JP2001217469A - Thermoelectric conversion element and its manufacturing method - Google Patents
Thermoelectric conversion element and its manufacturing methodInfo
- Publication number
- JP2001217469A JP2001217469A JP2000028211A JP2000028211A JP2001217469A JP 2001217469 A JP2001217469 A JP 2001217469A JP 2000028211 A JP2000028211 A JP 2000028211A JP 2000028211 A JP2000028211 A JP 2000028211A JP 2001217469 A JP2001217469 A JP 2001217469A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- conversion element
- type semiconductor
- powder
- integrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 120
- 230000010354 integration Effects 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims description 77
- 239000004065 semiconductor Substances 0.000 claims description 67
- 239000011810 insulating material Substances 0.000 claims description 51
- 239000007772 electrode material Substances 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 38
- 238000004663 powder metallurgy Methods 0.000 claims description 12
- 238000010304 firing Methods 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 4
- 238000002788 crimping Methods 0.000 claims description 3
- 238000005245 sintering Methods 0.000 abstract description 19
- 229910052751 metal Inorganic materials 0.000 abstract description 15
- 239000002184 metal Substances 0.000 abstract description 14
- 238000005304 joining Methods 0.000 abstract description 6
- 238000000748 compression moulding Methods 0.000 abstract description 5
- 239000000919 ceramic Substances 0.000 abstract description 3
- 230000005611 electricity Effects 0.000 abstract description 2
- 239000012774 insulation material Substances 0.000 abstract description 2
- 125000005842 heteroatom Chemical group 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 239000002210 silicon-based material Substances 0.000 description 11
- 229910008310 Si—Ge Inorganic materials 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000007731 hot pressing Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000002003 electrode paste Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000010902 jet-milling Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910017082 Fe-Si Inorganic materials 0.000 description 1
- 229910005329 FeSi 2 Inorganic materials 0.000 description 1
- 229910017133 Fe—Si Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、Si基の熱電変換
材料などを用いた製造容易な熱電変換素子に係り、n型
およびp型半導体を交互に並べて各々に電極材料と絶縁
材料を介在させて一体化成形にてpn接合し、Si基材料の
熱電変換効率を著しく高めて高効率に電気エネルギーを
取り出すことが可能な熱電変換素子とその製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an easy-to-manufacture thermoelectric conversion element using a Si-based thermoelectric conversion material or the like, in which n-type and p-type semiconductors are alternately arranged, each having an electrode material and an insulating material interposed therebetween. The present invention relates to a thermoelectric conversion element capable of extracting energies with high efficiency by significantly increasing the thermoelectric conversion efficiency of a Si-based material by performing pn junction by integral molding and a method of manufacturing the same.
【0002】[0002]
【従来の技術】熱電変換素子は、近年のCO2削減をはじ
めとするエネルギー、環境問題の点から注目を浴びてお
り、特に熱エネルギーの有効利用の観点から実用化が期
待されているデバイスである。2. Description of the Related Art Thermoelectric conversion elements have attracted attention in recent years in view of energy and environmental issues such as CO 2 reduction, and are expected to be put to practical use from the viewpoint of effective use of thermal energy. is there.
【0003】例えば、焼却炉や発電所のタービンなどの廃熱
を利用して電気エネルギーに変換するシステムや、屋外
や宇宙で簡単に電気を得るための携帯発電装置、ガス機
器の炎センサー、太陽電池や燃料電池との併用、自動車
の内燃機関の廃熱を利用し、燃費向上させる等、非常に
広範囲の用途が検討されている。[0003] For example, a system that converts waste heat from incinerators and power plant turbines into electric energy, a portable power generator for easily obtaining electricity outdoors or in space, a flame sensor for gas appliances, A very wide range of uses are being studied, such as using the battery together with a fuel cell or using waste heat of an internal combustion engine of an automobile to improve fuel efficiency.
【0004】しかし、今までに知られている熱電変換素子
は、一般に変換効率が低い、使用温度範囲が非常に狭
い、使用元素の環境汚染の問題がある、原料および製造
コストが高い等の理由から汎用されるには至っていな
い。[0004] However, the thermoelectric conversion elements known so far generally have a low conversion efficiency, a very narrow operating temperature range, a problem of environmental pollution of the elements used, and high raw material and production costs. Has not become widely used.
【0005】この熱エネルギーから電気エネルギーヘの変換
効率は、性能指数ZTの関数であり、ZTが高いほど高くな
る。この性能指数ZTは、ZT=S2σT/κ 式のように表さ
れている。ここで、Sは熱電材料のゼーベック係数、σ
は電気伝導率、κは熱伝導率、そしてTは熱電素子の高
温側(TH)と低温側(TL)の平均値で表した絶対温度であ
る。[0005] The conversion efficiency from heat energy to electric energy is a function of the figure of merit ZT, and increases as ZT increases. This figure of merit ZT is expressed as ZT = S 2 σT / κ formula. Where S is the Seebeck coefficient of the thermoelectric material, σ
Is the electrical conductivity, κ is the thermal conductivity, and T is the absolute temperature expressed as the average value of the high temperature side (T H ) and the low temperature side (T L ) of the thermoelectric element.
【0006】現在、最も高い性能指数の熱電材料はスクッテ
ルダイト型結晶構造を有するIrSb3(T.Calllet, A.Borsh
chrysky and J.‐P. Fleurial : Proc. 12th Int. Con
f. on Thermoelectrics, (Yokohama, Japan, 1993)P13
2.)であり、そのZT値は約2.0を示す。しかしながら、Ir
の原料コストが高いために、実用化には至っていない。At present, the thermoelectric material having the highest figure of merit is IrSb 3 having a skutterudite type crystal structure (T. Calllet, A. Borsh
chrysky and J.-P.Fleurial: Proc. 12th Int. Con
f. on Thermoelectrics, (Yokohama, Japan, 1993) P13
2.) and its ZT value is about 2.0. However, Ir
Due to the high raw material cost, it has not been put to practical use.
【0007】また、低温で高い性能指数を示すBi2Te3はペル
チェ素子として半導体等の冷却用素子として使用されて
いるが、融点が530Kと低いため、使用温度範囲が狭いと
いう問題があった。Further, Bi 2 Te 3, which exhibits a high figure of merit at a low temperature, is used as a Peltier element as a cooling element such as a semiconductor, but has a problem that the operating temperature range is narrow due to its low melting point of 530 K. .
【0008】一方、コストと環境の点からは、Fe‐Si系材料
が有望であるとされているが、この系は性能指数(ZT)は
0.2以下であり、熱電変換材料として要求される特性に
は迄かに満たないものであった。[0008] On the other hand, Fe-Si based materials are considered promising in terms of cost and environment, but this system has a figure of merit (ZT).
The value was 0.2 or less, which was far below the characteristics required as a thermoelectric conversion material.
【0009】Si‐Ge系材料は、B.Abeles (Phys. Rev. 131,
1906, (1963))がSi‐Ge合金の熱伝導率の組成依存性を
調査し、SiとGeを合金化することにより熱伝導率が大き
く低下できることを報告した。彼らの報告ではGeの含有
量が20〜30原子%含有しなければ熱伝導の低下は見られ
ないと報告された。[0009] Si-Ge based materials are described in B. Abeles (Phys. Rev. 131,
1906, (1963)) investigated the composition dependence of thermal conductivity of Si-Ge alloys and reported that the thermal conductivity could be greatly reduced by alloying Si and Ge. In their report, it was reported that thermal conductivity did not decrease unless the Ge content was 20-30 atomic%.
【0010】しかし、Geの原料コストが高いこと、また、Si
とGeは全律固溶の液相線と固相線の幅広い状態をもち、
溶解やZone Leveling法では組成を均一に作製するのが
困難という問題あった。また、組成を均一にするために
ホットプレスによる方法も試みられているが、量産性に
乏しいものであった。[0010] However, the high raw material cost of Ge
And Ge have a wide range of liquidus and solidus lines,
There is a problem that it is difficult to produce a uniform composition by dissolution or zone leveling. Further, a hot press method has been attempted to make the composition uniform, but the mass productivity is poor.
【0011】さらに、特開平11-54808号公報には、Si‐Ge合
金粉末を用いて、円板状のn型およびp型の予備成形体を
作製し、n,p,n,pの順に4枚予備成形体を積層して焼結
し、その後これを直方体に加工し、さらにn,p間に分離
部を形成する切削加工を行い、折り畳むがごとくの形状
を有した熱電変換素子を作製する方法が提案されてい
る。しかし、製造工程が煩雑で加工に手間を要するだけ
でなく、材料自体の特性も劣るものである。[0011] Further, JP-A-11-54808 discloses that disc-shaped n-type and p-type preforms are prepared by using Si-Ge alloy powder, and n, p, n, and p are formed in this order. The four preforms are laminated and sintered, then processed into a rectangular parallelepiped, and then cut to form a separation between n and p, producing a thermoelectric conversion element with a shape like a fold A way to do that has been proposed. However, not only is the manufacturing process complicated and labor is required for processing, but also the properties of the material itself are inferior.
【0012】[0012]
【発明が解決しようとする課題】発明者らは、半導体デ
バイスとして広く使用されているSiが極めて高いゼーベ
ック係数を有することに着目して、特にSi基の材料の熱
電特性を評価した結果、Siに0.001〜20原子%という少量
の元素の添加で高い性能指数を有する熱電変換材料とな
り得ることを知見した(WO99/22410)。SUMMARY OF THE INVENTION The present inventors have paid attention to the fact that Si, which is widely used as a semiconductor device, has an extremely high Seebeck coefficient. It has been found that addition of a small amount of an element of 0.001 to 20 atomic% can result in a thermoelectric conversion material having a high figure of merit (WO99 / 22410).
【0013】Siは、環境負荷も小さく資源も豊富にあり、原
料コストも比較的安い上、軽いという特徴がある。さら
に、発明者らは、接合部の電極を選定することによりゼ
ーベック係数を大きくすることができ、取り出せる電力
として向上することを見い出した。[0013] Si is characterized in that it has a small environmental load, has abundant resources, has relatively low material costs, and is light. In addition, the inventors have found that the Seebeck coefficient can be increased by selecting the electrode at the joint, and that the electric power that can be extracted is improved.
【0014】しかしながら、熱電変換材料を素子として使用
する際に、p型、n型の材料の接合部及び電極に関する接
合が良好でない場合、取り出せる電力にロスが生ずる。
これは電極材質を選定した場合でも起こり得る。さらに
高温端の電極の接合は熱電材料と電極材質の原子の拡散
や場合によっては合金化されたり、電極材質との間の熱
膨張係数の差が大きい場合は電極の剥がれやクラックの
原因となる問題があった。[0014] However, when the thermoelectric conversion material is used as an element, if the junction between the p-type and n-type materials and the electrode are not good, a loss of power can be taken out.
This can occur even when the electrode material is selected. Furthermore, the bonding of the electrode at the high-temperature end causes the diffusion of atoms between the thermoelectric material and the electrode material, and in some cases, alloying, or the separation of the electrode or the cracks when the difference in the coefficient of thermal expansion between the electrode material and the electrode material is large. There was a problem.
【0015】この発明は、熱電変換材料、特に安価で軽量な
Si基材料の熱電変換効率を著しく高めた構成であるとと
もに、製造が容易な構成からなるSi基の熱電変換材料を
用いた熱電変換素子とその製造方法の提供を目的として
いる。[0015] The present invention provides a thermoelectric conversion material, particularly an inexpensive and lightweight thermoelectric material.
It is an object of the present invention to provide a thermoelectric conversion element using a Si-based thermoelectric conversion material, which has a configuration in which the thermoelectric conversion efficiency of a Si-based material is significantly increased, and is easily manufactured, and a method for manufacturing the same.
【0016】[0016]
【課題を解決するための手段】発明者らは、Si基熱電変
換材料などの熱電特性を損なうことなく、熱電変換素子
として電力を取り出せる方法として、n型とp型の材料を
一体化して作製することに着目し、一体化方法として、
粉末をホットプレス、放電プラズマ焼結、熱間静水圧プ
レスなどの熱間圧縮成形、または冷間圧縮成形後に焼結
するなどの粉末冶金手段の他、Si基板上に粉末材料のレ
ジストをパターニングして積層させる方法で試みた。Means for Solving the Problems The inventors of the present invention have developed a method of integrating n-type and p-type materials as a method for extracting electric power as a thermoelectric conversion element without impairing the thermoelectric properties of a Si-based thermoelectric conversion material or the like. Focusing on the
In addition to powder metallurgical means such as sintering powder after hot compression molding such as hot pressing, discharge plasma sintering, hot isostatic pressing, or cold compression molding, patterning of resist of powder material on Si substrate I tried with the method of stacking.
【0017】発明者らは、一体化に際して、Si系やセラミッ
クスの粉末などの絶縁材を、pn接合予定部以外に介在さ
せることにより、一体化が極めて容易になると共に、pn
接合部のロスは大幅に低下し、熱電変換効率が向上する
こと、さらに材料を交互に配置してp/n/p/n/p/と一体化
した焼結体を作製することにより、電極接合によるロス
はほとんど無視できるほど小さくなり、又熱応力により
接合部が剥がれたり割れたりすることのない素子を作製
できることを知見した。[0017] The inventors of the present invention provide an extremely easy integration by interposing an insulating material such as a Si-based or ceramic powder at a portion other than the portion where the pn junction is to be performed.
The loss at the joint is greatly reduced, the thermoelectric conversion efficiency is improved, and the electrodes are made by alternately arranging the materials to produce a sintered body integrated with p / n / p / n / p /. The inventors have found that the loss due to the bonding is almost negligibly small, and that an element can be manufactured in which the bonded portion does not peel or crack due to thermal stress.
【0018】また発明者らは、熱電変換素子に温度勾配を与
えた際の高温側と低温側に位置するpn接合部に異種金属
を介して接合し、素子化することを試み、接合方法とし
て粉末焼結時にp/nの粉末の境面に金属粉末を挿入する
方法と、p/n境面に金属板を介する方法で行い、前記粉
末冶金手段にて接合し、一体化された素子の電圧及び電
流を測定した結果、金属材質を最適に選ぶことにより起
電力および電力量が向上することを知見し、この発明を
完成した。Further, the inventors attempted to join the pn junctions located on the high temperature side and the low temperature side when a temperature gradient was given to the thermoelectric conversion element via a dissimilar metal to form an element. A method of inserting metal powder at the interface of p / n powder during powder sintering, and a method of interposing a metal plate at the interface of p / n, joining by the powder metallurgical means, and the integrated element As a result of measuring the voltage and the current, it was found that the electromotive force and the amount of electric power were improved by optimally selecting the metal material, and the present invention was completed.
【0019】さらに、粉末冶金での接合だけでなく、Si基材
料の焼結材、溶製材のバルクと電極材料を、抵抗加熱、
通電焼結、熱間加圧などの圧着法、ペースト材料を用い
た焼成法、さらには溶接法などにより接合することが可
能であり、最適な電極材質を選択することにより、電極
接合のロスはなく、また起電力及び電力量が向上するこ
とを知見した。Furthermore, not only the joining by powder metallurgy, but also the sintered material of the Si-based material, the bulk of the ingot material and the electrode material are heated by resistance heating,
It is possible to join by pressure bonding method such as electric current sintering, hot pressing, baking method using paste material, and even welding method. By selecting the most suitable electrode material, the loss of electrode joining can be reduced. It was also found that the electromotive force and the electric energy were improved.
【0020】この発明は、n型半導体材料とp型半導体材料間
に、絶縁材料を介在させるか、電極材料と絶縁材料を介
在させて一体化された単数又は複数のpn接合部を有する
ことを特徴とする熱電変換素子である。According to the present invention, there is provided one or more pn junctions integrally formed by interposing an insulating material or interposing an electrode material and an insulating material between an n-type semiconductor material and a p-type semiconductor material. It is a thermoelectric conversion element characterized by the following.
【0021】また、この発明は、n型半導体粉末材料とp型半
導体粉末材料を、板状又は粉末の絶縁材料あるいはさら
に電極材料を介して配置し、粉末冶金法により一体化す
るか、あるいは、固体のn型半導体材料とp型半導体材料
を、板状、粉末又はペースト状の絶縁材料あるいはさら
に電極材料を介して配置し、冷間又は熱間の圧着法ある
いは焼成法により一体化し、得られた一体型の熱電変換
素子内に単数又は複数のpn接合部を形成することを特徴
とする熱電変換素子の製造方法である。[0021] Further, according to the present invention, the n-type semiconductor powder material and the p-type semiconductor powder material are arranged via a plate-like or powder insulating material or further through an electrode material and integrated by powder metallurgy, or A solid n-type semiconductor material and a p-type semiconductor material are arranged via a plate-like, powdery or paste-like insulating material or further through an electrode material, and are integrated by cold or hot pressing or firing. And forming one or more pn junctions in the integrated thermoelectric conversion element.
【0022】さらに、この発明は、素子として温度勾配を与
えた際の高温側と低温側にそれぞれ異なる電極材料を配
置することを特徴とする熱電変換素子とその製造方法で
ある。Further, the present invention is a thermoelectric conversion element characterized in that different electrode materials are arranged on a high temperature side and a low temperature side when a temperature gradient is given to the element, and a method of manufacturing the same.
【0023】[0023]
【発明の実施の形態】この発明による熱電変換素子の製
造方法を図面に基づいて詳述する。図1Aは、粉末冶金法
にて直接pn接合する場合であり、p型半導体材料粉末1と
n型半導体材料粉末2及び絶縁材料粉末3としてそれぞれ
焼結可能な材料粉末を用いる。DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a thermoelectric conversion element according to the present invention will be described in detail with reference to the drawings. FIG. 1A shows a case where a direct pn junction is performed by powder metallurgy, and the p-type semiconductor material powder 1 is used.
Sinterable material powders are used as the n-type semiconductor material powder 2 and the insulating material powder 3, respectively.
【0024】例えば箱状の金型内に、音叉型の仕切り部材を
開き側が交互に入れ代わるように用いて、p型半導体材
料粉末1とn型半導体材料粉末2及び絶縁材料粉末3を交互
に挿入し、仕切り部材を取り除いて、上面に蓋を設けて
金型中心へ矢印方向に圧縮して成形体となす。For example, a p-type semiconductor material powder 1, an n-type semiconductor material powder 2, and an insulating material powder 3 are alternately inserted into a box-shaped mold by using tuning fork-type partition members so that the open sides are alternately replaced. Then, the partition member is removed, a lid is provided on the upper surface, and the mold is compressed in the direction of the arrow toward the center of the mold to form a molded body.
【0025】成形体は、p型半導体材料粉末1とn型半導体材
料粉末2がpn接合予定部4を除いて絶縁材料粉末3にて隔
てられて交互に配列した構成からなる。ここで、この成
形体を焼結することで、各半導体材料間は絶縁材料が一
体化され、焼結にて直接接合されたpn接合部を各半導体
材料の連接方向に複数箇有する、一体型の熱電変換素子
が得られる。The molded body has a structure in which p-type semiconductor material powders 1 and n-type semiconductor material powders 2 are alternately arranged separated by insulating material powders 3 except for a pn junction scheduled portion 4. Here, by sintering the molded body, an insulating material is integrated between the respective semiconductor materials, and a plurality of pn junctions directly joined by sintering are provided in a connecting direction of the respective semiconductor materials. Is obtained.
【0026】また、図1Aにおいて、絶縁材料粉末3部分を、
予め成形した絶縁材板、絶縁材シートなどに変えても、
焼結による直接pn接合部が複数箇所の連接型の熱電変換
素子を製造できることは、もちろんのこと、直接pn接合
部が一か所の1ペア型の熱電変換素子も同様に製造でき
る。In FIG. 1A, three portions of the insulating material powder are
Even if you change to a preformed insulating material plate, insulating material sheet, etc.
It is possible to manufacture a connected-type thermoelectric conversion element having a plurality of direct pn junctions formed by sintering, and a pair-type thermoelectric conversion element having a single direct pn junction can be similarly manufactured.
【0027】図1Bに示す製造例は、箱状の金型内に、三角形
の仕切り部材を開き側が交互に入れ代わるように用い、
かつ三角形の仕切り部材の所要先端部には絶縁材料粉末
が入らないようにして、p型半導体材料粉末1とn型半導
体材料粉末2及び絶縁材料粉末3を交互に挿入し、仕切り
部材を取り除いて、金型中心へ矢印方向に圧縮して成形
体となす。The manufacturing example shown in FIG. 1B uses a triangular partition member in a box-shaped mold so that the open sides are alternately replaced.
And, in order to prevent the insulating material powder from entering the required tip of the triangular partition member, the p-type semiconductor material powder 1, the n-type semiconductor material powder 2, and the insulating material powder 3 are alternately inserted, and the partition member is removed. Then, it is compressed in the direction of the arrow toward the center of the mold to form a molded body.
【0028】成形体は、p型半導体材料粉末1とn型半導体材
料粉末2がpn接合予定部4を除いて絶縁材料粉末3にて隔
てられて交互に配列した構成となる。この成形体を焼結
することで、各半導体材料間は絶縁材料が一体化され、
焼結にて直接接合されたpn接合部を各半導体材料の連接
方向に複数箇有する、一体型の熱電変換素子が得られ
る。The molded body has a structure in which p-type semiconductor material powders 1 and n-type semiconductor material powders 2 are alternately arranged separated by insulating material powders 3 except for a pn junction scheduled portion 4. By sintering this molded body, the insulating material is integrated between the semiconductor materials,
An integrated thermoelectric conversion element having a plurality of pn junctions directly joined by sintering in the connecting direction of each semiconductor material is obtained.
【0029】図2Aに示す製造例は、箱状の金型内に、図示の
ごとく、p型半導体材料粉末1とn型半導体材料粉末2との
間に、絶縁材料粉末3、電極材料粉末5,6を装填し、絶縁
材料粉末3と電極材料粉末5,6の挿入位置が交互に入れか
わるように装填し、金型中心へ矢印方向に圧縮して図2B
に示すごとく成形体となす。[0029] In the manufacturing example shown in FIG. 2A, an insulating material powder 3 and an electrode material powder 5 are placed between a p-type semiconductor material powder 1 and an n-type semiconductor material powder 2 in a box-shaped mold as shown. 2 and 6, the insulating material powder 3 and the electrode material powders 5 and 6 are inserted in such a way that the insertion positions are alternately switched, and compressed in the direction of the arrow toward the center of the mold, and FIG.
To form a molded body as shown in FIG.
【0030】また、図で完成した熱電変換素子の下部を熱源
に近接させた高温側、上部を低温側とした温度勾配を与
えた場合、電極材料粉末には、高温側6と低温側5でそれ
ぞれ異なる材質の金属、合金粉末を用いる。Further, when a temperature gradient in which the lower part of the thermoelectric conversion element completed in the figure is closer to the heat source on the high temperature side and the upper part is on the low temperature side is given, the electrode material powder has a high temperature side 6 and a low temperature side 5. Metal and alloy powders of different materials are used.
【0031】この成形体を焼結することで、各半導体材料間
は絶縁材料が一体化され、焼結にて電極材料を介して接
合されたpn接合部を各半導体材料の連接方向に複数箇有
する、一体型の熱電変換素子が得られる。By sintering the compact, an insulating material is integrated between the respective semiconductor materials, and a plurality of pn junctions joined via the electrode material by sintering are formed in a plurality of directions in the connecting direction of the respective semiconductor materials. Thus, an integrated thermoelectric conversion element can be obtained.
【0032】また、絶縁材料粉末3、電極材料粉末5,6を図2A
に示す矩形形状に装填する他、図2Cに示すごとく、p型
半導体材料粉末1とn型半導体材料粉末2間に三角形状に
装填することも可能であり、絶縁材料の量や絶縁寸法な
どに応じて任意の形態を採用し得る。Further, the insulating material powder 3 and the electrode material powders 5 and 6 are shown in FIG.
In addition to the rectangular shape shown in FIG. 2, as shown in FIG.2C, it is also possible to load a triangular shape between the p-type semiconductor material powder 1 and the n-type semiconductor material powder 2, depending on the amount of the insulating material and the insulating dimensions. Any form can be adopted accordingly.
【0033】図3Aに示す製造例は、前述の図1Bと同様である
が、図1Bの絶縁材料粉末を配置しない三角頂点部のpn接
合予定部に、薄板状の電極材料7,8を配置して他は絶縁
材料粉末3を装填したもので、圧縮成形体となした後に
焼結することで、各半導体材料間は絶縁材料が一体化さ
れ、電極材料7,8を介して焼結にて接合されたpn接合部
を各半導体材料の連接方向に複数箇所有する、一体型の
熱電変換素子が得られる。ここでも電極材料7,8には、
図で完成した熱電変換素子の下部を熱源に近接させた高
温側、上部を低温側とした温度勾配を与えた場合、電極
材料には、高温側8と低温側7でそれぞれ異なる材質の金
属、合金を用いている。The manufacturing example shown in FIG. 3A is the same as that of FIG. 1B described above, except that thin plate-shaped electrode materials 7 and 8 are arranged at the pn junction planned portions of the triangular apexes where the insulating material powder is not arranged in FIG. 1B. The other is charged with the insulating material powder 3, and after sintering after being formed into a compression molded body, the insulating material is integrated between the semiconductor materials and sintered through the electrode materials 7 and 8. Integrated thermoelectric conversion element having a plurality of pn junctions joined in the connecting direction of each semiconductor material is obtained. Again, electrode materials 7 and 8 include:
When a temperature gradient in which the lower part of the thermoelectric conversion element completed in the figure is close to the heat source on the high-temperature side and the upper part is on the low-temperature side is given, the electrode materials include metals of different materials on the high-temperature side 8 and the low-temperature side 7, respectively. Alloy is used.
【0034】図3Bに示す製造例は、溶解合金からブロック状
に固化した溶製材あるいはブロック状に圧縮成形して焼
結した焼結材などのp型半導体材料10とn型半導体材料11
間に、板材に加工した絶縁材料12、電極材料13,14を配
置して、これらを当接させ、熱間又は冷間での圧着手段
にて一体化することにより、各半導体材料間は絶縁材料
が一体化され、その連接方向に電極材料を介して接合さ
れた複数のpn接合部が配置された一体型の熱電変換素子
が得られる。The manufacturing example shown in FIG. 3B shows a p-type semiconductor material 10 and an n-type semiconductor material 11 such as an ingot solidified from a molten alloy in a block shape or a sintered material compressed and molded in a block shape and sintered.
In between, the insulating material 12 and the electrode materials 13 and 14 processed into a plate material are arranged, and they are brought into contact with each other, and are integrated by hot or cold crimping means. An integrated thermoelectric conversion element is obtained in which the materials are integrated and a plurality of pn junctions joined via the electrode material in the connection direction are arranged.
【0035】図3Cに示す製造例は、前記の溶製材あるいは焼
結材などのp型半導体材料10とn型半導体材料11の片面
に、ペースト状絶縁材料15、ペースト状電極材料16,17
を塗布して、これらを当接させ、焼成にて一体化するこ
とにより、各半導体材料間は絶縁材料が一体化され、そ
の連接方向に電極材料を介して接合された複数のpn接合
部が配置された一体型の熱電変換素子が得られる。FIG. 3C shows a production example in which a paste-like insulating material 15 and paste-like electrode materials 16 and 17 are provided on one surface of a p-type semiconductor material 10 and an n-type semiconductor material 11 such as the above-mentioned ingot material or sintered material.
Are applied, and these are brought into contact with each other, and are integrated by firing, so that the insulating material is integrated between the respective semiconductor materials, and a plurality of pn junctions joined via the electrode material in the connecting direction are formed. The arranged integrated thermoelectric conversion element is obtained.
【0036】ここでも電極材料16,17には、図で完成した熱
電変換素子の下部を熱源に近接させた高温側、上部を低
温側とした温度勾配を与えた場合、電極材料には、高温
側17と低温側16でそれぞれ異なる材質の金属、合金を用
いている。また、上記のペースト状の絶縁材料15、電極
材料16,17に変えて、焼結用の絶縁材料粉末、電極材料
粉末を用いて、通電焼結などの手段で一体化することも
可能である。In this case as well, when the electrode materials 16 and 17 are given a temperature gradient in which the lower part of the thermoelectric conversion element completed in the figure is closer to the heat source and the upper part is the lower temperature side, the electrode material has a high temperature. The side 17 and the low-temperature side 16 use different metals and alloys. Further, instead of the paste-like insulating material 15 and the electrode materials 16 and 17, it is also possible to use an insulating material powder for sintering and an electrode material powder and to integrate them by means such as current sintering. .
【0037】一体化する半導体材料を配置する方法として
は、p型から始まりn型で終わる偶数型の他、図1に示す
ごとく、p,n,pやn,p,n,p,nなどの奇数型でもよく、いず
れにしても連接部に1以上のpn接合部を有する構成とす
る必要がある。As a method of arranging the semiconductor material to be integrated, in addition to an even-numbered type starting from p-type and ending with n-type, as shown in FIG. 1, p, n, p and n, p, n, p, n, etc. In any case, it is necessary to provide a structure having one or more pn junctions in the connecting portion.
【0038】一体化成形方法には、粉末冶金法、圧着法、焼
成法、溶接法などが採用できる。粉末冶金法は、例えば
Si-Geのn型半導体粉末材料、p型半導体粉末材料並びに
金属材料の板又は粉末を、例えば図1の熱電変換素子と
略相似形の金型などに個別又は同時に入れて、粉末をホ
ットプレス、放電プラズマ焼結、熱間静水圧プレスなど
の熱間圧縮成形又は冷間圧縮成形後に焼結するなどの粉
末冶金手段にて一体化することができる。As an integral molding method, a powder metallurgy method, a pressure bonding method, a firing method, a welding method, or the like can be adopted. Powder metallurgy, for example,
A n-type semiconductor powder material of Si-Ge, a p-type semiconductor powder material, and a plate or powder of a metal material are placed individually or simultaneously in a mold or the like having a shape substantially similar to the thermoelectric conversion element in FIG. 1, and the powder is hot-pressed. It can be integrated by powder metallurgical means such as sintering after hot compression molding such as discharge plasma sintering or hot isostatic pressing or cold compression molding.
【0039】また、Si基材料、Si‐Ge合金の焼結材、溶製材
と電極材料を、抵抗加熱、通電焼結、熱間加圧などの圧
着法、ペースト材料を用いた焼成法、さらには溶接法な
どにより、pn接合することが可能である。上記の一体化
成形方法は、半導体材料、電極用材料、絶縁材料の種類
や形態に応じて、最適な方法を選択するとよい。Further, a sintered material of a Si-based material, a Si-Ge alloy, a smelting material and an electrode material are subjected to a pressure bonding method such as resistance heating, electric current sintering, hot pressing, a firing method using a paste material, Can be pn-joined by a welding method or the like. As the above-mentioned integrated molding method, an optimal method may be selected according to the types and forms of the semiconductor material, the electrode material, and the insulating material.
【0040】さらに、上述の粉末冶金法の他、Si基板、Si
1-xGex(x<0.20)基板上に粉末材料のレジストをパター
ニングして積層させる方法が採用できる。具体的には、
Si、Geを電子ビーム加熱して蒸発させるPVD法、SiH4、G
eH4からSi、Geを積層させるCVD法などがあり、マスクを
介してpn接合並びに金属層の接合も可能である。積層
後、400〜800℃で熱処理することにより、積層膜が結晶
化し特性が向上する。Further, in addition to the powder metallurgy method described above, a Si substrate, a Si
A method of patterning and stacking a resist of a powder material on a 1-x Ge x (x <0.20) substrate can be adopted. In particular,
PVD method to evaporate Si and Ge by electron beam heating, SiH 4 , G
There is the eH 4 Si, CVD method to stack Ge, etc., it is also possible joining of the pn junction and metal layer through a mask. After the lamination, a heat treatment is performed at 400 to 800 ° C., whereby the laminated film is crystallized and the characteristics are improved.
【0041】絶縁材料としては、電気的絶縁が可能な公知の
いずれの材料も採用できる。比抵抗値は102Ω・m以上が
好ましい。半導体材料と焼結、圧着、接着が可能で、熱
膨張係数が近似している材料が好ましい。また絶縁材料
から熱が伝導すると熱電変換材料の温度勾配が小さくな
るため、熱伝導率の小さな材料が好ましい。例えば、半
導体材料がSi基材料、Si‐Ge合金の場合、Si、ノンドー
ブSi‐Ge、SiO2、Si3N4、BN、SiC、Al2O3、TiN、各種フ
ェライトなどを用いることができる。As the insulating material, any known material capable of electrical insulation can be used. The specific resistance is preferably 10 2 Ω · m or more. A material that can be sintered, pressed, and bonded to a semiconductor material and has a similar thermal expansion coefficient is preferable. Further, when heat is conducted from the insulating material, the temperature gradient of the thermoelectric conversion material becomes small. Therefore, a material having low thermal conductivity is preferable. For example, the semiconductor material is Si-based material, in the case of Si-Ge alloys, can be used Si, Nondobu Si-Ge, SiO 2, Si 3 N 4, BN, SiC, Al 2 O 3, TiN, and various ferrites .
【0042】電極材料としては、金属、樹脂などのいずれの
材質も使用でき、比較的耐食性に優れ、しかも熱電変換
材料に着設しやすい金属、合金が好ましい。特に高温で
高特性を示す熱電材料では高融点の金属、合金を使用す
ることが好ましい。例えば、熱電変換材料の高温側の材
料としては、Zr,Au,Ag,Pt,Cu,Ti,Mo,Zn,W,C、低温側の
材料としてはBi,Sn,Ag,Cu,Pt,Al,Au,Fe,Mo,Zn,Pbが好ま
しい。又、これらの金属の合金、あるいはこれらの金属
を含む合金を用いることもできる。As the electrode material, any material such as a metal and a resin can be used, and it is preferable to use a metal or an alloy which has relatively excellent corrosion resistance and can be easily attached to the thermoelectric conversion material. In particular, it is preferable to use a high melting point metal or alloy for a thermoelectric material exhibiting high characteristics at a high temperature. For example, as the material on the high temperature side of the thermoelectric conversion material, Zr, Au, Ag, Pt, Cu, Ti, Mo, Zn, W, C, and as the material on the low temperature side, Bi, Sn, Ag, Cu, Pt, Al , Au, Fe, Mo, Zn, and Pb are preferred. Further, alloys of these metals or alloys containing these metals can also be used.
【0043】熱電変換材料の高温側と低温側に使用する金属
材料の種類、組合せは、熱電変換材料種によってそれぞ
れ異なる。例えば、FeSi2化合物の場合は、高温側にP
t、低温側にCu、Bi2Te3化合物の場合は、高温側にPt、
低温側にAl、Si1-xGex(x<0.20)の場合は、高温側にP
t、低温側にAl、などが好ましい。The types and combinations of metal materials used on the high temperature side and the low temperature side of the thermoelectric conversion material differ depending on the type of the thermoelectric conversion material. For example, in the case of FeSi 2 compound, P
t, Cu on the low temperature side, Pt on the high temperature side for Bi 2 Te 3 compounds,
When Al and Si 1-x Ge x (x <0.20) on the low temperature side, P on the high temperature side
t, Al on the low temperature side, etc. are preferred.
【0044】この発明において、熱電変換材料には、公知の
いずれの材質も採用可能である。特にSi基材料、Si1-xG
ex(x<0.20)の組成からなる熱電変換材料の他、Bi2Te3
系材料が好ましい。In the present invention, any known material can be used as the thermoelectric conversion material. Especially Si-based materials, Si 1-x G
In addition to the thermoelectric conversion material having the composition of e x (x <0.20), Bi 2 Te 3
System materials are preferred.
【0045】Si基材料は、組成がSi1-xAx(x<0.20)で、Aに
は4族元素(Ge,C,Sn)、3-5族化合物半導体、2‐6族化合
物半導体の少なくとも1種を添加し、後述するドーパン
ト元素によってキャリアー濃度を1017〜1021(M/m3)に制
御するもので、基本的に多結晶Siで各結晶粒内はほとん
どがSiであり、粒界部に前記添加元素とドーパント元
素、Si-Geの場合はGeとドーパント元素が同時に偏析し
た構造を特徴とする。The Si-based material has a composition of Si 1-x A x (x <0.20), where A is a group 4 element (Ge, C, Sn), a group 3-5 compound semiconductor, or a group 2-6 compound semiconductor. Is added, and the carrier concentration is controlled to 10 17 to 10 21 (M / m 3 ) by a dopant element to be described later. In addition, in the case of Si—Ge, the additive element and the dopant element, and in the case of Si—Ge, a structure in which Ge and the dopant element are segregated at the same time is characterized.
【0046】Si基材料は、Si半導体中のキャリアー濃度が10
17〜1021(M/m3)になるようにP,B,Alなど種々の添加元素
の単独又は複合添加とその添加量を調整することによ
り、ゼーベック係数が極めて大きく、熱電変換効率を著
しく高めることができ、生産性が良く品質が安定した安
価な熱電変換材料である。The Si-based material has a carrier concentration in the Si semiconductor of 10
By adjusting the amount of addition of various additive elements such as P, B, and Al, alone or in combination, to 17 to 10 21 (M / m 3 ), the Seebeck coefficient is extremely large, and the thermoelectric conversion efficiency is significantly increased. It is an inexpensive thermoelectric conversion material that can be enhanced, has high productivity and stable quality.
【0047】この発明のSi基材料において、特にSi-Geの場
合は、Geが0.05原子%未満では熱伝導率が大きいため、
高い性能指数は得られず、また、20原子%以上では熱伝
導率は若干低下するが、同時に粒内のSiリッチ相にもGe
が拡散し、固溶するため、Siの高いゼーベック係数が低
下し、性能指数を低下させる原因となる。よって、Geの
好ましい含有量は0.05以上、20原子%未満の範囲とす
る。特に好ましくは、3〜10原子%である。[0047] In the Si-based material of the present invention, especially in the case of Si-Ge, when Ge is less than 0.05 atomic%, the thermal conductivity is large,
A high figure of merit cannot be obtained, and at 20 atomic% or more, the thermal conductivity slightly decreases.
Is diffused to form a solid solution, so that the high Seebeck coefficient of Si decreases and the figure of merit decreases. Therefore, the preferable content of Ge is in the range of 0.05 or more and less than 20 atomic%. Particularly preferably, it is 3 to 10 atomic%.
【0048】この発明において、SiをP型半導体またはN型半
導体となすためのドーパント元素は、所要範囲内のキャ
リアー濃度で熱伝導率、電気抵抗を低下させると同時
に、高いゼーベック係数を得るために添加するものであ
る。熱電変換材料の用途を考慮すると、熱源、使用箇所
や形態、扱う電流、電圧の大小などの用途に応じて、ゼ
ーベック係数、電気伝導率、熱伝導率のいずれの特性に
重点を置くかで変わるため、用途などに応じて選択元素
とその添加量を選択することができる。添加量として
は、0.001原子%〜20原子%が好ましい。In the present invention, the dopant element for converting Si into a P-type semiconductor or an N-type semiconductor is used to reduce the thermal conductivity and electric resistance at a carrier concentration within a required range and to obtain a high Seebeck coefficient. It is to be added. Considering the application of the thermoelectric conversion material, it changes depending on the application such as Seebeck coefficient, electrical conductivity, or thermal conductivity, depending on the application such as the heat source, the use location and form, the current to be handled, the magnitude of the voltage, etc. Therefore, the selected element and the amount of addition can be selected according to the use or the like. The addition amount is preferably 0.001 atomic% to 20 atomic%.
【0049】p型半導体となすためのドーパント元素として
は、pグループ群(Be,Mg,Ca,Sr,Ba,Zn,Cd,Hg,B,Al,Ga,I
n,Tl)、遷移金属元素M1群(M1;Y,Mo,Zr)の各群から選択
する1種又は2種以上が望ましい。中でも特に好ましい元
素はB,Ga,Alである。As a dopant element for forming a p-type semiconductor, a p group group (Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, B, Al, Ga, I
n, Tl), the transition metal element M 1 group (M 1; Y, Mo, 1 or selected from the group of Zr) or two or more is desirable. Among them, particularly preferred elements are B, Ga, and Al.
【0050】n型半導体となすためのドーパント元素は、nグ
ループ群(N,P,As,Sb,Bi,O,S,Se,Te)、遷移金属元素M2群
(M2;Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Nb,Ru,Rh,Pd,Ag,Hf,Ta,W,
Re,Os,Ir,Pt,Au、但しFeは10原子%以下)、希土類元素群
RE(RE;La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu)の
各群から選択する1種又は2種以上が望ましい。中でも特
に好ましい元素はP,Cu,Asである。The dopant element for forming an n-type semiconductor includes an n group (N, P, As, Sb, Bi, O, S, Se, Te) and a transition metal element M 2
(M 2 ; Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Hf, Ta, W,
Re, Os, Ir, Pt, Au (Fe is 10 atomic% or less), rare earth element group
One or two or more selected from each group of RE (RE; La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu) are desirable. Among them, particularly preferred elements are P, Cu and As.
【0051】[0051]
【実施例】実施例1 原料として、p型にSi0.95Ge0.05(B0.3at%)、n型にSi
0.95Ge0.05(P0.4at%)を配合し、高周波真空溶解炉にて
溶解したp型及びn型の熱電変換材料のインゴットを振動
ミル及び窒素ガス中でジェットミルにて平均粒径約4μm
に粉砕した。EXAMPLES Example 1 As a raw material, p-type Si 0.95 Ge 0.05 (B0.3at%) and n-type Si
0.95 Ge 0.05 (P0.4at%) was blended and the ingots of p-type and n-type thermoelectric materials melted in a high-frequency vacuum melting furnace were shake milled and jet milled in nitrogen gas to an average particle size of about 4μm.
Crushed.
【0052】得られた各粉末を図1Aの如くカーボン型にp型
半導体材料粉末1とn型半導体材料粉末2がpn接合予定部4
を除いて絶縁材料粉末3にて隔てられて交互に配列した
構成となるように装填し1500〜1600K×1h、圧力25〜100
MPaの条件でホットプレスにて一体化したpn接合部が10
ヶ所ある熱電変換素子を作製した。Each of the obtained powders is formed into a carbon type as shown in FIG. 1A by joining a p-type semiconductor material powder 1 and an n-type semiconductor material powder 2 to a pn junction scheduled portion 4.
Except for the insulating material powder 3 is loaded so as to be arranged alternately separated by 1500 ~ 1600K × 1h, pressure 25 ~ 100
10 pn junctions integrated by hot press at MPa
Thermoelectric conversion elements were produced at various locations.
【0053】素子全体の寸法は5mm×75mm×15mmであった。
その素子の一番両端に電極とリード線を接合し、一方を
873Kの高温に加熱し、他方を373Kの温度勾配をつけ、そ
れぞれの発生起電力と発生起電流および抵抗値をデジタ
ルマルチメーターで測定し、得られた出力電力量を求め
た。その結果を表1に示す。なお、電力比率は、以下の
比較例1(絶縁材料なし)の出力電力を1として比較した。The dimensions of the entire device were 5 mm × 75 mm × 15 mm.
Attach electrodes and lead wires to both ends of the element,
The output power was obtained by heating to a high temperature of 873K and applying a temperature gradient of 373K to the other, measuring the generated electromotive force, generated electromotive current and resistance with a digital multimeter. The results are shown in Table 1. Note that the power ratio was compared with the output power of Comparative Example 1 (without an insulating material) described below as 1.
【0054】比較例として、絶縁材料を挟まない場合の測定
値(比較例1)およびPtペーストを介して接合した場合の
測定値(比較例2)を同様に表1に示す。As comparative examples, Table 1 similarly shows measured values when no insulating material was sandwiched (Comparative Example 1) and measured values when joined via a Pt paste (Comparative Example 2).
【0055】実施例2 原料として、p型にSi0.95Ge0.05(B0.3at%)、n型にSi
0.95Ge0.05(P0.4at%)を配合し、アーク溶解にて溶解し
たp型及びn型の熱電変換材料のインゴットをスタンプミ
ル及びボールミルにて平均粒径約2μmに粉砕した。ボー
ルミルはキシレン溶媒中で行った。Example 2 As raw materials, p-type Si 0.95 Ge 0.05 (B 0.3 at%) and n-type Si
0.95 Ge 0.05 (P0.4at%) was blended, and p-type and n-type thermoelectric conversion material ingots melted by arc melting were pulverized by a stamp mill and a ball mill to an average particle size of about 2 μm. The ball mill was performed in a xylene solvent.
【0056】得られた各粉末を図2Aの如くp型半導体材料粉
末1とn型半導体材料粉末2との間に、絶縁材料粉末3、粒
径10μmの電極材料粉末5,6を装填し、絶縁材料粉末3と
電極材料粉末5,6の挿入位置が交互に入れかわるように
装填し、1100〜1573K×600sec、圧力50MPaの条件で放電
プラズマ焼結し、pn接合部が10ヶ所ある熱電変換素子を
作製した。[0056] Each of the obtained powders is loaded with an insulating material powder 3 and electrode material powders 5 and 6 having a particle size of 10 µm between a p-type semiconductor material powder 1 and an n-type semiconductor material powder 2 as shown in Fig. 2A. Insulation material powder 3 and electrode material powders 5 and 6 are loaded so that they are inserted alternately, and are subjected to discharge plasma sintering under the conditions of 1100 to 1573 K × 600 sec, pressure 50 MPa, and thermoelectric conversion with 10 pn junctions An element was manufactured.
【0057】素子全体の寸法は5mm×75mm×15mmであった。
その素子のその一番両端に電極とリード線を接合し、一
方を873Kの高温に加熱し、他方を373Kの温度勾配をつ
け、それぞれの発生起電力と発生起電流および抵抗値を
デジタルマルチメーターで測定し、得られた出力電力量
を求めた。その結果を表2に示す。なお、電力比率は、
以下の比較例4(絶縁材料なし)の出力電力を1として比較
した。The dimensions of the entire device were 5 mm × 75 mm × 15 mm.
An electrode and a lead wire are bonded to both ends of the element, one is heated to a high temperature of 873K, the other is heated to a temperature gradient of 373K, and the generated electromotive force, generated current and resistance are digital multimeters. , And the obtained output power was obtained. The results are shown in Table 2. The power ratio is
The comparison was made assuming that the output power of the following comparative example 4 (without insulating material) was 1.
【0058】なお比較例として、絶縁材料を挟まない場合の
測定値(比較例4)およびPtペーストを介して接合した場
合の測定値(比較例5)、pn接合部に絶縁材を挟むが金属
板を介さない素子の測定値(比較例3)を同様に表2に示
す。As comparative examples, measured values when no insulating material was sandwiched (Comparative Example 4) and measured values when joined via a Pt paste (Comparative Example 5) Table 2 similarly shows measured values of an element not passing through a plate (Comparative Example 3).
【0059】実施例3 原料として、p型にSi0.95Ge0.05(B0.3at%)、n型にSi
0.95Ge0.05(P0.4at%)を配合し、高周波真空溶解炉にて
溶解したp型及びn型の熱電変換材料のインゴットを振動
ミル及び窒素ガス中でジェットミルにて平均粒径約4μm
に粉砕した。得られたそれぞれの粉末を5mm×5mm×15mm
のカーボン型に挿入し、1573K×1h、圧力50MPaでホット
プレスした。Example 3 As raw materials, p-type Si 0.95 Ge 0.05 (B0.3 at%) and n-type Si
0.95 Ge 0.05 (P0.4at%) was blended and the ingots of p-type and n-type thermoelectric materials melted in a high-frequency vacuum melting furnace were shake milled and jet milled in nitrogen gas to an average particle size of about 4μm.
Crushed. Each obtained powder is 5mm × 5mm × 15mm
And hot-pressed at 1573K × 1h at a pressure of 50 MPa.
【0060】得られら焼結体には図3Cに示すようにp型の材
料にはペースト状絶縁材料15と低温側電極ペースト16
を、n型の材料にはペースト状絶縁材料15と高温側電極
ペースト17を塗布し、その後1173K×30min、真空中で焼
成し、pn接合部が10ヶ所ある熱電変換素子を作製した。As shown in FIG. 3C, a paste-like insulating material 15 and a low-temperature side electrode paste 16 are used for the p-type material.
Then, a paste-like insulating material 15 and a high-temperature side electrode paste 17 were applied to the n-type material, and then fired in a vacuum at 1173 K × 30 min to produce a thermoelectric conversion element having 10 pn junctions.
【0061】熱電変換素子の一番両端に電極とリード線を接
合し、一方を873Kの高温に加熱し、他方を373Kの温度勾
配をつけ、それぞれの発生起電力と発生起電流および抵
抗値をデジタルマルチメーターで測定し、得られた出力
電力量を求めた。その結果を表3に示す。なお、電力比
率は、以下の比較例7(絶縁ペーストなし)の出力電力を1
として比較した。An electrode and a lead wire are joined to both ends of the thermoelectric conversion element, one is heated to a high temperature of 873K, and the other is provided with a temperature gradient of 373K. Measurement was performed with a digital multimeter, and the obtained output power was obtained. The results are shown in Table 3. Note that the power ratio is the output power of the following comparative example 7 (without insulating paste) being 1
Were compared.
【0062】なお比較例として、絶縁ペーストを挟まない場
合の測定値(比較例7)およびpn接合部に絶縁ペーストを
挟むが電極ペーストを介さない素子の測定値(比較例6)
を同様に表3に記す。As comparative examples, measured values when no insulating paste was interposed (Comparative Example 7) and measured values of an element with an insulating paste interposed at the pn junction but without the electrode paste (Comparative Example 6)
Are also shown in Table 3.
【0063】[0063]
【表1】 【table 1】
【0064】[0064]
【表2】 [Table 2]
【0065】[0065]
【表3】 [Table 3]
【0066】[0066]
【発明の効果】この発明による熱電変換素子は、Si系や
セラミックスの粉末など絶縁材を、pn接合予定部以外に
介在させて粉末冶金法などにて一体化することにより、
一体化が極めて容易になると共に、pn接合部のロスは大
幅に低下し、熱電変換効率が向上し、特に安価で軽量な
Si基材料の熱電変換効率を著しく高め、熱応力により接
合部が剥がれたり割れたりすることのない構成となすこ
とができる。The thermoelectric conversion element according to the present invention is obtained by integrating an insulating material such as a Si-based or ceramic powder at a portion other than a portion where a pn junction is to be formed by a powder metallurgy method or the like.
The integration is extremely easy, the loss of the pn junction is greatly reduced, the thermoelectric conversion efficiency is improved, and especially the low cost and light weight
The thermoelectric conversion efficiency of the Si-based material can be significantly increased, and a configuration can be provided in which the joint does not peel or crack due to thermal stress.
【0067】また、この発明によると、熱電変換素子に温度
勾配を与えた際の高温側と低温側に位置するpn接合部に
異種金属を介して接合し、素子化することにより、起電
力および電力量が向上する。Further, according to the present invention, the pn junction located on the high temperature side and the low temperature side when a temperature gradient is applied to the thermoelectric conversion element is joined via a dissimilar metal to form an element, so that electromotive force and The electric energy is improved.
【図1】AとBはこの発明による熱電変換素子の製造方法
を示す材料の配置説明図であり、それぞれ粉末冶金法に
て直接pn接合する場合である。FIGS. 1A and 1B are explanatory diagrams showing the arrangement of materials showing a method for manufacturing a thermoelectric conversion element according to the present invention, in which direct pn junction is performed by powder metallurgy.
【図2】Aはこの発明による熱電変換素子の製造方法を示
す材料の配置説明図であり、電極粉末を介在させて粉末
冶金法にてpn接合する場合であり、Bは成形体を示し、C
はAにおける絶縁材料粉末と電極粉末の配置形状が異な
る場合を示す。FIG. 2A is an explanatory diagram of material arrangement showing a method for manufacturing a thermoelectric conversion element according to the present invention, in which a pn junction is performed by powder metallurgy with an electrode powder interposed therebetween, and B shows a molded body; C
Indicates a case where the arrangement shapes of the insulating material powder and the electrode powder in A are different.
【図3】Aはこの発明による熱電変換素子の製造方法を示
す材料の配置説明図であり、薄板電極を介在させて粉末
冶金法にてpn接合する場合であり、Bはバルク材料同士
をを圧着法にてpn接合する場合、Cはバルク材料にペー
ストを用いた場合を示す。FIG. 3A is an explanatory diagram of material arrangement showing a method of manufacturing a thermoelectric conversion element according to the present invention, in which a pn junction is performed by a powder metallurgy method with a thin plate electrode interposed therebetween, and B is a method of connecting bulk materials to each other. When the pn junction is performed by the crimping method, C indicates the case where the paste is used as the bulk material.
1 p型半導体材料粉末 2 n型半導体材料粉末 3 絶縁材料粉末 4 pn接合予定部 5 電極材料粉末(低温側) 6 電極材料粉末(高温側) 7 電極材料(低温側) 8 電極材料(高温側) 10 p型半導体材料 11 n型半導体材料 12 絶縁材料 13 電極材料(低温側) 14 電極材料(高温側) 15 ペースト状絶縁材料 16 ペースト状電極材料(低温側) 17 ペースト状電極材料(高温側) 1 p-type semiconductor material powder 2 n-type semiconductor material powder 3 insulating material powder 4 planned pn junction 5 electrode material powder (low temperature side) 6 electrode material powder (high temperature side) 7 electrode material (low temperature side) 8 electrode material (high temperature side) ) 10 p-type semiconductor material 11 n-type semiconductor material 12 insulating material 13 electrode material (low temperature side) 14 electrode material (high temperature side) 15 paste-like insulating material 16 paste-like electrode material (low-temperature side) 17 paste-like electrode material (high-temperature side) )
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西郷 恒和 大阪府三島郡島本町江川2丁目15−17 住 友特殊金属株式会社山崎製作所内 (72)発明者 春山 俊一 大阪府池田市伏尾台3丁目5−8 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsuneka Saigo 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Shunichi Haruyama 3 Fushiodai, Ikeda-shi, Osaka Chome 5-8
Claims (8)
縁材料を介在して一体化され、連接方向に単数又は複数
のpn接合部を有する熱電変換素子。1. A thermoelectric conversion element which is integrated between an n-type semiconductor material and a p-type semiconductor material with an insulating material interposed therebetween and has one or more pn junctions in a connecting direction.
極材料と絶縁材料を介在して一体化され、連接方向に単
数又は複数のpn接合部を有する熱電変換素子。2. A thermoelectric conversion element which is integrated between an n-type semiconductor material and a p-type semiconductor material with an electrode material and an insulating material interposed therebetween and has one or more pn junctions in a connecting direction.
又は溶接によるものである請求項1又は請求項2に記載の
熱電変換素子。3. The thermoelectric conversion element according to claim 1, wherein the integration is performed by a powder metallurgy method, a pressure bonding method, a firing method, or welding.
温側と低温側で異なる材料である請求項3に記載の熱電
変換素子。4. The thermoelectric conversion element according to claim 3, wherein the electrode material is different between a high temperature side and a low temperature side when a temperature gradient is given.
を、板状又は粉末の絶縁材料あるいはさらに板状又は粉
末の電極材料を介して配置し、粉末冶金法により一体化
し、得られた一体型の熱電変換素子内に単数又は複数の
pn接合部を形成する熱電変換素子の製造方法。5. An n-type semiconductor powder material and a p-type semiconductor powder material are arranged via a plate or powder insulating material or further via a plate or powder electrode material and integrated by powder metallurgy to obtain One or more integrated thermoelectric conversion elements
A method for manufacturing a thermoelectric conversion element for forming a pn junction.
を、板状又はペースト状の絶縁材料あるいはさらに板状
又はペースト状の電極材料を介して配置し、圧着法によ
り一体化し、得られた一体型の熱電変換素子内に単数又
は複数のpn接合部を形成する熱電変換素子の製造方法。6. A bulk n-type semiconductor material and a p-type semiconductor material are arranged via a plate-like or paste-like insulating material or further via a plate-like or paste-like electrode material, and integrated by a crimping method. A method for producing a thermoelectric conversion element, wherein one or more pn junctions are formed in an integrated thermoelectric conversion element.
を、ペースト状の絶縁材料あるいはさらにペースト状の
電極材料を介して配置し、焼成法により一体化し、得ら
れた一体型の熱電変換素子内に単数又は複数のpn接合部
を形成する熱電変換素子の製造方法。7. An integrated thermoelectric conversion device in which a bulk n-type semiconductor material and a p-type semiconductor material are arranged via a paste-like insulating material or a paste-like electrode material, and are integrated by a firing method. A method for manufacturing a thermoelectric conversion element in which one or more pn junctions are formed in the element.
と低温側にそれぞれ異なる電極材料を配置する請求項5
から請求項7のいずれかに記載の熱電変換素子の製造方
法。8. A different electrode material is arranged on each of a high temperature side and a low temperature side when a temperature gradient is given as an element.
8. A method for producing a thermoelectric conversion element according to claim 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000028211A JP2001217469A (en) | 2000-02-04 | 2000-02-04 | Thermoelectric conversion element and its manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000028211A JP2001217469A (en) | 2000-02-04 | 2000-02-04 | Thermoelectric conversion element and its manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001217469A true JP2001217469A (en) | 2001-08-10 |
Family
ID=18553661
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000028211A Pending JP2001217469A (en) | 2000-02-04 | 2000-02-04 | Thermoelectric conversion element and its manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001217469A (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004084272A2 (en) | 2003-03-13 | 2004-09-30 | Eneco, Inc. | Solid state energy converter |
| US6906449B2 (en) | 1999-03-11 | 2005-06-14 | C.P. Baker Securities, Inc. | Hybrid thermionic energy converter and method |
| US6946596B2 (en) | 2002-09-13 | 2005-09-20 | Kucherov Yan R | Tunneling-effect energy converters |
| WO2005124883A1 (en) * | 2004-06-22 | 2005-12-29 | Aruze Corp. | Thermoelectric device |
| US7109408B2 (en) * | 1999-03-11 | 2006-09-19 | Eneco, Inc. | Solid state energy converter |
| WO2009001691A1 (en) * | 2007-06-22 | 2008-12-31 | Murata Manufacturing Co., Ltd. | Thermoelectric conversion element, thermoelectric conversion module, and process for producing thermoelectric conversion element |
| JP2010016132A (en) * | 2008-07-02 | 2010-01-21 | Oki Denki Bosai Kk | Thermoelectric conversion module and method of producing the same |
| JP2010206024A (en) * | 2009-03-04 | 2010-09-16 | Yanmar Co Ltd | Thermoelectric module, and manufacturing method of thermoelectric module |
| JP2012033685A (en) * | 2010-07-30 | 2012-02-16 | Panasonic Corp | Manufacturing method for pipe-like thermal power generation device and manufacturing method for laminate thereof |
| US8501518B2 (en) | 2008-12-26 | 2013-08-06 | Fujitsu Limited | Method of manufacturing thermoelectric conversion element and thermoelectric conversion element |
| JP2014049713A (en) * | 2012-09-04 | 2014-03-17 | Hitachi Chemical Co Ltd | Thermoelectric conversion module and manufacturing method thereof |
| KR101846650B1 (en) * | 2016-03-18 | 2018-04-06 | 현대자동차주식회사 | Flexible thermoelement and manufacturing method thereof |
| CN109378381A (en) * | 2018-10-19 | 2019-02-22 | 包头稀土研究院 | High temperature thermoelectric unit and method of making the same |
| JP2019512879A (en) * | 2016-03-09 | 2019-05-16 | ウェイク フォレスト ユニバーシティ | Thermal voltage generator |
-
2000
- 2000-02-04 JP JP2000028211A patent/JP2001217469A/en active Pending
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7109408B2 (en) * | 1999-03-11 | 2006-09-19 | Eneco, Inc. | Solid state energy converter |
| US7569763B2 (en) | 1999-03-11 | 2009-08-04 | Micropower Global Limited | Solid state energy converter |
| US6906449B2 (en) | 1999-03-11 | 2005-06-14 | C.P. Baker Securities, Inc. | Hybrid thermionic energy converter and method |
| US6946596B2 (en) | 2002-09-13 | 2005-09-20 | Kucherov Yan R | Tunneling-effect energy converters |
| AU2004220800B2 (en) * | 2003-03-13 | 2009-06-11 | Micropower Global Limited | Solid state energy converter |
| WO2004084272A2 (en) | 2003-03-13 | 2004-09-30 | Eneco, Inc. | Solid state energy converter |
| JP2006521698A (en) * | 2003-03-13 | 2006-09-21 | エネコ インコーポレイテッド | Solid state energy converter |
| RU2336598C2 (en) * | 2003-03-13 | 2008-10-20 | Инеко, Инк. | Solid state power converter (versions) and method of converting thermal power into electric power or electric power into frost (versions) |
| WO2004084272A3 (en) * | 2003-03-13 | 2004-12-16 | Eneco Inc | Solid state energy converter |
| JPWO2005124883A1 (en) * | 2004-06-22 | 2008-04-17 | アルゼ株式会社 | Thermoelectric element |
| JP5197954B2 (en) * | 2004-06-22 | 2013-05-15 | 株式会社ユニバーサルエンターテインメント | Thermoelectric element |
| US8013235B2 (en) | 2004-06-22 | 2011-09-06 | Universal Entertainment Corporation | Thermoelectric device |
| CN101425558B (en) * | 2004-06-22 | 2011-04-20 | 环球娱乐株式会社 | Thermoelectric device |
| WO2005124883A1 (en) * | 2004-06-22 | 2005-12-29 | Aruze Corp. | Thermoelectric device |
| JPWO2009001691A1 (en) * | 2007-06-22 | 2010-08-26 | 株式会社村田製作所 | Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element |
| US9065011B2 (en) | 2007-06-22 | 2015-06-23 | Murata Manufacturing Co., Ltd. | Thermoelectric conversion element, thermoelectric conversion module, method for producing thermoelectric conversion element |
| WO2009001691A1 (en) * | 2007-06-22 | 2008-12-31 | Murata Manufacturing Co., Ltd. | Thermoelectric conversion element, thermoelectric conversion module, and process for producing thermoelectric conversion element |
| JP2010016132A (en) * | 2008-07-02 | 2010-01-21 | Oki Denki Bosai Kk | Thermoelectric conversion module and method of producing the same |
| US8940571B2 (en) | 2008-12-26 | 2015-01-27 | Fujitsu Limited | Thermoelectric conversion element |
| US8501518B2 (en) | 2008-12-26 | 2013-08-06 | Fujitsu Limited | Method of manufacturing thermoelectric conversion element and thermoelectric conversion element |
| US20130284229A1 (en) * | 2008-12-26 | 2013-10-31 | Fujitsu Limited | Method of manufacturing thermoelectric conversion element and thermoelectric conversion element |
| JP2010206024A (en) * | 2009-03-04 | 2010-09-16 | Yanmar Co Ltd | Thermoelectric module, and manufacturing method of thermoelectric module |
| JP2012033685A (en) * | 2010-07-30 | 2012-02-16 | Panasonic Corp | Manufacturing method for pipe-like thermal power generation device and manufacturing method for laminate thereof |
| JP2014049713A (en) * | 2012-09-04 | 2014-03-17 | Hitachi Chemical Co Ltd | Thermoelectric conversion module and manufacturing method thereof |
| JP2019512879A (en) * | 2016-03-09 | 2019-05-16 | ウェイク フォレスト ユニバーシティ | Thermal voltage generator |
| KR101846650B1 (en) * | 2016-03-18 | 2018-04-06 | 현대자동차주식회사 | Flexible thermoelement and manufacturing method thereof |
| US10276770B2 (en) | 2016-03-18 | 2019-04-30 | Hyundai Motor Company | Flexible thermoelectric element and method for manufacturing the same |
| CN109378381A (en) * | 2018-10-19 | 2019-02-22 | 包头稀土研究院 | High temperature thermoelectric unit and method of making the same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2002023643A1 (en) | Thermoelectric conversion element | |
| KR101876947B1 (en) | Thermoelectric Device using Bulk Material of Nano Structure and Thermoelectric Module having The Same, and Method of Manufacture The Same | |
| EP2662466A2 (en) | Process for producing thermoelectric semiconductor alloy, thermoelectric conversion module, thermoelectric power generating device, rare earth alloy, producing process thereof, thermoelectric conversion material, and thermoelectric conversion system using filled skutterudite based alloy | |
| US20140109948A1 (en) | Thermoelectric module, thermoelectric device comprising the same, and process for preparing the thermoelectric element | |
| JP2001217469A (en) | Thermoelectric conversion element and its manufacturing method | |
| US20140096809A1 (en) | Thermoelectric device, thermoelectric module including the thermoelectric device, thermoelectric apparatus including the thermoelectric module, and method of manufacturing the same | |
| US20170125658A1 (en) | Thermoelectric Conversion Element and Thermoelectric Conversion Module | |
| US9627600B2 (en) | Mg—Si system thermoelectric conversion material, method for producing same, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module | |
| JP5780254B2 (en) | Thermoelectric conversion element | |
| Pei et al. | Development of integrated two-stage thermoelectric generators for large temperature difference | |
| JP2011003559A (en) | Thermoelectric conversion module | |
| JPH0697512A (en) | Thermoelectric conversion element | |
| JP6305335B2 (en) | Thermoelectric conversion material, thermoelectric conversion module using the same, and method of manufacturing thermoelectric conversion material | |
| JP7314927B2 (en) | Thermoelectric conversion module member, thermoelectric conversion module, and method for manufacturing thermoelectric conversion module member | |
| CN110178234B (en) | Thermoelectric module | |
| JP6623003B2 (en) | Thermoelectric conversion element and thermoelectric conversion module | |
| WO2013047474A1 (en) | Sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module | |
| CN104362249B (en) | A kind of layered electrode and its Joining Technology matched with Mg Si Sn base thermoelectric elements | |
| JP2001189497A (en) | Thermoelectric conversion element and manufacturing method therefor | |
| CN110098312B (en) | A connection method of segmented thermoelectric materials | |
| CN107665943A (en) | Thermo-electric device electrode and preparation method thereof and thermo-electric device | |
| US20130256608A1 (en) | METAL MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION CAPABILITY | |
| CN207529976U (en) | Thermo-electric device and its electrode | |
| JP4584034B2 (en) | Thermoelectric module | |
| JPH11298052A (en) | Thermoelectric element, thermoelectric material and method for producing thermoelectric material |