JP2002042861A - Nickel-metal hydride storage battery and method of manufacturing the same - Google Patents
Nickel-metal hydride storage battery and method of manufacturing the sameInfo
- Publication number
- JP2002042861A JP2002042861A JP2000222277A JP2000222277A JP2002042861A JP 2002042861 A JP2002042861 A JP 2002042861A JP 2000222277 A JP2000222277 A JP 2000222277A JP 2000222277 A JP2000222277 A JP 2000222277A JP 2002042861 A JP2002042861 A JP 2002042861A
- Authority
- JP
- Japan
- Prior art keywords
- manganese
- positive electrode
- active material
- nickel
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】
【課題】 自己放電特性に優れる高性能なニッケル水素
蓄電池を提供することを目的とする。
【解決手段】 少なくともTiを含み主相の結晶構造が
体心立方構造の水素吸蔵合金を活物質とする負極と、水
酸化ニッケルを活物質とする正極と、セパレータと、ア
ルカリ電解液とを有するアルカリ蓄電池であって、前記
負極、前記正極、前記セパレータまたは前記アルカリ電
解液の少なくとも一カ所に、マンガン、マンガンイオン
またはマンガン化合物の少なくとも一種を含有させる。(57) [Problem] To provide a high-performance nickel-metal hydride storage battery having excellent self-discharge characteristics. SOLUTION: The negative electrode includes, as an active material, a hydrogen-absorbing alloy having a body-centered cubic structure in which a crystal structure of a main phase including at least Ti is an active material; a positive electrode, including nickel hydroxide as an active material; In an alkaline storage battery, at least one of manganese, manganese ions, and a manganese compound is contained in at least one of the negative electrode, the positive electrode, the separator, and the alkaline electrolyte.
Description
【0001】[0001]
【発明の属する従来分野】本発明は、ニッケル水素蓄電
池の特性改良とその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in characteristics of a nickel-metal hydride storage battery and a method of manufacturing the same.
【0002】[0002]
【従来の技術】水素を可逆的に吸収・放出する水素吸蔵
合金を活物質に用いた電極は、理論容量密度がカドミウ
ム極より大きい。また、亜鉛極のような変形やデンドラ
イトの形成などもないため、長寿命・無公害であり、し
かも高エネルギー密度を有するので、今後の発展が期待
されている。2. Description of the Related Art An electrode using, as an active material, a hydrogen storage alloy that reversibly absorbs and releases hydrogen has a theoretical capacity density higher than that of a cadmium electrode. In addition, since there is no deformation or dendrite formation unlike the zinc electrode, it has a long life and no pollution, and has a high energy density, so that future development is expected.
【0003】このような電極に用いられる水素吸蔵合金
は、通常アーク溶解法や高周波誘導加熱溶解法などで作
製される。現在、電極として実用化されている水素吸蔵
合金は、AB5タイプ(A:La, Zr,Tiなどの水
素との親和性の大きい元素、B:Ni,Mn,Crなど
の遷移元素など水素との親和性が小さい元素)のLa
(又はMm:ミッシュメタル−希土類元素の混合物)−
Ni系の多元系合金である。しかしながら、この合金
は、ほぼ理論値に近い容量を使用しており、今後大幅な
容量増が見込めないため、さらに放電容量が大きい新規
水素吸蔵合金材料が望まれている。[0003] The hydrogen storage alloy used for such an electrode is usually produced by an arc melting method, a high-frequency induction heating melting method, or the like. Currently, hydrogen storage alloy that has been put to practical use as an electrode, AB 5 type (A: La, Zr, affinity of large elements with hydrogen, such as Ti, B: Ni, Mn, and hydrogen and transition elements such as Cr Element with low affinity for La)
(Or Mm: misch metal-a mixture of rare earth elements)
It is a Ni-based multi-component alloy. However, since this alloy uses a capacity almost close to the theoretical value, and a large capacity increase cannot be expected in the future, a new hydrogen storage alloy material having a larger discharge capacity is desired.
【0004】AB5合金よりも大きな水素吸蔵量を持つ
合金として、Ti−V系の水素吸蔵合金がある。この合
金を用いた電極としては、例えばTixVyNiz合金と
して特開平6−228699号公報や特開平7−268
513号公報、特開平7−268514号公報などに提
案されている。そして、TiVCr系合金表面にNiを
焼結して高容量化を図った例が、特開平11−1447
28号公報で提案されている。[0004] As an alloy having a large hydrogen storage capacity than the AB 5 alloys, there are Ti-V system hydrogen storage alloy. As an electrode using this alloy, for example, a Ti x V y Ni z alloy is disclosed in JP-A-6-228699 or JP-A-7-268.
No. 513, Japanese Unexamined Patent Application Publication No. 7-268514, and the like. An example of increasing the capacity by sintering Ni on the surface of a TiVCr-based alloy is disclosed in JP-A-11-1447.
No. 28 is proposed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上述の
ようなTiを含んだ体心立方構造を有する合金を主相と
する水素吸蔵合金を用いたニッケル水素蓄電池は、保存
時の自己放電が大きいという課題がある。However, a nickel-metal hydride storage battery using a hydrogen storage alloy whose main phase is an alloy having a body-centered cubic structure containing Ti as described above has a large self-discharge during storage. There are issues.
【0006】[0006]
【課題を解決するための手段】以上の課題を解決するた
め本発明のニッケル水素蓄電池は、少なくともTiを含
み主相の結晶構造が体心立方構造の水素吸蔵合金を活物
質とする負極と、水酸化ニッケルを活物質とする正極
と、セパレータと、アルカリ電解液とを有するアルカリ
蓄電池であって、前記負極、前記正極、前記セパレータ
または前記アルカリ電解液の少なくとも一カ所に、マン
ガン、マンガンイオンまたはマンガン化合物の少なくと
も一種を含有することを特徴とする。In order to solve the above-mentioned problems, a nickel-metal hydride storage battery according to the present invention comprises: a negative electrode comprising, as an active material, a hydrogen storage alloy containing at least Ti and having a main phase crystal structure of a body-centered cubic structure; A positive electrode having nickel hydroxide as an active material, a separator, and an alkaline storage battery having an alkaline electrolyte, wherein at least one of the negative electrode, the positive electrode, the separator or the alkaline electrolyte, manganese, manganese ions, or It is characterized by containing at least one manganese compound.
【0007】このとき、正極活物質の表面、正極の内
部、正極の外表面、負極活物質の表面、負極の内部、負
極の外表面の少なくとも一カ所に、マンガンまたはマン
ガン化合物を配置したことが有効である。At this time, manganese or a manganese compound may be arranged on at least one of the surface of the positive electrode active material, the inside of the positive electrode, the outer surface of the positive electrode, the surface of the negative electrode active material, the inside of the negative electrode, and the outer surface of the negative electrode. It is valid.
【0008】さらに、電池に含まれるマンガンの量が、
正極活物質に対して0.1重量部以上でかつ10重量部
以下であることが望ましい。Further, the amount of manganese contained in the battery is
It is desirable that the amount is 0.1 part by weight or more and 10 parts by weight or less based on the positive electrode active material.
【0009】以上のニッケル水素蓄電池の製造方法は、
水酸化ニッケルを含有した正極用材料にマンガンまたは
マンガン化合物の少なくとも一方を混合してペーストを
作製する工程と、前記ペーストを導電芯材に塗着もしく
は充填する工程とを有することを特徴とする。The above-described method for producing a nickel-metal hydride storage battery includes:
The method includes a step of preparing a paste by mixing at least one of manganese and a manganese compound with a positive electrode material containing nickel hydroxide, and a step of applying or filling the paste to a conductive core material.
【0010】また、水酸化ニッケルを含有した正極用材
料を導電芯材に塗着もしくは充填した正極を、マンガン
塩を溶解した溶液に含浸し乾燥する工程を有することを
特徴とする。[0010] The method further comprises a step of impregnating the positive electrode obtained by applying or filling a positive electrode material containing nickel hydroxide on a conductive core material with a solution in which a manganese salt is dissolved and drying.
【0011】また、少なくともTiとMnとを含み主相
の結晶構造が体心立方構造の水素吸蔵合金を活物質とす
る負極と、水酸化ニッケルを活物質とする正極と、セパ
レータと、アルカリ電解液とを有し、前記負極、前記正
極、または前記アルカリ電解液の少なくとも一カ所に、
マンガン、マンガンイオンまたはマンガン化合物の少な
くとも一種を含有したニッケル水素蓄電池において、前
記ニッケル水素蓄電池を保存または充放電することで、
前記負極中に含有されるマンガンの少なくとも一部を溶
出させることを特徴とする。Also, a negative electrode containing a hydrogen storage alloy having at least Ti and Mn and a main phase having a body-centered cubic crystal structure as an active material, a positive electrode containing nickel hydroxide as an active material, a separator, And at least one place of the negative electrode, the positive electrode, or the alkaline electrolyte,
Manganese, in a nickel-metal hydride storage battery containing at least one manganese ion or manganese compound, by storing or charging and discharging the nickel-metal hydride storage battery,
At least a part of manganese contained in the negative electrode is eluted.
【0012】[0012]
【発明の実施の形態】以下、本発明をその実施例により
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to embodiments.
【0013】[0013]
【実施例】(実施例1)正極活物質である水酸化ニッケ
ルは、内部に固溶体としてコバルトと亜鉛とをそれぞれ
2重量%および5重量%含有した球状水酸化ニッケルを
用いた。この粉末にコバルト粉末を7重量%、水酸化コ
バルト粉末を5重量%、さらに表1に示した添加物を混
合し、水を加えてペーストにしたものを、発泡ニッケル
に充填して乾燥、プレスし、これを正極用の電極とし
た。EXAMPLES (Example 1) As nickel hydroxide as a positive electrode active material, spherical nickel hydroxide containing 2% by weight and 5% by weight of cobalt and zinc respectively as a solid solution was used. This powder was mixed with 7% by weight of cobalt powder, 5% by weight of cobalt hydroxide powder, and the additives shown in Table 1 and added to water to form a paste. This was used as a positive electrode.
【0014】つぎに、Ti0.32V0.33Cr0.33La0.02(合金
1)で示される組成の合金を、アーク溶解法で作成し、
粉砕した物を75μm以下に分級した。さらにこの合金
表面に無電解メッキでNiを10重量%メッキし、62
5℃で3時間減圧雰囲気で熱処理した粉末を、発泡ニッ
ケルに充填、プレスし、これを負極用の電極とした。Next, an alloy having a composition represented by Ti 0.32 V 0.33 Cr 0.33 La 0.02 (alloy 1) was prepared by an arc melting method.
The pulverized material was classified to 75 μm or less. Further, the surface of this alloy was plated with 10% by weight of Ni by electroless plating,
The powder heat-treated in a reduced-pressure atmosphere at 5 ° C. for 3 hours was filled into foamed nickel and pressed, and this was used as an electrode for a negative electrode.
【0015】以上の正極と負極を、ポリプロピレン製の
セパレータを介して渦巻き状に旋回し、AAサイズのケ
ースに収納した。さらに、電解液を入れて封口して密閉
電池を構成した。電解液は31重量%のKOH水溶液に
LiOHを30g/l溶解したものを用いた。The above positive electrode and negative electrode were swirled through a polypropylene separator and housed in an AA size case. Further, an electrolyte solution was charged and sealed to form a sealed battery. The electrolyte used was a solution in which 30 g / l of LiOH was dissolved in a 31% by weight KOH aqueous solution.
【0016】この電池の公称容量は1500mAhであ
る。この電池を用いて、電池の自己放電特性を検討し
た。評価プロセスは、まず、電池を0.1CmAに相当
する電流で正極理論容量の150%まで充電した後、3
時間休止し、その後、25℃で0.2CmA相当の電流
で電池電圧が1.0Vになるまで放電した。この充放電
サイクルを20サイクル繰り返すことで、十分に活性化
した。その後、上記と同じ条件で150%の充電を行っ
た後、45℃で2週間放置した。そして、0.2CmA
で1.0Vまで放電したときの放電容量を、保存前の放
電容量と比較し、下記の計算式より容量残存率を求め
た。The nominal capacity of this battery is 1500 mAh. Using this battery, the self-discharge characteristics of the battery were studied. The evaluation process firstly charges the battery to 150% of the theoretical capacity of the positive electrode with a current corresponding to 0.1 CmA,
After a rest, the battery was discharged at 25 ° C. at a current equivalent to 0.2 CmA until the battery voltage reached 1.0 V. This charge / discharge cycle was repeated 20 times to sufficiently activate. Thereafter, the battery was charged at 150% under the same conditions as above, and then left at 45 ° C. for 2 weeks. And 0.2CmA
The discharge capacity at the time of discharging to 1.0 V was compared with the discharge capacity before storage, and the residual capacity ratio was determined from the following formula.
【0017】容量残存率(%)=保存後の残存放電容量
/保存前の放電容量×100以上の評価を行ったとこ
ろ、表1に示したように、比較例である無添加の電池は
自己放電が大きいことがわかった。このメカニズムを検
証するため、比較例の電池のセパレータ内部の析出物を
特性X線分析法で分析した。その結果、NiやCoが多
く析出しており、これにより比較例の電池は、内部で微
小短絡を起こし、電池容量が低下したものと推定され
た。また、NiやCoは正極より溶出したものと考えら
れる。When the remaining capacity ratio (%) = remaining discharge capacity after storage / discharge capacity before storage × 100 or more was evaluated, as shown in Table 1, the non-added battery of Comparative Example was self-contained. It was found that the discharge was large. To verify this mechanism, deposits inside the separator of the battery of the comparative example were analyzed by characteristic X-ray analysis. As a result, it was presumed that a large amount of Ni or Co was precipitated, whereby the battery of the comparative example caused a micro short circuit inside and the battery capacity was reduced. Further, it is considered that Ni and Co were eluted from the positive electrode.
【0018】また、MmNi3.55Mn0.4Al0.3Co
0.75のAB5型合金や、ZrMn0.6V 0.2Co0.1Cr
0.1Ni1.2などのAB2型合金は、80%以上の容量維
持率を持つのに比べ、Tiを含む体心立方構造を有する
水素吸蔵合金を負極に用いた電池は、劣化が顕著に見ら
れる。この原因は、合金から溶出したTiが正極に作用
し、NiとCoの溶出を促進するためと考える。In addition, MmNi3.55Mn0.4Al0.3Co
0.75ABFiveType alloy, ZrMn0.6V 0.2Co0.1Cr
0.1Ni1.2AB such asTwoType alloys have a capacity
Has a body-centered cubic structure containing Ti
Batteries using a hydrogen storage alloy for the negative electrode show marked deterioration.
It is. This is because Ti eluted from the alloy acts on the positive electrode
However, it is considered to promote the elution of Ni and Co.
【0019】一方、本実施例の電池は自己放電が非常に
小さいことがわかった。本実施例の電池のセパレータ内
部にはMnの析出物が多く見られ、この析出物の導電性
が小さいことから、本実施例の電池は微小短絡が抑制さ
れ、これにより自己放電が抑制されたものと考える。On the other hand, it was found that the battery of this example had a very small self-discharge. Many precipitates of Mn were found inside the separator of the battery of the present example, and the conductivity of the precipitate was small, so that the battery of the present example was suppressed from a micro short circuit, thereby suppressing self-discharge. Think of things.
【0020】Mnの添加形態としては、金属、酸化物、
ハロゲン化物、硫酸塩のいずれも改善効果が見られた。
また、添加量についてはMn量で0.1〜10wt%の
範囲であれば80%以上の容量残存率が得られた。As the addition form of Mn, metals, oxides,
Both halides and sulfates showed improvement effects.
When the amount of addition was in the range of 0.1 to 10 wt% in terms of Mn, a residual capacity ratio of 80% or more was obtained.
【0021】[0021]
【表1】 [Table 1]
【0022】(実施例2)次に、正極をMnイオンを含
む溶液に含浸した場合の実施例を示す。(Example 2) Next, an example in which the positive electrode is impregnated with a solution containing Mn ions will be described.
【0023】実施例1と同様に、球状水酸化ニッケル粉
末にコバルト粉末を7重量%、水酸化コバルト粉末を5
重量%混合し、これに水を加えてペースト状にした。こ
のペーストを発泡ニッケルに充填した後、乾燥、プレス
したものを電極とした。As in Example 1, 7% by weight of cobalt powder and 5% of cobalt hydroxide powder were added to spherical nickel hydroxide powder.
% By weight, and water was added thereto to form a paste. This paste was filled in foamed nickel, dried and pressed to form an electrode.
【0024】この電極を、過マンガン酸カリウムを30
重量%溶解した水溶液に1分間含浸し、その後、100
℃で乾燥したものを正極とし、この正極を用いて構成し
た電池を実施例2−1とした。また、前記の水溶液に含
浸しなかった正極で構成した電池を比較例2−2とし
た。以上の電池の構成では、実施例1と同じ負極を用
い、実施例1と同じ密閉電池を作製し、その自己放電特
性を調べた。This electrode was treated with potassium permanganate for 30 minutes.
For 1 minute in an aqueous solution in which
A battery dried at ℃ was used as a positive electrode, and a battery formed using this positive electrode was referred to as Example 2-1. A battery constituted by a positive electrode which was not impregnated with the above aqueous solution was designated as Comparative Example 2-2. In the above battery configuration, the same negative electrode as in Example 1 was manufactured using the same negative electrode as in Example 1, and the self-discharge characteristics were examined.
【0025】その結果、Mn溶液に含浸したものは、容
量残存率が増大し、保存特性が改善された。容量残存率
は実施例2−1が82%であったのに対し、比較例2−
2では27%と低い値であった。As a result, those impregnated with the Mn solution had an increased capacity retention rate and improved storage characteristics. The remaining capacity ratio was 82% in Example 2-1 and Comparative Example 2-.
In No. 2, the value was as low as 27%.
【0026】(実施例3)本実施例では、実施例1と同
じ方法で密閉電池を作製し、電解液にMn化合物添加し
たものを検討した。本実施例では、正極にはMn化合物
は添加していない。Example 3 In this example, a sealed battery was manufactured in the same manner as in Example 1, and an Mn compound was added to the electrolyte. In this example, no Mn compound was added to the positive electrode.
【0027】電解液に過マンガン酸カリウムを添加し、
Mn量が正極活物質に対して5重量%になるように溶解
したものを構成要素とした電池を実施例3−1とし、電
解液に過マンガン酸カリウムを添加していないものを比
較例3−2とした。そして、それぞれの電池の自己放電
特性を実施例1と同じ方法で測定した。Adding potassium permanganate to the electrolyte,
A battery using a component dissolved in such a manner that the Mn content was 5% by weight with respect to the positive electrode active material was referred to as Example 3-1. A battery in which potassium permanganate was not added to the electrolyte was Comparative Example 3. -2. Then, the self-discharge characteristics of each battery were measured in the same manner as in Example 1.
【0028】その結果、電解液に過マンガン酸カリウム
を添加した本実施例の電池は、自己放電特性が改善され
ることがわかった。実施例1と同様に残存容量比率で比
較すると、実施例3−1が84%であったのに対し、比
較例3−2では27%と低い値であった。As a result, it was found that the battery of this example in which potassium permanganate was added to the electrolytic solution had improved self-discharge characteristics. Comparing the remaining capacity ratios as in Example 1, the value of Example 3-1 was 84%, while that of Comparative Example 3-2 was a low value of 27%.
【0029】(実施例4)本実施例では、実施例1と同
じ方法で密閉電池を作製し、負極にMnメタル粉末、あ
るいはマンガン化合物添加した場合を検討した。Example 4 In this example, a sealed battery was manufactured in the same manner as in Example 1, and the case where a Mn metal powder or a manganese compound was added to the negative electrode was examined.
【0030】負極の活物質として用いる合金は、実施例
1と同じものとした。この合金にMn粉末あるいは過マ
ンガン酸カリウムを添加し、正極活物質に対してMn量
が5重量%になるように混合したものを、発泡ニッケル
に充填した後、乾燥、プレスすることで負極用電極とし
た。The alloy used as the active material for the negative electrode was the same as that used in Example 1. Mn powder or potassium permanganate was added to this alloy, and a mixture obtained by mixing so that the Mn content was 5% by weight with respect to the positive electrode active material was filled in foamed nickel, and then dried and pressed to form a negative electrode. An electrode was used.
【0031】以上のように、負極にMn粉末を加えたも
のを構成要素として作成した電池を実施例4−1とし、
同じく過マンガン酸カリウムを添加したものを実施例4
−2、また、Mn粉末や過マンガン酸カリウムを添加し
ていないものを比較例4−3とした。このようにして作
成した電池の自己放電特性を実施例1と同じ方法で測定
した。As described above, a battery prepared by using a material obtained by adding Mn powder to a negative electrode as a constituent element is referred to as Example 4-1.
Example 4 also containing potassium permanganate
-2 and Comparative Example 4-3 in which neither Mn powder nor potassium permanganate was added. The self-discharge characteristics of the battery thus prepared were measured in the same manner as in Example 1.
【0032】その結果、Mn粉末や過マンガン酸カリウ
ムを添加した本実施例の電池は、自己放電特性が改善さ
れることがわかった。実施例1と同様に残存容量比率で
比較すると、実施例4−1が85%、4−2が83%で
あったのに対し、比較例4−3では27%と低い値であ
った。As a result, it was found that the self-discharge characteristics of the battery of this embodiment to which Mn powder and potassium permanganate were added were improved. When compared with the remaining capacity ratio in the same manner as in Example 1, the value was 85% in Example 4-1 and 83% in 4-2, whereas the value in Comparative Example 4-3 was as low as 27%.
【0033】(実施例5)実施例1と同じ方法で密閉電
池を作製し、負極にMnが含まれる場合の自己放電特性
を検討した。Example 5 A sealed battery was manufactured in the same manner as in Example 1, and the self-discharge characteristics when the negative electrode contained Mn were examined.
【0034】負極にはMnを含む水素吸蔵合金として、
Ti0.2V0.4Cr0.2Mn0.1Ni0. 1(合金2)を、M
nを含まない合金としてTi0.2V0.5Cr0.2Ni
0.1(合金3)を用いた。これらの合金は、主にTi,
V,Cr(,Mn)からなる体心立方構造を有する合金
を主相としてその中に、主にTi,Niからなる第2相
が網目状に析出した形態を有する。The negative electrode is a hydrogen storage alloy containing Mn.
Ti 0.2 V 0.4 Cr 0.2 Mn 0.1 Ni 0. 1 to (alloy 2), M
Ti-free alloy containing Ti 0.2 V 0.5 Cr 0.2 Ni
0.1 (alloy 3) was used. These alloys are mainly Ti,
The alloy has a form in which an alloy having a body-centered cubic structure made of V, Cr (, Mn) is used as a main phase, and a second phase mainly made of Ti and Ni is precipitated in a network.
【0035】前述の合金2を用いた電池を実施例5−
1、合金3を用いた電池を比較例5−2とした。これら
の電池の自己放電特性を、実施例1と同じ方法で測定し
た。実施例1と同様に容量維持率を比較すると、実施例
5−1では80%であったが、比較例5−2では23%
であった。A battery using the above-mentioned alloy 2 was prepared in Example 5-
1. A battery using alloy 3 was designated as Comparative Example 5-2. The self-discharge characteristics of these batteries were measured in the same manner as in Example 1. Comparing the capacity retention ratio in the same manner as in Example 1, it was 80% in Example 5-1 and 23% in Comparative Example 5-2.
Met.
【0036】合金から溶出するマンガンイオンの量は合
金組成によって大きく変化するため、ここですべての合
金組成を挙げることはできないが、電解液への溶出量が
実施例3と同等レベルであれば、同様の効果が得られる
と考えられる。Since the amount of manganese ions eluted from the alloy varies greatly depending on the alloy composition, not all alloy compositions can be mentioned here. However, if the amount eluted into the electrolyte is at the same level as in Example 3, It is considered that a similar effect can be obtained.
【0037】(実施例6)実施例1と同じ方法で密閉電
池を作製し、セパレータにMn化合物を含む場合の自己
放電特性を検討した。Example 6 A sealed battery was manufactured in the same manner as in Example 1, and the self-discharge characteristics when the separator contained a Mn compound were examined.
【0038】過マンガン酸カリウムを30重量%溶解し
た水溶液に、セパレータを1分間含浸し、これを80℃
で乾燥したものを構成要素として作成した電池を実施例
6−1、上記の含浸を行わないものを用いた電池を比較
例6−2とした。The separator was impregnated with an aqueous solution in which 30% by weight of potassium permanganate was dissolved, for 1 minute.
A battery prepared as a component by drying in Example 6-1 was referred to as Example 6-1 and a battery using a battery not subjected to the above impregnation was referred to as Comparative Example 6-2.
【0039】正極、負極は実施例1と同じものを用い、
実施例1と同じ密閉電池を作製して、自己放電特性を調
べた。その結果、セパレータをMn溶液に含浸したもの
は、容量残存率が増大し、保存特性が改善された。容量
残存率は実施例6−1が80%であったのに対し、比較
例6−2では27%と低い値であった。The same positive and negative electrodes as in Example 1 were used.
The same sealed battery as in Example 1 was manufactured, and the self-discharge characteristics were examined. As a result, when the separator was impregnated with the Mn solution, the residual capacity ratio was increased, and the storage characteristics were improved. The residual capacity ratio was 80% in Example 6-1 and 27% in Comparative Example 6-2.
【0040】[0040]
【発明の効果】以上結果から、Tiを含む体心立方構造
を有する水素吸蔵合金を負極に用いたニッケル水素蓄電
池において、電池内部にマンガンあるいはマンガン化合
物を添加することにより、自己放電特性が改善されるこ
とを確認した。According to the above results, in a nickel-metal hydride storage battery using a hydrogen-absorbing alloy having a body-centered cubic structure containing Ti for a negative electrode, the self-discharge characteristics are improved by adding manganese or a manganese compound to the inside of the battery. I was sure that.
【0041】本発明の効果は、セパレータ内部に絶縁性
の析出物が析出することによるものと考えられ、本発明
ではマンガンを用いた例を示したが、基本的には絶縁性
の析出物を形成するものであれば、他の元素でも同様の
効果が得られると考えられる。It is considered that the effect of the present invention is due to the fact that an insulating precipitate is deposited inside the separator. In the present invention, an example using manganese is shown. It is considered that similar effects can be obtained with other elements as long as they form.
【0042】また、実施例以外の方法においても電池内
部にマンガンあるいはマンガン化合物を存在させれば、
同様の効果が得られると考えられる。Also, in a method other than the embodiment, if manganese or a manganese compound is present inside the battery,
It is considered that a similar effect can be obtained.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/38 H01M 4/38 A 4/62 4/62 C // C22C 14/00 C22C 14/00 A (72)発明者 嘉山 美穂 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H028 AA05 AA06 BB03 CC08 CC10 EE01 EE02 EE05 FF05 HH01 5H050 AA09 BA14 CA03 CB17 CB18 DA02 DA03 DA09 EA02 EA11 EA12 EA15 FA17 FA19 GA02 GA23 HA01 HA13 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01M 4/38 H01M 4/38 A 4/62 4/62 C // C22C 14/00 C22C 14/00 A (72) Inventor Miho Kayama 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. GA23 HA01 HA13
Claims (6)
心立方構造の水素吸蔵合金を活物質とする負極と、水酸
化ニッケルを活物質とする正極と、セパレータと、アル
カリ電解液とを有するアルカリ蓄電池であって、前記負
極、前記正極、前記セパレータまたは前記アルカリ電解
液の少なくとも一カ所に、マンガン、マンガンイオンま
たはマンガン化合物の少なくとも一種を含有することを
特徴とするニッケル水素蓄電池。1. A negative electrode comprising a hydrogen storage alloy containing at least Ti as an active material and having a body phase cubic crystal structure of a main phase as an active material, a positive electrode comprising nickel hydroxide as an active material, a separator, and an alkaline electrolyte. A nickel-metal hydride storage battery comprising: at least one of manganese, manganese ions, or a manganese compound in at least one of the negative electrode, the positive electrode, the separator, and the alkaline electrolyte.
表面、負極活物質の表面、負極の内部、負極の外表面の
少なくとも一カ所に、マンガンまたはマンガン化合物を
配置したことを特徴とする請求項1記載のニッケル水素
蓄電池。2. A manganese or manganese compound is disposed on at least one of the surface of the positive electrode active material, the inside of the positive electrode, the outer surface of the positive electrode, the surface of the negative electrode active material, the inside of the negative electrode, and the outer surface of the negative electrode. The nickel-metal hydride storage battery according to claim 1, wherein
質に対して0.1重量部以上でかつ10重量部以下であ
ることを特徴とする請求項1または2記載のニッケル水
素蓄電池。3. The nickel-metal hydride storage battery according to claim 1, wherein the amount of manganese contained in the battery is 0.1 part by weight or more and 10 parts by weight or less based on the positive electrode active material.
ンガンまたはマンガン化合物の少なくとも一方を混合し
てペーストを作製する工程と、前記ペーストを導電芯材
に塗着もしくは充填する工程とを有することを特徴とす
る請求項1、2または3記載のニッケル水素蓄電池の製
造方法。4. A process for producing a paste by mixing at least one of manganese and a manganese compound with a positive electrode material containing nickel hydroxide, and applying or filling the paste to a conductive core material. The method for producing a nickel-metal hydride storage battery according to claim 1, 2, or 3.
電芯材に塗着もしくは充填した正極を、マンガン塩を溶
解した溶液に含浸し乾燥する工程を有することを特徴と
する請求項1、2、3または4記載のニッケル水素蓄電
池の製造方法。5. The method according to claim 1, further comprising a step of impregnating a positive electrode material coated or filled with a positive electrode material containing nickel hydroxide on a conductive core material with a solution in which a manganese salt is dissolved and drying. 5. The method for producing a nickel-metal hydride storage battery according to 2, 3, or 4.
構造が体心立方構造の水素吸蔵合金を活物質とする負極
と、水酸化ニッケルを活物質とする正極と、セパレータ
と、アルカリ電解液とを有し、前記負極、前記正極、ま
たは前記アルカリ電解液の少なくとも一カ所に、マンガ
ン、マンガンイオンまたはマンガン化合物の少なくとも
一種を含有したニッケル水素蓄電池において、前記ニッ
ケル水素蓄電池を保存または充放電することで、前記負
極中に含有されるマンガンの少なくとも一部を溶出させ
ることを特徴とするニッケル水素蓄電池の製造方法。6. A negative electrode containing at least Ti and Mn and using a hydrogen storage alloy having a body-centered cubic crystal structure of a main phase as an active material, a positive electrode containing nickel hydroxide as an active material, a separator, and an alkaline electrolytic solution. A manganese, a manganese ion or a manganese compound in at least one place of the negative electrode, the positive electrode, or the alkaline electrolyte, wherein the nickel-hydrogen storage battery is stored or charged / discharged. Thereby elute at least a part of the manganese contained in the negative electrode.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000222277A JP2002042861A (en) | 2000-07-24 | 2000-07-24 | Nickel-metal hydride storage battery and method of manufacturing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000222277A JP2002042861A (en) | 2000-07-24 | 2000-07-24 | Nickel-metal hydride storage battery and method of manufacturing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2002042861A true JP2002042861A (en) | 2002-02-08 |
Family
ID=18716539
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000222277A Pending JP2002042861A (en) | 2000-07-24 | 2000-07-24 | Nickel-metal hydride storage battery and method of manufacturing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2002042861A (en) |
-
2000
- 2000-07-24 JP JP2000222277A patent/JP2002042861A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2771592B2 (en) | Hydrogen storage alloy electrode for alkaline storage batteries | |
| JP5743780B2 (en) | Cylindrical nickel-hydrogen storage battery | |
| JPH02239566A (en) | Hydrogen storage alloy electrode for alkaline storage battery | |
| JP3010950B2 (en) | Alkaline storage battery and method for manufacturing the same | |
| US5776626A (en) | Hydrogen-occluding alloy and hydrogen-occluding alloy electrode | |
| US5547784A (en) | Alkaline storage battery and method for producing the same | |
| JP4010630B2 (en) | Hydrogen storage alloy electrode | |
| JPH11111330A (en) | Nickel-hydrogen storage battery | |
| JP4420767B2 (en) | Nickel / hydrogen storage battery | |
| JPH10134806A (en) | Hydrogen storage alloy electrode and nickel-hydrogen storage battery | |
| JPH0950805A (en) | Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery | |
| JP3124458B2 (en) | Metal oxide / hydrogen storage battery | |
| JP2002042861A (en) | Nickel-metal hydride storage battery and method of manufacturing the same | |
| JPH097591A (en) | Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same | |
| JPH10326613A (en) | Hydrogen storage alloy electrode | |
| JP4357133B2 (en) | Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery | |
| JP3317099B2 (en) | Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode | |
| JP4573609B2 (en) | Alkaline storage battery | |
| JPH06145849A (en) | Hydrogen storage alloy electrode | |
| JP3653412B2 (en) | Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode | |
| JPS61233966A (en) | Manufacturing method for sealed nickel-hydrogen storage batteries | |
| JP2929716B2 (en) | Hydrogen storage alloy electrode | |
| JPH10149824A (en) | Manufacturing method of hydrogen storage alloy electrode | |
| JPS61233967A (en) | Manufacturing method for sealed nickel-hydrogen storage batteries | |
| JP3863703B2 (en) | Hydrogen storage alloy electrode and alkaline storage battery |