[go: up one dir, main page]

JP2001344815A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JP2001344815A
JP2001344815A JP2000166501A JP2000166501A JP2001344815A JP 2001344815 A JP2001344815 A JP 2001344815A JP 2000166501 A JP2000166501 A JP 2000166501A JP 2000166501 A JP2000166501 A JP 2000166501A JP 2001344815 A JP2001344815 A JP 2001344815A
Authority
JP
Japan
Prior art keywords
recording medium
optical recording
hub
curvature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000166501A
Other languages
Japanese (ja)
Inventor
Hideki Ono
秀樹 大野
Kensho Oshima
憲昭 大島
Keiichiro Nishizawa
恵一郎 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2000166501A priority Critical patent/JP2001344815A/en
Priority to US09/796,792 priority patent/US6584067B2/en
Publication of JP2001344815A publication Critical patent/JP2001344815A/en
Priority to US10/358,255 priority patent/US6880166B2/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/24003Shapes of record carriers other than disc shape

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

(57)【要約】 【課題】 光記録媒体上を浮上するヘッドと媒体表
面との距離を記録再生領域で一定に保つことにより、均
一な記録再生信号を得、ヘッドのクラッシュが起きにく
い信頼性の高い光記録媒体を提供する。 【解決手段】 円盤状基板の表裏両面に、それぞれラン
ド及びグルーブを保有する単板構造に、記録層、誘電体
層を有し、片面にのみハブを設け、浮上ヘッドを用いて
記録再生を行う近接場光記録媒体であって、ハブ付け面
を下側としハブにより媒体を保持したとき、記録再生領
域の最内周〜最外周における径方向距離Lのうち、最内
周からL/3までの領域において径方向の曲率中心が、
ハブ付けした面と逆の面にある。
PROBLEM TO BE SOLVED: To obtain a uniform recording / reproducing signal by keeping a distance between a head flying above an optical recording medium and a surface of the medium constant in a recording / reproducing area, and to reduce a head crash. To provide an optical recording medium with high performance. SOLUTION: A disk-shaped substrate has a recording layer and a dielectric layer in a single-plate structure having lands and grooves on both sides thereof, and a hub is provided on only one side, and recording and reproduction are performed using a floating head. In the near-field optical recording medium, when the medium is held by the hub with the hub mounting surface facing downward, the radial distance L from the innermost circumference to the outermost circumference of the recording / reproducing area is L / 3. The radial center of curvature in the region
On the side opposite to the side with the hub.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は書き換えが可能な光
記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rewritable optical recording medium.

【0002】[0002]

【従来の技術】光磁気記録媒体は、大容量・高密度記録
が可能な可搬型記録媒体であり、近年のマルチメディア
化に伴なうコンピュータの大容量ファイルや動画を記録
する書き換え型メディアとして需要が急増しつつある。
2. Description of the Related Art Magneto-optical recording media are portable recording media capable of large-capacity, high-density recording, and have been used as rewritable media for recording large-capacity files and moving images of computers accompanying the recent increase in multimedia. Demand is increasing rapidly.

【0003】光磁気記録媒体は、一般にプラスチック等
の透明な円盤状の基板に記録層を含む多層膜を形成し、
磁界を加えながらレーザーを照射して記録、消去を行
い、レーザーの反射光で再生する。記録方式は、従来、
固定磁界を加えて消去した後、反対方向の固定磁界を加
えて記録するいわゆる光変調記録が中心であったが、近
年、レーザーを照射しながら、磁界を記録パターンに従
って変調させる磁界変調方式が、1回転で記録(ダイレ
クトオーバーライト)可能でしかも高記録密度になって
も正確に記録できる方式として注目を浴びている。
A magneto-optical recording medium is generally formed by forming a multilayer film including a recording layer on a transparent disk-shaped substrate such as plastic.
Recording and erasing are performed by irradiating a laser while applying a magnetic field, and reproduction is performed by reflected light of the laser. Conventionally, the recording method is
So-called optical modulation recording, in which recording is performed by applying a fixed magnetic field in the opposite direction after erasing by applying a fixed magnetic field, has been the main focus.In recent years, a magnetic field modulation method that modulates a magnetic field according to a recording pattern while irradiating a laser, Attention has been paid to a method capable of performing recording (direct overwrite) in one rotation and accurately recording even at a high recording density.

【0004】記録再生のためのレーザーは、従来、基板
を通して記録膜に照射されていた。最近、光学ヘッドを
記録膜に近付けて記録再生する、いわゆる、近接場光記
録が高密度化の手段として注目されている(Appl.
Phys.Lett.68,p.141(199
6))。この記録方法ではSolid Immersi
onLens(以下SILと略す)ヘッドを使用し、レ
ーザービームスポットサイズを縮小することにより、光
源のレーザー波長(λ)によって決まる従来の記録限界
(〜λ/2NA:NAは対物レンズの開口数)より短い
マークでの再生が可能であり、超高記録密度の記録再生
が実現できる。
[0004] A laser for recording / reproducing has hitherto been applied to a recording film through a substrate. Recently, so-called near-field optical recording, in which an optical head is brought close to a recording film to perform recording and reproduction, has attracted attention as a means for increasing the density (Appl.
Phys. Lett. 68, p. 141 (199
6)). In this recording method, Solid Immersi
By using an onLens (hereinafter abbreviated as SIL) head and reducing the laser beam spot size, the conventional recording limit (〜λ / 2NA: NA is the numerical aperture of the objective lens) determined by the laser wavelength (λ) of the light source is obtained. Reproduction with a short mark is possible, and recording and reproduction with an ultra-high recording density can be realized.

【0005】この近接場光記録では、光学ヘッドを光記
録媒体に近付ける必要があるために(〜100nm)、
従来の光磁気記録媒体のように基板を通して記録膜にレ
ーザービームを照射するのではなく、基板を通さずに直
接記録膜にレーザービームを照射する方法を用いる。
[0005] In this near-field optical recording, it is necessary to bring the optical head close to the optical recording medium (up to 100 nm).
Instead of irradiating the recording film with the laser beam through the substrate as in the conventional magneto-optical recording medium, a method of directly irradiating the recording film with the laser beam without passing through the substrate is used.

【0006】すなわち、記録膜の構成が従来の光記録媒
体では、基板/第1保護層/記録層/第2保護層/反射
層としているのが一般的であるのに対して、近接場光記
録では、基板/反射層/第1保護層/記録層/第2保護
層という逆構成の膜構造として膜表面側からレーザービ
ームを照射し、記録再生を行なう(表面読み出し型記
録)。
That is, in a conventional optical recording medium having a recording film structure of a substrate / first protective layer / recording layer / second protective layer / reflective layer, a near-field light is generally used. In the recording, recording / reproducing is performed by irradiating a laser beam from the film surface side as a film structure of the reverse structure of the substrate / reflective layer / first protective layer / recording layer / second protective layer (surface reading type recording).

【0007】この際、記録膜とSILヘッドを近付ける
ために浮上式のスライダーヘッドを利用することが多
い。また、記録に関しては、レーザービームを照射して
記録層をキュリー温度以上に上げながら、スライダーヘ
ッドに形成された薄膜コイルなどにより磁界を変調させ
ながら記録する磁界変調記録が近接場光磁気記録には適
していると言われている。
At this time, a floating slider head is often used to bring the recording film and the SIL head closer to each other. As for recording, near-field magneto-optical recording is a magnetic field modulation recording in which recording is performed by irradiating a laser beam to raise the recording layer above the Curie temperature and modulating the magnetic field with a thin-film coil formed on the slider head. It is said to be suitable.

【0008】この近接場光記録再生方式においては、浮
上式光学ヘッドと光記録媒体との距離が非常に近くなっ
ており、ヘッドと光記録媒体表面の距離が僅かに変動し
ても、記録再生信号強度がばらつき記録再生に支障をき
たしたり、さらにはヘッドと記録媒体とが接触すること
により、ヘッドおよび光記録媒体が破損することも考え
られる。
In this near-field optical recording / reproducing method, the distance between the floating optical head and the optical recording medium is very short, and even if the distance between the head and the surface of the optical recording medium fluctuates slightly, the recording / reproducing is performed. It is also conceivable that the signal strength varies and hinders recording / reproducing, or the head and the optical recording medium are damaged due to the contact between the head and the recording medium.

【0009】近接場光記録媒体には、レーザービームの
トラッキング用としてランドおよびグルーブ、フォーマ
ット情報を有するヘッダーを保有している。このため、
近接場光記録媒体の基板としては、ランドおよびグルー
ブ、ヘッダーを形成したスタンパを使用して、熱可塑性
樹脂を射出成形により得ることが一般的である。また、
光記録媒体をドライブ内に設置する際にスピンドルに保
持するために、光記録媒体の片面のほぼ中央にハブが設
けてある。
The near-field optical recording medium has a land, a groove, and a header having format information for tracking a laser beam. For this reason,
As a substrate of the near-field optical recording medium, it is general to obtain a thermoplastic resin by injection molding using a stamper on which lands, grooves, and headers are formed. Also,
In order to hold the optical recording medium on the spindle when the optical recording medium is installed in the drive, a hub is provided at substantially the center of one side of the optical recording medium.

【0010】この光記録媒体上を浮上するヘッドと光記
録媒体表面との距離を一定に保つには、光記録媒体のた
わみ、反り等のいわゆる機械特性を厳密に制御すること
が重要である。しかしながら、熱可塑性樹脂からなる基
板は金属またはガラスからなる基板よりも機械強度が低
いためたわみ易く、またハブが取り付けられることによ
る、特にハブ近傍の内側で光記録媒体の歪みが生じ易
い。従来の熱可塑性樹脂を射出成形してなる基板を用い
た近接場光記録媒体は、記録再生領域の全域においてヘ
ッドと光記録媒体表面の距離を一定に保つことが難し
く、均一な記録再生信号を得ることは困難であった。
In order to keep the distance between the head flying above the optical recording medium and the surface of the optical recording medium constant, it is important to strictly control so-called mechanical characteristics such as deflection and warpage of the optical recording medium. However, a substrate made of a thermoplastic resin has a lower mechanical strength than a substrate made of metal or glass, and thus is easily bent, and the optical recording medium is easily distorted due to the attachment of the hub, especially inside the vicinity of the hub. In conventional near-field optical recording media using a substrate formed by injection molding a thermoplastic resin, it is difficult to keep the distance between the head and the surface of the optical recording medium constant over the entire recording / reproducing area, and a uniform recording / reproducing signal is generated. It was difficult to get.

【0011】[0011]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、記録媒体上を浮上するヘッドと光記録媒体
表面の距離を記録再生領域の全域で一定に保つことによ
り、均一な記録再生信号を得られ、ヘッドとのクラッシ
ュが起きにくい信頼性の高い光記録媒体を提供すること
である。
The problem to be solved by the present invention is to maintain uniform distance between the head floating above the recording medium and the surface of the optical recording medium over the entire recording and reproducing area, thereby achieving uniform recording and reproducing. An object of the present invention is to provide a highly reliable optical recording medium which can obtain a signal and does not easily crash with the head.

【0012】[0012]

【課題を解決するための手段】本発明者らは上述のよう
な現状に鑑み、鋭意検討を重ねた結果、本発明を完成す
るに至った。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned current situation, and as a result, completed the present invention.

【0013】すなわち、本発明は、熱可塑性樹脂を射出
成形してなる円盤状単板基板の表裏両面に、それぞれ略
同心円状あるいは略螺旋状の少なくともランドおよびグ
ルーブを設け、その上に少なくとも記録層、誘電体層を
有し、片面にのみハブを設け、浮上式光学ヘッドを用い
てレーザー光による記録再生が可能な近接場光記録媒体
であって、ハブ付けした面を下側にしてハブにより光記
録媒体を保持したとき、記録再生領域の最内周から最外
周における径方向距離(L)のうち、最内周からL/3
までの領域において径方向の曲率中心が、ハブ付けした
面と逆の面にあることを特徴とする光記録媒体に関す
る。
That is, the present invention provides a disk-shaped single-plate substrate formed by injection-molding a thermoplastic resin, on both front and back surfaces of which at least substantially concentric or substantially spiral lands and grooves are provided, and at least a recording layer is formed thereon. , A near-field optical recording medium having a dielectric layer, provided with a hub only on one side, and capable of recording and reproducing by laser light using a floating optical head, with the hub attached side down and the hub When the optical recording medium is held, the radial distance (L) from the innermost circumference to the outermost circumference of the recording / reproducing area is L / 3 from the innermost circumference.
The optical recording medium is characterized in that the center of curvature in the radial direction in the region up to is located on the surface opposite to the surface to which the hub is attached.

【0014】以下本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0015】図1は、本発明の光記録媒体の一例を示す
断面図である。表裏両面にランドおよびグルーブ、ヘッ
ダーが形成された基板11の表裏両面上に反射層12、
記録層13、誘電体層14をこの順にて積層してある。
さらに、ドライブのスピンドルに設置する面にはハブ1
5が基板の中央に取り付けてある。
FIG. 1 is a sectional view showing an example of the optical recording medium of the present invention. A reflection layer 12 is provided on both sides of a substrate 11 having a land, a groove, and a header formed on both sides.
The recording layer 13 and the dielectric layer 14 are laminated in this order.
Furthermore, a hub 1 is provided on the surface to be installed on the drive spindle.
5 is attached to the center of the substrate.

【0016】基板11としては、ランドおよびグルー
ブ、ヘッダーが形成されたスタンパを金型の両面に配
し、この金型内に熱可塑性樹脂を射出成形して得られた
ものである。基板材料としてポリカーボネート、アモル
ファスポリオレフィン、ポリメチルメタクリレート、ポ
リフェニレンサルファイド、ポリアリレート、ポリエー
テルケトン、ポリエーテルエーテルケトンおよびその誘
導体を射出成形してなる基板を用いることが好ましい。
これらの基板材料を用いることにより、本発明にある光
記録媒体の曲率中心位置、光記録媒体の高さ、曲率半径
値を射出成形条件により制御することが可能となる。
The substrate 11 is obtained by arranging stampers on which lands, grooves, and headers are formed on both sides of a mold, and injecting a thermoplastic resin into the mold. As the substrate material, it is preferable to use a substrate obtained by injection molding polycarbonate, amorphous polyolefin, polymethyl methacrylate, polyphenylene sulfide, polyarylate, polyether ketone, polyether ether ketone and derivatives thereof.
By using these substrate materials, the center of curvature of the optical recording medium, the height of the optical recording medium, and the radius of curvature of the optical recording medium according to the present invention can be controlled by injection molding conditions.

【0017】光記録媒体に用いる基板の直径は、90〜
140mmであることが好ましい。また、光記録媒体に
用いる基板の厚みは1〜2.5mmであることが好まし
い。この範囲の基板直径、厚みであれば、本発明にある
記録媒体の曲率中心位置、記録媒体の高さ、曲率半径値
を射出成形条件により制御することが可能となる。
The diameter of the substrate used for the optical recording medium is 90 to 90.
It is preferably 140 mm. Further, the thickness of the substrate used for the optical recording medium is preferably 1 to 2.5 mm. With the substrate diameter and the thickness in this range, the center of curvature of the recording medium, the height of the recording medium, and the radius of curvature of the recording medium according to the present invention can be controlled by injection molding conditions.

【0018】反射層12としては、反射率の高い金属で
あれば特に限定されず、例えば、Al、Ag、Au、C
u等の単体金属あるいはそれらを各々主成分とする合金
等を用いることができる。
The reflective layer 12 is not particularly limited as long as it is a metal having a high reflectance. For example, Al, Ag, Au, C
A single metal such as u or an alloy containing these as main components can be used.

【0019】また、記録層13としては、光記録層とし
て用いることができる材料であれば特に限定されず、例
えば、TbFeCo、DyFeCo、GdTbFeC
o、NdDyFeCo等の光磁気記録膜、GeSbT
e、AgInSbTe等の相変化記録膜を用いることが
でき、また、記録層は単層であってもよいし、機能や組
成の異なる膜を積層した積層膜であってもよい。
The recording layer 13 is not particularly limited as long as it can be used as an optical recording layer. For example, TbFeCo, DyFeCo, GdTbFeC
o, a magneto-optical recording film such as NdDyFeCo, GeSbT
e, a phase change recording film such as AgInSbTe can be used, and the recording layer may be a single layer or a laminated film in which films having different functions and compositions are laminated.

【0020】誘電体層14は、SiN、AlN、SiA
lON、Ta25などの透明な誘電体で構成される。ま
た、誘電体層の上にカーボンに水素や窒素を添加させた
ダイヤモンドライクカーボン(DLC)等の固体潤滑層
を積層してもよく、さらにこの上に液体潤滑層を塗布し
てもよい。液体潤滑層としては、シリコーンオイル、あ
るいはフルオロポリエーテル系のフッ素オイル等潤滑性
を示すものであれば使用できるが、特にパーフルオロポ
リエーテル及びパーフルオロポリエーテル誘導体が望ま
しい。
The dielectric layer 14 is made of SiN, AlN, SiA
It is composed of a transparent dielectric such as 1ON or Ta 2 O 5 . Further, a solid lubricating layer such as diamond-like carbon (DLC) in which hydrogen or nitrogen is added to carbon may be laminated on the dielectric layer, and a liquid lubricating layer may be further applied thereon. As the liquid lubricating layer, any material having lubricity such as silicone oil or fluoropolyether-based fluorine oil can be used, but perfluoropolyether and perfluoropolyether derivatives are particularly desirable.

【0021】パーフルオロポリエーテル誘導体として
は、アルコール変性パーフルオロポリエーテル、エステ
ル変性パーフルオロポリエーテル、イソシアネート変性
パーフルオロポリエーテル、カルボキシル基変性パーフ
ルオロポリエーテル、ピペロニル変性パーフルオロポリ
エーテル等が挙げられる。
Examples of perfluoropolyether derivatives include alcohol-modified perfluoropolyether, ester-modified perfluoropolyether, isocyanate-modified perfluoropolyether, carboxyl group-modified perfluoropolyether, and piperonyl-modified perfluoropolyether. .

【0022】本発明における潤滑層の膜厚としては、
0.3〜4.0nmが好ましい。0.3nm未満では潤
滑層の保護性能が足りなくなって薄膜に傷がはいりやす
くなり、4.0nmを越えると、スライダーヘッドがデ
ィスクに貼り付いてクラッシュしやすくなる場合があ
る。
The thickness of the lubricating layer in the present invention is
0.3-4.0 nm is preferred. When the thickness is less than 0.3 nm, the protective performance of the lubricating layer is insufficient, and the thin film is easily damaged. When the thickness exceeds 4.0 nm, the slider head may stick to the disk and cause a crash.

【0023】光記録媒体に取り付けるハブ15として
は、メタルハブ、メタルインサートハブ等のドライブ内
のスピンドルに固定できるものであれば特に限定されな
い。また、光記録媒体とハブの接着は、接着剤、超音波
溶着等の方法を用いることができ、十分な接着強度が得
られれば特に限定されない。
The hub 15 attached to the optical recording medium is not particularly limited as long as it can be fixed to a spindle in a drive such as a metal hub or a metal insert hub. In addition, the method of bonding the optical recording medium and the hub can be performed by a method such as an adhesive or ultrasonic welding, and is not particularly limited as long as a sufficient bonding strength is obtained.

【0024】本発明の光記録媒体は、ハブ付けした面を
下側にしてハブにより光記録媒体を保持したとき、光記
録再生領域の最内周から最外周における径方向距離
(L)のうち、最内周からL/3までの領域において径
方向の曲率中心が、ハブ付けした面と逆の面にあること
を特徴としている。
In the optical recording medium of the present invention, when the optical recording medium is held by the hub with the surface on which the hub is attached facing down, the radial distance (L) from the innermost circumference to the outermost circumference of the optical recording / reproducing area is determined. The center of curvature in the radial direction in the region from the innermost circumference to L / 3 is located on the surface opposite to the surface to which the hub is attached.

【0025】本発明の光記録媒体の断面形状の一例を模
式的に表すと、図2のようになるが、本発明はこの図の
みに限定されるものではない。
FIG. 2 schematically shows an example of the cross-sectional shape of the optical recording medium of the present invention, but the present invention is not limited to only this figure.

【0026】光記録媒体に接着剤を用いてハブを取り付
けた場合、接着剤の体積収縮により、また、超音波溶着
ではその振動エネルギーにより、接着部付近に局所的な
応力が生じる。この応力により光記録媒体の内側部分に
歪みが生じ、結果的に光記録媒体表面に凹凸が発生し易
くなり、この凹凸がヘッドの浮上特性に影響を与える。
つまり、ヘッドは光記録媒体表面からの距離を一定に保
つように浮上しているが、光記録媒体表面の凹部ではヘ
ッドが下がり、凸部ではヘッドが上がり、結果的にヘッ
ドの浮上高さが変動してしまう。この変動が大きくなる
と光記録再生信号強度がばらついたり、さらにはヘッド
と光記録媒体が接触し、クラッシュを発生させる。
When a hub is attached to an optical recording medium using an adhesive, local stress is generated in the vicinity of the bonded portion due to volume shrinkage of the adhesive and, in ultrasonic welding, due to vibration energy. This stress causes distortion inside the optical recording medium, and as a result, irregularities easily occur on the surface of the optical recording medium, and these irregularities affect the flying characteristics of the head.
In other words, the head flies so as to keep the distance from the surface of the optical recording medium constant, but the head lowers in a concave portion on the surface of the optical recording medium and rises in a convex portion, and as a result, the flying height of the head decreases. Will fluctuate. When this fluctuation becomes large, the intensity of the optical recording / reproducing signal varies, and furthermore, the head and the optical recording medium come into contact, causing a crash.

【0027】上述のように、光記録媒体の曲率中心をハ
ブの取付面と反対面にすることで、ハブの接着時に生じ
る応力に対して光記録媒体がその形状を保持する力の方
が勝ることとなり、光記録媒体表面の平面性に影響を与
えなくなる。光記録媒体が安定的にその形状を保持でき
るように、曲率中心は記録再生領域全域に渡ってハブ付
けした面とは逆の面にあることがさらに好ましい。
As described above, by making the center of curvature of the optical recording medium opposite to the mounting surface of the hub, the force of the optical recording medium retaining its shape is superior to the stress generated when the hub is bonded. As a result, the flatness of the optical recording medium surface is not affected. It is more preferable that the center of curvature is located on the surface opposite to the surface provided with the hub over the entire recording / reproducing area so that the optical recording medium can maintain its shape stably.

【0028】光記録媒体表面の曲率中心の方向を制御す
る方法としては、射出成形時に用いる金型の固定側と可
動側の金型温度に差を付けることにより、金型から基板
を取り出す際に吹き付けるエアーの圧力を固定側と可動
側で差を付けることにより、また基板を金型から離型さ
せる時の突き出しピン作動条件等の射出成形条件により
制御可能である。
As a method of controlling the direction of the center of curvature of the surface of the optical recording medium, the temperature of the fixed side and the movable side of the mold used during injection molding is made different so that the substrate can be taken out from the mold. The pressure of the blown air can be controlled by making a difference between the fixed side and the movable side, and by injection molding conditions such as operating conditions of a protruding pin when the substrate is released from the mold.

【0029】また、射出成形された基板を突き出すフロ
ーティングパンチおよび突き出しピンを有する成形用金
型を用いて成形された基板に対しては、フローティング
パンチおよび突き出しピンが存在した媒体面側にハブを
取り付けることが好ましい。フローティングパンチおよ
び突き出しピンは、射出成形した基板を金型から取り出
す際に作動するが、この段階での基板温度はまだ高いた
め、作動した際に基板中心部のたわみが大きくなり易
い。
Further, for a substrate formed by using a molding die having a floating punch and an ejection pin for projecting the injection-molded substrate, a hub is attached to the medium surface side where the floating punch and the ejection pin exist. Is preferred. The floating punch and the protruding pin operate when the injection-molded substrate is removed from the mold. However, since the substrate temperature at this stage is still high, the deflection of the central portion of the substrate tends to increase when the substrate is operated.

【0030】本発明の光記録媒体は、上記の構成を維持
しながら、更に以下に示す(1)〜(3)のそれぞれの
構成を個々に又は複数有することにより、光記録媒体上
を浮上するヘッドと光記録媒体表面との距離を光記録再
生領域の全域に渡ってより一定に保つことが可能とな
り、従って、均一な記録再生信号が得られ、ヘッドのク
ラッシュが起きにくくなるので好ましい。
The optical recording medium of the present invention floats on the optical recording medium by maintaining each of the following constitutions (1) to (3) individually or plurally while maintaining the above constitution. This is preferable because the distance between the head and the surface of the optical recording medium can be kept more constant over the entire optical recording / reproducing area, so that a uniform recording / reproducing signal can be obtained and the head is less likely to crash.

【0031】具体的な構成としては、次の通りである。The specific configuration is as follows.

【0032】(1) ハブ付けした面を下側にしてハブ
により光記録媒体を保持したとき、記録再生領域の最内
周から最外周における径方向距離(L)のうち、最内周
からL/3までの領域において、記録再生領域の最内周
を基点とした場合、それより外側の領域を当該基点より
も5μm〜100μm低くする。
(1) When the optical recording medium is held by the hub with the surface on which the hub is attached facing downward, of the radial distance (L) from the innermost circumference to the outermost circumference of the recording / reproducing area, L In the area up to / 3, when the innermost circumference of the recording / reproducing area is set as the base point, the area outside the base point is lower by 5 μm to 100 μm than the base point.

【0033】光記録媒体が半径方向にたわみを持った場
合、光記録媒体が記録再生時に回転する際、その遠心力
でたわみが矯正される方向に変化する。この時に、記録
再生領域の最内側よりも外側の方が低ければ、反ハブ取
付面側は光記録媒体表面が収縮する方向に、またハブ取
付面は拡張する方向に応力が掛かるため、ハブの接着に
より生じた光記録媒体表面の内側部分の応力は緩和され
る方向に働き、平面性が改善されるため、ヘッドの浮上
特性が改善される。
When the optical recording medium has a deflection in the radial direction, when the optical recording medium rotates during recording and reproduction, the direction changes in a direction in which the deflection is corrected by the centrifugal force. At this time, if the outer side of the recording / reproducing area is lower than the innermost side, stress is applied in the direction in which the optical recording medium surface contracts in the direction opposite to the hub mounting surface and in the direction in which the hub mounting surface expands. The stress on the inner portion of the surface of the optical recording medium caused by the adhesion acts in a direction in which it is alleviated, and the flatness is improved, so that the flying characteristics of the head are improved.

【0034】逆に、光記録再生領域の最内側よりも外側
の方が高ければ、反ハブ取付面側は光記録媒体表面が拡
張する方向に、またハブ取付面は収縮する方向に応力が
掛かるため、ハブの接着により生じた光記録媒体表面の
内側部分の応力はより大きくなる方向に働き、表面の凹
凸が大きくなり、ヘッドの浮上特性は悪化してしまう。
Conversely, if the outer side of the optical recording / reproducing area is higher than the innermost side, stress is applied in the direction in which the surface of the optical recording medium expands on the side opposite to the hub mounting surface and in the direction in which the hub mounting surface contracts. Therefore, the stress on the inner portion of the surface of the optical recording medium caused by the adhesion of the hub acts in a direction in which the stress becomes larger, so that the unevenness on the surface increases, and the flying characteristics of the head deteriorate.

【0035】低くする範囲としては、5μm未満ではハ
ブの接着による応力を緩和するまでにはいたらず、ま
た、100μmを超えると光記録媒体が回転した時のた
わみの矯正量を超えてしまい、ヘッドの浮上が不安定と
なる。
As for the range to be reduced, if it is less than 5 μm, the stress due to the adhesion of the hub is not reduced, and if it exceeds 100 μm, the correction amount of the deflection when the optical recording medium rotates is exceeded, and Levitation becomes unstable.

【0036】また、ハブの接着による応力を効果的に緩
和するために、最内周からL/3を越える位置から最外
周までの領域においても、当該基点より5μm〜100
μm低くする、すなわち、光記録再生領域全域に渡っ
て、当該基点よりも5μm〜100μm低くすることが
更に好ましい。
In order to effectively relieve the stress caused by the adhesion of the hub, even in a region from the position exceeding L / 3 from the innermost periphery to the outermost periphery, 5 μm to 100 μm from the base point.
It is further preferable that the height be lower by 5 μm to 100 μm than the reference point over the entire optical recording / reproducing area.

【0037】光記録媒体表面の基点からの高さを低くす
る方法としては、射出成形時に用いる金型の固定側と可
動側の金型温度に差を付けることにより、また金型から
基板を取り出す際に吹き付けるエアーの圧力を固定側と
可動側で差を付けることにより、また基板を金型から離
型させる時の突き出しピン作動条件等の射出成形条件に
より制御可能である。
As a method for lowering the height from the base point of the surface of the optical recording medium, a difference is made between the temperatures of the fixed side and the movable side of the mold used during injection molding, and the substrate is taken out of the mold. In this case, it is possible to control the pressure of the air to be blown by making a difference between the fixed side and the movable side, and to control the injection molding conditions such as the operating condition of the protruding pin when the substrate is released from the mold.

【0038】(2) ハブ付けした面を下側にしてハブ
により光記録媒体を保持したとき、記録再生領域の最内
周から最外周における径方向距離(L)のうち、最内周
からL/3までの領域において、ヘッドのスライダー幅
と同等幅の光記録媒体表面の径方向に対する曲率半径を
10m以上とする。
(2) When the optical recording medium is held by the hub with the surface on which the hub is attached facing downward, the radial distance (L) from the innermost circumference to the outermost circumference of the recording / reproducing area is L In the region up to / 3, the radius of curvature in the radial direction of the surface of the optical recording medium having the same width as the slider width of the head is set to 10 m or more.

【0039】ハブの接着による応力が、光記録媒体表面
の内側領域付近に歪みをもたらした結果、その凹凸のた
めにヘッドの浮上特性に影響を与える。しかしながら、
ヘッドのスライダーのサイズに対して大きい範囲で生じ
た光記録媒体表面の凹凸に関しては、ヘッドが凹凸に対
して追従し易いため、浮上高さの変動に対する影響は小
さく、スライダーサイズに対して小さい範囲で生じた光
記録媒体表面の凹凸に関しては、浮上高さに与える影響
は小さい。
The stress caused by the adhesion of the hub causes distortion near the inner region of the surface of the optical recording medium. As a result, the unevenness affects the flying characteristics of the head. However,
Regarding the irregularities on the surface of the optical recording medium that occur in a large range with respect to the size of the slider of the head, since the head easily follows the irregularities, the influence on the fluctuation of the flying height is small, and the small range with respect to the slider size. The unevenness of the surface of the optical recording medium caused by the above has little effect on the flying height.

【0040】従って、ヘッドのスライダー幅と同等幅の
径方向に対する光記録媒体表面の曲率半径が10m以上
と大きければ、ヘッドの浮上高さが変動しても僅かであ
り、記録再生信号強度のばらつきは無視できる範囲であ
る。より好ましくは、記録再生領域全域に渡って曲率半
径が10m以上とする。
Therefore, if the radius of curvature of the surface of the optical recording medium in the radial direction equivalent to the width of the slider of the head is as large as 10 m or more, even if the flying height of the head fluctuates, the recording / reproducing signal intensity varies. Is within a negligible range. More preferably, the radius of curvature is 10 m or more over the entire recording / reproducing area.

【0041】曲率半径を大きくする方法としては、射出
成形時に用いる金型の固定側と可動側の金型温度に差を
付けることにより、また金型から基板を取り出す際に吹
き付けるエアーの圧力を固定側と可動側で差を付けるこ
とにより、また基板を金型から離型させる時の突き出し
ピン作動条件等の射出成形条件により制御可能である。
As a method of increasing the radius of curvature, the temperature of the fixed side and the movable side of the mold used during injection molding are set to be different from each other, and the pressure of the air blown when the substrate is taken out from the mold is fixed. It can be controlled by making a difference between the movable side and the movable side, and also by injection molding conditions such as operating conditions of a protruding pin when the substrate is released from the mold.

【0042】光記録媒体表面の曲率半径を測定する方法
としては、例えば、ハブ付けした面を下側にしてハブに
より光記録媒体を保持した状態で、光記録媒体の上面に
ついては触針式変位量計、光学式変位量計により、下面
については光学式変位量計を用いて高さ方向の変位量を
測定し、その変位量データからヘッドのスライダー幅ま
たは長さに応じた曲率半径を計算することで求められ
る。
As a method of measuring the radius of curvature of the surface of the optical recording medium, for example, a stylus-type displacement is applied to the upper surface of the optical recording medium while the optical recording medium is held by the hub with the surface to which the hub is attached facing downward. The height of the lower surface is measured using an optical displacement meter, and the radius of curvature according to the slider width or length of the head is calculated from the displacement data. It is required by doing.

【0043】(3) ハブ付けした面を下側にしてハブ
により光記録媒体を保持したとき、ヘッドのスライダー
長と同等長さの光記録媒体表面の周方向に対する曲率半
径を10m以上とする。径方向の曲率半径と同様に、周
方向の曲率半径が10m以上と大きければ、ヘッドの浮
上高さが変動しても僅かであり、記録再生信号強度のば
らつきは無視できる範囲となる。
(3) When the optical recording medium is held by the hub with the surface on which the hub is attached facing downward, the radius of curvature in the circumferential direction of the surface of the optical recording medium having the same length as the slider length of the head is 10 m or more. Similarly to the radius of curvature in the radial direction, if the radius of curvature in the circumferential direction is as large as 10 m or more, even if the flying height of the head fluctuates, it is slight, and the variation in the recording / reproducing signal intensity is within a negligible range.

【0044】なお、上記説明においては、本発明の光記
録媒体をハブ面を下にして保持した場合を説明した。こ
の光記録媒体をハブ面を上向きにした状態で、媒体中央
部の非記録再生領域を保持した場合、この記録媒体の上
面において、ヘッドのスライダー幅と同等幅の径方向に
対する曲率半径Rrは、1m≦Rr≦10mとなり、好
ましくは、この媒体上面においてヘッドのスライダー長
と同等長さの周方向に対する曲率半径Rtが、1m≦R
t≦10mとなる。そして、より好ましくは、記録媒体
の半径方向に対して、記録再生領域の最内周、最外周お
よびその中間点の3点からなる円弧の曲率中心が円弧の
下側に存在することとする。
In the above description, the case where the optical recording medium of the present invention is held with the hub surface facing down has been described. When the non-recording / reproducing area at the center of the optical recording medium is held with the hub surface facing upward, the radius of curvature Rr in the radial direction having the same width as the slider width of the head on the upper surface of the recording medium is: 1m ≦ Rr ≦ 10m, and preferably, the radius of curvature Rt in the circumferential direction of the same length as the slider length of the head is 1m ≦ Rr on the upper surface of the medium.
t ≦ 10 m. More preferably, in the radial direction of the recording medium, the center of curvature of the arc formed by the three points of the innermost circumference, the outermost circumference, and the intermediate point of the recording / reproducing area exists below the arc.

【0045】[0045]

【実施例】以下、本発明を実施例に基づき更に詳細に説
明するが、本発明はこれらの実施例のみに限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples.

【0046】実施例1 表裏両面にトラックピッチ0.43μmのスパイラル状
のランド/グルーブ部とヘッダー部を有する、光記録再
生領域(L)としては半径20〜60mmの範囲とな
る、ポリカーボネート製の直径130mmで厚み2mm
の円形基板を射出成形法にて、最大120kg/cm2
の型締め圧力で製造した。成形に使用した金型として
は、可動側と固定側の一対からなる構造の金型を用い、
可動側金型鏡面の温度を112℃、固定側金型鏡面の温
度を110℃に温度調節した。
Example 1 A polycarbonate-made diameter having a spiral land / groove portion and a header portion with a track pitch of 0.43 μm on both front and back surfaces and an optical recording / reproducing area (L) having a radius of 20 to 60 mm. 130mm and thickness 2mm
120kg / cm 2 by injection molding
It was manufactured at a clamping pressure of. As a mold used for molding, a mold having a structure including a pair of a movable side and a fixed side is used,
The temperature of the movable mold mirror surface was adjusted to 112 ° C., and the temperature of the fixed mold mirror surface was adjusted to 110 ° C.

【0047】この基板を使用して、スパッタリング法に
よって以下の方法で基板の両面に成膜を実施した。
Using this substrate, a film was formed on both surfaces of the substrate by a sputtering method in the following manner.

【0048】まず基板上に反射層として膜厚50nmの
Al−3wt%Cr合金膜をDCスパッタ法により形成
した。この上に膜厚5nmのSiNからなる第1保護層
をArとN2の混合雰囲気中でSiターゲットを使用し
た反応性RFスパッタ法で形成した。この上にTb
20(Fe90Co1080からなる膜厚20nmの光磁気記
録層をTbターゲットとFe90Co10ターゲットのDC
同時スパッタ法により形成した。
First, a 50 nm-thick Al-3 wt% Cr alloy film was formed as a reflective layer on a substrate by DC sputtering. A first protective layer made of SiN having a thickness of 5 nm was formed thereon by a reactive RF sputtering method using a Si target in a mixed atmosphere of Ar and N 2 . Tb on this
A 20 nm thick magneto-optical recording layer made of 20 (Fe 90 Co 10 ) 80 is formed of a Tb target and a Fe 90 Co 10 target DC.
It was formed by a simultaneous sputtering method.

【0049】さらにこの上に膜厚50nmのSiNから
なる第2保護層をArとN2の混合雰囲気中でSiター
ゲットを使用した反応性RFスパッタ法で形成した。こ
の上に633nmにおける屈折率が1.85で膜厚10
nmのDLC層をArとCH4の混合雰囲気中でCター
ゲットを使用した反応性RFスパッタ法で形成した。
Further, a second protective layer made of SiN having a thickness of 50 nm was formed thereon by a reactive RF sputtering method using a Si target in a mixed atmosphere of Ar and N 2 . On top of this, the refractive index at 633 nm is 1.85 and the film thickness is 10
A DLC layer having a thickness of nm was formed by a reactive RF sputtering method using a C target in a mixed atmosphere of Ar and CH 4 .

【0050】ついで、反対面にも一方の面と同様に反射
層、第1保護層、光磁気記録層、第2保護層およびDL
C層を形成した。DLC層を形成した後、パーフルオロ
ポリエーテル系溶媒(アウジモント社製、商品名「ガル
デンSV−70」)を使用したピペロニル変性パーフル
オロポリエーテル(アウジモント社製、商品名「フォン
ブリン:AM2001」)の0.01wt%溶液から光
記録媒体を引き上げることにより、潤滑層を1.5nm
に塗布した。潤滑層の膜厚はX線光電子分光法(XP
S)を使用し、C1Sピーク強度を観察することにより
算出した。
Then, on the other side, the reflection layer, the first protective layer, the magneto-optical recording layer, the second protective layer, and the
C layer was formed. After forming the DLC layer, piperonyl-modified perfluoropolyether (trade name "Fomblin: AM2001", manufactured by Audimont Co.) using a perfluoropolyether solvent (trade name "Galden SV-70", manufactured by Audimont) By pulling up the optical recording medium from a 0.01 wt% solution of
Was applied. The thickness of the lubricating layer is determined by X-ray photoelectron spectroscopy (XP
Calculated by observing the C1S peak intensity using S).

【0051】さらに、金型の可動側鏡面で成形した基板
面のほぼ中央にメタルインサートハブを紫外線硬化型接
着剤で取り付け、両面記録再生可能な光磁気記録媒体を
製造した。
Further, a metal insert hub was attached to the center of the substrate surface formed by the mirror surface on the movable side of the mold with an ultraviolet-curing adhesive to manufacture a magneto-optical recording medium capable of recording and reproducing on both sides.

【0052】実施例2 基板を射出成形により得る際に、金型から基板を取り出
す際に吹き付けるエアーの圧力を固定側と可動側で差を
付け、固定側の圧力を0.5kg/cm2高くした以外
は実施例1と同様の方法で両面記録再生可能な光磁気記
録媒体を製造し、その曲率半径を測定した。
Example 2 When a substrate is obtained by injection molding, the pressure of air blown when the substrate is taken out of the mold is set different between the fixed side and the movable side, and the pressure on the fixed side is increased by 0.5 kg / cm 2. A magneto-optical recording medium capable of double-sided recording / reproduction was manufactured in the same manner as in Example 1 except that the measurement was performed, and the radius of curvature was measured.

【0053】比較例1 基板を射出成形により得る際に、可動側金型鏡面と固定
側金型鏡面の温度に差を付け、固定側鏡面温度を2℃高
くした以外は実施例1と同様の方法で両面記録再生可能
な光磁気記録媒体を製造し、その曲率半径を測定した。
Comparative Example 1 The same procedure as in Example 1 was carried out except that when the substrate was obtained by injection molding, the temperature of the movable mold mirror surface and that of the fixed mold mirror surface were different, and the fixed mirror surface temperature was raised by 2 ° C. A magneto-optical recording medium capable of double-sided recording and reproduction was manufactured by the method, and the radius of curvature was measured.

【0054】比較例2 基板を射出成形により得る際に、金型から基板を取り出
す際に吹き付けるエアーの圧力を固定側と可動側で差を
付け、可動側の圧力を0.5kg/cm2高くした以外
は実施例1と同様の方法で両面記録再生可能な光磁気記
録媒体を製造し、その曲率半径を測定した。
Comparative Example 2 When a substrate was obtained by injection molding, the pressure of air blown when the substrate was taken out of the mold was made different between the fixed side and the movable side, and the pressure on the movable side was increased by 0.5 kg / cm 2. A magneto-optical recording medium capable of double-sided recording / reproduction was manufactured in the same manner as in Example 1 except that the measurement was performed, and the radius of curvature was measured.

【0055】実施例1〜2及び比較例1〜2の方法で製
造した近接場光磁気記録媒体について、以下の評価を行
った。
The following evaluations were performed on the near-field magneto-optical recording media manufactured by the methods of Examples 1 and 2 and Comparative Examples 1 and 2.

【0056】光記録媒体をハブ付けした面が下を向くよ
うにハブを保持し、上向き面と下向き面の高さ変位デー
タをRVAテスター(THOT TECHNOLOGY
社製)で測定した。測定範囲は光記録媒体の半径19〜
61mmとし、光記録媒体の周方向4ヶ所について行
い、その高さ変位データから半径20mmの高さを基点
とした時の半径20〜33mmおよび半径20〜60m
mの高さ変位(最大値)を計算した。
The hub is held so that the surface on which the optical recording medium is attached faces downward, and the height displacement data of the upward surface and the downward surface is transferred to an RVA tester (THOT TECHNOLOGY).
Manufactured by the company). The measurement range is from the radius 19 of the optical recording medium.
The distance is set to 61 mm, and the measurement is performed at four locations in the circumferential direction of the optical recording medium. Based on the height displacement data, the radius is 20 to 33 mm and the radius is 20 to 60 m when the height of the radius is 20 mm as a base point.
m height displacement (maximum) was calculated.

【0057】また、浮上ヘッドのスライダー幅に相当す
る2mm間の曲率半径を半径20〜60mmの範囲で順
次計算することにより得た。と同時に半径20〜33m
mおよび半径20〜60mmの曲率中心を求めた。
The radius of curvature between 2 mm corresponding to the slider width of the flying head was obtained by sequentially calculating the radius of curvature within the range of 20 to 60 mm. At the same time, radius 20 ~ 33m
m and the center of curvature having a radius of 20 to 60 mm were determined.

【0058】さらに、同様測定機を用いて光記録媒体の
周方向に対する曲率半径を測定した。測定範囲は光記録
媒体の半径20〜60mmの間を1mm刻みで、各半径
位置に対して1周づつ行い、その高さ変位データから各
半径位置ごとに浮上ヘッドのスライダー長に相当する約
3mm間の曲率半径を1周に渡り順次計算することによ
り得た。
Further, the radius of curvature of the optical recording medium in the circumferential direction was measured using the same measuring instrument. The measurement range is 1 mm at intervals of 1 mm between a radius of 20 to 60 mm of the optical recording medium, and one round is performed for each radius position. From the height displacement data, about 3 mm corresponding to the slider length of the flying head for each radius position is obtained. The radius of curvature between them was obtained by sequentially calculating over one round.

【0059】続いて、この光記録媒体の浮上特性を評価
した。まず、光記録媒体をグライドテスター(日立電子
エンジニアリング社製)のスピンドル上に設置し、続い
てピエゾ素子の付いた70%スライダー、6.0g荷重
のグライドヘッド(グライドライト社製)の光記録媒体
からの浮上高さが50nm一定となるように、光記録媒
体を線速度7m/秒で回転し、光記録媒体の半径20〜
60mmの範囲を表裏両面同時に1回シークした。この
際、ピエゾ素子に誘起される電圧をモニターし、この電
圧値が500mVを越える信号の数をヒット数としてカ
ウントした。
Subsequently, the flying characteristics of the optical recording medium were evaluated. First, the optical recording medium was set on the spindle of a glide tester (manufactured by Hitachi Electronics Engineering), followed by a 70% slider with a piezo element and an optical recording medium of a glide head (manufactured by Glidelight) with a 6.0 g load. The optical recording medium is rotated at a linear velocity of 7 m / sec so that the flying height from
A range of 60 mm was sought once on both front and back sides simultaneously. At this time, the voltage induced in the piezo element was monitored, and the number of signals whose voltage value exceeded 500 mV was counted as the number of hits.

【0060】さらに続いてSNRの測定を行った。光記
録媒体を毎分2400回転で回転させて、薄膜面上にレ
ーザー波長680nm、有効開口数1.2のスライダー
を有する浮上式光学ヘッドをダイナミックロードにより
光記録媒体上100nmの高さに浮上させ、レーザーを
パルス的に照射して記録層をキュリー温度以上に暖めな
がら、ヘッド上のコイル磁界を10MHzで変調させな
がら記録し、10MHzで記録したときのSNRを記録
媒体の表裏両面について半径位置20、30、40、5
0、60mmの計10ケ所について測定し、表裏両面の
各々の面に対して最大値と最小値の差からばらつきを求
めた。なお、このSNRの値は、各媒体で再生パワーを
調整してSNRが最大になる条件で測定して得られたも
のである。各評価結果を表1にまとめる。
Subsequently, the SNR was measured. The optical recording medium is rotated at 2,400 revolutions per minute, and a floating optical head having a slider with a laser wavelength of 680 nm and an effective numerical aperture of 1.2 on the thin film surface is floated to a height of 100 nm on the optical recording medium by dynamic loading. Then, while irradiating a pulsed laser to warm the recording layer above the Curie temperature, recording was performed while modulating the coil magnetic field on the head at 10 MHz, and the SNR when recording at 10 MHz was measured at the radial position 20 on both the front and back surfaces of the recording medium. , 30,40,5
Measurements were made at a total of 10 points of 0 and 60 mm, and the variation was determined from the difference between the maximum value and the minimum value for each of the front and back surfaces. The value of the SNR was obtained by adjusting the reproduction power of each medium and measuring the SNR under the condition that the SNR was maximized. Table 1 summarizes the results of each evaluation.

【0061】[0061]

【表1】 [Table 1]

【0062】実施例1、2では半径20mmを基点とし
た時の径方向の高さは、径方向L/3の領域、記録再生
領域全域ともに低くなっており、その変位量は約10〜
80μmだった。また、径方向の曲率中心は全てハブ取
付面とは逆面にあり、曲率半径としては10m以上を示
した。また、周方向の曲率半径も10m以上の値となっ
た。この時のヒット数は両面ともに0〜1個で良好な浮
上特性を示している。また、SNRもばらつきは1dB
以下と良好だった。
In the first and second embodiments, the height in the radial direction with respect to a radius of 20 mm is low in both the radial direction L / 3 region and the entire recording / reproducing region, and the displacement amount is approximately 10 to 10.
It was 80 μm. The centers of curvature in the radial direction were all opposite to the hub mounting surface, and the radius of curvature was 10 m or more. The radius of curvature in the circumferential direction also became a value of 10 m or more. The number of hits at this time is 0 to 1 on both sides, indicating good flying characteristics. Also, the variation in SNR is 1 dB.
Less and good.

【0063】比較例1、2では光記録媒体のたわみ方向
が実施例とは逆方向となるように基板を射出成形したた
め、半径20mmを基点とした時の径方向の高さは、径
方向L/3の領域、記録再生領域全域ともに高くなって
おり、その変位量は約10〜70μmだった。また、径
方向の曲率中心は全てハブ取付面側にあり、曲率半径と
しては10m未満を示した。また、周方向の曲率半径も
10m未満の値となった。この時の浮上特性は光記録媒
体の内周側寄りにリング状のヒットが発生しており、不
安定な浮上性を示した。また、SNRのばらつきは3〜
4dBと大きく、ヘッドの浮上高さ変動の影響が大きい
ことを示唆している。
In Comparative Examples 1 and 2, the substrate was injection-molded so that the bending direction of the optical recording medium was opposite to that of the embodiment. / 3 area and the entire recording / reproducing area were high, and the displacement amount was about 10 to 70 μm. The centers of curvature in the radial direction were all on the hub mounting surface side, and the radius of curvature was less than 10 m. Further, the radius of curvature in the circumferential direction also became a value of less than 10 m. The flying characteristics at this time were such that a ring-shaped hit occurred near the inner peripheral side of the optical recording medium, indicating unstable floating characteristics. Also, the SNR variation is 3 to
This is as large as 4 dB, suggesting that the influence of the fluctuation of the flying height of the head is great.

【0064】実施例3 表裏両面にトラックピッチ0.43μmのスパイラル状
のランド/グルーブ部とヘッダー部を有する、ポリカー
ボネート製の直径130mmで厚み2mmの円形基板を
射出成形法で製造した。成形に使用した金型は、可動部
と固定部の一対からなる金型で、固定部側から可塑化し
た樹脂の射出を行い、可動部側からフローティングパン
チおよび突き出しピンが作動して基板を取り出す構造の
ものを用い、射出が完了し、可動部金型の型開後5秒後
にフローティングパンチおよび突き出しピンを作動さ
せ、基板を作成した。なお、固定部および可動部の金型
温度は、共に110℃とした。
Example 3 A circular substrate made of polycarbonate having a diameter of 130 mm and a thickness of 2 mm and having a spiral land / groove portion having a track pitch of 0.43 μm and a header portion on both front and rear surfaces was manufactured by an injection molding method. The mold used for molding is a mold composed of a pair of a movable part and a fixed part. The plasticized resin is injected from the fixed part side, and the floating punch and protrusion pins operate from the movable part side to take out the substrate. After the injection was completed and the movable part mold was opened 5 seconds after the mold was opened, the floating punch and the protruding pin were operated to prepare a substrate. In addition, the mold temperature of both the fixed part and the movable part was 110 ° C.

【0065】この基板を使用して、スパッタリング法に
よって以下の方法で基板の両面に成膜を実施した。
Using this substrate, a film was formed on both surfaces of the substrate by a sputtering method in the following manner.

【0066】まず基板上に反射層として膜厚50nmの
Al−3wt%Cr合金膜をDCスパッタ法により形成
した。この上に膜厚5nmのSiNからなる第1保護層
をArとN2の混合雰囲気中でSiターゲットを使用し
た反応性RFスパッタ法で形成した。この上にTb
20(Fe90Co1080からなる膜厚20nmの光磁気記
録層をTbターゲットとFe90Co10ターゲットのDC
同時スパッタ法により形成した。
First, an Al-3 wt% Cr alloy film having a thickness of 50 nm was formed as a reflective layer on a substrate by DC sputtering. A first protective layer made of SiN having a thickness of 5 nm was formed thereon by a reactive RF sputtering method using a Si target in a mixed atmosphere of Ar and N 2 . Tb on this
A 20 nm thick magneto-optical recording layer made of 20 (Fe 90 Co 10 ) 80 is formed of a Tb target and a Fe 90 Co 10 target DC.
It was formed by a simultaneous sputtering method.

【0067】さらにこの上に膜厚50nmのSiNから
なる第2保護層をArとN2の混合雰囲気中でSiター
ゲットを使用した反応性RFスパッタ法で形成した。こ
の上に633nmにおける屈折率が1.85で膜厚10
nmのDLC層をArとCH4の混合雰囲気中でCター
ゲットを使用した反応性RFスパッタ法で形成した。
Further, a second protective layer made of SiN having a thickness of 50 nm was formed thereon by a reactive RF sputtering method using a Si target in a mixed atmosphere of Ar and N 2 . On top of this, the refractive index at 633 nm is 1.85 and the film thickness is 10
A DLC layer having a thickness of nm was formed by a reactive RF sputtering method using a C target in a mixed atmosphere of Ar and CH 4 .

【0068】ついで、反対面にも一方の面と同様に反射
層、第1保護層、光磁気記録層、第2保護層およびDL
C層を形成した。
Next, on the other side, the reflection layer, the first protective layer, the magneto-optical recording layer, the second protective layer and the DL
C layer was formed.

【0069】DLC層を形成した後、パーフルオロポリ
エーテル系溶媒(アウジモント社製、商品名「ガルデン
SV−70」)を使用したピペロニル変性パーフルオロ
ポリエーテル(アウジモント社製、商品名「フォンブリ
ン:AM2001」)の0.01wt%溶液から記録媒
体を引き上げることにより潤滑層を1.5nmに塗布し
た。潤滑層の膜厚はX線光電子分光法(XPS)を使用
し、C1Sピーク強度を観察することにより算出した。
After the formation of the DLC layer, piperonyl-modified perfluoropolyether (trade name “Fomblin: trade name: Audimont Co., Ltd., using a perfluoropolyether solvent (trade name: Galden SV-70)”) was used. A lubricating layer was applied to a thickness of 1.5 nm by pulling up the recording medium from a 0.01 wt% solution of AM2001 "). The thickness of the lubricating layer was calculated by using X-ray photoelectron spectroscopy (XPS) and observing the C1S peak intensity.

【0070】さらに、射出成形時、フローティングパン
チおよび突き出しピンが存在した基板面にメタルインサ
ートハブを紫外線硬化型接着剤で取り付け、両面記録再
生可能な光磁気記録媒体を製造した。
Further, at the time of injection molding, a metal insert hub was attached to the surface of the substrate where the floating punches and the protruding pins were present with an ultraviolet-curable adhesive, thereby producing a magneto-optical recording medium capable of double-sided recording and reproduction.

【0071】こうして製造した光記録媒体をハブ面が上
を向くようにして、媒体中央部分の非記録再生領域を保
持し、上向き面の曲率半径を触針式表面粗さ測定器サー
フコーダー(小坂研究所社製)で測定した。測定範囲は
記録媒体の半径17〜61mmとし、記録媒体の周方向
4ヶ所について行い、その高さ変位データから浮上ヘッ
ドのスライダー幅に相当する2mm間の曲率半径を半径
18〜60mmの範囲で順次計算することにより得た。
また、このデータを基に半径位置18、39、60mm
の3点からなる円弧の曲率中心が円弧に対して上下何れ
に存在するかを求めた。さらに記録媒体の周方向に対す
る曲率半径をRVAテスター(THOTTECHNOL
OGY社製)で測定した。測定範囲は記録媒体の半径1
7〜60mmの間を1mm刻みで、各半径位置に対して
1周づつ行い、その高さ変位データから各半径位置ごと
に浮上ヘッドのスライダー長に相当する約3mm間の曲
率半径を1周に渡り順次計算することにより得た。結果
を表2に示す。
The non-recording / reproducing area at the center of the optical recording medium is held so that the hub surface of the optical recording medium thus manufactured faces upward, and the radius of curvature of the upward facing surface is measured by a probe-type surface roughness measuring device Surfcoder (Kosaka). Laboratories). The measurement range is a radius of the recording medium of 17 to 61 mm, and the measurement is performed at four locations in the circumferential direction of the recording medium. From the height displacement data, a radius of curvature between 2 mm corresponding to the slider width of the flying head is sequentially determined within a radius of 18 to 60 mm. Obtained by calculation.
Also, based on this data, the radial positions 18, 39, 60 mm
It was determined whether the center of curvature of the three-point arc exists above or below the arc. Further, the radius of curvature of the recording medium in the circumferential direction is determined by an RVA tester (THOTTECHNOL).
OGY). The measurement range is radius 1 of the recording medium
One round is performed for each radial position in the range of 7 to 60 mm at intervals of 1 mm, and from the height displacement data, the radius of curvature of about 3 mm corresponding to the slider length of the flying head for each radial position is reduced to one round. Obtained by calculating over time. Table 2 shows the results.

【0072】実施例4 基板を射出成形により得る際に、ポリカーボネート樹脂
を金型内に射出完了してから金型内の突き出しピンが作
動するまでの時間を2秒間短くした以外は実施例3と同
様の方法で両面記録再生可能な光磁気記録媒体を製造
し、その曲率半径を測定した。結果を表2に示す。
Example 4 When a substrate was obtained by injection molding, the time between the completion of injection of the polycarbonate resin into the mold and the operation of the ejection pin in the mold was shortened by 2 seconds. A magneto-optical recording medium capable of double-sided recording and reproduction was manufactured in the same manner, and the radius of curvature was measured. Table 2 shows the results.

【0073】実施例5 基板を射出成形により得る際に、可動部側金型と固定部
側金型の温度に差を付け、可動部側金型温度を3℃高く
した以外は実施例3と同様の方法で両面記録再生可能な
光磁気記録媒体を作製し、その曲率半径を測定した。結
果を表2に示す。
Example 5 When a substrate was obtained by injection molding, the temperature of the movable part side mold and that of the fixed part side mold were set different from each other, except that the movable part side mold temperature was raised by 3 ° C. A magneto-optical recording medium capable of double-sided recording and reproduction was produced in the same manner, and the radius of curvature was measured. Table 2 shows the results.

【0074】比較例3 基板を射出成形により得る際に、ポリカーボネート樹脂
を金型内に射出完了してから金型内の突き出しピンが作
動するまでの時間を5秒間短くし、型開直後に基板を取
り出し、射出成形時、フローティングパンチおよび突き
出しピンが存在した面と反対側の面にメタルインサート
ハブを紫外線硬化型接着剤で取り付けた他は、実施例3
と同様にして、両面記録再生可能な光磁気記録媒体を製
造し、その曲率半径を測定した。結果を表2に示す。
Comparative Example 3 When a substrate was obtained by injection molding, the time from the completion of injection of the polycarbonate resin into the mold to the activation of the ejection pin in the mold was shortened by 5 seconds. Example 3 except that a metal insert hub was attached to the surface opposite to the surface where the floating punch and the protruding pin were present at the time of injection molding with an ultraviolet curable adhesive.
A magneto-optical recording medium capable of double-sided recording and reproduction was manufactured in the same manner as described above, and the radius of curvature was measured. Table 2 shows the results.

【0075】比較例4 基板を射出成形により得る際に、ポリカーボネート樹脂
を金型内に射出完了してから金型内の突き出しピンが作
動するまでの時間を型開後30秒とし、かつ可動部側金
型と固定部側金型の温度を均等に12℃下げ、射出成形
時、フローティングパンチおよび突き出しピンが存在し
た面と反対側の面にメタルインサートハブを紫外線硬化
型接着剤で取り付けた他は、実施例3と同様にして、両
面記録再生可能な光磁気記録媒体を製造し、その曲率半
径を測定した。結果を表2に示す。
Comparative Example 4 When a substrate was obtained by injection molding, the time from the completion of injection of the polycarbonate resin into the mold to the actuation of the ejection pin in the mold was set to 30 seconds after the mold was opened, and the movable part was In addition to lowering the temperature of the side mold and the fixed part side mold uniformly by 12 ° C, the metal insert hub was attached to the surface opposite to the surface where the floating punch and the protruding pin existed during injection molding with an ultraviolet curing adhesive. In the same manner as in Example 3, a magneto-optical recording medium capable of double-sided recording and reproduction was manufactured, and the radius of curvature was measured. Table 2 shows the results.

【0076】実施例3〜5及び比較例3〜4で製造した
近接場光磁気記録媒体について、以下の評価を行った。
最初にこの記録媒体の浮上特性を評価した。まず、記録
媒体をグライドテスター(日立電子エンジニアリング社
製)のスピンドル上に設置した。続いてピエゾ素子の付
いた70%スライダー、6.0g荷重のグライドヘッド
(グライドライト社製)の記録媒体からの浮上高さが5
0nm一定となる様に、記録媒体を線速度7m/秒で回
転し、記録媒体の半径18〜60mmの範囲を表裏両面
同時に1回シークした。この際、ピエゾ素子に誘起され
る電圧をモニターし、この電圧値が500mVを越える
信号の数をヒット数としてカウントした。続いてSNR
の測定を行った。記録媒体を毎分2400回転で回転さ
せて、薄膜面上にレーザー波長680nm、有効開口数
1.2のスライダーを有する浮上式光学ヘッドをダイナ
ミックロードにより記録媒体上100nmの高さに浮上
させ、レーザーをパルス的に照射して記録層をキュリー
温度以上に暖めながら、ヘッド上のコイル磁界を10M
Hzで変調させながら記録し、10MHzで記録したと
きのSNRを記録媒体の表裏両面について半径位置2
0、30、40、50、60mmの計10ケ所について
測定し、表裏両面の各々の面に対して最大値と最小値の
差からばらつきを求めた。なお、このSNRの値は、各
媒体で再生パワーを調整してSNRが最大になる条件で
測定して得られたものである。各評価結果を表1にまと
める。
The following evaluations were performed on the near-field magneto-optical recording media manufactured in Examples 3 to 5 and Comparative Examples 3 and 4.
First, the flying characteristics of this recording medium were evaluated. First, the recording medium was set on a spindle of a glide tester (manufactured by Hitachi Electronics Engineering Co., Ltd.). Subsequently, a 70% slider with a piezo element and a flying height of 6.0 g load from a recording medium of a glide head (manufactured by Glide Light Co.) were 5
The recording medium was rotated at a linear velocity of 7 m / sec so as to be constant at 0 nm, and the recording medium was sought once in a range of a radius of 18 to 60 mm simultaneously on both the front and back surfaces. At this time, the voltage induced in the piezo element was monitored, and the number of signals whose voltage value exceeded 500 mV was counted as the number of hits. Then SNR
Was measured. The recording medium is rotated at 2400 revolutions per minute, and a floating optical head having a slider with a laser wavelength of 680 nm and an effective numerical aperture of 1.2 on the thin film surface is levitated to a height of 100 nm on the recording medium by dynamic loading. While the recording layer is heated above the Curie temperature by irradiating the
Hz while recording at 10 MHz.
The measurement was performed at a total of 10 points of 0, 30, 40, 50, and 60 mm, and the variation was obtained from the difference between the maximum value and the minimum value for each of the front and back surfaces. The value of the SNR was obtained by adjusting the reproduction power of each medium and measuring the SNR under the condition that the SNR was maximized. Table 1 summarizes the results of each evaluation.

【0077】[0077]

【表2】 [Table 2]

【0078】実施例3では、径方向、周方向ともに曲率
半径は1〜10mの範囲を満足しており、曲率中心は円
弧の下側に存在する。この時のヒット数は両面ともに0
個で良好な浮上特性を示している。また、SNRもばら
つきは1dB以下と良好だった。
In the third embodiment, the radius of curvature satisfies the range of 1 to 10 m in both the radial and circumferential directions, and the center of curvature exists below the arc. The number of hits at this time is 0 on both sides
Good levitation characteristics are shown for each piece. In addition, the variation in SNR was as good as 1 dB or less.

【0079】実施例4では、基板成形時の突き出しピン
作動までの時間を短くしているため、周方向の曲率半径
は小さくなったが、径方向の曲率半径は1〜10mの範
囲を満足しており、曲率中心は円弧の下側に存在してい
る。
In the fourth embodiment, the radius of curvature in the circumferential direction is reduced because the time until the push-out pin is actuated during the molding of the substrate is reduced, but the radius of curvature in the radial direction satisfies the range of 1 to 10 m. The center of curvature is below the arc.

【0080】また、実施例5では、基板成形時の金型温
度に差を付けているため、径方向の曲率半径は小さくな
ったが、周方向の曲率半径は1〜10mの範囲を満足し
ており、曲率中心は円弧の下側に存在している。実施例
4、5ともにヒット数0〜2個と良好で、SNRもばら
つきは1dB以下と良好だった。
Further, in Example 5, the radius of curvature in the radial direction was small because the temperature of the mold during forming the substrate was different, but the radius of curvature in the circumferential direction satisfied the range of 1 to 10 m. The center of curvature is below the arc. In Examples 4 and 5, the number of hits was as good as 0 to 2, and the SNR was also as good as 1 dB or less in variation.

【0081】一方、比較例3では、基板成形時の突き出
しピン作動までの時間をさらに短くし、基板が十分冷却
される前に金型から取り出されているため、径方向、周
方向ともに曲率半径は一部1m未満になっており、曲率
中心は円弧の上側に存在した。この時の浮上特性は記録
媒体の内周側寄りにリング状のヒットが発生しており、
不安定な浮上性を示した。また、SNRは内周側で小さ
く、外周側で大きい傾向となり、ばらつきとしては約4
dBと大きくなった。
On the other hand, in Comparative Example 3, since the time until the push-out pin operation during the molding of the substrate was further shortened and the substrate was taken out of the mold before the substrate was sufficiently cooled, the radius of curvature in both the radial and circumferential directions was increased. Was partially less than 1 m, and the center of curvature was above the arc. The flying characteristics at this time are such that a ring-shaped hit occurs near the inner circumference of the recording medium,
It showed unstable levitation. Also, the SNR tends to be small on the inner circumference side and larger on the outer circumference side, and the variation is about 4%.
It has increased to dB.

【0082】比較例4では、基板成形時の突き出しピン
作動までの時間を長くし、金型温度も下げているため、
金型から取り出す際基板は十分冷却されている。このた
め、径方向、周方向ともに曲率半径は10mを超えてお
り、曲率中心は円弧の上側に存在した。この時の浮上特
性は記録媒体の内周側寄りにリング状のヒットが発生し
ており、不安定な浮上性を示した。また、SNRは内周
側で小さく、外周側で大きい傾向となり、ばらつきとし
ては約4dBと大きくなった。
In Comparative Example 4, since the time until the push-out pin was activated during the molding of the substrate was increased and the mold temperature was also decreased,
When the substrate is taken out of the mold, the substrate is sufficiently cooled. Therefore, the radius of curvature in both the radial direction and the circumferential direction exceeded 10 m, and the center of curvature was above the circular arc. The flying characteristics at this time were such that a ring-shaped hit occurred near the inner peripheral side of the recording medium, indicating unstable floating characteristics. Further, the SNR tends to be small on the inner circumference side and larger on the outer circumference side, and has a large variation of about 4 dB.

【0083】[0083]

【発明の効果】本発明によれば、光記録媒体上を浮上す
るヘッドの光記録媒体表面の距離を光記録再生領域の全
域で一定に保つことにより、均一な記録再生信号を得ら
れ、ヘッドとのクラッシュが起きにくい信頼性の高い光
記録媒体が得られる。
According to the present invention, a uniform recording / reproducing signal can be obtained by keeping the distance of the head floating above the optical recording medium from the surface of the optical recording medium constant throughout the optical recording / reproducing area. And a highly reliable optical recording medium that is unlikely to crash.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の光記録媒体の積層構造の一例を示す
図である。
FIG. 1 is a diagram showing an example of a laminated structure of an optical recording medium of the present invention.

【図2】 本発明の光記録媒体の断面構造の一例を模式
的に表した図である。
FIG. 2 is a diagram schematically illustrating an example of a cross-sectional structure of the optical recording medium of the present invention.

【符号の説明】[Explanation of symbols]

11 : 基板 12 : 反射層 13 : 記録層 14 : 誘電体層 15 : ハブ 11: Substrate 12: Reflective layer 13: Recording layer 14: Dielectric layer 15: Hub

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G11B 11/105 521 G11B 11/105 521A 536 536C 541 541B 546 546D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G11B 11/105 521 G11B 11/105 521A 536 536C 541 541B 546 546D

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂を射出成形してなる円盤状
単板基板の表裏両面に、それぞれ略同心円状あるいは略
螺旋状の少なくともランドおよびグルーブを設け、その
上に少なくとも記録層、誘電体層を有し、片面にのみハ
ブを設け、浮上式光学ヘッドを用いてレーザー光による
記録再生が可能な近接場光記録媒体であって、ハブ付け
した面を下側にしてハブにより光記録媒体を保持したと
き、記録再生領域の最内周から最外周における径方向距
離(L)のうち、最内周からL/3までの領域において
径方向の曲率中心が、ハブ付けした面と逆の面にあるこ
とを特徴とする光記録媒体。
1. A disc-shaped single-plate substrate obtained by injection-molding a thermoplastic resin is provided with at least lands and grooves substantially concentrically or substantially spirally on both front and back surfaces thereof, and at least a recording layer and a dielectric layer thereon. A near-field optical recording medium that has a hub on one side only and can be recorded and reproduced by laser light using a floating optical head, and the optical recording medium is mounted on the hub with the surface with the hub facing down. When held, of the radial distance (L) from the innermost circumference to the outermost circumference of the recording / reproducing area, in the area from the innermost circumference to L / 3, the center of curvature in the radial direction is opposite to the surface to which the hub is attached. An optical recording medium characterized in that:
【請求項2】 ハブ付けした面を下側にしてハブにより
光記録媒体を保持したとき、記録再生領域の最内周から
最外周における径方向距離(L)のうち、最内周からL
/3までの領域において、記録再生領域の最内周を基点
とした場合、それより外側の領域が当該基点よりも5μ
m〜100μm低いことを特徴とする請求項1記載の光
記録媒体。
2. When the optical recording medium is held by the hub with the surface on which the hub is attached facing downward, of the radial distance (L) from the innermost circumference to the outermost circumference of the recording / reproducing area, the distance from the innermost circumference to L
In the area up to / 3, when the innermost circumference of the recording / reproducing area is set as a base point, the area outside the innermost circumference is 5 μm from the base point.
2. The optical recording medium according to claim 1, wherein the distance is lower by m to 100 [mu] m.
【請求項3】 ハブ付けした面を下側にしてハブにより
光記録媒体を保持したとき、記録再生領域の最内周から
最外周における径方向距離(L)のうち、最内周からL
/3までの領域において、ヘッドのスライダー幅と同等
幅の光記録媒体表面の径方向に対する曲率半径が10m
以上であることを特徴とする請求項1または請求項2記
載の光記録媒体。
3. When the optical recording medium is held by the hub with the surface on which the hub is attached facing downward, of the radial distance (L) from the innermost circumference to the outermost circumference of the recording / reproducing area, the distance from the innermost circumference to L
In the region up to / 3, the radius of curvature in the radial direction of the surface of the optical recording medium having the same width as the slider width of the head is 10 m.
The optical recording medium according to claim 1, wherein:
【請求項4】 ハブ付けした面を下側にしてハブにより
光記録媒体を保持したとき、記録再生領域の最内周から
最外周における径方向距離(L)のうち、最内周からL
/3を越える位置から最外周までの領域において、記録
再生領域における径方向の曲率中心が、ハブ付けした面
と逆の面にあることを特徴とする請求項1〜3のいずれ
か1項に記載の光記録媒体。
4. When the optical recording medium is held by the hub with the surface on which the hub is attached facing downward, the radial distance (L) from the innermost circumference to the outermost circumference of the recording / reproducing area is L
4. A region from a position exceeding / 3 to an outermost periphery, wherein a center of curvature in a radial direction in a recording / reproducing region is located on a surface opposite to a surface to which a hub is attached. The optical recording medium according to the above.
【請求項5】 ハブ付けした面を下側にしてハブにより
光記録媒体を保持したとき、記録再生領域の最内周から
最外周における径方向距離(L)のうち、最内周からL
/3を越える位置から最外周までの領域において、記録
再生領域の最内周を基点とした場合、それより外側の領
域が当該基点よりも5μm〜100μm低いことを特徴
とする請求項1〜4のいずれか1項に記載の光記録媒
体。
5. When the optical recording medium is held by the hub with the surface on which the hub is attached facing down, the radial distance (L) from the innermost circumference to the outermost circumference of the recording / reproducing area is L
5. In a region from a position exceeding / 3 to an outermost periphery, when an innermost periphery of the recording / reproducing region is set as a base point, an outer region is 5 to 100 [mu] m lower than the base point. The optical recording medium according to any one of the above items.
【請求項6】 ハブ付けした面を下側にしてハブにより
光記録媒体を保持したとき、記録再生領域の最内周から
最外周における径方向距離(L)のうち、最内周からL
/3を越える位置から最外周までの領域において、ヘッ
ドのスライダー幅と同等幅の光記録媒体表面の径方向に
対する曲率半径が10m以上であることを特徴とする請
求項1〜5のいずれか1項に記載の光記録媒体。
6. When the optical recording medium is held by the hub with the surface on which the hub is attached facing downward, the radial distance (L) from the innermost circumference to the outermost circumference of the recording / reproducing area is L
6. The optical recording medium according to claim 1, wherein a radius of curvature of a surface of the optical recording medium having a width equal to the slider width of the head in a radial direction is 10 m or more in a region from the position exceeding / 3 to the outermost periphery. The optical recording medium according to item 1.
【請求項7】 ハブ付けした面を下側にしてハブにより
光記録媒体を保持したとき、ヘッドのスライダー長と同
等長さの光記録媒体表面の周方向に対する曲率半径が1
0m以上であることを特徴とする請求項1〜6のいずれ
か1項に記載の光記録媒体。
7. When the optical recording medium is held by the hub with the surface on which the hub is attached facing downward, the radius of curvature in the circumferential direction of the surface of the optical recording medium having the same length as the slider length of the head is one.
The optical recording medium according to any one of claims 1 to 6, wherein the distance is 0 m or more.
【請求項8】 円盤状基板が、成形された基板を突き出
すためのフローティングパンチおよび突き出しピンを有
する成形用金型を用いて射出成形されたものであること
を特徴とする請求項1〜7のいずれか1項に記載の光記
録媒体。
8. The disk-shaped substrate according to claim 1, wherein the disk-shaped substrate is injection-molded using a molding die having a floating punch and a projection pin for projecting the molded substrate. The optical recording medium according to claim 1.
【請求項9】 フローティングパンチおよび突き出しピ
ンが存在した基板面側にハブを付けることを特徴とする
請求項8記載の光記録媒体。
9. The optical recording medium according to claim 8, wherein a hub is provided on the substrate surface side where the floating punch and the protruding pin exist.
【請求項10】 基板が、ポリカーボネート、アモルフ
ァスポリオレフィン、ポリメチルメタクリレート、ポリ
フェニレンサルファイド、ポリアリレート、ポリエーテ
ルケトン、ポリエーテルエーテルケトンおよびその誘導
体からなることを特徴とする請求項1〜9のいずれか1
項に記載の光記録媒体。
10. The substrate according to claim 1, wherein the substrate is made of polycarbonate, amorphous polyolefin, polymethyl methacrylate, polyphenylene sulfide, polyarylate, polyether ketone, polyether ether ketone and derivatives thereof.
The optical recording medium according to item 1.
JP2000166501A 2000-03-03 2000-05-31 Optical recording medium Pending JP2001344815A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000166501A JP2001344815A (en) 2000-05-31 2000-05-31 Optical recording medium
US09/796,792 US6584067B2 (en) 2000-03-03 2001-03-02 Optical recording medium having a recording/reproducing area with a shaped region
US10/358,255 US6880166B2 (en) 2000-03-03 2003-02-05 Optical recording medium having in a static mode, a flexible region extending to 1/3 of the recording area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000166501A JP2001344815A (en) 2000-05-31 2000-05-31 Optical recording medium

Publications (1)

Publication Number Publication Date
JP2001344815A true JP2001344815A (en) 2001-12-14

Family

ID=18669806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000166501A Pending JP2001344815A (en) 2000-03-03 2000-05-31 Optical recording medium

Country Status (1)

Country Link
JP (1) JP2001344815A (en)

Similar Documents

Publication Publication Date Title
US6584067B2 (en) Optical recording medium having a recording/reproducing area with a shaped region
JP4002084B2 (en) Magneto-optical head and magneto-optical recording apparatus using the same
JP2000149329A (en) Information recording carrier and method of manufacturing the same
JP2001344815A (en) Optical recording medium
US6760279B1 (en) Magneto-optical storage apparatus having the relation between numerical aperture and recording medium
JP3971832B2 (en) Optical disk and optical disk device
JP2001067660A (en) Manufacturing method of magnetic recording medium
JPH11192648A (en) Information recording disk substrate, mold and stamper for injection molding the same, method of manufacturing stamper, and information recording disk
JP2001250268A (en) Optical recording medium
JP2001351271A (en) Optical recording medium
JP2001155384A (en) Information recording disc
JP2001229586A (en) Magneto-optical recording medium
JP4328840B2 (en) Surface readout type optical recording medium
JP2003077175A (en) Substrate for near-field optical recording disk and near-field optical recording disk
JP3426332B2 (en) Composite recording media
JP2002163842A (en) Surface-reproducing optical recording medium
JP2003077176A (en) Substrate for near-field optical recording disk and near-field optical recording disk
JPH1173682A (en) Optical recording medium, optical head and optical recording device
JP2001143324A (en) Substrate for near-field optical recording disk, method of manufacturing the same, and near-field optical recording disk
JPH10124934A (en) Production of optical recording medium
JP2001236703A (en) Magneto-optical recording medium
JPH11203723A (en) Disk-shaped recording medium substrate and disk device
JP2001283453A (en) Flying optical recording / reproducing head and flying height control method thereof
JPH11306594A (en) Disk-formed recording medium and recording and/or reproducing device therefor
JP2002150612A (en) Surface reading type optical recording medium