JP2001220632A - Zirconium alloy with excellent corrosion resistance and low hydrogen absorption and method for producing the same - Google Patents
Zirconium alloy with excellent corrosion resistance and low hydrogen absorption and method for producing the sameInfo
- Publication number
- JP2001220632A JP2001220632A JP2000025599A JP2000025599A JP2001220632A JP 2001220632 A JP2001220632 A JP 2001220632A JP 2000025599 A JP2000025599 A JP 2000025599A JP 2000025599 A JP2000025599 A JP 2000025599A JP 2001220632 A JP2001220632 A JP 2001220632A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- annealing
- zirconium alloy
- hydrogen absorption
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Fuel Cell (AREA)
Abstract
(57)【要約】
【課題】十分な耐一様腐食性と水素吸収量の少ない核燃
料被覆管や核燃料構造部材に好適なジルコニウム合金を
提供およびその製造方法の提供。
【解決手段】質量%で、Sn:0.3〜0.9%、F
e:0.15〜0.4%、Cr:0.12%以下、N
i:0.001〜0.1%、Nb:0.05〜0.5
%、Si:0.008〜0.018%、N:0.005
%以下を含有し、残部がZrおよび不純物からなるジル
コニウム合金とその製造方法。[Problem] To provide a zirconium alloy suitable for a nuclear fuel cladding tube and a nuclear fuel structural member having a sufficient uniform corrosion resistance and a small hydrogen absorption amount, and a method for producing the same. SOLUTION: In mass%, Sn: 0.3 to 0.9%, F
e: 0.15 to 0.4%, Cr: 0.12% or less, N
i: 0.001 to 0.1%, Nb: 0.05 to 0.5
%, Si: 0.008 to 0.018%, N: 0.005
% And a balance of Zr and impurities and a method for producing the same.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、耐食性に優れ水素
吸収の少ないジルコニウム合金およびその製造方法に関
し、本発明例の合金は原子炉燃料用の被覆管および構造
部材等の用途に好適である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconium alloy having excellent corrosion resistance and low hydrogen absorption and a method for producing the same. The alloy of the present invention is suitable for applications such as cladding tubes and structural members for nuclear fuel.
【0002】[0002]
【従来の技術】発電用原子炉の燃料被覆管に使用される
ジルコニウム合金には,主として沸騰水型軽水炉(BW
R)に適用されるジルカロイ2(JIS−H−475
1:ZrTN−802−D相当合金)と加圧水型軽水炉
(PWR)に適用されるジルカロイ4(JIS−H−4
751:ZrTN−804−D相当合金)がある。どち
らの合金も燃料被覆管として長年の実績があり、現在の
使用条件では問題なく使用することができる。2. Description of the Related Art A zirconium alloy used for a fuel cladding tube of a power reactor is mainly a boiling water reactor (BW).
R) applied to Zircaloy 2 (JIS-H-475)
1: ZrTN-802-D equivalent alloy) and Zircaloy 4 (JIS-H-4) applied to a pressurized water reactor (PWR)
751: ZrTN-804-D equivalent alloy). Both alloys have a long track record as fuel cladding and can be used without problems under current conditions of use.
【0003】原子炉を稼働させる場合、核燃料物質の入
った複数の被覆管を束にして核燃料集合体の状態にして
炉心に挿入し、一定燃焼度に達した後あるいは一定期間
燃焼した後、この燃料集合体を取り出すという作業が繰
り返しおこなわれる。近年、発電効率向上のため高燃焼
度化(燃料集合体を炉心に挿入してから取出すまでの間
に引き出すことのできる熱量の総計を高めること)が進
められている。そのためには、燃料集合体の炉内滞在期
間長期化に耐えうる耐食性と、核燃料の濃縮度アップに
よる過酷環境下での健全な運転のための強度が要求され
る。When operating a nuclear reactor, a plurality of cladding tubes containing nuclear fuel material are bundled into a nuclear fuel assembly and inserted into a reactor core, and after reaching a certain burnup or after burning for a certain period of time, The operation of removing the fuel assembly is repeatedly performed. In recent years, high burnup (increase in the total amount of heat that can be extracted between insertion and removal of a fuel assembly) has been promoted in order to improve power generation efficiency. For this purpose, it is required to have corrosion resistance enough to withstand a prolonged residence time of the fuel assembly in the furnace and strength for sound operation in a severe environment by increasing the enrichment of nuclear fuel.
【0004】燃料被覆管や燃料集合体を構成する上記の
ジルカロイ2やジルカロイ4のジルコニウム合金は、耐
食性が優れている。しかし、長期間の使用中には原子炉
内の高温高圧冷却水との反応により、黒色で均一な酸化
皮膜が表面で成長する一様腐食が生じる。長期の使用に
耐えるためには、この一様腐食、すなわち黒色皮膜の酸
化による成長を抑制する必要がある。また、腐食反応に
より発生する水素を母材が吸収すると水素脆化が起こり
強度が低下するため、水素吸収を抑制する必要もある。The above-mentioned zirconium alloys of Zircaloy 2 and Zircaloy 4 constituting fuel cladding tubes and fuel assemblies have excellent corrosion resistance. However, during long-term use, a reaction with high-temperature and high-pressure cooling water in a nuclear reactor causes uniform corrosion in which a black and uniform oxide film grows on the surface. In order to withstand long-term use, it is necessary to suppress this uniform corrosion, that is, the growth of the black film due to oxidation. In addition, when the base material absorbs hydrogen generated by the corrosion reaction, hydrogen embrittlement occurs and the strength is reduced. Therefore, it is necessary to suppress hydrogen absorption.
【0005】特開昭63−33535号公報には、耐食
性に優れ、水素吸収率の低いSn−Fe−Cr−Ni−
Nb含有ジルコニウム合金が開示されている。JP-A-63-33535 discloses Sn-Fe-Cr-Ni- which has excellent corrosion resistance and low hydrogen absorption.
An Nb-containing zirconium alloy is disclosed.
【0006】しかし、この合金はN量によっては耐食性
が劣化することが懸念される。さらに製造方法によって
は加工性、耐食性が劣化したり、水素吸収量が増加する
こともある。特開平8−67954公報では耐食性に優
れたSn−Fe−Cr−Ni−Nbジルコニウム合金の
製造方法が開示されている。しかし、この製造方法で製
造されたジルコニウム合金は、製造時の入熱量が大きい
ため析出物が成長しており、加工性が悪い上に耐食性も
十分とは言えない。 このよう
に、従来のジルコニウム合金では、核燃料の高燃焼度化
に対する十分な耐食性と低水素吸収率を備えているとは
言い難く、より優れたジルコニウム合金の開発が望まれ
ているのが現状である。However, there is a concern that the corrosion resistance of this alloy may deteriorate depending on the amount of N. Further, depending on the manufacturing method, workability and corrosion resistance may be deteriorated, and the amount of hydrogen absorption may increase. JP-A-8-67954 discloses a method for producing a Sn-Fe-Cr-Ni-Nb zirconium alloy having excellent corrosion resistance. However, the zirconium alloy produced by this production method has a large amount of heat input at the time of production, so that precipitates are grown, and the workability is poor and the corrosion resistance is not sufficient. Thus, it is difficult to say that conventional zirconium alloys have sufficient corrosion resistance against high burnup of nuclear fuel and low hydrogen absorption rate, and the development of better zirconium alloys is currently desired. is there.
【0007】[0007]
【発明が解決しようとする課題】本発明の課題は、核燃
料の高燃焼度化による炉内滞在期間の長期化の動向に対
して、十分な耐一様腐食性を備え、水素吸収量の少ない
核燃料被覆管や核燃料構造部材に好適なジルコニウム合
金およびその製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel cell having a sufficient uniform corrosion resistance and a small hydrogen absorption amount in response to the trend of prolonging the residence time in a reactor due to the high burnup of nuclear fuel. An object of the present invention is to provide a zirconium alloy suitable for a nuclear fuel cladding tube and a nuclear fuel structural member, and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】本発明者らは、上記課題
を解決するため、まず在来のジルカロイ2やジルカロイ
4の合金の化学組成を基本に、一様腐食性ならびに水素
吸収率を下げる合金元素の効果を種々実験、検討した。
その結果下記の知見を得るに至った。Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors first reduced the uniform corrosiveness and the hydrogen absorption rate based on the chemical composition of a conventional alloy of Zircaloy 2 or Zircaloy 4. Various experiments and examinations were made on the effects of alloying elements.
As a result, the following findings were obtained.
【0009】1)ジルカロイ2および4のSn含有量
は、1.2〜1.7%であるが、Snは耐食性を低下さ
せる不純物として混入するNの影響を低減させる効果が
ある。しかしNの悪影響を低減させるのに必要な量以上
のSnを含有させるとかえって耐食性を悪化させる。1) The Sn content of Zircaloys 2 and 4 is 1.2 to 1.7%, but Sn has an effect of reducing the influence of N mixed as an impurity which lowers corrosion resistance. However, if Sn is contained in an amount more than necessary to reduce the adverse effect of N, the corrosion resistance is rather deteriorated.
【0010】2)耐食性を向上させるためにN量を0.
005%以下に低減すれば、Sn含有量は0.3〜0.
9%の範囲とする必要があり、それ以外の含有量ではか
えって耐食性が低下する。2) To improve the corrosion resistance, the amount of N is set to 0.
If it is reduced to 005% or less, the Sn content becomes 0.3 to 0.1.
It is necessary to be in the range of 9%, and at other contents, the corrosion resistance is rather lowered.
【0011】3)Sn含有量を0.3〜0.9%と低く
すると強度が低下する。そこで、NbおよびNiを複合
添加すると強度を確保することができる上、耐食性が改
善され、水素吸収を抑制することもできる。3) When the Sn content is reduced to 0.3 to 0.9%, the strength decreases. Therefore, when Nb and Ni are added in combination, strength can be ensured, corrosion resistance is improved, and hydrogen absorption can be suppressed.
【0012】4)微量のSiを含有させると耐食性の向
上に有効であり、かつ水素吸収も抑制できる。4) When a small amount of Si is contained, it is effective in improving corrosion resistance and can suppress hydrogen absorption.
【0013】5)溶体化処理後は、その後の熱間加工前
の加熱時および焼鈍時における被加工材の総入熱量を適
正な量にするのが好ましく、その場合は金属間化合物の
析出、成長が防止できるので、冷間加工性および耐食性
の低下を一層効果的に抑制できる。5) After the solution treatment, the total heat input of the workpiece during heating and annealing before hot working is preferably adjusted to an appropriate amount, in which case the precipitation of intermetallic compounds, Since growth can be prevented, a reduction in cold workability and corrosion resistance can be more effectively suppressed.
【0014】本発明は上記の知見に基づきなされたもの
で、その要旨は以下の通りである。The present invention has been made based on the above findings, and the gist is as follows.
【0015】(1)質量%で、Sn:0.3〜0.9
%、Fe:0.15〜0.4%、Cr:0.12%以
下、Ni:0.001〜0.1%、Nb:0.05〜
0.5%、Si:0.008〜0.018%、N:0.
005%以下を含有し、残部がZrおよび不純物からな
る耐食性に優れ水素吸収の少ないジルコニウム合金。(1) Sn: 0.3 to 0.9 in mass%
%, Fe: 0.15 to 0.4%, Cr: 0.12% or less, Ni: 0.001 to 0.1%, Nb: 0.05 to
0.5%, Si: 0.008 to 0.018%, N: 0.
A zirconium alloy containing 005% or less, the balance being Zr and impurities, having excellent corrosion resistance and low hydrogen absorption.
【0016】(2)上記(1)に記載の化学組成を有す
るジルコニウム合金の溶体化処理材を熱間加工し、必要
により焼鈍を施して冷間加工と500℃〜750℃の温
度範囲での焼鈍とを1回以上おこない、最終の冷間加工
後の最終焼鈍は400℃〜600℃の温度範囲でおこな
う方法であって、溶体化処理後の熱間加工前の加熱時お
よび焼鈍時における被加工材の総入熱を、下記式により
求めた入熱パラメータAiの総和が3×10-21〜2×
10-17となるようにすることを特徴とするジルコニウ
ム合金の製造方法。 Ai=ti×exp{−40000/Ti} ここで、ti:i番目の熱間加工前の加熱時や焼鈍時に
おける加熱時間(h) Ti:i番目の熱間加工前の加熱時や焼鈍時における加
熱温度(K) とする。(2) The solution-treated material of the zirconium alloy having the chemical composition described in the above (1) is hot-worked and, if necessary, is annealed to perform cold-working at a temperature of 500 ° C. to 750 ° C. Annealing is performed once or more, and final annealing after final cold working is performed in a temperature range of 400 ° C. to 600 ° C., and is performed during heating before hot working after solution treatment and during annealing. The sum of the heat input parameters Ai obtained by the following equation is 3 × 10 −21 to 2 ×
A method for producing a zirconium alloy, characterized in that the value is 10 -17 . Ai = ti × exp {−40000 / Ti} where ti: heating time before heating or annealing before i-th hot working (h) Ti: heating time before annealing and before i-th hot working At the heating temperature (K).
【0017】[0017]
【発明の実施の形態】本発明のジルコニウム合金の化学
組成を規定した理由を以下に示す。なお,以下の「%」
表示は「質量%」とする. Sn:Snは、不純物として混入してくるNの耐食性へ
の悪影響を低減させるのに効果がある。その効果を得る
ためには0.3%以上含有させる必要がある。しかし、
本発明ではN含有量を0.005%以下と規定してお
り、多量に含有させる必要がなく、0.9%を超えると
耐食性を損なう。したがって、Snの含有量は0.3〜
0.9%とした。望ましくは、0.45〜0.8%であ
る。Nの悪影響を低減させるのに必要な量以上のSnを
含有させると耐食性が悪化する原因は、定かではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for defining the chemical composition of the zirconium alloy of the present invention are described below. The following “%”
The indication is “% by mass”. Sn: Sn is effective in reducing the adverse effect of N mixed as an impurity on the corrosion resistance. In order to obtain the effect, it is necessary to contain 0.3% or more. But,
In the present invention, the N content is specified to be 0.005% or less, and it is not necessary to contain a large amount, and if it exceeds 0.9%, the corrosion resistance is impaired. Therefore, the content of Sn is 0.3 to
0.9%. Desirably, it is 0.45 to 0.8%. The cause of the deterioration of the corrosion resistance when Sn is contained in an amount more than necessary to reduce the adverse effect of N is not clear.
【0018】FeおよびCr:Feは、耐食性を向上さ
せるとともに強度を向上させる効果があり、特にCrと
複合添加することにより、一層効果が大きくなる。これ
らの効果は、Crは0.05%程度の微量であってもF
eと複合添加すれば効果があり、Feの効果は0.15
%以上で得られる。しかし、Feは0.4%を、Crは
0.12%を超えると加工性が劣化し、耐食性、特に一
様腐食性が逆に劣化してくる。そこで、Feは0.15
〜0.4%、Crは0.12%以下の範囲とした。望ま
しくは、Feが0.20〜0.35%、Crが0.08
〜0.12%である。Fe and Cr: Fe has the effect of improving the corrosion resistance and the strength, and in particular, the effect is further enhanced by the complex addition with Cr. These effects are obtained even when the amount of Cr is as small as about 0.05%.
e is effective if added in combination with e, and the effect of Fe is 0.15
%. However, when Fe exceeds 0.4% and Cr exceeds 0.12%, the workability deteriorates, and the corrosion resistance, particularly the uniform corrosion, deteriorates conversely. Therefore, Fe is 0.15
0.40.4%, and Cr was within a range of 0.12% or less. Desirably, Fe is 0.20 to 0.35% and Cr is 0.08%.
~ 0.12%.
【0019】NiとNb:NiとNbは、耐食性を改善
する効果がある。ただし、Niは耐食性を改善するが、
その含有量の増加につれて、腐食により発生する水素を
合金中に取り込む量が増し、水素脆化を促進させる傾向
がある。一方、Nbは耐食性改善と水素吸収を抑制する
効果がある。これらの効果は、Niは微量であってもN
bと複合添加すれば一層よくなり、Nbは0.05%以
上で得られる。しかし、どちらの元素も多すぎると加工
性を劣化させ、耐食性および水素吸収特性が低下する。
そこで、Niは0.001〜0.1%、Nbは0.05
〜0.5%とした。望ましくは、Niが0.005〜
0.015%、Nbは0.08〜0.3%である。Ni and Nb: Ni and Nb have an effect of improving corrosion resistance. However, although Ni improves corrosion resistance,
As the content increases, the amount of hydrogen generated by corrosion taken into the alloy increases, which tends to promote hydrogen embrittlement. On the other hand, Nb has the effect of improving corrosion resistance and suppressing hydrogen absorption. These effects indicate that even if the amount of Ni is very small, N
B is further improved when combined with b, and Nb is obtained at 0.05% or more. However, if both elements are too large, the workability is deteriorated, and the corrosion resistance and the hydrogen absorption characteristics are reduced.
Therefore, Ni is 0.001 to 0.1%, and Nb is 0.05.
-0.5%. Desirably, Ni
0.015% and Nb are 0.08 to 0.3%.
【0020】Si:Siは、耐一様腐食性の改善および
水素吸収の抑制に効果がある。しかし、含有量が少なす
ぎても多すぎても耐食性や水素吸収抑制効果が低下す
る。既存のジルカロイ2およびジルカロイ4では不純物
として0.012%以下と規定されているが、最近の製
造技術においては、Siの混入量は0.005%以下に
減少している。しかし、上記効果を得るには、0.00
8%を超える量を必要とする。一方、0.018%を超
えると効果が低下するので上限を0.018%とした。
したがって、Siの含有量を0.008〜0.018%
とした。望ましくは、0.012〜0.015%であ
る。Si: Si is effective in improving uniform corrosion resistance and suppressing hydrogen absorption. However, if the content is too small or too large, the corrosion resistance and the effect of suppressing hydrogen absorption decrease. In existing Zircaloy 2 and Zircaloy 4, the content is specified as 0.012% or less as an impurity. However, in recent manufacturing techniques, the amount of Si mixed in is reduced to 0.005% or less. However, to obtain the above effect, 0.00
Requires more than 8%. On the other hand, if the content exceeds 0.018%, the effect decreases, so the upper limit is made 0.018%.
Therefore, the content of Si is set to 0.008 to 0.018%.
And Desirably, it is 0.012 to 0.015%.
【0021】N:Nは不純物であり、耐食性を低下させ
るので含有量は少ないほどよい。このNの悪影響を低め
る作用を有するSn含有量を0.3〜0.9%の範囲と
比較的少なくする場合には、N含有量を0.005%以
下としなければ、十分な耐食性が得られない。N: N is an impurity and lowers the corrosion resistance, so the smaller the content, the better. When the Sn content having the effect of reducing the adverse effect of N is relatively small in the range of 0.3 to 0.9%, sufficient corrosion resistance can be obtained unless the N content is not more than 0.005%. I can't.
【0022】次に製造方法について説明する。Next, the manufacturing method will be described.
【0023】先ず、原料の原子力級Zrスポンジに合金
元素を配合し、消耗電極式真空アーク溶解炉にて溶製す
る。溶製したインゴットは鍛造または分塊圧延してビレ
ットまたはスラブとした後、溶体化処理を施し加熱後熱
間加工をおこない、必要に応じて焼鈍を施す。その後、
冷間加工と焼鈍とを少なくとも1回以上おこない目標の
寸法に加工し、最終の冷間加工後に最終の焼鈍をおこな
うのがよい。この冷間加工は、燃料被覆管を製造する場
合は冷間圧延である。熱間加工や冷間加工の後での焼鈍
は、軟化および歪み取りを目的として500〜750℃
の温度範囲のα相領域でおこなう。α領域で熱処理をお
こなうのは、固溶限を超えて析出した金属間化合物を再
固溶させないためである。500℃未満では歪み取りが
完全でなく次の冷間加工に悪影響を与え、また750℃
を超えると金属間化合物が成長し加工性が劣化するた
め、焼鈍温度は500〜750℃とするのが望ましい。
ただし、最終の冷間加工後におこなう最終焼鈍は製品の
歪み取りまたは再結晶化を目的としているため、400
℃〜600℃の範囲でおこなうのがよい。400℃未満
では耐食性が不芳であり、また600℃を超えても耐食
性が低下するので、最終焼鈍温度は400〜600℃と
し、再結晶させるには550℃以上とするのがよい。First, an alloy element is blended into a nuclear-grade Zr sponge as a raw material, and is melted in a consumable electrode type vacuum arc melting furnace. The ingot that has been melted is forged or slab-rolled into a billet or slab, then subjected to a solution treatment, heated, hot-worked, and if necessary, annealed. afterwards,
It is preferable to perform cold working and annealing at least once or more to work to a target size, and to perform final annealing after final cold working. This cold working is cold rolling when producing a fuel cladding tube. Annealing after hot working or cold working is performed at 500 to 750 ° C. for the purpose of softening and strain relief.
In the α phase region in the temperature range of The heat treatment is performed in the α region so that the intermetallic compound precipitated beyond the solid solubility limit is not dissolved again. If the temperature is lower than 500 ° C., the strain is not completely removed, which adversely affects the next cold working.
If the temperature exceeds 300 ° C., the intermetallic compound grows and the workability deteriorates. Therefore, the annealing temperature is preferably set to 500 to 750 ° C.
However, since the final annealing performed after the final cold working is aimed at removing distortion or recrystallization of the product, 400
It is good to carry out in the range of from 600C to 600C. If the temperature is lower than 400 ° C., the corrosion resistance is poor, and if it exceeds 600 ° C., the corrosion resistance deteriorates. Therefore, the final annealing temperature is preferably 400 to 600 ° C., and it is preferable to be 550 ° C. or higher for recrystallization.
【0024】熱間加工や焼鈍中に金属間化合物が析出、
成長して冷間加工性が低下したり、耐食性が低下するの
を効果的に防止するには、溶体化処理後は、その後の全
ての熱間加工前の加熱時や焼鈍時における総入熱量を下
記のようにするのが好ましい。Intermetallic compounds precipitate during hot working and annealing,
To effectively prevent growth and decrease in cold workability and corrosion resistance, after solution treatment, the total heat input during heating and annealing before all subsequent hot working Is preferably as follows.
【0025】すなわち、溶体化処理後のi番目の熱間加
工前の加熱や焼鈍工程での入熱量を下式で示す入熱パラ
メーターAiで表すときに、各工程での入熱パラメータ
ーの合計値ΣAiが3×10-21〜2×10-17の範囲と
するのがよい。That is, when the heat input in the heating and annealing steps before the i-th hot working after the solution treatment is represented by the heat input parameter Ai shown by the following equation, the total value of the heat input parameters in each step ΣAi is preferably in the range of 3 × 10 -21 to 2 × 10 -17 .
【0026】 Ai=ti×exp{−40000/Ti} ここで、ti:i番目の熱間加工前の加熱時や焼鈍時に
おける加熱時間(h) Ti:i番目の熱間加工前の加熱時や焼鈍時における加
熱温度(K) とする。Ai = ti × exp {−40000 / Ti} where ti: heating time before i-th hot working or heating time during annealing (h) Ti: heating time before i-th hot working And the heating temperature (K) during annealing.
【0027】なお、式中の40000は、活性エネルギー/
気体定数から求めた値である。Incidentally, 40000 in the formula is the active energy /
This is the value obtained from the gas constant.
【0028】ΣAiが3×10-21未満の場合は、加工
性が低下し冷間加工時の表面肌荒れが発生して割れに至
る場合もあり、さらには耐食性も低下するおそれがあ
る。一方、ΣAiが2×10-17を超えると耐食性が低
下するおそれがあり、高温、長時間の熱処理となるた
め、エネルギーコストの上昇や生産性の低下を招くこと
となり好ましくない。When ΔAi is less than 3 × 10 -21 , workability is deteriorated, surface roughening during cold working may occur, leading to cracking, and furthermore, corrosion resistance may be reduced. On the other hand, if ΔAi exceeds 2 × 10 −17 , the corrosion resistance may decrease, and the heat treatment is performed at a high temperature for a long time, which leads to an increase in energy cost and a decrease in productivity, which is not preferable.
【0029】[0029]
【実施例】表1に示す化学組成のジルコニウム合金14
種をアルゴンアーク溶解炉にて溶製した。得られた鋳片
は、1050℃にて30分加熱した後、急冷する溶体化
処理を施し、その後は表2に示すA〜Dの4製造方法に
より、厚さ1mmのジルコニウム合金板を製造した。EXAMPLE Zirconium alloy 14 having the chemical composition shown in Table 1
The seed was smelted in an argon arc melting furnace. The obtained slab was subjected to a solution treatment of quenching after heating at 1050 ° C. for 30 minutes, and thereafter, a zirconium alloy plate having a thickness of 1 mm was manufactured by four manufacturing methods A to D shown in Table 2. .
【0030】熱間圧延の加工度は全て75%で、冷間圧
延の加工度は全て第1回、第2回および第3回とも全て
の試験片にたいして50%とした。The working ratios of the hot rolling were all 75%, and the working ratios of the cold rolling were all 50% for all of the first, second and third test pieces.
【0031】[0031]
【表1】 [Table 1]
【表2】 これらの板から、幅20mm、長さ35mmの腐食試験
片を切りだし、表面を#600番のエメリー紙で湿式研
磨後、エタノールで脱脂、乾燥させて腐食試験に供し
た。[Table 2] A corrosion test piece having a width of 20 mm and a length of 35 mm was cut out from these plates, the surface was wet-polished with # 600 emery paper, degreased with ethanol, and dried, and subjected to a corrosion test.
【0032】腐食試験は、360℃、20Mpaの高温
高圧水中にて480日暴露し、試験前後の試験片の重量
変化を秤量することにより腐食増量を求めて、一様腐食
性を評価した。腐食増量は、比較のため試験に供したジ
ルカロイ4(合金番号14)の腐食増量を1としたとき
の値で表した。In the corrosion test, the sample was exposed to high-temperature and high-pressure water at 360 ° C. and 20 Mpa for 480 days, and the change in weight of the test piece before and after the test was weighed to determine the increase in corrosion. The corrosion increase was represented by a value when the corrosion increase of Zircaloy 4 (alloy No. 14) subjected to the test was set to 1 for comparison.
【0033】さらに一様腐食試験後の試験片を用いて水
素吸収率を求めた。水素吸収率もジルカロイ4を1とし
たときの値で表した。Further, the hydrogen absorption rate was determined using the test piece after the uniform corrosion test. The hydrogen absorption rate was also represented by a value when Zircaloy 4 was set to 1.
【0034】これらの試験結果を表3に示す。Table 3 shows the test results.
【0035】[0035]
【表3】 表3から明らかなように、本発明例の試験番号1〜9
は、腐食増量表が全て0.6以下で、水素吸収率も全て
0.7以下と低く、極めて良好な特性が得られている。[Table 3] As is clear from Table 3, Test Nos. 1 to 9 of the present invention examples
In Table 1, all of the corrosion increase tables are 0.6 or less, and the hydrogen absorption rates are all as low as 0.7 or less, and extremely good characteristics are obtained.
【0036】一方、比較例の試験番号10〜17は、化
学組成が本発明で規定する範囲から外れている合金であ
るが、いずれも耐食性が不芳で、試験番号16以外は水
素吸収率が高かった。On the other hand, Test Nos. 10 to 17 of the comparative examples are alloys whose chemical compositions are out of the range specified in the present invention, but all have poor corrosion resistance. it was high.
【0037】[0037]
【発明の効果】本発明によれば、耐食性に優れているば
かりでなく、水素吸収量が少ないジルコニウム合金が得
られ、原子炉における燃焼度増加に要求される炉内滞在
期間の延長や過酷な照射環境にも耐え、燃料被覆管や核
燃料構造部材として優れた効果を発揮する。According to the present invention, a zirconium alloy having not only excellent corrosion resistance but also a small amount of hydrogen absorption can be obtained. It withstands irradiation environment and exhibits excellent effects as a fuel cladding tube and a nuclear fuel structural member.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 640 C22F 1/00 641C 641 683 683 685Z 685 686B 686 686A 691B 691 691C G21C 3/06 N ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 640 C22F 1/00 641C 641 683 683 685Z 685 686B 686 686A 691B 691 691C G21C 3/06 N
Claims (2)
e:0.15〜0.4%、Cr:0.12%以下、N
i:0.001〜0.1%、Nb:0.05〜0.5
%、Si:0.008〜0.018%、N:0.005
%以下を含有し、残部がZrおよび不純物からなること
を特徴とする耐食性に優れた水素吸収の少ないジルコニ
ウム合金。(1) Sn: 0.3 to 0.9% by mass%, F:
e: 0.15 to 0.4%, Cr: 0.12% or less, N
i: 0.001 to 0.1%, Nb: 0.05 to 0.5
%, Si: 0.008 to 0.018%, N: 0.005
% Of zirconium alloy having excellent corrosion resistance and low hydrogen absorption, the balance being Zr and impurities.
ニウム合金を溶体化処理材した後、熱間加工し、必要に
より焼鈍を施して冷間加工と500℃〜750℃の温度
範囲での焼鈍とを1回以上おこない、最終の冷間加工後
の最終焼鈍を400℃〜600℃の温度範囲でおこなう
方法であって、溶体化処理後の熱間加工前の加熱時およ
び焼鈍時における被加工材の総入熱を、下記式により求
めた入熱パラメータAiの総和が3×10-21〜2×1
0-17となるようにすることを特徴とするジルコニウム
合金の製造方法。 Ai=ti×exp{−40000/Ti} ここで、ti:i番目の熱間加工前の加熱時や焼鈍時に
おける加熱時間(h) Ti:i番目の熱間加工前の加熱時や焼鈍時における加
熱温度(K) とする。2. A solution treatment material of the zirconium alloy having the chemical composition according to claim 1, followed by hot working, annealing if necessary, and cold working at a temperature range of 500 ° C. to 750 ° C. Annealing is performed at least once, and final annealing after final cold working is performed in a temperature range of 400 ° C. to 600 ° C., in which heating and annealing before hot working after solution treatment are performed. The sum of the heat input parameters Ai obtained by the following equation is 3 × 10 −21 to 2 × 1.
A method for producing a zirconium alloy, wherein the zirconium alloy becomes 0-17 . Ai = ti × exp {−40000 / Ti} where ti: heating time before heating or annealing before i-th hot working (h) Ti: heating time before annealing and before i-th hot working At the heating temperature (K).
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000025599A JP2001220632A (en) | 2000-02-02 | 2000-02-02 | Zirconium alloy with excellent corrosion resistance and low hydrogen absorption and method for producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000025599A JP2001220632A (en) | 2000-02-02 | 2000-02-02 | Zirconium alloy with excellent corrosion resistance and low hydrogen absorption and method for producing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001220632A true JP2001220632A (en) | 2001-08-14 |
Family
ID=18551435
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000025599A Pending JP2001220632A (en) | 2000-02-02 | 2000-02-02 | Zirconium alloy with excellent corrosion resistance and low hydrogen absorption and method for producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001220632A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3512402B2 (en) | 2001-11-02 | 2004-03-29 | コリア アトミック エナジー リサーチ インスティテュート | Method for producing niobium-containing zirconium alloy nuclear fuel cladding with excellent corrosion resistance |
| CN104919068A (en) * | 2013-01-11 | 2015-09-16 | 阿海珐核能公司 | Treatment process for a zirconium alloy, zirconium alloy resulting from this process and parts of nuclear reactors made of this alloy |
-
2000
- 2000-02-02 JP JP2000025599A patent/JP2001220632A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3512402B2 (en) | 2001-11-02 | 2004-03-29 | コリア アトミック エナジー リサーチ インスティテュート | Method for producing niobium-containing zirconium alloy nuclear fuel cladding with excellent corrosion resistance |
| CN104919068A (en) * | 2013-01-11 | 2015-09-16 | 阿海珐核能公司 | Treatment process for a zirconium alloy, zirconium alloy resulting from this process and parts of nuclear reactors made of this alloy |
| US10119181B2 (en) | 2013-01-11 | 2018-11-06 | Areva Np | Treatment process for a zirconium alloy, zirconium alloy resulting from this process and parts of nuclear reactors made of this alloy |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101195880B (en) | Zirconium alloy composition with excellent corrosion resistance for nuclear applications and method for preparing same | |
| JP2914457B2 (en) | ZIRLO type material | |
| EP0227989B1 (en) | Zirconium-based alloy with high corrosion resistance | |
| JP4022257B2 (en) | Tube for nuclear fuel assembly and method for manufacturing the same | |
| JP3407876B2 (en) | Niobium-containing zirconium alloy suitable for nuclear fuel cladding | |
| CN102605213B (en) | Germanium-containing Zr-Sn-Nb alloy for fuel cladding of nuclear power station | |
| JP6734867B2 (en) | Zirconium alloy for nuclear fuel cladding having excellent corrosion resistance and method for producing the same | |
| CN101240389A (en) | High iron content zirconium alloy composition with excellent corrosion resistance and method for preparing the same | |
| TW200834603A (en) | A zirconium alloy that withstands shadow corrosion for a component of a boiling water reactor fuel assembly, a component made of the alloy, a fuel assembly, and the use thereof | |
| JP6535752B2 (en) | Manufacturing method of zirconium component for nuclear fuel applying multistage hot rolling | |
| KR101604105B1 (en) | Zirconium alloy having excellent corrosion resistance and creep resistance and method of manufacturing for it | |
| JP3235611B2 (en) | Zirconium alloy excellent in corrosion resistance and low in hydrogen absorption and its production method | |
| JP2001220632A (en) | Zirconium alloy with excellent corrosion resistance and low hydrogen absorption and method for producing the same | |
| JPS6358223B2 (en) | ||
| JP3483804B2 (en) | Manufacturing method of corrosion resistant zirconium based alloy tube | |
| JPH0867954A (en) | Method for producing high corrosion resistant zirconium alloy | |
| JP2600057B2 (en) | Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same | |
| JP2003277859A (en) | Zirconium alloy having excellent corrosion resistance and production method therefor | |
| JP3336561B2 (en) | High corrosion resistant zirconium alloy | |
| JP3389018B2 (en) | Zirconium alloy with excellent hydrogen absorption resistance | |
| JPS6126738A (en) | Zirconium alloy | |
| JP2000212663A (en) | High corrosion resistant zirconium alloy | |
| JPH09111379A (en) | High corrosion resistance zirconium alloy | |
| JP2001221878A (en) | Zirconium-based alloy, its manufacturing method and fuel assembly for light water reactor using it | |
| JPH1073690A (en) | Cladding tubes, spacers and channel boxes for highly corrosion resistant nuclear fuels, their fuel assemblies, and their manufacturing methods |