JP2001335815A - Recovery method for rare earth magnet alloy waste powder - Google Patents
Recovery method for rare earth magnet alloy waste powderInfo
- Publication number
- JP2001335815A JP2001335815A JP2000154460A JP2000154460A JP2001335815A JP 2001335815 A JP2001335815 A JP 2001335815A JP 2000154460 A JP2000154460 A JP 2000154460A JP 2000154460 A JP2000154460 A JP 2000154460A JP 2001335815 A JP2001335815 A JP 2001335815A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- rare earth
- powder
- waste powder
- earth magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Powder Metallurgy (AREA)
Abstract
(57)【要約】
【課題】 酸素の多い希土類磁石合金廃粉末を、有効に
利用するための経済的に有利な回収方法を提供する。
【解決手段】 希土類磁石合金廃粉末中の水酸化物及び
/又は酸化物を金属カルシウムにより還元し、次いでこ
の還元した粉末をCaF2系フラックスと加熱溶解して
合金とフラックスを分離することにより、合金を回収す
ることを特徴とする希土類磁石合金廃粉末の回収方法。(57) [Problem] To provide an economically advantageous recovery method for effectively using rare earth magnet alloy waste powder containing much oxygen. SOLUTION: A hydroxide and / or an oxide in a rare earth magnet alloy waste powder is reduced by metallic calcium, and the reduced powder is heated and melted with a CaF 2 -based flux to separate the alloy and the flux. A method for recovering rare earth magnet alloy waste powder, comprising recovering an alloy.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、希土類磁石合金廃
粉末から合金を回収する方法に関する。The present invention relates to a method for recovering an alloy from a rare earth magnet alloy waste powder.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
希土類金属を含有する磁石の生産量が増加し、それに伴
って磁石の成形工程での不良粉、加工工程での切削粉や
切断粉の発生量が増加している。磁石の製造工程で発生
するこれらの粉末は、通常、粒径が数十ミクロン以下で
酸化し易く、酸素が数千ppm〜数%含まれており、こ
のままでは磁石用原料として使用できない。2. Description of the Related Art In recent years,
The production of magnets containing rare earth metals has increased, and accordingly, the amount of defective powder generated in the magnet forming process and the amount of cutting powder and cutting powder generated in the processing process have increased. These powders generated in the magnet manufacturing process usually have a particle size of several tens of microns or less and are easily oxidized, and contain several thousand ppm to several percent of oxygen, and cannot be used as raw materials for magnets as they are.
【0003】従来、これらの酸素の多い希土類を含有す
る合金粉末や合金屑は、塩酸などの酸に溶解し、蓚酸な
どの沈殿剤を加えて希土蓚酸塩などの沈殿とし、これを
濾過、乾燥、焼成の工程を経て希土酸化物として回収す
ることが行われている(特公平5−14777号公
報)。Conventionally, alloy powders and alloy chips containing rare earths having a large amount of oxygen are dissolved in an acid such as hydrochloric acid, and a precipitant such as oxalic acid is added thereto to precipitate rare earth oxalate and the like. Recovery as a rare earth oxide through drying and firing steps has been performed (Japanese Patent Publication No. 5-14777).
【0004】しかし、このような湿式処理による方法で
は、多量の酸や沈殿剤を要すること、工程が長いこと、
価値の少ないFeの処理が必要であること、焼成して酸
化物にする必要があること、また得られるものは酸化物
であり、磁石原料に使用するためには酸化物を還元して
希土金属にする必要があることなどの問題があった。However, such a wet process requires a large amount of acid and a precipitant, requires a long process,
It is necessary to treat Fe of low value, it is necessary to bake it into an oxide, and what is obtained is an oxide. There were problems such as the need to use metal.
【0005】また、磁石スクラップやスラッジを加熱溶
解し合金を回収することが試みられているが(USP
5,087,291、USP5,174,811)、酸
素の多い粉末では、加熱溶解が困難である上に、高融点
のスラグが多量に発生し歩留りが悪い問題があった。[0005] Further, attempts have been made to recover the alloy by heating and melting magnet scrap and sludge (USP
5,087,291, U.S. Pat. No. 5,174,811), and a powder containing a large amount of oxygen is difficult to dissolve by heating, and has a problem that a large amount of slag having a high melting point is generated and the yield is poor.
【0006】更に、希土類元素含有物を粉砕し酸洗浄し
た後、Ca還元し、生成したCaO及び残留Caを湿式
洗浄して有価組成物を得る方法が提案されているが(特
開平11−319752号公報)、この方法では水洗や
酸洗浄など湿式処理の手間がかかる上に、得られる合金
粉末の酸素量が未だ十分に低いものではない問題があ
り、より簡便で効果的な希土類磁石合金廃粉末の回収法
が望まれていた。Further, a method has been proposed in which a valuable composition is obtained by pulverizing a rare earth element-containing substance, washing with acid, reducing Ca, and wet-cleaning the generated CaO and residual Ca to obtain a valuable composition (JP-A-11-319752). In this method, it takes time and labor for wet treatment such as washing with water and acid, and there is a problem that the amount of oxygen in the obtained alloy powder is not yet sufficiently low. A method for collecting powder has been desired.
【0007】本発明は、上記要望に応えたもので、希土
類磁石合金廃粉末から容易にかつ確実にしかも安価に酸
素含有量の少ない合金を回収し、リサイクルすることが
できて、資源の有効利用の点から好適な希土類磁石合金
廃粉末の回収方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention meets the above-mentioned demand, and can easily, reliably and inexpensively recover an alloy having a low oxygen content from a rare earth magnet alloy waste powder, and recycle the alloy, thereby effectively utilizing resources. In view of the above, it is an object of the present invention to provide a method for recovering rare earth magnet alloy waste powder which is preferable from the viewpoint of
【0008】[0008]
【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を行った結
果、酸素の多い磁石合金廃粉末に金属カルシウムを加え
て還元し、酸素分をCaOに変え、次いでこれにCaF
2系フラックスを加えて加熱溶解することにより、Ca
OをCaF2に溶解させると共に、合金と分離せしめ、
これによって酸素の低減された合金インゴットを回収す
ることができることを知見し、本発明をなすに至った。Means for Solving the Problems and Embodiments of the Invention The present inventors have made intensive studies to achieve the above object, and as a result, reduced metallic alloy waste powder containing a large amount of oxygen by adding metallic calcium to the waste powder. To CaO, then add CaF
By adding and heating and melting the system 2 flux, Ca
O is dissolved in CaF 2 and separated from the alloy,
The inventors have found that an alloy ingot with reduced oxygen can be recovered by this, and have accomplished the present invention.
【0009】従って、本発明は、希土類磁石合金廃粉末
中の水酸化物及び/又は酸化物を金属カルシウムにより
還元し、次いでこの還元した粉末をCaF2系フラック
スと加熱溶解して合金とフラックスを分離することによ
り、合金を回収することを特徴とする希土類磁石合金廃
粉末の回収方法を提供する。Therefore, the present invention reduces the hydroxide and / or oxide in the rare earth magnet alloy waste powder with metallic calcium, and then heat-melts the reduced powder with a CaF 2 -based flux to separate the alloy and the flux. The present invention provides a method for recovering rare earth magnet alloy waste powder, wherein the alloy is recovered by separation.
【0010】上述したように、希土類金属を含有する希
土類磁石の生産量の増加に伴い、加工時に発生する粉末
状の切断屑や研削屑、成形時の不良粉末などの廃粉末の
発生量が増加しているが、特に磁石を研削や切削により
加工する際に発生する削り屑は、通常、数十μ以下の微
粉末であり、研削液によりぬれている。これを乾燥して
磁石合金粉としても酸素が多く、このままでは磁石用原
料粉末として使用することはできない。本発明によれ
ば、例えば酸素量が数千ppm〜数%(0.2〜5重量
%)のNd−Fe−B系及びSm−Co系希土類磁石合
金廃粉末を、安価に磁石用原料合金として回収すること
ができる。As described above, with the increase in the production of rare earth magnets containing rare earth metals, the amount of waste powder such as powdery cutting debris and grinding debris generated during processing and defective powder during molding increases. However, shavings generated particularly when the magnet is machined by grinding or cutting are usually fine powders of several tens μm or less, and are wetted by the grinding fluid. This is dried to produce a large amount of oxygen even as a magnet alloy powder, and cannot be used as a raw material powder for magnets as it is. According to the present invention, for example, an Nd-Fe-B-based and Sm-Co-based rare earth magnet alloy waste powder having an oxygen content of several thousand ppm to several percent (0.2 to 5 wt%) can be inexpensively used as a raw material alloy for magnets. Can be collected.
【0011】以下、本発明につき更に詳しく説明する。
本発明の希土類磁石合金廃粉末の回収方法は、まず希土
類磁石合金廃粉末に金属カルシウム(Ca)を加え、該
合金廃粉末中の水酸化物及び/又は酸化物を金属Caに
より還元する。Hereinafter, the present invention will be described in more detail.
In the method for recovering rare earth magnet alloy waste powder of the present invention, first, metal calcium (Ca) is added to the rare earth magnet alloy waste powder, and hydroxides and / or oxides in the alloy waste powder are reduced by metal Ca.
【0012】この場合、希土類磁石合金の種類は特に制
限されないが、Nd−Fe−B系、Sm−Co系希土類
磁石合金が好適に用いられる。ここで、Nd−Fe−B
系はNd2Fe14Bの基本組成を有し、またSm−Co
系はSmCo5、Sm2Co17の基本組成を有しているも
のであればよく、基本組成以外の希土類や遷移金属等で
置換させたものを用いてもよい。In this case, the type of the rare earth magnet alloy is not particularly limited, but Nd-Fe-B-based and Sm-Co-based rare-earth magnet alloys are preferably used. Here, Nd-Fe-B
The system has a basic composition of Nd 2 Fe 14 B, and Sm-Co
The system may be any one having a basic composition of SmCo 5 or Sm 2 Co 17 , and may be one substituted with a rare earth element, transition metal or the like other than the basic composition.
【0013】上記希土類磁石合金廃粉末としては、磁石
の成形工程での不良粉、加工工程での切削粉、切断粉な
どを使用することができ、この廃粉末は酸素量を0.2
〜5重量%という多量に含有したものをも有効に使用す
ることができる。なお、廃粉末の粒径に特に制限はない
が、平均粒径が0.5〜100μm程度のものを好適に
用いることができる。As the rare earth magnet alloy waste powder, defective powder in a magnet forming step, cutting powder or cutting powder in a processing step, and the like can be used.
Those containing as much as 55% by weight can also be used effectively. The particle size of the waste powder is not particularly limited, but those having an average particle size of about 0.5 to 100 μm can be suitably used.
【0014】本発明においては、まず、好ましくは乾燥
した廃粉末に金属Caを添加混合し、これを加熱するこ
とにより粉末中の酸素分をCaOとする。廃粉末の乾燥
は通常の方法、装置が使用されるが、粉末の活性が高く
容易に酸化されるので、真空又は非酸化性雰囲気中、1
50℃以下(好ましくは50〜110℃)で加熱・脱水
することが好ましく、減圧乾燥などが好ましい。In the present invention, first, metallic Ca is preferably added to and mixed with the dried waste powder, and the mixture is heated to convert the oxygen content in the powder into CaO. The usual method and apparatus are used for drying the waste powder. However, since the activity of the powder is high and it is easily oxidized, the powder is dried in a vacuum or a non-oxidizing atmosphere.
Heating and dehydration at 50 ° C. or lower (preferably 50 to 110 ° C.) is preferred, and drying under reduced pressure is preferred.
【0015】金属Caとしては粒状や削り状の小塊が経
済的に好ましく、この配合量は粉末に含まれる酸素の量
によって異なるが、通常、還元に必要な当量の1.0〜
1.3倍、好ましくは1.05〜1.3倍が適当であ
る。これより少ないと還元が不十分で希土酸化物が残
る。多くても還元の効果はあまり変わらず、過剰のCa
が残る。また、還元温度は800〜1,200℃、好ま
しくは900〜1,100℃である。温度が低いと還元
反応が進行せず、高すぎてもその効果は変わらない。雰
囲気は、酸化を防ぐために、ArやN2などの不活性雰
囲気が望ましい。Granular or shaved small lumps are economically preferable as the metal Ca. The amount of the metal Ca varies depending on the amount of oxygen contained in the powder.
1.3 times, preferably 1.05 to 1.3 times is appropriate. If it is less than this, the reduction is insufficient and rare earth oxide remains. At most, the effect of reduction does not change much, and excess Ca
Remains. Further, the reduction temperature is 800 to 1,200 ° C, preferably 900 to 1,100 ° C. If the temperature is low, the reduction reaction does not proceed, and if the temperature is too high, the effect does not change. The atmosphere is desirably an inert atmosphere such as Ar or N 2 to prevent oxidation.
【0016】本発明においては、次いで、この還元した
合金粉末をCaF2系フラックスと加熱溶解する。Ca
F2系フラックスとしてはCaF2単独又はCaF2を主
成分とし、これにアルカリ金属ハロゲン化物(LiF,
NaF,KF,LiCl,NaCl,KClなど)、ア
ルカリ土類金属ハロゲン化物(MgF2,BaF2,Mg
Cl2,CaCl2,BaCl2など)、希土類金属ハロ
ゲン化物(NdF3,NdCl3など)を1種以上、Ca
F2に対し0〜50重量%含む混合ハロゲン化物が使用
される。In the present invention, the reduced alloy powder is then heated and melted with a CaF 2 -based flux. Ca
As the F 2 -based flux, CaF 2 alone or CaF 2 as a main component, and an alkali metal halide (LiF,
NaF, KF, LiCl, NaCl, KCl, etc.), alkaline earth metal halides (MgF 2 , BaF 2 , Mg
Cl 2 , CaCl 2 , BaCl 2 , etc.) and one or more rare earth metal halides (NdF 3 , NdCl 3, etc.)
Mixed halide is used F 2 to comprise 0-50 wt%.
【0017】この場合、CaF2系フラックスの使用量
は、還元した合金粉末100重量部に対して1〜100
重量部、好ましくは5〜50重量部がよい。In this case, the amount of the CaF 2 -based flux used is 1 to 100 parts by weight based on 100 parts by weight of the reduced alloy powder.
The amount is preferably 5 parts by weight, more preferably 5 to 50 parts by weight.
【0018】加熱溶解は公知の装置、例えばプラズマ溶
解炉、エレクトロスラグ溶解炉、アーク溶解炉、高周波
誘導溶解炉など、非酸化性雰囲気下で合金及びフラック
スの融点以上に加熱できる溶解炉が使用できる。特に合
金粉末を投入しながらこれを加熱溶解し、溶融プールを
維持しながら凝固部を徐々に下げるか又は上げて、連続
的にインゴットを製造できるエレクトロスラグ溶解炉、
アーク溶解炉やプラズマ溶解炉などが、高温加熱が容易
に可能であるので好ましい。合金とCaF2系フラック
スは溶融プール内で比重差により分離される。For the heat melting, a known apparatus such as a plasma melting furnace, an electroslag melting furnace, an arc melting furnace, a high-frequency induction melting furnace, etc., which can be heated to a temperature equal to or higher than the melting point of the alloy and flux in a non-oxidizing atmosphere can be used. . Electroslag melting furnace capable of continuously manufacturing an ingot by gradually lowering or raising the solidified portion while maintaining the molten pool while heating and melting the alloy powder, in particular,
An arc melting furnace, a plasma melting furnace, or the like is preferable because high-temperature heating can be easily performed. The alloy and the CaF 2 -based flux are separated by a specific gravity difference in the molten pool.
【0019】また、高周波誘導加熱溶解炉では、るつぼ
内で合金粉末をCaF2系フラックスと一緒に加熱溶解
するが、同様にCaOを溶解したCaF2系フラックス
は合金の上部に低粘性の液体となって分離され、これを
適当な鋳型に鋳造することにより、分離された合金とC
aF2系フラックスを回収することができる。In a high-frequency induction heating melting furnace, alloy powder is heated and melted together with a CaF 2 -based flux in a crucible. Similarly, a CaF 2 -based flux in which CaO is dissolved is mixed with a low-viscosity liquid at the top of the alloy. And then cast into a suitable mold to obtain the separated alloy and C
it is possible to recover the aF 2-based flux.
【0020】るつぼの材質は、合金や弗化物との反応が
少ない耐熱・耐食性セラミックスや金属、例えばBN,
W,Ta,Moなどが用いられる。金属製るつぼを使用
する場合には、希土類金属及び上記混合ハロゲン化物を
合金粉末100重量部に対して1〜100重量部、好ま
しくは20〜50重量部添加して、合金やフラックスの
融点を下げ、るつぼと合金の反応を少なくすることが望
ましい。この場合、加熱温度として合金やフラックスの
融点以上1,400℃以下の温度で3〜30分溶解する
ことが好ましい。The material of the crucible is made of heat-resistant and corrosion-resistant ceramics or metals having little reaction with alloys and fluorides, for example, BN,
W, Ta, Mo, etc. are used. When using a metal crucible, 1 to 100 parts by weight, preferably 20 to 50 parts by weight, of the rare earth metal and the above mixed halide is added to 100 parts by weight of the alloy powder to lower the melting point of the alloy or the flux. It is desirable to reduce the reaction between the crucible and the alloy. In this case, it is preferable to dissolve at a temperature of not less than the melting point of the alloy or the flux and not more than 1,400 ° C. for 3 to 30 minutes as the heating temperature.
【0021】更にCa還元と加熱溶解を同一の装置で連
続して行うこともでき、この場合には乾燥廃粉末、金属
Ca,CaF2系フラックス、必要によっては当該磁石
と同一の希土類金属(例えば、Nd,Sm)を乾燥廃粉
末100重量部に対して0〜50重量部混合し、これを
加熱して還元反応を行わしめ、引き続いて更に温度を上
げて溶解することによって、合金とフラックスを分離、
回収することもできる。Further, Ca reduction and heat dissolution can be continuously performed by the same apparatus. In this case, the dried waste powder, metal Ca, CaF 2 -based flux, and if necessary, the same rare earth metal (for example, , Nd, Sm) are mixed in an amount of 0 to 50 parts by weight with respect to 100 parts by weight of the dried waste powder, and the mixture is heated to cause a reduction reaction. Subsequently, the temperature is further increased to dissolve the alloy and the flux. Separation,
It can also be collected.
【0022】この場合、炭素などの不純物は溶融フラッ
クス中に抽出され、合金中の不純物は低減される。In this case, impurities such as carbon are extracted into the molten flux, and impurities in the alloy are reduced.
【0023】上記のように廃粉末をCa還元処理して、
希土類水酸化物や酸化物をCaOとし、CaF2系フラ
ックスと加熱溶解することによって、CaOがCaF2
系フラックスに溶解し粘性が小さくなり、比重差により
容易に合金とフラックスの分離が達成される。The waste powder is reduced by Ca as described above,
Rare earth hydroxides and oxides are converted into CaO, and CaO is heated and dissolved with a CaF 2 -based flux, so that CaO becomes CaF 2.
Dissolution in the system flux reduces the viscosity, and the separation of the alloy and the flux is easily achieved due to the difference in specific gravity.
【0024】こうして回収した合金に、必要に応じて希
土類金属や他の磁石成分金属を添加して、加熱溶解する
公知の方法により、所定組成の磁石合金を製造すること
ができる。A magnet alloy having a predetermined composition can be produced by a known method in which a rare earth metal or another magnet component metal is added to the recovered alloy, if necessary, and then heated and melted.
【0025】[0025]
【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
【0026】[実施例1]Nd≒30wt%、Dy≒3
wt%、B≒1wt%、残Fe,Coなどを含むNd系
希土類磁石を研削加工した研削屑(含水率≒40%)を
吸引濾過して脱水した後、真空乾燥器内50℃で減圧乾
燥して粉末とした。この粉末の酸素量は4.0wt%で
あった。この乾燥粉末1kgあたり金属Caを110g
(水酸化物を還元するのに必要な理論量の10%過剰)
混合し、ステンレス製容器に入れ、Ar中1,000℃
で3時間加熱した。X線回折で生成物を調べた結果、C
aOの生成が確認された。このCa還元した粉末1kg
あたりCaF2を280g混合し、プラズマ溶解炉に投
入しながら約1,600℃で加熱溶解し、直径50mm
φ×長さ≒120mmLの棒状合金インゴットを得た。
合金中の酸素量は250ppmに低下しており、CaF
2−CaOフラックスはインゴット上部で合金と分離さ
れた。Example 1 NdN30 wt%, Dy ≒ 3
Nd-based rare earth magnets containing wt%, B ≒ 1wt%, residual Fe, Co, etc., are ground and ground (water content ≒ 40%) by suction filtration and dewatered, and then dried under reduced pressure at 50 ° C. in a vacuum dryer. Into a powder. The oxygen content of this powder was 4.0 wt%. 110 g of metal Ca per 1 kg of this dry powder
(10% excess of the theoretical amount required to reduce the hydroxide)
Mix, put in a stainless steel container, 1,000 ° C in Ar
For 3 hours. As a result of examining the product by X-ray diffraction, C
The generation of aO was confirmed. 1kg of this Ca reduced powder
280 g of CaF 2 per unit, and heated and melted at about 1,600 ° C. while being put into a plasma melting furnace, to obtain a diameter of 50 mm.
A rod-like alloy ingot of φ × length ≒ 120 mmL was obtained.
The oxygen content in the alloy has dropped to 250 ppm and CaF
The 2- CaO flux was separated from the alloy at the top of the ingot.
【0027】[実施例2]Sm約25wt%を含むSm
−Co系希土類磁石の研削屑を実施例1と同様に乾燥
し、酸素量2.7wt%の粉末を得た。この乾燥粉末1
kgあたり金属Caを81g(理論量の20%過剰)混
合し、ステンレス容器に入れ、Ar中950℃で3時間
加熱して還元した粉末を得た。このCa還元した粉末1
kgあたりCaF2を95g混合し、実施例1と同様に
して合金インゴットを得た。合金中の酸素量は160p
pmに低下していた。[Example 2] Sm containing about 25 wt% of Sm
The grinding dust of the Co-based rare earth magnet was dried in the same manner as in Example 1 to obtain a powder having an oxygen content of 2.7% by weight. This dry powder 1
81 g of metallic Ca per kg (20% excess of theoretical amount) was mixed, placed in a stainless steel container, and heated at 950 ° C. for 3 hours in Ar to obtain a reduced powder. This Ca reduced powder 1
95 g of CaF 2 was mixed per kg, and an alloy ingot was obtained in the same manner as in Example 1. The amount of oxygen in the alloy is 160p
pm.
【0028】[実施例3]実施例1のCa還元した粉末
1kgをTaるつぼに入れ、Ndメタルを300g、C
aF2を280g、LiFを70g添加して高周波誘導
溶解炉で1,350℃に加熱溶解した。溶解後5分間保
持し、鋳型に鋳造した。冷却後、鋳造物を取出したとこ
ろ、CaF2−LiF−CaOフラックスは合金の上部
に合金と分離しており、容易に合金とフラックスを分離
回収できた。合金中の酸素量は220ppmであった。Example 3 1 kg of the Ca-reduced powder of Example 1 was placed in a Ta crucible, and 300 g of Nd metal was added.
280 g of aF 2 and 70 g of LiF were added and heated and melted at 1,350 ° C. in a high frequency induction melting furnace. After dissolution, the mixture was held for 5 minutes and cast into a mold. After cooling, the casting was taken out, and the CaF 2 —LiF—CaO flux was separated from the alloy at the top of the alloy, and the alloy and the flux could be easily separated and recovered. The oxygen content in the alloy was 220 ppm.
【0029】[比較例1]実施例1のCa還元した粉末
を、CaF2を混合しないで、そのままプラズマ溶解炉
に投入しながら約1,600℃で加熱溶解した。得られ
た合金インゴットは、CaOとの分離は困難で、インゴ
ット中にはCaOが分散しているのが見られた。また、
合金中の酸素量は1,200ppmであった。[Comparative Example 1] The Ca-reduced powder of Example 1 was heated and melted at about 1,600 ° C. without being mixed with CaF 2 and directly charged into a plasma melting furnace. The obtained alloy ingot was difficult to separate from CaO, and it was found that CaO was dispersed in the ingot. Also,
The amount of oxygen in the alloy was 1,200 ppm.
【0030】[0030]
【発明の効果】本発明によれば、従来は湿式処理によっ
てしか回収できなかった酸素が多く磁石原料として不適
当な希土類磁石合金廃粉末を簡略なプロセスで再使用可
能な酸素の低減された原料合金インゴットに回収でき、
その工業的価値は非常に大きい。According to the present invention, a rare-earth magnet alloy waste powder which has a large amount of oxygen which has been conventionally recovered only by a wet treatment and is unsuitable as a magnet raw material can be reused by a simple process with a reduced oxygen-containing raw material. Can be collected in alloy ingots,
Its industrial value is very large.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 59/00 C22B 59/00 // C22C 19/07 C22C 19/07 E 38/00 303 38/00 303D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22B 59/00 C22B 59/00 // C22C 19/07 C22C 19/07 E 38/00 303 38/00 303D
Claims (1)
/又は酸化物を金属カルシウムにより還元し、次いでこ
の還元した粉末をCaF2系フラックスと加熱溶解して
合金とフラックスを分離することにより、合金を回収す
ることを特徴とする希土類磁石合金廃粉末の回収方法。1. A method of reducing hydroxide and / or oxide in a rare earth magnet alloy waste powder with calcium metal, and then heating and melting the reduced powder with a CaF 2 -based flux to separate the alloy and the flux. And recovering the rare earth magnet alloy waste powder.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000154460A JP2001335815A (en) | 2000-05-25 | 2000-05-25 | Recovery method for rare earth magnet alloy waste powder |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000154460A JP2001335815A (en) | 2000-05-25 | 2000-05-25 | Recovery method for rare earth magnet alloy waste powder |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001335815A true JP2001335815A (en) | 2001-12-04 |
Family
ID=18659551
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000154460A Pending JP2001335815A (en) | 2000-05-25 | 2000-05-25 | Recovery method for rare earth magnet alloy waste powder |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001335815A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1275741A1 (en) * | 2001-07-10 | 2003-01-15 | Shin-Etsu Chemical Co., Ltd. | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet |
| JP2020013887A (en) * | 2018-07-18 | 2020-01-23 | 国立研究開発法人産業技術総合研究所 | Method for producing alloy particles and alloy particles |
-
2000
- 2000-05-25 JP JP2000154460A patent/JP2001335815A/en active Pending
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1275741A1 (en) * | 2001-07-10 | 2003-01-15 | Shin-Etsu Chemical Co., Ltd. | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet |
| US6960240B2 (en) | 2001-07-10 | 2005-11-01 | Shin-Etsu Chemical Co., Ltd. | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet |
| US7204891B2 (en) | 2001-07-10 | 2007-04-17 | Shin-Etsu Chemical Co., Ltd. | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet |
| JP2020013887A (en) * | 2018-07-18 | 2020-01-23 | 国立研究開発法人産業技術総合研究所 | Method for producing alloy particles and alloy particles |
| JP7137830B2 (en) | 2018-07-18 | 2022-09-15 | 国立研究開発法人産業技術総合研究所 | Method for producing alloy particles and alloy particles |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7204891B2 (en) | Remelting of rare earth magnet scrap and/or sludge, magnet-forming alloy, and sintered rare earth magnet | |
| JP5146658B2 (en) | Recovery method of rare earth elements | |
| Venkateswaran et al. | W-scrap recycling by the melt bath technique | |
| KR900006193B1 (en) | Manufacturing method of neodymium-iron-boron permanent magnet | |
| JP5149164B2 (en) | Method for recovering useful materials from rare earth-iron-boron magnet scrap | |
| WO2017122556A1 (en) | Method for separating rare-earth elements from iron, and rare-earth element-containing slag | |
| JP4296372B2 (en) | Recycling method of Nd-based rare earth magnet scrap | |
| JPS63153230A (en) | Production of pure alloy based on rare earth metal and transition metal by heat-reduction of metal | |
| JP6478113B2 (en) | Recovery method of rare earth elements | |
| JP2000144275A (en) | Method for recovering rare earth element | |
| JP3894061B2 (en) | Rare earth magnet scrap and / or sludge remelting method, magnet alloy and rare earth sintered magnet | |
| JP3716908B2 (en) | Recovery method of rare earth elements from sludge containing rare earth elements | |
| JP2001335815A (en) | Recovery method for rare earth magnet alloy waste powder | |
| JP2001335852A (en) | Method for recovering Nd-based rare earth magnet alloy waste powder | |
| JP5977385B2 (en) | Method for enriching rare earth elements from rare earth-containing materials | |
| JP2002356724A (en) | Rare earth magnet alloy slag regeneration method and rare earth magnet alloy production method | |
| JP7361011B2 (en) | Method for recycling heavy rare earth elements and method for recycling rare earth magnets | |
| JPH0790411A (en) | Method for producing high-purity rare earth metal | |
| JP2002302720A (en) | Method for recovering tallium from tallium-containing glass scrap | |
| JP3450447B2 (en) | Rare earth magnet scrap melting method | |
| CN109371262B (en) | A method for recovering titanium element in titanium alloy waste by utilizing molten aluminum | |
| JP2002012921A (en) | Recycling method of rare earth magnet scrap | |
| JPS5967326A (en) | Recovery method of valuable metal from alloy containing rare earth elements | |
| JPH11241127A (en) | Recovery method of alloy scrap containing rare earth metal | |
| CN115141942B (en) | Method for recovering rare earth from neodymium iron boron waste and separating main element iron and application of method in preparation of soft magnetic ferrite serving as raw material |