[go: up one dir, main page]

JP2001507075A - Method for producing sintered carbide alloy by powder injection molding - Google Patents

Method for producing sintered carbide alloy by powder injection molding

Info

Publication number
JP2001507075A
JP2001507075A JP52034898A JP52034898A JP2001507075A JP 2001507075 A JP2001507075 A JP 2001507075A JP 52034898 A JP52034898 A JP 52034898A JP 52034898 A JP52034898 A JP 52034898A JP 2001507075 A JP2001507075 A JP 2001507075A
Authority
JP
Japan
Prior art keywords
powder
binder
surfactant
mixed
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP52034898A
Other languages
Japanese (ja)
Other versions
JP2001507075A5 (en
Inventor
フルメ,イングリド
サムエルソン,ペーター
Original Assignee
サンドビック アクティエボラーグ(プブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンドビック アクティエボラーグ(プブル) filed Critical サンドビック アクティエボラーグ(プブル)
Publication of JP2001507075A publication Critical patent/JP2001507075A/en
Publication of JP2001507075A5 publication Critical patent/JP2001507075A5/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】 本発明は、硬い構成要素と結合剤相を作る粉末を含む粉末混合物を磨砕し、前記磨砕された粉末混合物を乾燥し、前記粉末混合物と有機バインダー、ワックス及び界面活性剤を混合して供給材料にし、この供給材料を通常のプラスチック成形装置で所望の形状の物体に成形し、前記物体からバインダーを除去し、焼結することを含む射出成形技術によって、結合剤相に1又はそれ以上の硬い構成要素を含む焼結体を作る方法に関する。磨砕操作の間に界面活性剤が既に導入されている場合、物体の気孔率のレベルはかなり減少する。   (57) [Summary] The present invention provides a method of grinding a powder mixture comprising a powder that forms a hard component and a binder phase, drying the ground powder mixture, and mixing the powder mixture with an organic binder, a wax and a surfactant. Into a feedstock, the feedstock being formed into an object of the desired shape in conventional plastic molding equipment, the binder phase being removed by one or more injection molding techniques, including removing the binder from the object and sintering. And a method for producing a sintered body including a hard component. If the surfactant has already been introduced during the attrition operation, the level of porosity of the object is considerably reduced.

Description

【発明の詳細な説明】 粉末射出成形による焼結炭化物合金の製造方法 本発明は、粉末射出成形による焼結炭化物合金(cemented carb ide)の製造方法に関する。 焼結炭化物合金は一般に、粉末冶金法によって製造する。この粉末冶金法は、 硬い構成要素と結合剤相を作る粉末を含む粉末混合物をアルコール−水の溶液中 において湿式磨砕すること、この磨砕された混合物を噴霧乾燥によって乾燥させ て、良い流動性を持つ直径が約0.1mmの凝集体からなる粉末にすること、こ の乾燥させた粉末を圧縮して所望の形状の物体にすること、そして最終的に焼結 させることを含む。 焼結炭化物合金部品を作る代わりの方法は、射出成形による。射出成形は、プ ラスチック産業において、「最終的な形状」又は「ほぼ最終的な形状」の部品を 製造するための一般的な製造方法である。熱可塑性又は熱硬化性のポリマーから なる又はこれらを含んでいるペーストを加熱して適当な温度にし、そしてノズル を通して所望の形状寸法を持つ成形体にする。粉末冶金において使用する場合、 射出成形は一般に粉末射出成形(PIM)と呼ばれる。PIMは従来の粉末冶金 技術である工具プレス(tool pressing)よりも費用がかかる部品 の製造方法なので、複雑な形状の部品を、少数又は多数、連続的に製造するため に適用することが好ましい。 粉末射出成形における4つの主な処理工程は以下のI〜IVである。 I.所望の金属又はセラミックの粉末を、ワックス及び界面活性 剤と組み合わせた又は組み合わせない有機バインダー、例えばポリエチレン、ポ リプロピレンといったポリオレフィン、これらとアクリレートのコポリマー、ア セテート、又はポリアセタールと均質混合する。得られた混合物は一般に供給材 料と呼ばれる。界面活性剤は混合助剤として使用する。それは、バインダーポリ マーと金属又はセラミック粉末の接着を促進して、ポリマーマトリックス内に配 合できる粉末の量を増加させるのを可能にする。更に、界面活性剤は分散剤とし て機能する。すなわち、ポリマー成分と前記粉末との混合物の最終製品である配 合物の全体にわたって、均一な粉末の分散を得るための対策として使用する。所 望の熱可塑性の性質を得るために、バインダーの量は55〜25体積%でなけれ ばならず、界面活性剤の量は、金属/セラミック粉末上における界面活性剤の少 なくとも1つの単層に相当すべきである。混合工程は、他の処理工程の基礎とな るので非常に重要である。バインダーは、成形の間、適切な性質を持ち、且つ望 まれない炭素又は他の不所望の残留物を全く残さずに焼結の前に容易に燃え尽き なければならない。混合の結果として、配合物が得られる。混合は二軸スクリュ ー押出機において、ポリマー成分の溶融区間よりも十分高温で行って、完全な均 質化が確実になるようにすべきである。 II.部品を所望の形に成形することを、通常のプラスチック射出成型装置で 行う。ポリマーマトリックスで使用されたポリマー成分に依存して、供給材料を 約100〜240℃に加熱し、そして所望の形状のキャビティに入れ込む。冷却 の後で、成形された部品をキャビティから押し出して取り出す。 III.成形された部品からバインダーを除去する。この操作は、部品にクラ ックが発生しないような方法で行わなければならない。バインダーの除去は多く の方法で行える。一般にバインダーは、 加熱によって又は適切な溶媒中での抽出によって又はこれら両方の組み合わせに よって除去する。 IV.焼結は、工具プレスされた部品と本質的に同じ方法で行う。 欠陥のない製品を作ろうとする場合は、完全な混合工程が基本となる。金属又 はセラミックの粉末をバインダーと混合する場合、以下のI〜IIIの3つの異 なる手法が一般に使用される。 I.全てのバインダー成分の同時混合 この場合、ブラベンダー(Brabender)又はハーケ(Haake)タ イプのバッチ式混合装置において、溶融した状態でバインダー成分を粉末と同時 に混合する。あるいは、成分を押出機で同時に混合する。 II.粉末と界面活性剤の乾燥予備混合 この場合、溶融状態で混合を行う前に、バッチ式又は連続式の混合装置におい て界面活性剤を粉末にドライブレンドする。 III.粉末と界面活性剤との、及びいくらかのバインダーと界面活性剤との 乾燥予備混合。 この場合、界面活性剤を粉末とドライブレンドし、且つI及びIIのように溶 融状体で混合する前に、同じ又は他のもう1つの界面活性剤をバインダー構成成 分の一部又は残部と混合する。 上述のように、焼結炭化物合金粉末は磨砕する。磨砕は、磨砕された混合物中 で結合剤相の均一な分布を得るために必要であると考えられる。磨砕操作は、焼 結炭化物合金の磨砕体を使用して様々な大きさの磨砕機で行う。磨砕時間は数時 間〜数日程度である。磨砕操作はスラリーをもたらし、その後このスラリーを噴 霧乾燥する。噴霧乾燥の結果、本質的に約0.1mmのサイズの球形の凝集体か らなる粉末が得られる。 Iのように粉末を全てのバインダー構成成分と同時に混合する場合、粉末構成 成分への界面活性剤の吸着と、全ての様々なバインダー構成成分への界面活性剤 の吸着とが競合する危険性がある。これは、最も所望の箇所、すなわち粉末の表 面における濡れの作用を不十分にすることがある。この不十分な濡れの作用の結 果、極性の金属粉末と非極性のバインダーの混和性がかなり減少する。II及び IIIの場合、これは改善されるが、界面活性剤がうまく分散し粉末に等しく付 着することを確実にするためにかなり長い混合時間が必要とされる。しかし、こ の方法で、粒度の細かい粉末を混合する場合の欠点は、凝集体がそのままで維持 されることである。この結果バインダーは、粉末の凝集体に付着しそしてそれに よって凝集体を一緒に維持することに貢献する。混合工程の間に凝集体が粒子に 分解する場合でも、粉末の不十分なバインダーによる濡れのために均質化するこ とが課題となる。 本発明の目的は、界面活性剤の分散を促進し、界面活性剤が、比較的大きい凝 集体にばかりではなく、粒子と比較的小さい凝集体に付着することを確実にする 方法を提供することである。 焼結炭化物合金粉末の磨砕工程の間に界面活性剤を加えると、改良された性質 を持つ焼結構造が得られることがここで意外にも見出された。従来技術と比較す ると、本発明に従って製造された部品の多孔性の程度はかなり減少する。 本発明によれば、硬い構成要素を作る粉末(<0.5μm〜10μm)と結合 剤相を作る粉末(硬い構成要素の3〜20重量%)を、従来の工具プレスのため に使用される粉末に加える滑剤の代わりに界面活性剤と共に磨砕する。この場合 、磨砕液は、界面活性剤を溶解又は少なくとも部分的に溶解できるとする。界面 活性剤の量は全ての粉末の表面を覆うのに十分な量であるべきであり、そして好 ましくはその過剰な量は、バインダー成分の残りに溶解又はこの残りと混和でき る量よりも多くないべきである。 界面活性剤は、エタノール、アセトン及びベンゼン中で粉末と混合される単一 の脂肪酸、例えばヘキサデカン酸、テトラデカン酸、9,10−オクタデカン酸 、9,12−オクタジエン酸、又は9,12,5−オクタデカトリエン酸でよい 。更に、界面活性剤はある種の有機金属化合物、Zn−ステアリン酸塩、又は脂 肪酸に対応するアルコール、例えば1−ヘキサデカノールでよい。それはアミン 、例えばオクタデシルアミンでもよい。これら全ての界面活性剤は、エタノール 中で磨砕することができる。 界面活性剤として、ベンゼン、エタノール、キシロールと共に磨砕することが できる75〜95℃の融点を持つ高分子量不飽和脂肪酸のZn塩、又は97〜1 05℃の融点を持つ高分子量のほとんどの不飽和の脂肪酸のZn塩も使用できる 。 好ましくは、界面活性剤は、高分子量のほとんどの不飽和の脂肪酸又はヘキサ デカノールのZn塩である。 十分な時間の磨砕の後で、得られたスラリーを好ましくは噴霧乾燥によって乾 燥する。この乾燥した粉末をその後、バインダーの残部と、これらの成分の融点 を十分に超える温度で混合する。バインダー成分の組成物は、ポリオレフィンと 混合されたワックス、すなわちEVA(エテンビニルアセテート)、EBA(エ テンブチルアクリレート)、EAA(エテンアクリル酸)、PE(ポリエチレン )、PP(ポリプロピレン)のいずれか若しくはこれらの組み合わせと混合され たパラフィンワックス又はミクロクリスタリンワックス、又は単にワックスと混 合されたものでよい。好ましいバインダーは、PPと混合されたパラフィンワッ クスである。 混合の後で、所望の形状を持つ部品への成形を、通常のプラスチ ック射出成形装置で行う。好ましくは、パラ−メンタ−1,8−ジエン又はメチ ル−エチル−ケトン及び2−プロパノールを有する浴での抽出によって、そして その後の減圧又は加熱による乾燥によって、バインダーを成形された部品から取 り除く。最後に、工具プレスされた部品のための方法と本質的に同じ方法で焼結 を行う。 観察された改良の理由は、おそらく、界面活性剤による粉末粒子の均質なコー ティングが得られたことによる。粉末を磨砕しながらの、粉末と界面活性剤の湿 式混合は界面活性剤が粉末粒子をコーティングすることを可能にし、且つこの操 作ではほとんどの凝集体を分解することができる。これは、界面活性剤がそれぞ れの凝集体ではなく、それぞれの粒子をコーティングすることを可能にする。後 の工程において二軸スクリュー押出機でコーティングされた粉末をポリマー成分 と混合する場合、粉末の凝集体を含む危険性が最小にされる。 焼結炭化物合金粉末を参照して、本発明を説明してきたが、本発明を、しばし ばサーメットと呼ばれるチタンに基づく炭窒化物の粉末にも適用できることは明 らかである。 例1(本発明) 平均粒度が1.3〜2.9μmのWC粉末30kg及びCo粉末3kgを、セ チルアルコール0.5kgと混合し、そしてそれを90:10のアルコール−水 の溶液中で30時間にわたって湿式磨砕した。得られたスラリーを噴霧乾燥して 粉末にした。この噴霧乾燥した粉末をPP(ポリプロピレン)及びパラフィンワ ックスと混合し、そして押出機でペレット化した。このペレットを通常の押出形 成装置に供給し、そして125〜165℃のシリンダー温度で接線方向スローア ウェイチップ(tangential insert)に成形した。成形された 部品から、初めにメチル−エチル−ケト ンと1−プロパノール中での抽出によって、その後大気圧でH2ガスを流しなが ら400℃の温度に加熱することによってバインダーを除去した。このバインダ ー除去工程の後で、この部品を標準の方法で焼結した。焼結された部品は、IS O4505基準で気孔率レベルがA00+B02+C00でありマクロポア1c m2当たり1〜2個存在することが分かった。 例2(本発明) エタノール溶液中においてステアリン酸0.7kgを粉末と共に磨砕し、その 後例1と同様に噴霧乾燥して混合したことを除いて、例1の方法を繰り返した。 焼結された部品は、気孔率レベルがA00+B00+C00でありマクロポアが 1cm2当たり1〜2個存在することが分かった。 例3(本発明) 平均粒度が3〜4μmのWC粉末24kg及びCo粉末2kgを、高分子量不 飽和脂肪酸のZn塩0.17kgと混合し、そしてそれを90:10のアルコー ル−水の溶液中で22時間にわたって湿式磨砕した。得られたスラリーを噴霧乾 燥して粉末にした。この噴霧乾燥した粉末をPP(ポリプロピレン)及びパラフ ィンワックスと混合し、そして押出機でペレット化した。このペレットを通常の 射出成形装置に供給し、そして150〜170℃のシリンダー温度でQ−カット スローアウェイチップ(Q−Cut insert)に成形した。成形された部 品から、初めにパラ−メンタ−1,8−ジエン中での抽出によって、その後真空 下において50℃で乾燥することによってバインダーを除去した。このバインダ ー除去工程の後で、この部品を標準の方法で焼結した。焼結された部品は、IS O4505基準で気孔率レベルがA00+B00+C00でありマクロポアを持 たないことが分かった。 例4(従来技術) 混合工程の間に粉末と供にセチルアルコールを加えたことを除いて、例1を繰 り返した。成形された部品は例1で得られた部品と共に焼結させた。焼結された 部品は、気孔率レベルがA00+B02+C00でありマクロポアが1cm2当 たり8〜10個存在することが分かった。The present invention relates to a method for producing a cemented carb alloy by powder injection molding. Sintered carbide alloys are generally manufactured by powder metallurgy. This powder metallurgy process involves wet milling a powder mixture containing a hard component and a powder that forms a binder phase in an alcohol-water solution, drying the milled mixture by spray drying to obtain a good flow. A powder consisting of agglomerates having a diameter of about 0.1 mm, comprising compressing the dried powder into a body of a desired shape, and finally sintering. An alternative method of making a cemented carbide part is by injection molding. Injection molding is a common manufacturing method in the plastics industry for producing "final shape" or "nearly final shape" parts. A paste consisting of or containing a thermoplastic or thermoset polymer is heated to a suitable temperature and shaped through a nozzle into a shaped body having the desired geometry. When used in powder metallurgy, injection molding is commonly referred to as powder injection molding (PIM). Since PIM is a more expensive part manufacturing method than conventional powder metallurgy technology tool pressing, it is preferable to apply it to continuously manufacture a small number or a large number of parts having a complicated shape. The four main processing steps in powder injection molding are the following I-IV. I. The desired metal or ceramic powder is intimately mixed with an organic binder, with or without a combination of waxes and surfactants, for example, polyolefins such as polyethylene, polypropylene, copolymers, acetates, or polyacetals of these with acrylates. The resulting mixture is commonly called a feed. Surfactants are used as mixing aids. It facilitates the adhesion of the binder polymer to the metal or ceramic powder and allows to increase the amount of powder that can be incorporated into the polymer matrix. In addition, surfactants function as dispersants. That is, it is used as a measure to obtain a uniform powder dispersion throughout the final formulation of the mixture of the polymer component and the powder. In order to obtain the desired thermoplastic properties, the amount of binder must be 55 to 25% by volume and the amount of surfactant corresponds to at least one monolayer of surfactant on the metal / ceramic powder. Should. The mixing step is very important as it forms the basis for other processing steps. The binder must have suitable properties during molding and burn out easily before sintering without leaving any unwanted carbon or other undesired residues. As a result of the mixing, a formulation is obtained. The mixing should take place in the twin screw extruder at a temperature sufficiently higher than the melting section of the polymer components to ensure complete homogenization. II. The molding of the part into the desired shape is carried out with a conventional plastic injection molding machine. Depending on the polymer components used in the polymer matrix, the feed is heated to about 100-240 ° C. and placed into the cavity of the desired shape. After cooling, the molded part is extruded out of the cavity. III. Remove the binder from the molded part. This operation must be performed in such a way as to avoid cracks in the part. Removal of the binder can be accomplished in a number of ways. Generally, the binder is removed by heating or by extraction in a suitable solvent or by a combination of both. IV. Sintering is performed in essentially the same manner as for tool pressed parts. When trying to make a defect-free product, a thorough mixing process is fundamental. When mixing metal or ceramic powders with a binder, three different approaches I-III below are commonly used. I. Simultaneous mixing of all binder components In this case, in a Brabender or Haake type batch mixing apparatus, the binder components are mixed simultaneously with the powder in a molten state. Alternatively, the components are mixed simultaneously in an extruder. II. Dry Premixing of Powder and Surfactant In this case, the surfactant is dry blended with the powder in a batch or continuous mixing apparatus before mixing in a molten state. III. Dry premixing of powder and surfactant, and some binder and surfactant. In this case, the same or another surfactant is mixed with some or the rest of the binder component before dry blending the surfactant with the powder and mixing in the melt as in I and II. I do. As mentioned above, the cemented carbide alloy powder is ground. Milling may be necessary to obtain a uniform distribution of the binder phase in the milled mixture. The grinding operation is performed by a grinding machine of various sizes using a ground body of the sintered carbide alloy. The grinding time is several hours to several days. The attrition operation results in a slurry, which is then spray dried. Spray drying results in a powder consisting essentially of spherical aggregates of a size of about 0.1 mm. When the powder is mixed simultaneously with all the binder components as in I, there is a risk that the adsorption of the surfactant to the powder components and the adsorption of the surfactant to all the various binder components compete with each other. is there. This may result in poor wetting action at the most desired location, i.e. the surface of the powder. As a result of this poor wetting action, the miscibility of the polar metal powder with the non-polar binder is significantly reduced. In the case of II and III this is improved, but rather long mixing times are required to ensure that the surfactant disperses well and adheres equally to the powder. However, a disadvantage of mixing fine-grained powders in this way is that the agglomerates remain intact. As a result, the binder adheres to the powder agglomerates and thereby contributes to keeping the agglomerates together. Even if the agglomerates decompose into particles during the mixing step, homogenization is a challenge due to insufficient wetting of the powder by the binder. It is an object of the present invention to provide a method for promoting the dispersion of surfactants and ensuring that the surfactants adhere to particles and relatively small aggregates, not only to relatively large aggregates. It is. It has now surprisingly been found that the addition of surfactant during the grinding process of the cemented carbide alloy powder results in a sintered structure with improved properties. Compared to the prior art, the degree of porosity of the parts manufactured according to the invention is considerably reduced. According to the invention, a powder making the hard component (<0.5 μm to 10 μm) and a powder making the binder phase (3 to 20% by weight of the hard component) are used for conventional tool pressing. Grind with surfactant instead of lubricant added to the powder. In this case, the grinding liquid is assumed to be capable of dissolving or at least partially dissolving the surfactant. The amount of surfactant should be sufficient to cover the surface of all of the powder, and preferably the excess is no more than can be dissolved or miscible with the rest of the binder component Should. The surfactant is a single fatty acid, such as hexadecanoic acid, tetradecanoic acid, 9,10-octadecanoic acid, 9,12-octadienoic acid, or 9,12,5-acid mixed with the powder in ethanol, acetone and benzene. Octadecatrienoic acid may be used. Further, the surfactant may be certain organometallic compounds, Zn-stearate, or alcohols corresponding to fatty acids, such as 1-hexadecanol. It may be an amine, for example octadecylamine. All these surfactants can be ground in ethanol. As surfactants, Zn salts of high molecular weight unsaturated fatty acids having a melting point of 75-95 ° C., which can be milled with benzene, ethanol, xylol, or most of the high molecular weight unsaturated salts having a melting point of 97-105 ° C. Zn salts of saturated fatty acids can also be used. Preferably, the surfactant is a Zn salt of a high molecular weight, most unsaturated fatty acid or hexadecanol. After a sufficient amount of attrition, the resulting slurry is dried, preferably by spray drying. The dried powder is then mixed with the remainder of the binder at a temperature well above the melting points of these components. The composition of the binder component is a wax mixed with a polyolefin, that is, any one of EVA (ethene vinyl acetate), EBA (ethene butyl acrylate), EAA (ethene acrylic acid), PE (polyethylene), PP (polypropylene) or these May be paraffin wax or microcrystalline wax mixed with the combination of, or simply mixed with wax. A preferred binder is paraffin wax mixed with PP. After mixing, molding into parts having the desired shape is carried out in a conventional plastic injection molding machine. Preferably, the binder is removed from the molded part by extraction with a bath containing para-mentha-1,8-diene or methyl-ethyl-ketone and 2-propanol and subsequent drying by vacuum or heating. Finally, sintering is performed in essentially the same way as for tool pressed parts. The reason for the observed improvement is probably due to the fact that a homogeneous coating of the powder particles with the surfactant was obtained. Wet mixing of the powder with the surfactant while grinding the powder allows the surfactant to coat the powder particles, and this operation can break down most agglomerates. This allows the surfactant to coat each particle, rather than each aggregate. When the powder coated in the twin screw extruder is mixed with the polymer component in a later step, the risk of including powder agglomerates is minimized. Although the invention has been described with reference to sintered carbide alloy powder, it is clear that the invention can be applied to titanium-based carbonitride powders, often referred to as cermets. Example 1 (invention) 30 kg of WC powder with an average particle size of 1.3 to 2.9 μm and 3 kg of Co powder are mixed with 0.5 kg of cetyl alcohol and mixed in a 90:10 alcohol-water solution with 30 kg. Wet milled over time. The resulting slurry was spray dried to a powder. The spray dried powder was mixed with PP (polypropylene) and paraffin wax and pelletized in an extruder. The pellets were fed to a conventional extruder and formed into tangential inserts at a cylinder temperature of 125-165 ° C. The molded parts were freed of binder by first extraction in methyl-ethyl-ketone and 1-propanol and then by heating to a temperature of 400 ° C. with flowing H 2 gas at atmospheric pressure. After the binder removal step, the part was sintered in a standard manner. Sintered parts, the porosity level in IS O4505 criteria were found to be present 1-2 per macropores 1c m 2 is A00 + B02 + C00. Example 2 (invention) The procedure of Example 1 was repeated, except that 0.7 kg of stearic acid was ground together with the powder in an ethanol solution and then spray dried and mixed as in Example 1. The sintered parts were found to have a porosity level of A00 + B00 + C00 and 1-2 macropores / cm 2 . Example 3 (invention) 24 kg of WC powder and 2 kg of Co powder with an average particle size of 3-4 μm are mixed with 0.17 kg of Zn salt of a high molecular weight unsaturated fatty acid, and then mixed with a 90:10 alcohol-water solution. For 22 hours. The resulting slurry was spray dried to a powder. The spray dried powder was mixed with PP (polypropylene) and paraffin wax and pelletized in an extruder. The pellets were fed to a conventional injection molding machine and molded into Q-cut inserts at a cylinder temperature of 150-170 ° C. The molded parts were freed of binder by first extracting in para-mentor-1,8-diene and then drying at 50 ° C. under vacuum. After the binder removal step, the part was sintered in a standard manner. The sintered part was found to have a porosity level of A00 + B00 + C00 based on IS O4505 and no macropores. Example 4 (Prior Art) Example 1 was repeated except that cetyl alcohol was added with the powder during the mixing step. The molded part was sintered together with the part obtained in Example 1. The sintered parts were found to have a porosity level of A00 + B02 + C00 with 8-10 macropores / cm 2 .

Claims (1)

【特許請求の範囲】 1.硬い構成要素と結合剤相を作る粉末を、有機化合物、ワックス及び界面活 性剤を含むバインダーと混合して供給材料にし、前記供給材料を通常のプラスチ ック成形装置で所望の形状の物体に成形し、前記物体からバインダーを除去し、 そして焼結することを含む射出成形技術によって結合剤相に1又は2以上の硬い 構成要素を含む焼結体を作る方法であって、硬い構成要素と結合剤相を作る粉末 を界面活性剤と共に湿式磨砕し、乾燥し、そしてバインダーの残りを加えること を特徴とする方法。[Claims]   1. The powders that make up the hard constituents and the binder phase are mixed with organic compounds, waxes and surfactants. Mixed with a binder containing a surfactant to form a feed material, and the feed material is mixed with a normal plastic. Molding into an object of a desired shape with a back molding apparatus, removing the binder from the object, And one or more hard phases in the binder phase by injection molding techniques including sintering. A method for making a sintered body including constituents, wherein the powder forms a hard constituent and a binder phase. Wet milling with surfactant, drying and adding the rest of the binder A method characterized by the following.
JP52034898A 1996-10-25 1997-10-14 Method for producing sintered carbide alloy by powder injection molding Pending JP2001507075A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9603936A SE9603936D0 (en) 1996-10-25 1996-10-25 Method of making cemented carbide by metal injection molding
SE9603936-7 1996-10-25
PCT/SE1997/001715 WO1998018973A1 (en) 1996-10-25 1997-10-14 Method of making cemented carbide by powder injection molding

Publications (2)

Publication Number Publication Date
JP2001507075A true JP2001507075A (en) 2001-05-29
JP2001507075A5 JP2001507075A5 (en) 2005-06-16

Family

ID=20404398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52034898A Pending JP2001507075A (en) 1996-10-25 1997-10-14 Method for producing sintered carbide alloy by powder injection molding

Country Status (6)

Country Link
EP (1) EP0963454B1 (en)
JP (1) JP2001507075A (en)
AT (1) ATE229574T1 (en)
DE (1) DE69717861T2 (en)
SE (1) SE9603936D0 (en)
WO (1) WO1998018973A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642240A (en) * 2012-04-25 2012-08-22 深圳顺络电子股份有限公司 Manufacture method of ferrite core blank and ferrite core

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19901305A1 (en) 1999-01-15 2000-07-20 Starck H C Gmbh Co Kg Process for the production of hard metal mixtures
US6790252B2 (en) * 2001-04-18 2004-09-14 Hard Metals Partnership Tungsten-carbide articles made by metal injection molding and method
SE526194C2 (en) * 2003-08-27 2005-07-26 Seco Tools Ab Method of manufacturing a sintered body
SE526575C2 (en) 2003-08-27 2005-10-11 Seco Tools Ab Method of manufacturing a sintered body
SE529202C2 (en) 2005-05-17 2007-05-29 Sandvik Intellectual Property Methods of manufacturing an agglomerated powder mixture of a slurry and agglomerated powder
SE529705C2 (en) * 2005-06-27 2007-10-30 Sandvik Intellectual Property Ways to make a powder mixture for cemented carbide
SE529297C2 (en) * 2005-07-29 2007-06-26 Sandvik Intellectual Property Ways to make a submicron cemented carbide powder mixture with low compression pressure
FR2903415B1 (en) * 2006-07-07 2011-06-10 Commissariat Energie Atomique PROCESS FOR MANUFACTURING A MASTER MIXTURE FOR INJECTION OR EXTRUSION MOLDING
CN102223971A (en) * 2008-11-21 2011-10-19 山高刀具公司 Method for producing cemented carbide or cermet products
SE533922C2 (en) 2008-12-18 2011-03-01 Seco Tools Ab Ways to manufacture cemented carbide products
SE534191C2 (en) * 2009-02-18 2011-05-24 Seco Tools Ab Ways to manufacture cemented carbide products
US20130064708A1 (en) * 2010-04-20 2013-03-14 Seco Tools Ab Method for producing cemented carbide products
CN102985198B (en) * 2010-05-26 2016-03-09 山高刀具公司 For the manufacture of the method for sintered-carbide product
FR2977251B1 (en) * 2011-06-30 2013-06-28 Commissariat Energie Atomique PROCESS FOR MANUFACTURING CERAMIC COLORED PIECES BY PIM
US9475945B2 (en) 2013-10-03 2016-10-25 Kennametal Inc. Aqueous slurry for making a powder of hard material
IN2013CH04500A (en) 2013-10-04 2015-04-10 Kennametal India Ltd
WO2017189724A1 (en) 2016-04-27 2017-11-02 Novartis Ag Antibodies against growth differentiation factor 15 and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397889A (en) * 1982-04-05 1983-08-09 Gte Products Corporation Process for producing refractory powder
US4478888A (en) * 1982-04-05 1984-10-23 Gte Products Corporation Process for producing refractory powder
DE69015150T2 (en) * 1989-09-14 1995-05-04 Sumitomo Electric Industries, Ltd., Osaka METHOD FOR PRODUCING SINTERED CARBIDS OR CERMET ALLOY.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102642240A (en) * 2012-04-25 2012-08-22 深圳顺络电子股份有限公司 Manufacture method of ferrite core blank and ferrite core
CN102642240B (en) * 2012-04-25 2013-12-25 深圳顺络电子股份有限公司 Manufacture method of ferrite core blank and ferrite core

Also Published As

Publication number Publication date
EP0963454A1 (en) 1999-12-15
DE69717861T2 (en) 2003-05-08
DE69717861D1 (en) 2003-01-23
SE9603936D0 (en) 1996-10-25
WO1998018973A1 (en) 1998-05-07
EP0963454B1 (en) 2002-12-11
ATE229574T1 (en) 2002-12-15

Similar Documents

Publication Publication Date Title
JP2001507075A (en) Method for producing sintered carbide alloy by powder injection molding
EP0561343B1 (en) Binder system for use in the injection molding of sinterable powders and molding compound containing the binder system
US4478888A (en) Process for producing refractory powder
CN1167836A (en) Process for producing granular material and shaped parts from hard metal materials or cermet materials
KR20130083840A (en) Method for producing cemented carbide products
EP0091013A1 (en) Process for producing refractory powder
KR101624373B1 (en) Method for making cemented carbide products
US5689796A (en) Method of manufacturing molded copper-chromium family metal alloy article
EP2367652A1 (en) Method for producing cemented carbide or cermet products
JPH03180402A (en) Binder composition for injection molding or extrusion of metal or ceramic powders
WO2020188005A1 (en) Feedstock and method for manufacturing the feedstock
DE69514722T2 (en) Process for the production of molds from metallic or ceramic powder and binder system that can be used for this purpose
JP3042808B2 (en) Binder and composition for sinterable powder injection molding
EP1510273B1 (en) Method of manufacturing hard material components
JP4187314B2 (en) Method for producing porous metal body
JPH05320708A (en) Binder and composition for sinterable powder injection molding
CN102883839A (en) Method for producing cemented carbide products
SE526194C2 (en) Method of manufacturing a sintered body
JP3212698B2 (en) Manufacturing method of cemented carbide parts
JP7511291B1 (en) Method for producing sintered ceramic body, molding composition
JPH0987775A (en) Production of molded article made of copper-chromium family metal alloy
JP2843189B2 (en) Binders and compounds for metal powder injection molding
JPH0598308A (en) Degreasing method for sintered compacts
JPH0689369B2 (en) Binder composition for injection molding
CN118206816A (en) Forming agent for high specific gravity tungsten alloy injection molding and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080129

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902