JP2002040257A - Aperture limiting element and optical head device - Google Patents
Aperture limiting element and optical head deviceInfo
- Publication number
- JP2002040257A JP2002040257A JP2000231912A JP2000231912A JP2002040257A JP 2002040257 A JP2002040257 A JP 2002040257A JP 2000231912 A JP2000231912 A JP 2000231912A JP 2000231912 A JP2000231912 A JP 2000231912A JP 2002040257 A JP2002040257 A JP 2002040257A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light beam
- wavelength
- aperture limiting
- limiting element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Optical Head (AREA)
- Polarising Elements (AREA)
Abstract
(57)【要約】
【課題】生産性の高い開口制限素子を得て、光ヘッド装
置に搭載し、厚さの異なる光ディスクの対しても、一つ
の光学系で高い集光能力を実現する装置とする。
【解決手段】2つの波長λ1、λ2の光束に対して、リタ
デーション値がm1・λ1と(m2−1/2)・λ2の複屈
折性有機物薄膜領域A1と、等方性媒質領域A2とからな
る位相子層11、および2つの光束をともに回折せず透
過する中央部の開口領域と、一方の光束を回折し他方の
回折光を透過する周辺部の開口制限領域とからなる偏光
回折格子層12とを透明基板13と15とで挟持して開
口制限素子101を得て、光ヘッド装置のコリメートレ
ンズと対物レンズとの間に配置する。
(57) [Summary] An apparatus that obtains an aperture limiting element with high productivity, mounts it on an optical head device, and realizes a high light-collecting ability with a single optical system even for optical discs with different thicknesses. And A two wavelengths lambda 1, with respect to lambda 2 light fluxes, the retardation value is m 1 · λ 1 and (m 2 -1/2) · λ 2 of birefringent organic thin film region A 1, etc. A retarder layer 11 composed of an anisotropic medium region A 2 , a central opening region through which both light beams are transmitted without being diffracted, and an aperture limit in a peripheral portion through which one light beam is diffracted and the other diffracted light is transmitted. An aperture limiting element 101 is obtained by sandwiching the polarization diffraction grating layer 12 comprising the region between the transparent substrates 13 and 15, and is disposed between the collimating lens and the objective lens of the optical head device.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光記録媒体に情報
の記録・再生を行う光ヘッド装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical head device for recording and reproducing information on an optical recording medium.
【0002】[0002]
【従来の技術】CDやDVDなどの光ディスク(光記録
媒体)に情報の記録・再生を行う光ヘッド装置におい
て、光源である半導体レーザからの出射光はレンズによ
り光記録媒体上に集光され、光記録媒体で反射し戻り光
となる。この戻り光はビームスプリッタを用いて光検出
器である受光素子へ導かれ、光記録媒体上の情報が電気
信号に変換される。2. Description of the Related Art In an optical head device for recording / reproducing information on an optical disk (optical recording medium) such as a CD or a DVD, light emitted from a semiconductor laser as a light source is focused on the optical recording medium by a lens. The light is reflected by the optical recording medium and becomes return light. This return light is guided to a light receiving element, which is a photodetector, using a beam splitter, and information on the optical recording medium is converted into an electric signal.
【0003】同一の光ヘッド装置で、規格の異なる光記
録媒体であるCD光ディスクおよびDVD光ディスクの
情報の記録・再生のため、CD/DVD互換の光ヘッド
装置が製品化されている。光記録媒体の記録層として光
の反射・吸収に対して波長依存性の高い媒質を用いる、
CD−Rなどの再生を前提とした光ヘッド装置において
は、CDに用いる半導体レーザは790nm波長帯のも
のである。このとき、DVDには660nm波長帯の半
導体レーザが用いられている。[0003] CD / DVD compatible optical head devices have been commercialized for recording and reproducing information on CD optical disks and DVD optical disks, which are optical recording media of different standards, using the same optical head device. As a recording layer of an optical recording medium, a medium having a high wavelength dependence with respect to reflection and absorption of light is used,
In an optical head device on the premise of reproducing a CD-R or the like, a semiconductor laser used for a CD has a wavelength band of 790 nm. At this time, a DVD uses a semiconductor laser having a wavelength band of 660 nm.
【0004】CDとDVDでは、規格すなわち記録・再
生の使用波長帯、基板(光ディスク)厚、記録密度など
が異なるため、CDの記録・再生時とDVDの記録・再
生時とでそれぞれ光学系の開口数を0.45〜0.5お
よび0.6〜0.65の範囲に変える必要がある。[0004] CDs and DVDs have different standards, that is, used wavelength bands for recording and reproduction, substrate (optical disk) thicknesses, recording densities, and the like. Therefore, optical systems for CD recording and reproduction and DVD recording and reproduction are different from each other. It is necessary to change the numerical aperture in the range of 0.45-0.5 and 0.6-0.65.
【0005】そのため、開口制限素子として、誘電体多
層膜を用いて660nm波長帯の光を透過し、790n
m波長帯の光を反射する波長選択性のドーナツ状領域を
形成し、中心部にドーナツ状領域との位相差を調整する
誘電体多層膜を成膜した開口制限素子が提案、実用化さ
れている。[0005] For this reason, a 660 nm wavelength band light is transmitted using a dielectric multilayer film as an aperture limiting element, and 790 nm is used.
An aperture limiting element in which a wavelength-selective donut-shaped region that reflects light in the m-wavelength band is formed, and a dielectric multilayer film that adjusts the phase difference with the donut-shaped region in the center is formed, has been proposed and put into practical use. I have.
【0006】[0006]
【発明が解決しようとする課題】しかし、上述の2種の
誘電体多層膜は、通常、膜厚が3〜4μmと厚く、さら
に20層程度の薄膜を1%以下の光学膜厚精度で成膜す
る必要があり、生産性が低くまた歩留まりを著しく低下
させる問題があった。However, the above-mentioned two types of dielectric multilayer films are usually as thick as 3 to 4 μm, and about 20 thin films are formed with an optical thickness accuracy of 1% or less. It is necessary to form a film, and there is a problem that productivity is low and yield is remarkably reduced.
【0007】[0007]
【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであり、ともに直線偏光で
ある、波長λ1の光束L1および波長λ2の光束L2(λ1
≠λ2)のうち、透過しうる光束L2の径の大きさを制限
する波長選択性の開口制限素子であって、開口制限素子
は、位相子層と偏光回折格子層とが重ねられてなり、位
相子層は、中央部に等方性媒質領域A2が形成され、中
央部を囲んで周辺部に複屈折性有機物薄膜領域A1が形
成され、かつ複屈折性有機物薄膜領域A1のリタデーシ
ョン値が、m1とm2を自然数として、光束L1に対して
m1・λ1、光束L2に対して(m2−1/2)・λ2であ
り、偏光回折格子層は、中央部に光束L1と光束L2をと
もに回折せず透過させる開口領域B1が形成され、中央
部を囲んで周辺部に光束L2を回折させ光束L1を回折せ
ず透過させる開口制限領域B2が形成され、等方性媒質
領域A2と開口領域B1の大きさが実質的に同じにされて
いることを特徴とする開口制限素子を提供する。Means for Solving the Problems The present invention has been made to solve the above problems, are both linearly polarized, the light beam L 1 and the wavelength lambda 2 wavelength lambda 1 light beam L 2 (lambda 1
≠ λ 2 ), which is a wavelength-selective aperture limiting element that limits the size of the diameter of the light beam L 2 that can be transmitted, wherein the aperture limiting element is formed by stacking a retarder layer and a polarizing diffraction grating layer. becomes, the phase shifter layer is isotropic medium portion a 2 is formed in a central portion, a birefringent organic thin film region a 1 is formed in the peripheral portion surrounding the central portion, and a birefringent organic thin film region a 1 retardation values, the m 1 and m 2 is a natural number, m 1 · lambda 1 to the light flux L 1, a relative luminous flux L 2 (m 2 -1/2) · λ 2, polarization grating layer an opening area B 1 to transmit without both diffract the light beam L 1 and the light beam L 2 in the central portion is formed, and transmits without diffracting the light beam L 1 diffracts light beam L 2 in the peripheral portion surrounding the central portion aperture limiting region B 2 is formed, and wherein the isotropic medium regions a 2 and the size of the opening area B 1 is being in substantially the same Providing that the aperture limiting element.
【0008】また、ともに直線偏光である、波長λ1の
光束L1および波長λ2の光束L2(λ 1≠λ2)のうち、
透過しうる光束L2の径の大きさを制限する波長選択性
の開口制限素子であって、開口制限素子は、位相子層と
偏光回折格子層とが重ねられてなり、位相子層は、中央
部に複屈折性有機物薄膜領域A1が形成され、中央部を
囲んで周辺部に等方性媒質領域A2が形成され、かつ複
屈折性有機物薄膜領域A1のリタデーション値が、m1と
m2を自然数として、光束L1に対してm1・λ1、光束L
2に対して(m2−1/2)・λ2であり、偏光回折格子
層は、中央部に光束L1と光束L2をともに回折せず透過
させる開口領域B1が形成され、中央部を囲んで周辺部
に光束L2を回折させ光束L1を回折せず透過させる開口
制限領域B 2が形成され、複屈折性有機物薄膜領域A1と
開口領域B1の大きさが実質に同じにされていることを
特徴とする開口制限素子を提供する。A wavelength λ, which is linearly polarized light,1of
Luminous flux L1And wavelength λTwoLuminous flux LTwo(Λ 1≠ λTwo)
Light flux L that can be transmittedTwoSelectivity that limits the size of the diameter
Wherein the aperture limiting element comprises a retarder layer and
The polarizing diffraction grating layer is superimposed, and the retarder layer is
Birefringent organic thin film region A1Is formed and the central part
Surround and surround isotropic medium region ATwoIs formed and
Refractive organic thin film area A1Is the retardation value of m1When
mTwoIs a natural number, the luminous flux L1For m1・ Λ1, Luminous flux L
TwoFor (mTwo−1/2) · λTwoAnd a polarization grating
The layer has a light flux L in the center.1And luminous flux LTwoTransmitted without diffraction
Opening area B1Formed around the center
Luminous flux LTwoDiffracts the light beam L1Aperture that transmits light without diffracting it
Restricted area B TwoIs formed, and the birefringent organic thin film region A1When
Opening area B1That the size of the
An aperture limiting element is provided.
【0009】また、波長λ1の光束L1および波長λ2の
光束L2(λ1≠λ2)を出射する光源と、光束L1および
光束L2を光記録媒体に集光する対物レンズと、光源と
対物レンズとの間の光路中に偏光ホログラム素子とを備
えた光ヘッド装置であって、前記光源と前記偏光ホログ
ラム素子との間に、上記の開口制限素子が配設されてい
る光ヘッド装置を提供する。Further, a light source for emitting the wavelength lambda 1 of the light beam L 1 and wavelength lambda 2 of the light beam L 2 (λ 1 ≠ λ 2 ), an objective lens for converging the light beam L 1 and the light beam L 2 to the optical recording medium An optical head device comprising a polarization hologram element in an optical path between a light source and an objective lens, wherein the aperture limiting element is disposed between the light source and the polarization hologram element. An optical head device is provided.
【0010】[0010]
【発明の実施の形態】「第1の実施態様」本発明の第1
の実施態様の開口制限素子101は、波長λ1の光束L1
および波長λ2の光束L2(λ1≠λ2)が、それぞれの偏
波面が平行な直線偏光として入射する場合の開口制限素
子であり、図1(a)の断面図に示すように、基本的に
は位相子層11と偏光回折格子層12とが重ねられてい
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment The first embodiment of the present invention
Aperture limit element of embodiment 101, the wavelength lambda 1 light beam L 1
And a light beam L 2 (λ 1 ≠ λ 2 ) having a wavelength λ 2 is an aperture limiting element when the respective polarization planes are incident as parallel linearly polarized light, as shown in the cross-sectional view of FIG. Basically, the retarder layer 11 and the polarization diffraction grating layer 12 are overlapped.
【0011】透明基板14上に、複屈折性有機物薄膜領
域A1と等方性媒質領域A2とからなる位相子層11(図
1(b))が形成される。また、透明基板15上に、位
相子層11とほぼ同じ平面形状の偏光回折格子層12が
形成される。すなわち、透明基板15上に、中央部の開
口領域B1(図示せず)と開口領域B1を囲む周辺部の開
口制限領域B2(図示せず)からなる、偏光回折格子層
12が形成される。ここで、開口領域B1は等方性媒質
領域A2に対応しており、大きさが実質的に等方性媒質
領域A2に同じであり、また開口制限領域B2は複屈折性
有機物薄膜領域A 1に対応している。開口制限領域B
2は、複屈折性有機物薄膜と等方性媒質13からなる。
開口領域B1と等方性媒質領域A2とが重なるように、位
相子層11と偏光回折格子層12とが重ねられる。On the transparent substrate 14, a birefringent organic thin film
Area A1And isotropic medium region ATwoLayer 11 composed of
1 (b)) is formed. In addition, on the transparent substrate 15,
A polarization diffraction grating layer 12 having substantially the same planar shape as the retarder layer 11
It is formed. That is, the central portion is opened on the transparent substrate 15.
Mouth area B1(Not shown) and opening area B1Opening the surrounding area
Mouth restriction area BTwo(Not shown), polarization grating layer
12 are formed. Here, the opening area B1Is an isotropic medium
Area ATwoAnd is substantially isotropic in size.
Area ATwoAnd the aperture limiting region BTwoIs birefringent
Organic thin film area A 1It corresponds to. Opening restriction area B
TwoIs composed of a birefringent organic thin film and an isotropic medium 13.
Opening area B1And isotropic medium region ATwoSo that
The retarder layer 11 and the polarization diffraction grating layer 12 are overlaid.
【0012】また、光束L2に対する位相子層11の開
口数NA11と偏光回折格子層12の開口数NA12は、そ
れぞれ等方性媒質領域A2の大きさと開口領域B1の大き
さから決まる。開口数NA11が開口数NA12に等しい
か、またはそれ以上になるように等方性媒質領域A2お
よび開口領域B1の大きさを決める。すなわち、開口制
限素子101は、図1(a)の下方より入射する光束L
2に対し、開口数がNA11に等しくなるように光束L2の
径を制限することになる。[0012] The numerical aperture NA 12 numerical aperture NA 11 retarder layer 11 with respect to the light beam L 2 and polarization grating layer 12 from each isotropic size of the medium regions A 2 and the size of the opening area B 1 Decided. Numerical aperture NA 11 determines the magnitude of such isotropic medium portion A 2 and the opening area B 1 becomes equal to or higher numerical aperture NA 12. That is, the aperture limiting element 101 outputs the light beam L incident from below in FIG.
To 2, so that the numerical aperture limiting the diameter of the light beam L 2 to be equal to NA 11.
【0013】透明基板14、15としては、ガラスや石
英などの光学的に等方性の媒質を用いることができる。
位相子層11の複屈折性有機物薄膜としては、透明基板
14に配向処理を施した後に、液晶モノマの溶液を塗布
して配向処理した方向に液晶分子の光軸を揃えた状態
で、光重合などで高分子化させた高分子液晶膜を使用で
きる。または、透明基板14にポリ(1,3−ブタジイ
ン)などを斜方蒸着させて成膜した薄膜を使用できる
が、複屈折性の調整および成膜の容易さを考慮すると高
分子液晶膜を用いることが好ましい。As the transparent substrates 14 and 15, an optically isotropic medium such as glass or quartz can be used.
The birefringent organic thin film of the retarder layer 11 is formed by applying an alignment treatment to the transparent substrate 14, and then applying a solution of a liquid crystal monomer to align the optical axes of the liquid crystal molecules in the alignment direction. For example, a polymer liquid crystal film that has been polymerized by, for example, can be used. Alternatively, a thin film formed by obliquely depositing poly (1,3-butadiyne) or the like on the transparent substrate 14 can be used, but a polymer liquid crystal film is used in consideration of adjustment of birefringence and ease of film formation. Is preferred.
【0014】さらに、複屈折性有機物薄膜の厚さd11と
しては、厚さd11と複屈折性有機物薄膜の材料の異常光
屈折率と常光屈折率の差Δn11との積Δn11・d11(リ
タデーション値)がつぎの値となるように決める。すな
わち、m1、m2を自然数とすると、光束L1に対しては
m1・λ1、光束L2に対しては(m2−1/2)・λ2と
なるように決める。m1およびm2は3以下の値を採るこ
とが、波長変動によるリタデーション値への影響が小さ
く好ましい。Furthermore, the thickness d 11 of the birefringent thin organic film, the product [Delta] n 11 · d of the difference [Delta] n 11 of thickness d 11 and extraordinary refractive index of the birefringent thin organic film material and ordinary refractive index 11 (Retardation value) is determined to be the following value. That is, if m 1 and m 2 are natural numbers, the light flux L 1 is determined to be m 1 · λ 1 , and the light flux L 2 is determined to be (m 2 -1/2) · λ 2 . It is preferable that m 1 and m 2 have a value of 3 or less because the influence of the wavelength fluctuation on the retardation value is small.
【0015】透明基板14に成膜した複屈折性有機物薄
膜の加工には、パターニング精度の良いフォトリソグラ
フィの技術、および形状加工が容易なエッチングの技術
を用いることが生産性を高めるうえで好ましい。For processing the birefringent organic thin film formed on the transparent substrate 14, it is preferable to use a photolithography technique with good patterning accuracy and an etching technique with easy shape processing in order to enhance productivity.
【0016】位相子層11および偏光回折格子層14に
使用する等方性媒質13は接着剤であることが好まし
い。透明基板14上の位相子層11と透明基板15上の
偏光回折格子層14を対向させて、その間に等方性媒質
13を充填し硬化させて開口制限素子101を構成でき
る。また、接着剤の材料としては、アクリル系、エポキ
シ系、ポリエステル系のUV硬化型または熱硬化型であ
れば作業性が良く好ましいが、これらに限定されない。The isotropic medium 13 used for the retarder layer 11 and the polarization diffraction grating layer 14 is preferably an adhesive. The retardation layer 11 on the transparent substrate 14 and the polarization diffraction grating layer 14 on the transparent substrate 15 are opposed to each other, and the isotropic medium 13 is filled and cured between them to form the aperture limiting element 101. In addition, as the material of the adhesive, acrylic, epoxy, or polyester UV-curable or heat-curable adhesive is preferred because of good workability, but is not limited thereto.
【0017】等方性媒質13の屈折率は、位相子層11
の複屈折性有機物薄膜の常光屈折率、および偏光回折格
子層12の複屈折性有機物薄膜の常光屈折率にほぼ等し
いものを選定する。この選定で、位相子層11および偏
光回折格子層12に常光入射する直線偏光に対して、位
相子層11および偏光回折格子層12が等方性媒質層で
あるよう機能する。The refractive index of the isotropic medium 13 is controlled by the retarder layer 11.
And the ordinary light refractive index of the birefringent organic thin film of the present invention and the ordinary light refractive index of the birefringent organic thin film of the polarization diffraction grating layer 12 are selected. With this selection, the phase shifter layer 11 and the polarization diffraction grating layer 12 function as an isotropic medium layer for linearly polarized light that is incident on the phase shifter layer 11 and the polarization diffraction grating layer 12 with ordinary light.
【0018】また、開口制限素子101によって、開口
制限を受けない光束L1に対し、位相子層11の複屈折
性有機物薄膜のリタデーション値Δn11・d11が波長の
自然数倍であること、および複屈折性有機物薄膜の常光
屈折率と充填接着剤の屈折率が等しいことから、位相子
層11の複屈折性有機物薄膜領域A1と等方性媒質領域
A2で波面を乱すことがない。The retardation value Δn 11 · d 11 of the birefringent organic thin film of the retarder layer 11 is a natural number multiple of the wavelength with respect to the light beam L 1 that is not restricted by the aperture by the aperture limiting element 101. and since the ordinary refractive index and the refractive index of the filling adhesive of the birefringent thin organic film is equal and does not disturb the wavefront phase shifter layer birefringent organic thin film region a 1 in 11 and isotropic medium portion a 2 .
【0019】偏光回折格子層12の開口制限領域B
2は、位相子層11と同様に透明基板15上に成膜され
た複屈折性有機物薄膜をフォトリソグラフィとエッチン
グの技術を用いて加工される。また、偏光回折格子層1
2の複屈折性有機物薄膜の材料、および位相子層11の
複屈折性有機物薄膜の材料として、同一の材料のものを
用いることは生産性向上のため好ましいが、両者の常光
屈折率が等しければ同一の材料に限定されない。Aperture limiting area B of polarization diffraction grating layer 12
2 , the birefringent organic thin film formed on the transparent substrate 15 in the same manner as the retarder layer 11 is processed using photolithography and etching techniques. In addition, the polarization diffraction grating layer 1
It is preferable to use the same material as the material of the birefringent organic thin film 2 and the material of the birefringent organic thin film of the retarder layer 11 in order to improve productivity. It is not limited to the same material.
【0020】偏光回折格子層12の厚さd12としては、
厚さd12、および、偏光回折格子層12の複屈折性有機
物薄膜の異常光屈折率と等方性媒質13の屈折率との差
Δn 12との積Δn12・d12が、波長λ1の自然数倍にな
るように決める(理由は後述する)。また、偏光回折格
子層12の格子パターンは、偏光回折格子層12によっ
て開口制限を受ける光束L2の回折光が、光検出器上に
集光しないように決める。The thickness d of the polarization diffraction grating layer 1212as,
Thickness d12And the birefringent organic of the polarization grating layer 12
Between the extraordinary light refractive index of the object thin film and the refractive index of the isotropic medium 13
Δn 12Product Δn12・ D12Is the wavelength λ1Natural number times
(The reason will be described later). Also, polarization diffraction
The grating pattern of the sub-layer 12 is
Beam L subject to aperture restrictionTwoDiffracted light on the photodetector
Decide not to focus.
【0021】上記のように作製される開口制限素子10
1に対しては、その作製プロセスにおいて、フォトリソ
グラフィやエッチングに要求される精度が誘電体多層膜
の成膜に要求される精度に比べ低いため、歩留まりを低
下させることなく生産できる。また、位相子層11の複
屈折性有機物薄膜領域A1と等方性媒質領域A2で波面を
乱すことがない構成を容易に実現できる。さらに、より
生産性を向上させるために基板を大型化することも容易
である。The aperture limiting element 10 manufactured as described above
In the case of No. 1, since the precision required for photolithography and etching in the manufacturing process is lower than the precision required for forming the dielectric multilayer film, it can be produced without lowering the yield. Further, it is possible to easily realize the structure does not disturb the wavefront birefringent organic thin film region of the retarder layer 11 A 1 and isotropic medium region A 2. Further, it is easy to increase the size of the substrate in order to further improve the productivity.
【0022】「第2の実施態様」本実施態様は、位相子
層11の複屈折性有機物薄膜領域A1と等方性媒質領域
A2との場所が交換している点の除いて、第1の実施態
様と同じである。ここでは、光束L1および光束L2が、
それぞれの偏波面を直交した直線偏光として入射する。
この場合図2(a)、(b)に示すように、位相子層1
1の複屈折性有機物薄膜領域A1と等方性媒質領域A2と
を形成することで対応でき、第1の実施態様と同様にこ
の素子に図(a)の下方より入射する光束L2の径を位
相子層11と偏光回折格子層12により実効的に制限で
きる。The "second embodiment" the present embodiment, except the point that the location of the birefringent organic thin film region A 1 and the isotropic medium portion A 2 of the retarder layer 11 is replaced, the It is the same as the first embodiment. Here, the light beam L 1 and the light beam L 2 are:
Each polarization plane is incident as orthogonal linearly polarized light.
In this case, as shown in FIGS.
One birefringent organic thin film region A 1 and an isotropic medium region A 2 can be coped with, and similarly to the first embodiment, a light beam L 2 incident on this element from below in FIG. Can be effectively limited by the retarder layer 11 and the polarization diffraction grating layer 12.
【0023】「第3の実施態様」本実施態様の図3の光
ヘッド装置は、DVD系光ディスク6およびCD系光デ
ィスク7の情報の記録・再生を行う光ヘッド装置であっ
て、光源として、DVD用の波長λ1の光束L1を出射す
る半導体レーザ1AとCD用の波長λ2の光束L2を出射
する半導体レーザ1Bとの2種の光源を備えており、本
発明の第1の実施態様の開口制限素子101と偏光ホロ
グラム素子201が搭載されている。Third Embodiment The optical head device shown in FIG. 3 of this embodiment is an optical head device for recording / reproducing information on a DVD-based optical disk 6 and a CD-based optical disk 7, and uses a DVD as a light source. It includes two kinds of light sources of the semiconductor laser 1B for emitting a light beam L 2 having a wavelength lambda 2 of the semiconductor laser 1A and CD for emitting a light beam L 1 having a wavelength lambda 1 of the use, the first embodiment of the present invention The aperture limiting element 101 and the polarization hologram element 201 according to the embodiment are mounted.
【0024】半導体レーザ1Aを出射した光束L1は、
ビームスプリッタ2を反射、コリメートレンズ4を透過
後、開口制限素子101および偏光ホログラム素子20
1を透過して、対物レンズ5によって、DVD6上に集
光される。また、半導体レーザ1A、1Bを出射した光
束L2は、平面ビームスプリッタ9、ビームスプリッタ
2を透過後光束L1と同様に進行し、CD7上に集光さ
れる。DVD6で反射した光束L1は、最終的に光検出
器8A上に集光し、一方CD7で反射した光束L2は、
平板ビームスプリッタ9で光を分割し光検出器8B上に
集光する。The light beam L 1 emitted from the semiconductor laser 1A is
After reflecting off the beam splitter 2 and passing through the collimating lens 4, the aperture limiting element 101 and the polarization hologram element 20
1 and is focused on the DVD 6 by the objective lens 5. Further, the light beam L 2 in which the semiconductor laser 1A, and 1B emitted is plane beam splitter 9, the beam splitter 2 proceeds in the same manner as transparent halo flux L 1, and collected on the CD7. The light beam L 1 reflected by DVD6 eventually converged on the photodetector 8A, whereas the light beam L 2 reflected by the CD7 is
The light is split by the flat plate beam splitter 9 and collected on the photodetector 8B.
【0025】図4は光ヘッド装置の往路において、光束
L2が開口制限素子101によって実効的に開口数を
0.45〜0.5の範囲に制限されて、偏光ホログラム
素子201透過後に対物レンズ5により光ディスク7上
に集光される様子を示している。図5は光ヘッド装置の
往路において、光束L1が開口制限素子101透過後
も、0.6〜0.65の範囲で開口数を変えずに、偏光
ホログラム素子201透過後に対物レンズ5により光デ
ィスク6上に集光される様子を示している。[0025] Figure 4 is the forward pass of the optical head apparatus, the light beam L 2 is limited to a range of effectively the numerical aperture 0.45 to 0.5 by the aperture limiting element 101, an objective lens after the polarization hologram element 201 transmission 5 shows how light is condensed on the optical disk 7. Figure 5 is the forward pass of the optical head apparatus, after the light beam L 1 is the aperture limiting element 101 transmission also, without changing the numerical aperture in the range of 0.6 to 0.65, the objective lens 5 after the polarization hologram element 201 transmitting the optical disk FIG.
【0026】偏光ホログラム素子201としては、1)
ガラスなどの透明基板上に成膜した複屈折性有機物薄膜
に、フォトリソグラフィおよびエッチングの技術を用い
てホログラフィック・パターンを形成し格子凹部を等方
性媒質で埋めた素子、2)ニオブ酸リチウムなどの複屈
折性結晶にプロトン交換を施して、ホログラフィック・
パターンを形成した素子、などを用いることができる。
さらに、偏光ホログラム素子は、直線偏光を円偏光とす
る波長板と組み合わせて使われる場合が多く、素子の小
型化のため偏光ホログラム素子と波長板とを一体化する
ことは好ましい。As the polarization hologram element 201, 1)
An element in which a holographic pattern is formed on a birefringent organic thin film formed on a transparent substrate such as glass using photolithography and etching techniques, and lattice recesses are filled with an isotropic medium. 2) Lithium niobate Proton exchange on birefringent crystals such as holographic
An element on which a pattern is formed can be used.
Further, the polarization hologram element is often used in combination with a wave plate that converts linearly polarized light into circularly polarized light, and it is preferable to integrate the polarization hologram element and the wave plate in order to reduce the size of the element.
【0027】図4において201は、透明基板21上に
高分子液晶からなる複屈折性有機物薄膜にホログラフィ
ック・パターンを形成した偏光ホログラム層22と波長
板24を一体化した偏光ホログラム素子である。図4中
の23は等方性媒質からなる充填接着剤、25は接着
剤、および26は透明基板である。In FIG. 4, reference numeral 201 denotes a polarization hologram element in which a polarization hologram layer 22 having a holographic pattern formed on a birefringent organic thin film made of a polymer liquid crystal on a transparent substrate 21 and a wave plate 24 are integrated. In FIG. 4, 23 is a filling adhesive made of an isotropic medium, 25 is an adhesive, and 26 is a transparent substrate.
【0028】波長板24として、光束L1に対し直線偏
光を円偏光とするが光束L2に対しその偏光状態を変え
ない波長板を用いる。この波長板により、偏光ホログラ
ム素子201は、光束L1が常光として入射する光ヘッ
ド装置の往路では透過し、異常光として入射する復路で
は回折光を発生でき、一方光束L2に対しては、往路お
よび復路ともに、等方性媒質として機能する。[0028] wave plate 24, the circularly polarized light linearly polarized light with respect to the light beam L 1 uses a wave plate that does not change its polarization state to the light beam L 2. This wave plate, the polarization hologram element 201, the forward of an optical head device light beam L 1 is incident as ordinary light passes through, the return path of the incident as extraordinary light can generate diffracted light, whereas the light flux L 2 is, Both the forward path and the return path function as an isotropic medium.
【0029】また、本実施態様の光ヘッド装置におい
て、光束L1は開口制限素子101および偏光ホログラ
ム素子201に対し、往路で常光として入射するが、復
路で異常光として入射する。このため、偏光ホログラム
素子201による光束L1の回折光が開口制限素子10
1によってさらに回折されないように、開口制限素子1
01の偏光回折格子層12の厚さd12を決定する。すな
わち厚さd12、および偏光回折格子層12の複屈折性有
機物薄膜の異常光屈折率と等方性媒質13の屈折率の差
Δn12との積Δn12・d12が、波長λ1の自然数倍にな
るように開口制限素子101を作製する。[0029] In the optical head device of the present embodiment, the light beam L 1 whereas the aperture limiting element 101 and the polarization hologram element 201, is incident as ordinary light in the forward path, incident as extraordinary light in the return path. For this reason, the diffracted light of the light beam L 1 by the polarization hologram element 201 is
1 so as not to be further diffracted by
The thickness d 12 of the polarization diffraction grating layer 12 is determined. That is, the product Δn 12 · d 12 of the thickness d 12 and the difference Δn 12 between the extraordinary refractive index of the birefringent organic thin film of the polarization diffraction grating layer 12 and the refractive index of the isotropic medium 13 is the wavelength λ 1 The aperture limiting element 101 is manufactured so as to be a natural number times.
【0030】したがって、上述のような開口制限素子1
01と偏光ホログラム素子201を搭載した本発明の光
ヘッド装置では、入射直線偏光の波長の長さに応じて開
口を制限することで、対物レンズの開口数を実効的に制
限して直線偏光を光ディスク上に集光させる。したがっ
て、CDおよびDVDなどの厚さの異なる光ディスクで
も1つの光学系で高い集光能力を発揮でき、良好な光デ
ィスクの情報の記録・再生が実現できる。Therefore, the aperture limiting element 1 as described above
In the optical head device of the present invention equipped with the optical hologram element 201 and the polarization hologram element 201, by limiting the aperture according to the length of the wavelength of the incident linearly polarized light, the numerical aperture of the objective lens is effectively limited and the linearly polarized light is reduced. Focus on an optical disc. Therefore, even with optical disks having different thicknesses, such as CDs and DVDs, a single optical system can exhibit high light-collecting ability, and good recording / reproduction of information on the optical disk can be realized.
【0031】本実施態様では、開口制限素子101と偏
光ホログラム素子201が別体素子として説明したが、
開口制限素子101と偏光ホログラム素子201の透明
基板を貼り合わせて一体化してもよい。さらに、図6の
ように、光ヘッド装置に搭載する偏光ホログラム素子と
して、偏光ホログラム素子を構成する波長板に、光束L
1と光束L2の両方に対して4分の1波長板として機能す
る広帯域4分の1波長板を採用した偏光ホログラム素子
202を用いることもできる。この場合、偏光ホログラ
ム素子202による、光束L1および光束L2の回折光を
1つの光検出器で検出する系を実現できる。In this embodiment, the aperture limiting element 101 and the polarization hologram element 201 have been described as separate elements.
The aperture limiting element 101 and the transparent substrate of the polarization hologram element 201 may be bonded and integrated. Further, as shown in FIG. 6, as a polarization hologram element mounted on the optical head device, a light beam L is applied to a wave plate constituting the polarization hologram element.
It is also possible to use one and the light beam polarization hologram element 202 employing the wave plate of the broadband quarter serves as a quarter-wave plate for both L 2. In this case, due to the polarization hologram element 202 can be realized a system which detects the diffracted light of the light beam L 1 and the light beam L 2 in one photodetector.
【0032】開口制限素子101の位相子層11の開口
数NA11を、偏光回折格子層12の開口数NA12よりも
大きくし、光束L2に対して、光ヘッド装置の往路にお
ける開口数よりも復路における開口数を小さくできる。
すなわち、開口数が小さいほど、光ディスクの傾きや厚
さむらにより生じる集光能力の劣化が小さくなるので、
光束L2の光検出器8上での信号再生時に有効である。
3はビームスプリッタであり、また図6中の符号で図3
と同符号の構成要素は、図3の構成要素と同じものであ
る。The numerical aperture NA 11 of the retarder layer 11 of the aperture limiting element 101 is set to be larger than the numerical aperture NA 12 of the polarization diffraction grating layer 12, so that the light flux L 2 is larger than the numerical aperture on the outward path of the optical head device. Also, the numerical aperture on the return path can be reduced.
In other words, the smaller the numerical aperture, the smaller the deterioration of the light-collecting ability caused by the inclination and uneven thickness of the optical disk.
It is effective in signal reproduction on optical detector 8 of the light beam L 2.
Reference numeral 3 denotes a beam splitter, and reference numerals in FIG.
The components having the same reference numerals as those in FIG. 3 are the same as the components in FIG.
【0033】「第4の実施態様」図7に示す開口制限素
子103の断面図は、本発明の第4の実施態様の開口制
限素子であり、開口制限素子と偏光ホログラム素子を透
明基板が3枚構成となるように一体化して、小型化した
ものである。開口制限素子103は、第3の実施態様で
述べた偏光ホログラム素子201に、第1の実施態様で
述べた透明基板14上に積層した位相子層を接着剤から
なる等方性媒質13で固定することで作製できる。ま
た、図7中の符号で図1および図3と同符号の構成要素
は、図1および図3の構成要素と同じものである。[Fourth Embodiment] FIG. 7 is a cross-sectional view of an aperture limiting element 103 according to a fourth embodiment of the present invention. The aperture limiting element and the polarization hologram element are made of three transparent substrates. It is integrated so as to have a single-piece configuration and is downsized. The aperture limiting element 103 fixes the retarder layer laminated on the transparent substrate 14 described in the first embodiment to the polarization hologram element 201 described in the third embodiment with the isotropic medium 13 made of an adhesive. Can be produced. 1 and FIG. 3 are the same as those in FIG. 1 and FIG.
【0034】開口制限素子103では、波長λ2の光束
L2の径を制限するために使用する偏光回折格子層は、
偏光ホログラム層22の周辺領域であるので、径が制限
される光束L2の偏光ホログラム層22の周辺領域で発
生する回折光が、光ヘッド装置の光検出器に集光しない
場合に、開口制限素子103を光ヘッド装置に使用でき
る。In the aperture limiting element 103, the polarization diffraction grating layer used to limit the diameter of the light beam L 2 having the wavelength λ 2 is:
Since the peripheral region of the polarization hologram layer 22, the diffracted light generated in the peripheral area of the polarization hologram layer 22 of the light beam L 2 whose diameter is limited, if not focused on the optical detector of the optical head apparatus, the opening limit The element 103 can be used for an optical head device.
【0035】図7に示す開口制限素子103は、光ヘッ
ド装置搭載時にこの素子に入射する光束L1および光束
L2のそれぞれの偏波面が平行な直線偏光である場合の
構成である。図8に示す開口制限素子は、この素子に入
射する光束L1および光束L2の偏波面が直交する直線偏
光である場合の構成を示している。図8中の符号で図7
と同符号の構成要素は、図7の構成要素と同じものであ
る。The aperture limiting element 103 shown in FIG. 7 has a configuration in which, when the optical head device is mounted, the planes of polarization of the light beam L 1 and the light beam L 2 incident on the element are parallel linearly polarized light. Aperture limiting element shown in FIG. 8 shows the configuration when the plane of polarization of the light beam L 1 and the light beam L 2 is incident on the device is a linearly polarized light orthogonal. 7 with reference numerals in FIG.
Components having the same reference numerals as those in FIG. 7 are the same as those in FIG.
【0036】[0036]
【実施例】「例1」本例は第1の実施態様の開口制限素
子101(図1)の具体例である。開口制限素子101
を構成する部材、材料および作製方法を以下に説明す
る。透明基板14、15として、厚さ0.3mmのガラ
ス基板を用いた。位相子層11の複屈折性有機物薄膜領
域A1を以下のように形成した。透明基板14の表面に
塗布した配向膜用ポリイミドに、ラビング処理を施して
配向膜とした。この配向膜上に複屈折性を示す液晶モノ
マの溶液を塗布して、配向処理した方向に液晶分子の光
軸を揃えた状態で、液晶モノマ溶液にあらかじめ含有さ
せた光重合硬化剤に、光重合用の光源光を照射して液晶
モノマを高分子化することにより、高分子液晶層とし
た。さらに、フォトリソグラフィとエッチングの技術に
て、開口数NA11が0.45になるように高分子液晶の
中心部を除去して、複屈折性有機物薄膜領域A1を形成
した。EXAMPLE 1 This example is a specific example of the aperture limiting element 101 (FIG. 1) of the first embodiment. Aperture limiting element 101
Hereinafter, the members, materials, and the manufacturing method of the above will be described. Glass substrates having a thickness of 0.3 mm were used as the transparent substrates 14 and 15. The birefringent organic thin film region A 1 retarder layer 11 was formed as follows. A rubbing treatment was performed on the polyimide for an alignment film applied on the surface of the transparent substrate 14 to obtain an alignment film. A solution of a birefringent liquid crystal monomer is applied onto the alignment film, and the photopolymerization curing agent previously contained in the liquid crystal monomer solution is applied to the photopolymerization curing agent with the optical axes of the liquid crystal molecules aligned in the direction of the alignment treatment. The liquid crystal monomer was polymerized by irradiating a light source for polymerization to form a polymer liquid crystal layer. Further, in photolithography and etching techniques to remove the center portion of the liquid crystal polymer as the numerical aperture NA 11 becomes 0.45, to form a birefringent organic thin film region A 1.
【0037】位相子層11の複屈折性有機物薄膜領域A
1の材料である高分子液晶としては、波長660nmの
光に対する常光屈折率と異常光屈折率との差Δn11が
0.15であり、波長790nmの光に対する常光屈折
率と異常光屈折率との差Δn11が0.14である高分子
液晶を用い、位相子層11の厚さd11を8.8μm(=
2×0.66/0.15≒(2−1/2)×0.79/
0.14)とした。The birefringent organic thin film region A of the retarder layer 11
As the polymer liquid crystal which is the material of No. 1 , the difference Δn 11 between the ordinary light refractive index and the extraordinary light refractive index for light having a wavelength of 660 nm is 0.15, and the ordinary light refractive index, extraordinary light refractive index and using a polymer liquid crystal difference [Delta] n 11 is 0.14, 8.8 .mu.m thickness d 11 of the retarder layer 11 (=
2 × 0.66 / 0.15 ≒ (2-1 / 2) × 0.79 /
0.14).
【0038】偏光回折格子層12は、位相子層11の複
屈折性有機物薄膜領域A1と同様のプロセスで形成し、
開口領域B1の大きさを開口数NA12が0.45になる
ように決めた。ここで、偏光回折格子層12の材料とな
る高分子液晶としては、位相子層11の複屈折性有機物
薄膜領域A1の材料である高分子液晶と同じものを用い
た。偏光回折格子層12に形成する回折格子パターンは
光ヘッド装置の光学系と光検出器の配置によって決め
た。また、偏光回折格子層12の厚さd12は、波長66
0nmの光に対する、偏光回折格子層12の複屈折性有
機物薄膜の異常光屈折率と等方性媒質13の屈折率との
差Δn12と厚さd12の積Δn12・d12が、波長の2倍に
なるように8.8μmとし、光ヘッド装置に搭載したと
き、復路にて波長660nmの光が回折しないように決
めた。The polarization diffraction grating layer 12 is formed by the same process as the birefringent organic thin film region A 1 of the retarder layer 11.
The size of the opening area B 1 NA NA 12 decided to be 0.45. Examples of the polymer liquid crystal as the polarization diffraction grating layer 12 material, using the same as the polymer liquid crystal which is a material of the birefringent organic thin film region A 1 of the retarder layer 11. The diffraction grating pattern formed on the polarization diffraction grating layer 12 was determined by the arrangement of the optical system of the optical head device and the photodetector. The thickness d 12 of the polarization diffraction grating layer 12 is
To light of 0 nm, the product [Delta] n 12 · d 12 of the difference [Delta] n 12 and the thickness d 12 of the refractive index of the extraordinary light refractive index of the birefringent thin organic film of the polarization diffraction grating layer 12 and the isotropic medium 13, the wavelength It was determined to be 8.8 μm so as to be twice as large as that of the above, and when mounted on an optical head device, light having a wavelength of 660 nm was not diffracted on the return path.
【0039】最後に、透明基板14上に形成した位相子
層11の複屈折性有機物薄膜領域A 1と、透明基板15
上に形成した偏光回折格子層12が対向するように、接
着剤である等方性媒質13を用いて固定して開口制限素
子101を作製した。等方性媒質13としては、ポリエ
ステル系のUV硬化型の接着剤を用い、屈折率が、位相
子層11と偏光回折格子層12に用いた高分子液晶の常
光屈折率とほぼ等しいものを選択した。Finally, the retarder formed on the transparent substrate 14
Birefringent organic thin film region A of layer 11 1And the transparent substrate 15
The polarization diffraction grating layer 12 formed thereon is opposed to
An aperture limiting element is fixed by using an isotropic medium 13 as an adhesive.
The child 101 was produced. As the isotropic medium 13, polyether is used.
Using a stell type UV curable adhesive, the refractive index is phase
Of the polymer liquid crystal used for the sub-layer 11 and the polarization diffraction grating layer 12
Those which were almost equal to the light refractive index were selected.
【0040】「例2」例1で作製した開口制限素子10
1を図3に示すように光ヘッド装置に搭載した。図3の
光ヘッド装置は、第3の実施態様で述べたように、DV
D系光ディスク6およびCD系光ディスク7の情報の記
録・再生を行う光ヘッド装置である。光源として、DV
D用の波長660nmの光を直線偏光として出射する半
導体レーザ1AとCD用の波長790nmの光を直線偏
光として出射する半導体レーザ1Bとの2種の光源を備
えており、例1で作製した開口制限素子101と偏光ホ
ログラム素子201が搭載されている。Example 2 Aperture limiting element 10 manufactured in Example 1
1 was mounted on an optical head device as shown in FIG. As described in the third embodiment, the optical head device of FIG.
This is an optical head device for recording and reproducing information on the D-type optical disk 6 and the CD-type optical disk 7. DV as a light source
The semiconductor laser 1A includes a semiconductor laser 1A that emits light having a wavelength of 660 nm as linearly polarized light for D and a semiconductor laser 1B that emits light having a wavelength of 790 nm for CD as linearly polarized light. The limiting element 101 and the polarization hologram element 201 are mounted.
【0041】偏光ホログラム素子201は、図4に示す
ように、透明基板21と26の間に形成された偏光ホロ
グラム層22と波長板25からなり、例1の開口制限素
子101と同様のプロセスで作製した。厚さ0.3mm
のガラス基板を透明基板21として、例1で用いた高分
子液晶を例1と同様に成膜して、フォトリソグラフィと
エッチングの技術を用いて偏光ホログラム層22を形成
した。次に、厚さ0.3mmのガラス基板を透明基板2
6にアクリル系のUV硬化型接着剤25を用いて波長板
24を固定した。As shown in FIG. 4, the polarization hologram element 201 includes a polarization hologram layer 22 formed between transparent substrates 21 and 26 and a wave plate 25, and is manufactured by the same process as the aperture limiting element 101 of Example 1. Produced. 0.3mm thick
Using the glass substrate described above as the transparent substrate 21, the polymer liquid crystal used in Example 1 was formed in the same manner as in Example 1, and the polarization hologram layer 22 was formed using photolithography and etching techniques. Next, a glass substrate having a thickness of 0.3 mm is
6, a wave plate 24 was fixed using an acrylic UV-curable adhesive 25.
【0042】波長板24としては、ポリカーボネートを
延伸して複屈折を誘起したものを用いた。波長板24の
リタデーション値は、波長660nmの光に対して82
5nm(=5/4×660nm)であり、波長790n
mの光に対して800nm(≒1×790nm)となる
ように調整されている。入射する波長660nmの直線
偏光の偏光方向に対して波長板の光軸を45°方向に設
定することで、波長板24は波長660nmの直線偏光
を円偏光に変換し、波長790nmの光に対して等方性
媒質として機能する。最後に、透明基板21上に形成し
た偏光ホログラム層と、透明基板26に固定した波長板
24を、接着剤である等方性媒質23を用いて固定し
た。等方性媒質23として、例1で用いた等方性媒質1
3と同じものを用いた。As the wave plate 24, a plate in which polycarbonate was stretched to induce birefringence was used. The retardation value of the wave plate 24 is 82 for light having a wavelength of 660 nm.
5 nm (= 5/4 × 660 nm), and a wavelength of 790 n
It is adjusted to be 800 nm (≒ 1 × 790 nm) for m light. By setting the optical axis of the wave plate in the 45 ° direction with respect to the polarization direction of the linearly polarized light having a wavelength of 660 nm, the wave plate 24 converts the linearly polarized light having a wavelength of 660 nm into circularly polarized light. And functions as an isotropic medium. Finally, the polarization hologram layer formed on the transparent substrate 21 and the wave plate 24 fixed to the transparent substrate 26 were fixed using an isotropic medium 23 as an adhesive. As the isotropic medium 23, the isotropic medium 1 used in Example 1 was used.
The same as 3 was used.
【0043】本例の光ヘッド装置(図3)の往路では、
波長790nmの光は開口制限素子101によって実効
的に開口数が0.45に制限されて、対物レンズ5によ
りCD系の光ディスク7上に集光した(図4)。一方、
波長660nmの光は開口制限素子101透過後も径を
変えずに対物レンズ5により、DVD系の光ディスク6
上に集光した(図5)。すなわち、厚さの異なる光ディ
スクに対し、1つの光学系で高い集光能力を示した。On the outward path of the optical head device of this embodiment (FIG. 3),
The light having a wavelength of 790 nm was effectively restricted to a numerical aperture of 0.45 by the aperture limiting element 101, and was condensed on the CD optical disk 7 by the objective lens 5 (FIG. 4). on the other hand,
The light having a wavelength of 660 nm is not changed in diameter even after passing through the aperture limiting element 101, and is not changed by the objective lens 5, but the DVD optical disk 6 is used.
Focused on top (FIG. 5). That is, one optical system showed high light-collecting ability for optical disks having different thicknesses.
【0044】さらに、DVD系の光ディスク6を反射し
た波長660nmの光は、偏光ホログラム素子201に
よって回折し、光検出器8Aに集光した。また、CD系
の光ディスクで反射した波長790nmの光は、偏光ホ
ログラム素子201では回折せず、平板ビームスプリッ
タ9によって偏向され、光検出器8Bに集光した。その
結果、規格の異なるDVD系の光ディスク、またはCD
系の光ディスクの情報の記録・再生が実現できた。Further, the light having a wavelength of 660 nm reflected from the DVD-type optical disk 6 is diffracted by the polarization hologram element 201 and condensed on the photodetector 8A. Light having a wavelength of 790 nm reflected by a CD optical disk was not diffracted by the polarization hologram element 201, was deflected by the flat plate beam splitter 9, and was condensed on the photodetector 8B. As a result, DVD-based optical discs or CDs with different standards
Recording and reproduction of information on the optical disk of the system were realized.
【0045】[0045]
【発明の効果】本発明の開口制限素子は、従来の誘電体
多層膜を用いた開口制限素子に比べ、生産性の高いプロ
セスを用いて容易に作製できる。また、本発明の光ヘッ
ド装置は上記の開口制限素子素子を、コリメートレンズ
と対物レンズとの間に配置したものであり、光ヘッド装
置としても生産性を高めることができる。また、本発明
の光ヘッド装置においては、光源からの出射光の波長の
大きさに応じて、対物レンズの開口数を実効的に制限
し、厚さの異なる光ディスクに対して、一つの光学系で
高い集光能力を実現できる。The aperture limiting element of the present invention can be easily manufactured by using a process with higher productivity as compared with the conventional aperture limiting element using a dielectric multilayer film. Further, in the optical head device of the present invention, the above-described aperture limiting element is disposed between the collimator lens and the objective lens, so that the productivity of the optical head device can be improved. Further, in the optical head device according to the present invention, the numerical aperture of the objective lens is effectively limited according to the magnitude of the wavelength of the light emitted from the light source, and one optical system is used for optical discs having different thicknesses. And high light-collecting ability can be realized.
【図1】本発明の第1の実施態様の開口制限素子の1例
を示す図、(a)断面図、(b)位相子層の平面図。FIG. 1 is a diagram showing an example of an aperture limiting element according to a first embodiment of the present invention, (a) a sectional view, and (b) a plan view of a retarder layer.
【図2】本発明の第2の実施態様の開口制限素子の1例
を示す図、(a)断面図、(b)位相子層の平面図。FIG. 2 is a diagram showing an example of an aperture limiting element according to a second embodiment of the present invention, (a) a cross-sectional view, and (b) a plan view of a retarder layer.
【図3】本発明の第3の実施態様の光ヘッド装置の1例
を示す概念図。FIG. 3 is a conceptual diagram showing an example of an optical head device according to a third embodiment of the present invention.
【図4】図3光ヘッド装置において、波長λ2の直線偏
光が、径が制限されて、光ディスク上に集光する様子を
表す概念図。FIG. 4 is a conceptual diagram illustrating a state in which linearly polarized light having a wavelength of λ 2 is condensed on an optical disk with a limited diameter in the optical head device.
【図5】図3の光ヘッド装置において、波長λ1の直線
偏光が径を変えずに、光ディスク上に集光する様子を表
す概念図。FIG. 5 is a conceptual diagram showing a state in which linearly polarized light of wavelength λ 1 is condensed on an optical disk without changing its diameter in the optical head device of FIG.
【図6】本発明の第3の実施態様の光ヘッド装置の他の
例を示す概念図。FIG. 6 is a conceptual diagram showing another example of the optical head device according to the third embodiment of the present invention.
【図7】本発明の第4の実施態様の開口制限素子の1例
を示す断面図。FIG. 7 is a sectional view showing an example of an aperture limiting element according to a fourth embodiment of the present invention.
【図8】本発明の第4の実施態様の開口制限素子の他の
例を示す断面図。FIG. 8 is a sectional view showing another example of the aperture limiting element according to the fourth embodiment of the present invention.
101、102、103、104:開口制限素子 201、202:偏光ホログラム素子 11:位相子層 12:偏光回折格子層 13、23:等方性媒質 14、15、21、26:透明基板 22:偏光ホログラム層 24:波長板 25:接着剤 1A、1B:半導体レーザ 2:ビームスプリッタ 4:コリメートレンズ 5:対物レンズ 6、7:光ディスク 8、8A、8B:光検出器 9:平板ビームスプリッタ 101, 102, 103, 104: aperture limiting element 201, 202: polarization hologram element 11: retarder layer 12: polarization diffraction grating layer 13, 23: isotropic medium 14, 15, 21, 26: transparent substrate 22: polarization Hologram layer 24: Wave plate 25: Adhesive 1A, 1B: Semiconductor laser 2: Beam splitter 4: Collimating lens 5: Objective lens 6, 7: Optical disk 8, 8A, 8B: Photodetector 9: Plate beam splitter
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H049 AA03 AA13 AA33 AA37 AA45 AA50 AA57 AA64 AA68 BA06 BA42 BB01 BB03 BC02 BC05 BC14 BC21 CA05 CA07 CA09 CA11 CA15 5D119 AA38 AA41 BA01 DA01 DA05 EC45 EC47 FA05 FA08 JA12 JA14 JA63 JB02 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 2H049 AA03 AA13 AA33 AA37 AA45 AA50 AA57 AA64 AA68 BA06 BA42 BB01 BB03 BC02 BC05 BC14 BC21 CA05 CA07 CA09 CA11 CA15 5D119 AA38 AA41 BA01 DA01 DA05 EC45 EC47 FA05 JA08 JA12 JA12
Claims (3)
および波長λ2の光束L2(λ1≠λ2)のうち、透過しう
る光束L2の径の大きさを制限する波長選択性の開口制
限素子であって、 開口制限素子は、位相子層と偏光回折格子層とが重ねら
れてなり、 位相子層は、中央部に等方性媒質領域A2が形成され、
中央部を囲んで周辺部に複屈折性有機物薄膜領域A1が
形成され、かつ複屈折性有機物薄膜領域A1のリタデー
ション値が、m1とm2を自然数として、光束L1に対し
てm1・λ1、光束L2に対して(m2−1/2)・λ2で
あり、 偏光回折格子層は、中央部に光束L1と光束L2をともに
回折せず透過させる開口領域B1が形成され、中央部を
囲んで周辺部に光束L2を回折させ光束L1を回折せず透
過させる開口制限領域B2が形成され、 等方性媒質領域A2と開口領域B1の大きさが実質的に同
じにされていることを特徴とする開口制限素子。 1. A light beam L 1 having a wavelength λ 1 , both of which are linearly polarized light.
And a wavelength-selective aperture limiting element that limits the size of the diameter of the light flux L 2 that can be transmitted, of the light flux L 2 (λ 1 ≠ λ 2 ) of the wavelength λ 2 , wherein the aperture limiting element is a phase shifter it is superimposed a layer and polarization grating layer, the phase shifter layer is isotropic medium portion a 2 is formed in a central portion,
Birefringent organic thin film region A 1 is formed in the peripheral portion surrounding the central portion, and the retardation value of the birefringent organic thin film region A 1 is a m 1 and m 2 is a natural number, m with respect to the light beam L 1 1 · lambda 1, a light (m 2 -1/2) against beam L 2 · lambda 2, the polarization diffraction grating layer, the opening transmits not both diffract the light beam L 1 and the light beam L 2 in the central region B 1 is formed, the opening restriction region B 2 to transmit without diffracting the light beam L 1 diffracts light beam L 2 in the peripheral portion surrounding the central portion is formed, isotropic medium regions a 2 and the opening area B 1 Wherein the sizes of the aperture limiting elements are substantially the same.
および波長λ2の光束L2(λ1≠λ2)のうち、透過しう
る光束L2の径の大きさを制限する波長選択性の開口制
限素子であって、 開口制限素子は、位相子層と偏光回折格子層とが重ねら
れてなり、 位相子層は、中央部に複屈折性有機物薄膜領域A1が形
成され、中央部を囲んで周辺部に等方性媒質領域A2が
形成され、かつ複屈折性有機物薄膜領域A1のリタデー
ション値が、m1とm2を自然数として、光束L1に対し
てm1・λ1、光束L2に対して(m2−1/2)・λ2で
あり、 偏光回折格子層は、中央部に光束L1と光束L2をともに
回折せず透過させる開口領域B1が形成され、中央部を
囲んで周辺部に光束L2を回折させ光束L1を回折せず透
過させる開口制限領域B2が形成され、 複屈折性有機物薄膜領域A1と開口領域B1の大きさが実
質に同じにされていることを特徴とする開口制限素子。2. A light beam L 1 having a wavelength λ 1 , both of which are linearly polarized light.
And a wavelength-selective aperture limiting element that limits the size of the diameter of the light flux L 2 that can be transmitted, of the light flux L 2 (λ 1 ≠ λ 2 ) of the wavelength λ 2 , wherein the aperture limiting element is a phase shifter it is superimposed a layer and polarization grating layer, retarder layer, birefringent organic thin film region a 1 is formed in the center portion, isotropic medium portion a 2 in the peripheral portion surrounding the central portion is formed is, and the retardation value of the birefringent organic thin film region a 1 is as m 1 and m 2 the natural number, m 1 · lambda 1 to the light flux L 1, the light flux L 2 (m 2 -1/2 ) and · lambda 2, the polarization diffraction grating layer, the opening area B 1 to transmit without both diffract the light beam L 1 and the light beam L 2 is formed in the center portion, the light beam L 2 in the peripheral portion surrounding the central portion opening restriction region B 2 to transmit without diffracting the light beam L 1 is diffracted are formed, the size of the birefringent organic thin film region a 1 and the opening area B 1 Are substantially the same.
(λ1≠λ2)を出射する光源と、光束L1および光束L2
を光記録媒体に集光する対物レンズと、光源と対物レン
ズとの間の光路中に偏光ホログラム素子とを備えた光ヘ
ッド装置であって、前記光源と前記偏光ホログラム素子
との間に、請求項1または2に記載の開口制限素子が配
設されている光ヘッド装置。3. A light flux of the light flux of the wavelength lambda 1 L 1 and wavelength lambda 2 L 2
(Λ 1 ≠ λ 2 ), a light beam L 1 and a light beam L 2
An optical head device comprising an objective lens for converging light onto an optical recording medium, and a polarization hologram element in an optical path between the light source and the objective lens, wherein between the light source and the polarization hologram element, Item 3. An optical head device provided with the aperture limiting element according to Item 1 or 2.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000231912A JP4427877B2 (en) | 2000-07-31 | 2000-07-31 | Aperture limiting element and optical head device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000231912A JP4427877B2 (en) | 2000-07-31 | 2000-07-31 | Aperture limiting element and optical head device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002040257A true JP2002040257A (en) | 2002-02-06 |
| JP4427877B2 JP4427877B2 (en) | 2010-03-10 |
Family
ID=18724672
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000231912A Expired - Fee Related JP4427877B2 (en) | 2000-07-31 | 2000-07-31 | Aperture limiting element and optical head device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4427877B2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100468970B1 (en) * | 2002-04-20 | 2005-01-29 | 엘지전자 주식회사 | Polarization phase compensator and optical disc reader/writer using the same |
| JP2007079434A (en) * | 2005-09-16 | 2007-03-29 | Asahi Glass Co Ltd | Polarization diffraction type aperture limiting element and hologram recording / reproducing apparatus |
| JP2010237649A (en) * | 2009-03-11 | 2010-10-21 | Jsr Corp | Polarization diffraction element |
-
2000
- 2000-07-31 JP JP2000231912A patent/JP4427877B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100468970B1 (en) * | 2002-04-20 | 2005-01-29 | 엘지전자 주식회사 | Polarization phase compensator and optical disc reader/writer using the same |
| JP2007079434A (en) * | 2005-09-16 | 2007-03-29 | Asahi Glass Co Ltd | Polarization diffraction type aperture limiting element and hologram recording / reproducing apparatus |
| JP2010237649A (en) * | 2009-03-11 | 2010-10-21 | Jsr Corp | Polarization diffraction element |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4427877B2 (en) | 2010-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7738346B2 (en) | Polarizing diffraction element and optical head device | |
| KR100569633B1 (en) | Phase shifter and optical head device equipped with this | |
| JP4300784B2 (en) | Optical head device | |
| JP2001101700A (en) | Optical head device | |
| US7564504B2 (en) | Phase plate and an optical data recording/reproducing device | |
| WO2008001636A1 (en) | Optical component for laser beam | |
| JP4930084B2 (en) | Broadband wave plate | |
| JP3978821B2 (en) | Diffraction element | |
| JP4631135B2 (en) | Phaser | |
| JPH11174226A (en) | Polarizing hologram and optical head using it | |
| JP4622160B2 (en) | Diffraction grating integrated optical rotator and optical head device | |
| JPH11306581A (en) | Broadband polarization splitter and optical head using the broadband polarization splitter | |
| JP5131244B2 (en) | Laminated phase plate and optical head device | |
| JP4218393B2 (en) | Optical head device | |
| JP2002040257A (en) | Aperture limiting element and optical head device | |
| JP2000249831A (en) | Optical element and optical head device | |
| JP2001344800A (en) | Optical head device | |
| JP3711652B2 (en) | Polarization diffraction element and optical head device using the same | |
| JP4649748B2 (en) | Two-wavelength phase plate and optical head device | |
| JP4626026B2 (en) | Optical head device | |
| KR100990347B1 (en) | Phase plate and optical information recorder | |
| JP3947828B2 (en) | Optical head device and manufacturing method thereof | |
| JP2001311821A (en) | Phaser and optical head device | |
| JP3713778B2 (en) | Optical head device | |
| JP2004069977A (en) | Diffractive optical element and optical head device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070614 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090703 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091118 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091124 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091207 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121225 Year of fee payment: 3 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131225 Year of fee payment: 4 |
|
| LAPS | Cancellation because of no payment of annual fees |