2 (en) Surface wave device and manufacturing method thereof
JPH11312942A (en) Method for manufacturing surface acoustic wave device
JPH03171776A (en) Thin film transistor and manufacture thereof
JPH1131942A (en) Surface acoustic wave module element and method of manufacturing the same
CN118646386A (en) A method for preparing lithium niobate thin film SAW device based on laser debonding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101