[go: up one dir, main page]

JP2002057342A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2002057342A
JP2002057342A JP2000242732A JP2000242732A JP2002057342A JP 2002057342 A JP2002057342 A JP 2002057342A JP 2000242732 A JP2000242732 A JP 2000242732A JP 2000242732 A JP2000242732 A JP 2000242732A JP 2002057342 A JP2002057342 A JP 2002057342A
Authority
JP
Japan
Prior art keywords
film
gate insulating
forming
gate electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000242732A
Other languages
Japanese (ja)
Inventor
Satoshi Takenaka
敏 竹䞭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000242732A priority Critical patent/JP2002057342A/en
Publication of JP2002057342A publication Critical patent/JP2002057342A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

(57)【芁玄】 【課題】 ℃未満ずいう䜎枩プロセスでを
圢成する堎合でも、ゲヌト電極をパタニヌング圢成する
ずきにゲヌト絶瞁膜が異垞に゚ッチングされるこずを回
避するこずのできる半導䜓装眮の補造方法を提䟛するこ
ず。 【解決手段】 䜎枩プロセスでアクティブマトリクス基
板を補造するにあたっお、ガラス補等の基板
䞊に圢成した半導䜓膜の衚面に℃以䞋の枩
床条件でゲヌト絶瞁膜、、を圢成した埌、
アニヌル凊理などによっおゲヌト絶瞁膜、、
の耐゚ッチング性を高めるゲヌト絶瞁膜改質工皋を行
う。次に、ゲヌト絶瞁膜、、の衚面にゲヌ
ト電極圢成甚導電膜を圢成した埌、レゞストマス
クを圢成し、しかる埌に、このレゞストマスク
を介しお、ゲヌト電極圢成甚導電膜にドラむ゚ッ
チングを行なっお、ゲヌト電極、、を圢成
する。
(57) Abstract: A semiconductor device capable of avoiding abnormal etching of a gate insulating film when forming a gate electrode by patterning, even when a TFT is formed by a low-temperature process of less than 600 ° C. To provide a manufacturing method. SOLUTION: In manufacturing an active matrix substrate 200 by a low-temperature process, a substrate 50 made of glass or the like is used.
After forming the gate insulating films 12, 22, 32 on the surface of the semiconductor film 100 formed thereon under a temperature condition of 600 ° C. or less,
The gate insulating films 12, 22, 3
Step 2 of modifying the gate insulating film to enhance the etching resistance. Next, after a conductive film 150 for forming a gate electrode is formed on the surfaces of the gate insulating films 12, 22, and 32, a resist mask 66 is formed.
, Dry etching is performed on the conductive film 150 for forming a gate electrode to form the gate electrodes 14, 24 and 34.

Description

【発明の詳现な説明】DETAILED DESCRIPTION OF THE INVENTION

【】[0001]

【発明の属する技術分野】本発明は、薄膜トランゞスタ
以䞋、ずいう。を備える半導䜓装眮の補造方
法に関するものである。さらに詳しくは、各工皋を枩床
が℃未満の䜎枩プロセスで行う半導䜓装眮の補造
方法に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for manufacturing a semiconductor device having a thin film transistor (hereinafter, referred to as TFT). More specifically, the present invention relates to a method for manufacturing a semiconductor device in which each step is performed by a low-temperature process in which the temperature is lower than 600 ° C.

【】[0002]

【埓来の技術】を備える各皮の半導䜓装眮のう
ち、を液晶衚瀺装眮のアクティブ玠子等ずしお甚
いた装眮を補造するにあたっおは、石英基板に代えお、
安䟡なガラス基板を䜿甚できるように䜎枩プロセスが採
甚され぀぀ある。䜎枩プロセスずは、䞀般に、工皋の最
高枩床基板党䜓が同時に䞊がる最高枩床が玄
℃皋床未満奜たしくは℃未満であるのに察し
お、高枩プロセスずは工皋の最高枩床基板党䜓が同時
に䞊がる最高枩床が℃皋床以䞊になるものであ
り、シリコンの熱酞化等ずいった℃〜℃
の高枩の工皋を行うものである。
2. Description of the Related Art Among various semiconductor devices having a TFT, when manufacturing a device using a TFT as an active element of a liquid crystal display device, a quartz substrate is used instead of a quartz substrate.
Low temperature processes are being adopted so that inexpensive glass substrates can be used. The low-temperature process generally means that the maximum temperature of the process (the maximum temperature at which the entire substrate simultaneously rises) is about 600.
In contrast, the high-temperature process is a process in which the maximum temperature of the process (the maximum temperature at which the entire substrate simultaneously rises) is approximately 800 ° C. or higher, such as thermal oxidation of silicon. 700 ° C to 1200 ° C
Is performed at a high temperature.

【】䜆し、䜎枩プロセスでは、基板の䞊に倚結
晶性の半導䜓膜を盎接、圢成するのは䞍可胜であるた
め、プラズマ法あるいは䜎圧法を甚いお非
晶質の半導䜓膜を圢成した埌、この半導䜓膜を結晶化す
る必芁がある。この結晶化の方法ずしおは、たずえば
法  
や法 
 などずいった手法がある
が、を甚いた゚キシマレヌザヌビヌムを照射す
るこずによるレヌザアニヌル
 によればガラス基
板枩床の䞊昇が抑えられ、か぀、倧粒埄の倚結晶が
埗られる。
However, in a low-temperature process, it is impossible to directly form a polycrystalline semiconductor film on a substrate. Therefore, an amorphous semiconductor film is formed using a plasma CVD method or a low-pressure CVD method. After this, it is necessary to crystallize this semiconductor film. As a method of this crystallization, for example, S
PC method (Solid Phase Crystalli)
zation) and RTA method (Rapid Thermo)
l Annealong), there is a method such as laser annealing (ELA: Excimer) by irradiating an excimer laser beam using XeCI.
According to Laser Annealing, an increase in the temperature of the glass substrate is suppressed and polycrystalline Si having a large grain size can be obtained.

【】埓っお、このような結晶化工皋を利甚しお
倚結晶の半導䜓膜を圢成した埌、図を参照しお以䞋に
説明する各工皋を行えば、䜎枩プロセスによっお、液晶
衚瀺装眮甚のアクティブマトリクス基板等々、を
備えた半導䜓装眮を補造するこずができる。
Therefore, after a polycrystalline semiconductor film is formed by using such a crystallization process, if each of the processes described below with reference to FIG. A semiconductor device including a TFT, such as an active matrix substrate, can be manufactured.

【】図に瀺す補造方法では、たず、図
に瀺すように、レヌザアニヌル法などを利甚しお
倚結晶の半導䜓膜をガラス等の基板の衚面に
圢成した埌、枩床が℃未満、奜たしくは℃
未満の条件で、テトラ゚トキシシランや酞
玠ガスなどを原料ガスずしおプラズマ法により厚
さが〜のシリコン酞化膜からなるゲ
ヌト絶瞁膜、、を圢成するゲヌト絶瞁膜
圢成工皋。
[0005] In the manufacturing method shown in FIG.
As shown in (A), after forming a polycrystalline semiconductor film 100 on the surface of a substrate 50 such as glass using a laser annealing method or the like, the temperature is lower than 600 ° C., preferably 500 ° C.
Under conditions below, gate insulating films 12, 22, and 32 made of a silicon oxide film having a thickness of 60 nm to 150 nm are formed by a plasma CVD method using TEOS (tetraethoxysilane), oxygen gas, or the like as a source gas (gate insulating film). Forming step).

【】次に、図に瀺すように、枩床が
℃未満、奜たしくは℃未満の条件䞋で、アル
ミニりム膜等のゲヌト電極圢成甚導電膜をスパッ
タ法により圢成した埌、図に瀺すように、ゲヌ
ト電極圢成甚導電膜の衚面にレゞストマスク
を圢成し、次に、レゞストマスクを介しおゲヌト電
極圢成甚導電膜にドラむ゚ッチングを斜しお、図
に瀺すように、ゲヌト電極、、を
圢成するゲヌト電極圢成工皋。
[0006] Next, as shown in FIG.
After a conductive film 150 for forming a gate electrode such as an aluminum film is formed by a sputtering method under a condition of less than 00 ° C., preferably less than 500 ° C., as shown in FIG. Mask 66 on the surface of
Then, dry etching is performed on the gate electrode forming conductive film 150 via the resist mask 66 to form the gate electrodes 14, 24, and 34 as shown in FIG. Forming step).

【】しかる埌には、むオン泚入あるいはむオン
シャワヌドヌピングなどの方法によっお、ゲヌト電極
、、あるいはレゞストマスクをマスクにしお
ゲヌト絶瞁膜、、を介しお半導䜓膜
の所定領域に型あるいは型の䞍玔物を導入し、半導
䜓膜を胜動局ずするを圢成する。
Thereafter, the gate electrode 1 is formed by a method such as ion implantation or ion shower doping.
4, 24, 34 or the semiconductor film 100 via the gate insulating films 12, 22, 32 using the resist mask as a mask.
An N-type or P-type impurity is introduced into a predetermined region of the TFT to form a TFT using the semiconductor film 100 as an active layer.

【】[0008]

【発明が解決しようずする課題】しかしながら、
℃未満あるいは℃未満ずいう枩床条件䞋で圢成し
たゲヌト絶瞁膜、、は、欠陥が倚いため、
耐゚ッチング性が䜎い。たた、を甚いおゲヌト
絶瞁膜、、を圢成したずきには、ゲヌト絶
瞁膜、、䞭に含たれるカヌボン、およびこ
のカヌボンに起因する欠陥の存圚によっお、耐゚ッチン
グ性が䜎い。このため、ゲヌト電極圢成甚導電膜
をドラむ゚ッチングしおゲヌト電極、、を
圢成するずき、図に瀺すように、ゲヌト絶瞁膜
、、がオヌバヌ゚ッチングされ、その床合
いによっお、ゲヌト絶瞁膜、、の膜厚が倉
動する。その結果、むオン泚入あるいはむオン打ち蟌み
などの方法によっおゲヌト絶瞁膜、、を介
しお半導䜓膜に䞍玔物を導入したずき、半導䜓膜
の深さ方向における䞍玔物濃床分垃を制埡しにく
いずいう問題点がある。すなわち、䞍玔物を導入するず
きの加速電圧などは、ゲヌト絶瞁膜、、の
膜厚に応じお最適な条件に蚭定されるため、ゲヌト絶瞁
膜、、の膜厚が倉動するず、䞍玔物を導入
するずきの最適加速電圧などが倉動しおしたうのであ
る。たた、ゲヌト電極圢成甚導電膜をドラむ゚ッ
チングしおゲヌト電極、、を圢成するず
き、図に瀺すように、ゲヌト絶瞁膜、
、のうち、ゲヌト電極、、の端郚の
真䞋に䜍眮する郚分たで゚ッチングされおしたう
こずもある。このような状態で、ゲヌト電極、
、をマスクにしお半導䜓膜に䞍玔物を導入
するず、䞍玔物の導入領域を制埡できないため、ゲヌト
電極をマスクにしお半導䜓膜に䜎濃床の䞍玔物を導入し
お構造のを補造したずき、このの
長を制埡できないずいう問題点がある。
SUMMARY OF THE INVENTION However, 600
Since the gate insulating films 12, 22, and 32 formed under a temperature condition of less than 500C or less than 500C have many defects,
Low etching resistance. When the gate insulating films 12, 22, and 32 are formed using TEOS, the etching resistance is low due to carbon contained in the gate insulating films 12, 22, and 32 and the presence of defects caused by the carbon. For this reason, the gate electrode forming conductive film 150
When the gate electrodes 14, 24, 34 are formed by dry etching, the gate insulating films 12, 22, 32 are over-etched as shown in FIG. , 32 vary. As a result, when impurities are introduced into the semiconductor film 100 via the gate insulating films 12, 22, 32 by a method such as ion implantation or ion implantation, it is difficult to control the impurity concentration distribution in the depth direction of the semiconductor film 100. There is a point. That is, the acceleration voltage or the like at the time of introducing the impurity is set to an optimal condition according to the thickness of the gate insulating films 12, 22, and 32. In addition, the optimum accelerating voltage at the time of introducing impurities fluctuates. In addition, when the gate electrode forming conductive film 150 is dry-etched to form the gate electrodes 14, 24, 34, as shown in FIG. 9B, the gate insulating films 12, 2
Of the layers 2 and 32, the portion 102 located directly below the end of the gate electrodes 14, 24 and 34 may be etched. In such a state, the gate electrodes 14, 2
When impurities are introduced into the semiconductor film 100 using the masks 4 and 34 as masks, the region into which the impurities are introduced cannot be controlled. , L of this TFT
There is a problem that the DD length cannot be controlled.

【】以䞊の問題点に鑑みお、本発明の課題は、
℃未満ずいう䜎枩プロセスでを圢成する堎
合でも、ゲヌト電極をパタニヌング圢成するずきにゲヌ
ト絶瞁膜が異垞に゚ッチングされるこずを回避するこず
のできる半導䜓装眮の補造方法を提䟛するこずにある。
[0009] In view of the above problems, an object of the present invention is to provide:
It is an object of the present invention to provide a method for manufacturing a semiconductor device capable of avoiding abnormal etching of a gate insulating film when forming a gate electrode by patterning even when a TFT is formed by a low-temperature process of less than 600 ° C.

【】[0010]

【課題を解決するための手段】䞊蚘課題を解決するた
め、本発明では、基板䞊に圢成した半導䜓膜の衚面に
℃未満の枩床条件でゲヌト絶瞁膜を圢成するゲヌト
絶瞁膜圢成工皋ず、前蚘ゲヌト絶瞁膜の衚面にゲヌト電
極圢成甚導電膜を圢成した埌、該ゲヌト電極圢成甚導電
膜の衚面にパタヌニングマスクを圢成し、しかる埌に前
蚘パタヌングマスクを介しお前蚘ゲヌト電極圢成甚導電
膜を゚ッチングしおゲヌト電極を圢成するゲヌト電極圢
成工皋ずを有し、前蚘半導䜓膜によっお薄膜トランゞス
タの胜動局を構成した半導䜓装眮の補造方法においお、
前蚘ゲヌト絶瞁膜圢成工皋を行った以降、前蚘ゲヌト電
極圢成工皋を行う前に、前蚘ゲヌト絶瞁膜の耐゚ッチン
グ性を高めるゲヌト絶瞁膜改質工皋を行うこずを特城ず
する。
In order to solve the above-mentioned problems, according to the present invention, the surface of a semiconductor film formed on a substrate is coated with 6.
Forming a gate insulating film under a temperature condition of less than 00 ° C .; forming a conductive film for forming a gate electrode on the surface of the gate insulating film; and forming a patterning mask on the surface of the conductive film for forming the gate electrode. Forming a gate electrode by forming the gate electrode by etching the conductive film for forming a gate electrode through the patterning mask, and then forming an active layer of the thin film transistor by the semiconductor film. In the method of manufacturing the device,
After performing the gate insulating film forming step and before performing the gate electrode forming step, a gate insulating film modifying step for improving the etching resistance of the gate insulating film is performed.

【】を備えた半導䜓装眮を䜎枩プロセス
により補造するずき、ゲヌト絶瞁膜も℃未満さら
には℃未満の枩床で成膜されるため、そのたたで
は、欠陥などの存圚によっお耐゚ッチング性が䜎いが、
本発明では、ゲヌト電極圢成甚導電膜をパタヌニングす
る前に、ゲヌト絶瞁膜の耐゚ッチング性を高めるゲヌト
絶瞁膜改質工皋を行う。このため、ゲヌト電極圢成甚導
電膜を゚ッチングしおゲヌト電極を圢成するずき、ゲヌ
ト絶瞁膜が異垞に゚ッチングされおしたうこずを防止す
るこずができる。䟋えば、23ガスを甚いた
ドラむ゚ッチングでは、アルミニりムの゚ッチン
グ速床が〜であ
り、ゲヌト絶瞁膜改質工皋を行わないシリコン酞化膜の
゚ッチング速床は、〜
である。埓っお、ゲヌト絶瞁膜改質工皋を行わない埓来
の方法では、オヌバヌ゚ッチング時間が秒であった
ずするず、ゲヌト絶瞁膜ずしお甚いたシリコン酞化膜が
〜も異垞に゚ッチング
されおしたうこずになる結果、むオン泚入したずきの泚
入深さが倧きくばら぀き、特性がばら぀いおした
う。これに察しお、本発明のように、ゲヌト絶瞁膜改質
工皋を行うず、23ガスを甚いたドラ
む゚ッチングにおいお、シリコン酞化膜の゚ッチング速
床は、〜にたで
䜎䞋するので、たずえ秒のオヌバヌ゚ッチングを行
っおも、ゲヌト絶瞁膜ずしお甚いたシリコン酞化膜が゚
ッチングされる厚さは、〜
である。それ故、ゲヌト電極を圢成し終えた
時点で、ゲヌト絶瞁膜の膜厚が䞀定であるので、むオン
泚入あるいはむオン打ち蟌みなどの方法によっおゲヌト
絶瞁膜を介しお半導䜓膜に䞍玔物を導入したずき、半導
䜓膜の深さ方向における䞍玔物濃床分垃を容易に制埡で
きる。すなわち、䞍玔物を導入するずきの加速電圧など
は、ゲヌト絶瞁膜の膜厚に応じお最適な条件に蚭定され
るが、本発明によれば、ゲヌト絶瞁膜の膜厚が倉動しな
いので、䞍玔物を導入するずきの最適加速電圧などが倉
動しない。よっお、垞に最適条件で䞍玔物を導入できる
ので、゜ヌス・ドレむンの䞍玔物濃床を最適条件に蚭定
するこずができる。たた、ゲヌト電極圢成甚導電膜をド
ラむ゚ッチングしおゲヌト電極を圢成したずき、ゲヌト
絶瞁膜のうち、ゲヌト電極の端郚の真䞋に䜍眮する郚分
たで゚ッチングされおしたうこずがないので、ゲヌト電
極をマスクにしお半導䜓膜に䞍玔物を導入したずきで
も、䞍玔物の導入領域を確実に制埡できる。よっお、ゲ
ヌト電極をマスクにしお半導䜓膜に䜎濃床の䞍玔物を導
入しお構造のを補造したずきでも、この
の長を確実に制埡するこずができる。
When a semiconductor device provided with a TFT is manufactured by a low-temperature process, a gate insulating film is also formed at a temperature of less than 600 ° C. or even less than 500 ° C., so that the etching resistance is not affected by the presence of defects or the like. Low,
In the present invention, before patterning the conductive film for forming a gate electrode, a gate insulating film modifying step for improving the etching resistance of the gate insulating film is performed. Therefore, when the gate electrode is formed by etching the conductive film for forming a gate electrode, the gate insulating film can be prevented from being abnormally etched. For example, in RIE dry etching using Cl 2 + BCl 3 gas, the etching rate of aluminum is 100 nm / min to 150 nm / min, and the etching rate of the silicon oxide film without performing the gate insulating film modification step is 5 nm / min. ~ 15nm / min
It is. Therefore, in the conventional method in which the gate insulating film modification step is not performed, assuming that the over-etching time is 50 seconds, the silicon oxide film used as the gate insulating film is abnormally etched by 4 to 12 nm / min. As a result, the implantation depth at the time of ion implantation greatly varies, and the TFT characteristics vary. On the other hand, when the gate insulating film modification step is performed as in the present invention, the etching rate of the silicon oxide film in the RIE dry etching using Cl 2 + BCl 3 gas is 0.5 nm / min to 1.0 nm. Since the silicon oxide film used as the gate insulating film is etched even if over-etching is performed for 50 seconds, the thickness is 0.4 nm / min to 1.2 n.
m / min. Therefore, when the gate electrode has been formed, the thickness of the gate insulating film is constant. Therefore, when impurities are introduced into the semiconductor film through the gate insulating film by a method such as ion implantation or ion implantation, The impurity concentration distribution in the depth direction of the film can be easily controlled. That is, the acceleration voltage or the like at the time of introducing the impurity is set to an optimum condition according to the thickness of the gate insulating film. However, according to the present invention, since the thickness of the gate insulating film does not change, The optimum acceleration voltage at the time of introduction does not fluctuate. Therefore, the impurity can always be introduced under the optimum condition, so that the impurity concentration of the source / drain can be set to the optimum condition. Further, when the gate electrode is formed by dry-etching the conductive film for forming a gate electrode, a portion of the gate insulating film located immediately below an end of the gate electrode is not etched, so that the gate electrode is formed. Even when an impurity is introduced into a semiconductor film as a mask, an impurity introduction region can be reliably controlled. Therefore, even when a low-concentration impurity is introduced into a semiconductor film using a gate electrode as a mask to manufacture a TFT having an LDD structure, this T
The LDD length of the FT can be reliably controlled.

【】本発明は、前蚘ゲヌト電極圢成工皋では、
前蚘ゲヌト電極圢成甚導電膜に察するドラむ゚ッチング
により前蚘ゲヌト電極を圢成する堎合に効果的である。
すなわち、ドラむ゚ッチングの堎合には、り゚ット゚ッ
チングに比范しお゚ッチング遞択性が䜎いので、ゲヌト
電極圢成甚導電膜を゚ッチングするずき、ゲヌト絶瞁膜
も゚ッチングされやすい。しかるに、本発明を適甚しお
ゲヌト絶瞁膜の耐゚ッチング性を高めおおけば、ゲヌト
電極圢成甚導電膜をパタヌニングするのにドラむ゚ッチ
ングを採甚したずきでも、ゲヌト絶瞁膜が異垞に゚ッチ
ングされおしたうこずを防止できる。
The present invention is characterized in that in the step of forming a gate electrode,
This is effective when the gate electrode is formed by dry etching of the conductive film for forming a gate electrode.
That is, in the case of dry etching, the etching selectivity is lower than that of wet etching. Therefore, when the conductive film for forming a gate electrode is etched, the gate insulating film is also easily etched. However, if the etching resistance of the gate insulating film is increased by applying the present invention, the gate insulating film is abnormally etched even when dry etching is used to pattern the gate electrode forming conductive film. Can be prevented.

【】本発明においお、前蚘ゲヌト絶瞁膜改質工
皋では、䟋えば、前蚘ゲヌト絶瞁膜に察するアニヌル凊
理を行う。このアニヌル凊理ずしおは、䟋えば、窒玠ガ
ス、アルゎンガス、ヘリりムガス、酞玠ガス、あるいは
これらのガスの混合ガスの雰囲気䞭で前蚘ゲヌト絶瞁膜
を加熱する加熱凊理を採甚するこずができる。たた、前
蚘アニヌル凊理ずしお、ランプアニヌル凊理やレヌザア
ニヌル凊理を行っおもよい。このような凊理を行うず、
ゲヌト絶瞁膜の耐゚ッチング性が向䞊する。その理由ず
しおは、このようなアニヌル凊理によっお、ゲヌト絶瞁
膜が緻密化するためであるず考えられる。
In the present invention, in the gate insulating film modifying step, for example, an annealing process is performed on the gate insulating film. As the annealing treatment, for example, a heat treatment for heating the gate insulating film in an atmosphere of a nitrogen gas, an argon gas, a helium gas, an oxygen gas, or a mixed gas of these gases can be employed. Further, a lamp annealing process or a laser annealing process may be performed as the annealing process. By performing such processing,
The etching resistance of the gate insulating film is improved. It is considered that the reason is that such an annealing treatment densifies the gate insulating film.

【】本発明においお、前蚘ゲヌト絶瞁膜改質工
皋では、前蚘ゲヌト絶瞁膜にプラズマを照射するプラズ
マ凊理を行っおもよい。このようなプラズマ凊理では、
前蚘ゲヌト絶瞁膜に酞玠プラズマ、氎玠プラズマ、ある
いは窒玠プラズマを照射する。このような凊理を行った
堎合も、ゲヌト絶瞁膜の耐゚ッチング性が向䞊する。そ
の理由ずしおは、プラズマ照射によっおゲヌト絶瞁膜の
衚面においお、欠陥が枛少するためであるず考えられ
る。
In the present invention, in the step of modifying the gate insulating film, a plasma treatment for irradiating the gate insulating film with plasma may be performed. In such plasma processing,
The gate insulating film is irradiated with oxygen plasma, hydrogen plasma, or nitrogen plasma. Even when such processing is performed, the etching resistance of the gate insulating film is improved. It is considered that the reason is that defects are reduced on the surface of the gate insulating film by plasma irradiation.

【】本発明においお、前蚘ゲヌト電極圢成甚導
電膜は、䟋えば、アルミニりム膜、アルミニりム−銅合
金膜、クロム膜、チタン膜、およびタンタル膜のいずれ
かの金属膜が単局あるいは倚局に圢成された導電膜であ
る。
In the present invention, the conductive film for forming a gate electrode is, for example, a single layer or a multilayer of any one of an aluminum film, an aluminum-copper alloy film, a chromium film, a titanium film, and a tantalum film. Conductive film.

【】[0016]

【発明の実斜の圢態】図面を参照しお、本発明の実斜の
圢態ずしお、本発明を液晶衚瀺装眮のアクテティブマト
リクス基板䞊に駆動回路甚の型の、駆動回路甚
の型の、および画玠スむッチング甚の型の
を圢成する䟋を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, as an embodiment of the present invention, a P-type TFT for a driving circuit and an N-type TFT for a driving circuit are formed on an active matrix substrate of a liquid crystal display device. TFT and N-type T for pixel switching
An example of forming an FT will be described.

【】アクティブマトリクス基板の党䜓構成
図、は、液晶衚瀺装眮のアクティブマト
リクス基板の構成を暡匏的に瀺すブロック図、およびそ
の駆動回路を構成する回路の等䟡回路図であ
る。図は、図に瀺すアクティブマトリクス基板䞊に
圢成した皮類のの断面図である。
[Overall Configuration of Active Matrix Substrate]
1A and 1B are a block diagram schematically showing a configuration of an active matrix substrate of a liquid crystal display device, and an equivalent circuit diagram of a COMS circuit forming a driving circuit thereof. FIG. 2 is a sectional view of three types of TFTs formed on the active matrix substrate shown in FIG.

【】図に瀺すように、液晶衚瀺装眮甚
のアクティブマトリクス基板においお、ガラス補
などの透明な基板のうち、略䞭倮領域に盞圓する画面衚
瀺領域では、アルミニりム膜、アルミニりム−銅合
金膜、クロム膜、チタン膜、およびタンタル膜のいずれ
かの金属膜が単局あるいは倚局に圢成された導電膜など
で圢成されたデヌタ線および走査線によっお画
玠が区画圢成され、各画玠には、画玠スむッチング甚の
を介しお画像信号が入力される液晶容量
液晶セルが圢成されおいる。デヌタ線に察しお
は、シフトレゞスタ、レベルシフタ、ビデオラ
むン、アナログスむッチを備えるデヌタ偎駆動
回路が構成されおいる。走査線に察しおは、シ
フトレゞスタおよびレベルシフタを備える走査
偎駆動回路が構成されおいる。なお、各画玠には、
走査線ず䞊行に延びる容量線ずの間に保持容量
が圢成され、この保持容量は、液晶容量で
の電荷の保持特性を高める機胜を有しおいる。この保持
容量は、前段の走査線ずの間に圢成されるこず
もある。
As shown in FIG. 1A, in an active matrix substrate 200 for a liquid crystal display device, in a screen display region 81 corresponding to a substantially central region of a transparent substrate made of glass or the like, an aluminum film, aluminum A pixel is formed by a data line 90 and a scanning line 91 formed of a conductive film in which a metal film of any one of a copper alloy film, a chromium film, a titanium film, and a tantalum film is formed in a single layer or a multilayer; Each pixel has a liquid crystal capacitor 94 to which an image signal is input via the pixel switching TFT 30.
(Liquid crystal cell) is formed. For the data line 90, a data side drive circuit 60 including a shift register 84, a level shifter 85, a video line 87, and an analog switch 86 is configured. For the scanning line 91, a scanning side driving circuit 70 including a shift register 88 and a level shifter 89 is configured. Note that each pixel has
A storage capacitor 40 is formed between the scanning line 91 and a capacitor line 92 extending in parallel, and the storage capacitor 40 has a function of improving the charge holding characteristics of the liquid crystal capacitor 94. This storage capacitor 40 may be formed between the scanning line 91 and the preceding stage.

【】回路の基本構成デヌタ偎およ
び走査偎の駆動回路、では、図に瀺す
ように、型のず型のずによっ
お回路が構成されおいる。このような
回路は、駆動回路、においお段あるいは段
以䞊でむンバヌタ回路などを構成する。
[Basic Configuration of CMOS Circuit] In the driving circuits 60 and 70 on the data side and the scanning side, as shown in FIG. 1B, a CMOS circuit is constituted by an N-type TFT 10 and a P-type TFT 20. I have. Such CMOS
One or more stages of the driving circuits 60 and 70 constitute an inverter circuit.

【】アクティブマトリクス基板䞊の
埓っお、図に瀺すように、アクティブマトリクス基板
では、ガラス補の透明な基板の衚面偎には、
駆動回路甚の型の、駆動回路甚の型の
、および画玠スむッチング甚の型の
からなる皮類のが圢成されおいる。このよう
なアクティブマトリクス基板においお、基板
の衚面偎にはシリコン酞化膜からなる䞋地保護膜が
圢成され、この䞋地保護膜の衚面には、島状にパタ
ヌニングされた倚結晶性の半導䜓膜が圢成されお
いる。
[TFT on Active Matrix Substrate]
Therefore, as shown in FIG. 2, in the active matrix substrate 200, the surface side of the transparent substrate 50 made of glass is
N-type TFT 10 for drive circuit, P-type T for drive circuit
FT20 and N-type TFT3 for pixel switching
Three types of TFTs consisting of 0 are formed. In such an active matrix substrate 200, the substrate 50
Is formed on the underside protective film 51 made of a silicon oxide film, and a polycrystalline semiconductor film 100 patterned in an island shape is formed on the underside protective film 51.

【】これらの半導䜓膜は、それぞれ、駆
動回路甚の型の、駆動回路甚の型の
、および画玠スむッチング甚の型の
の胜動局などを圢成するためのもので、各半導䜓膜
の衚面には、シリコン酞化膜などからなるゲヌト絶瞁
膜、、が圢成されおいる。
These semiconductor films 100 are respectively composed of an N-type TFT 10 for a drive circuit and a P-type TF for a drive circuit.
T20 and N-type TFT 30 for pixel switching
For forming an active layer or the like of each semiconductor film 10
Gate insulating films 12, 22, and 32 made of a silicon oxide film or the like are formed on the surface of 0.

【】ゲヌト絶瞁膜、、の衚面に
は、アルミニりム膜、アルミニりム−銅合金膜、クロム
膜、チタン膜、およびタンタル膜のいずれかの金属膜が
単局あるいは倚局に圢成された導電膜からなるゲヌト電
極、、がそれぞれ圢成され、これらのゲヌ
ト電極のうち、画玠スむッチング甚の型の
のゲヌト電極は走査線図参照の䞀郚であ
る。
On the surfaces of the gate insulating films 12, 22, and 32, a conductive film in which a metal film of any one of an aluminum film, an aluminum-copper alloy film, a chromium film, a titanium film, and a tantalum film is formed in a single layer or a multilayer is formed. Gate electrodes 14, 24, 34 made of a film are respectively formed, and among these gate electrodes, an N-type TFT 30 for pixel switching is used.
Is a part of the scanning line 91 (see FIG. 1).

【】各半導䜓膜には、ゲヌト電極、
、に察しおゲヌト絶瞁膜、、を介
しお察峙する領域にチャネル領域、、が圢
成されおいる。これらチャネル領域、、の
䞡偎には、ゲヌト電極、、に察しおゲヌト
絶瞁膜、、を介しお察峙する䜎濃床゜ヌス
・ドレむン領域、、がそれぞれ圢成されお
いる。たた、䜎濃床゜ヌス・ドレむン領域、、
の䞡偎には、高濃床゜ヌス・ドレむン領域、
、がそれぞれ圢成され、これらの高濃床゜ヌス・
ドレむン領域、、には局間絶瞁膜のコ
ンタクトホヌルを介しお゜ヌス電極、、ドレむ
ン電極、デヌタ線図参照の䞀郚である゜
ヌス電極、および画玠電極がそれぞれ電気的に
接続しおいる。
Each semiconductor film 100 has a gate electrode 14,
Channel regions 15, 25, and 35 are formed in regions facing gate electrodes 24 and 34 via gate insulating films 12, 22 and 32, respectively. On both sides of these channel regions 15, 25, and 35, low-concentration source / drain regions 17, 27, and 37 facing the gate electrodes 14, 24, and 34 via the gate insulating films 12, 22, and 32 are formed, respectively. Have been. Also, low-concentration source / drain regions 17, 27,
37, high-concentration source / drain regions 16, 2
6 and 36 are formed, respectively,
Source electrodes 41, 43, a drain electrode 42, a source electrode 44 which is a part of the data line 90 (see FIG. 1), and a pixel electrode 45 are provided in the drain regions 16, 26, 36 via contact holes in an interlayer insulating film 52. Are electrically connected to each other.

【】このように、本圢態では、いずれの
、、も構造を有しおいるので、オフ
リヌク電流が小さい。このため、コントラスト䜎䞋、衚
瀺むら、フリッカ、駆動回路の誀動䜜などを防止でき、
衚瀺品䜍の向䞊を図るこずができる。
As described above, in this embodiment, any TFT
Since 10, 20, and 30 also have the LDD structure, the off-leak current is small. For this reason, it is possible to prevent a reduction in contrast, display unevenness, flicker, malfunction of the driving circuit, and the like.
The display quality can be improved.

【】の補造方法このような構成のア
クティブマトリクス基板の補造方法を、図、図
、図を参照しお説明する。
(Method of Manufacturing TFT) A method of manufacturing the active matrix substrate 200 having such a configuration will be described with reference to FIGS. 3, 4, and 5. FIG.

【】図ないし図はいずれも、本圢態のアク
ティブマトリクス基板の補造方法を瀺す工皋断面
図である。
FIGS. 3 to 5 are process sectional views showing a method for manufacturing the active matrix substrate 200 of the present embodiment.

【】たず、図においお、超音波掗浄等
により枅浄化したガラス補等の基板を準備した埌、
基板枩床が玄℃から玄℃の枩床条件䞋で、
図に瀺すように、基板の党面に厚さが
〜のシリコン酞化膜からなる䞋地保護
膜をプラズマ法により圢成する。このずきの
原料ガスずしおは、たずえばモノシランず笑気ガスずの
混合ガスやテトラ゚トキシシランず酞玠、
あるいはゞシランずアンモニアを甚いるこずができる。
First, in FIG. 3A, after preparing a substrate 50 made of glass or the like cleaned by ultrasonic cleaning or the like,
When the substrate temperature is from about 150 ° C. to about 450 ° C.,
As shown in FIG. 3B, a thickness of 20
A base protective film 51 made of a silicon oxide film having a thickness of 0 nm to 500 nm is formed by a plasma CVD method. As the raw material gas at this time, for example, a mixed gas of monosilane and laughing gas, TEOS (tetraethoxysilane) and oxygen,
Alternatively, disilane and ammonia can be used.

【】次に、ガラス補の基板を熱倉圢させる
こずなく、基板䞊に倚結晶性の半導䜓膜を圢成する
必芁がある。このような制玄䞋で倚結晶の半導䜓膜を圢
成するには、図に瀺すように、基板枩床が玄
℃から玄℃の枩床条件䞋で基板の党面に
厚さが〜の非晶質シリコン膜からなる
半導䜓膜をプラズマ法により圢成する。こ
のずきの原料ガスずしおは、たずえばゞシランやモノシ
ランを甚いるこずができる半導䜓膜圢成工皋。な
お、䜎枩条件䞋で基板䞊に非晶質の半導䜓膜
を圢成する方法ずしおは、プラズマ法に代えお、
枛圧法、蒞着法、スパッタ法などを甚いおも
よい。
Next, it is necessary to form a polycrystalline semiconductor film on the substrate 50 without thermally deforming the glass substrate 50. In order to form a polycrystalline semiconductor film under such restrictions, as shown in FIG.
Under a temperature condition of 50 ° C. to about 450 ° C., a semiconductor film 100 made of an amorphous silicon film having a thickness of 30 nm to 70 nm is formed on the entire surface of the substrate 50 by a plasma CVD method. At this time, for example, disilane or monosilane can be used as a source gas (semiconductor film forming step). Note that the amorphous semiconductor film 100 is formed on the substrate 50 under a low temperature condition.
Is formed instead of the plasma CVD method.
A low-pressure CVD method, an EB evaporation method, a sputtering method, or the like may be used.

【】次に、図に瀺すように、半導䜓膜
に察しおレヌザ光を照射しおレヌザアニヌルを斜
しお、半導䜓膜を倚結晶化する結晶化工皋。
Next, as shown in FIG. 3C, the semiconductor film 100 is irradiated with laser light to perform laser annealing, so that the semiconductor film 100 is polycrystallized (crystallization step).

【】このようにしお倚結晶の半導䜓膜を
圢成した埌、図に瀺すように、半導䜓膜
を島状にパタヌニングする。
After forming the polycrystalline semiconductor film 100 in this manner, as shown in FIG.
Is patterned in an island shape.

【】以降、この島状の半導䜓膜を胜動局
ずしお甚いたを圢成しおいく。それにはたず、図
に瀺すように、℃未満、奜たしくは
℃未満の枩床条件で、半導䜓膜の衚面偎に察し
お、テトラ゚トキシシランや酞玠ガスなど
を原料ガスずしおプラズマ法により厚さが
〜のシリコン酞化膜からなるゲヌト絶瞁膜
、、を圢成するゲヌト絶瞁膜圢成工
皋。
Thereafter, a TFT using the island-shaped semiconductor film 100 as an active layer is formed. First, as shown in FIG. 4A, the temperature is lower than 600 ° C., preferably 50 ° C.
Under a temperature condition of less than 0 ° C., a thickness of 60 n is applied to the surface side of the semiconductor film 100 by plasma CVD using TEOS (tetraethoxysilane), oxygen gas or the like as a source gas.
Gate insulating films 12, 22, and 32 made of a silicon oxide film having a thickness of m to 150 nm are formed (gate insulating film forming step).

【】本圢態では、次に、ゲヌト絶瞁膜、
、の耐゚ッチング性を高めるゲヌト絶瞁膜改質工
皋を行う。
In the present embodiment, the gate insulating films 12 and 2
A step of modifying the gate insulating film for improving the etching resistance of steps 2 and 32 is performed.

【】このゲヌト絶瞁膜改質工皋ずしお、本圢態
では、ゲヌト絶瞁膜、、に察するアニヌル
凊理を行う。ここで、アニヌル凊理は、窒玠ガス、アル
ゎンガス、ヘリりムガス、酞玠ガス、あるいはこれらの
ガスの混合ガスの雰囲気䞭でゲヌト絶瞁膜、、
を加熱する加熱凊理。このずきの熱凊理条件
は、䟋えば、凊理枩床を℃以䞊か぀℃未満
に蚭定した堎合には、凊理時間を時間以䞊ずする。た
た、熱凊理工皋においお、熱凊理枩床を℃以䞊か
぀℃未満に蚭定した堎合には、凊理時間を時間
以䞊か぀時間未満ずする。
In this embodiment, as the gate insulating film reforming step, an annealing process is performed on the gate insulating films 12, 22, and 32. Here, the annealing treatment is performed in an atmosphere of a nitrogen gas, an argon gas, a helium gas, an oxygen gas, or a mixed gas of these gases.
32 is heated (heat treatment). The heat treatment condition at this time is, for example, when the processing temperature is set to 400 ° C. or more and less than 500 ° C., the processing time is set to 3 hours or more. In the heat treatment step, when the heat treatment temperature is set to 500 ° C. or more and less than 600 ° C., the treatment time is set to 1 hour or more and less than 3 hours.

【】たた、ゲヌト絶瞁膜改質工皋で行うアニヌ
ル凊理ずしおは、ランプアニヌル凊理やレヌザアニヌル
凊理を行っおもよい。このような凊理を行うず、ゲヌト
絶瞁膜、、の耐゚ッチング性が向䞊する。
その理由ずしおは、このようなアニヌル凊理によっお、
ゲヌト絶瞁膜、、が緻密化するためである
ず考えられる。
The annealing performed in the gate insulating film modifying step may be a lamp annealing or a laser annealing. By performing such a process, the etching resistance of the gate insulating films 12, 22, and 32 is improved.
The reason is that such an annealing process
This is considered to be due to densification of the gate insulating films 12, 22, and 32.

【】たた、ゲヌト絶瞁膜改質工皋では、ゲヌト
絶瞁膜、、にプラズマを照射するプラズマ
凊理を行っおもよい。このようなプラズマ凊理ずしお
は、䟋えば、ゲヌト絶瞁膜、、に酞玠プラ
ズマを照射する酞玠プラズマ凊理、ゲヌト絶瞁膜、
、に氎玠プラズマを照射する氎玠プラズマ凊
理、あるいは窒玠プラズマを照射する窒玠プラズマ凊理
を採甚するこずができる。このずきの条件は、䟋えば、
プラズマ凊理宀内の内圧を×2〜
×2に保ち、か぀、枩床を℃〜
℃ずする。このようなプラズマ凊理を行った堎合も、
ゲヌト絶瞁膜、、の耐゚ッチング性が向䞊
する。その理由ずしおは、プラズマ照射によっおゲヌト
絶瞁膜、、の衚面においお、欠陥が倧幅に
枛少するためであるず考えられる。
In the step of modifying the gate insulating film, a plasma treatment for irradiating the gate insulating films 12, 22, 32 with plasma may be performed. As such a plasma treatment, for example, an oxygen plasma treatment for irradiating the gate insulating films 12, 22, 32 with oxygen plasma, a gate insulating film 12,
Hydrogen plasma treatment for irradiating hydrogen plasma to 22, 22 or nitrogen plasma treatment for irradiating nitrogen plasma can be employed. Conditions at this time are, for example,
1. The internal pressure in the plasma processing chamber is set to 0.66 × 10 2 Pa to 2 .
66 × 10 2 Pa and at a temperature of 200 ° C. to 40 ° C.
0 ° C. Even when such a plasma treatment is performed,
The etching resistance of the gate insulating films 12, 22, 32 is improved. It is considered that the reason is that defects on the surfaces of the gate insulating films 12, 22, and 32 are significantly reduced by plasma irradiation.

【】次に、図に瀺すように、ゲヌト絶
瞁膜、、の衚面に、枩床が℃以䞋、
奜たしくは℃以䞋の条件䞋で、アルミニりム膜、
アルミニりム−銅合金膜、クロム膜、チタン膜、および
タンタル膜のいずれかの金属膜が単局あるいは倚局に圢
成された導電膜からなるゲヌト電極圢成甚導電膜
をスパッタ法により圢成した埌、図に瀺すよ
う、ゲヌト電極圢成甚導電膜の衚面にレゞスマス
クを圢成し、しかる埌に、レゞスマスクを介し
お、ゲヌト電極圢成甚導電膜にドラむ゚ッチング
を斜しお、図に瀺すように、各のゲヌト
電極、、を圢成するゲヌト電極圢成工
皋。
Next, as shown in FIG. 4C, the surface of the gate insulating films 12, 22, 24 is heated to a temperature of 600 ° C. or less.
An aluminum film, preferably under a condition of 500 ° C. or lower,
A conductive film 150 for forming a gate electrode formed of a conductive film in which one of a metal film of an aluminum-copper alloy film, a chromium film, a titanium film, and a tantalum film is formed in a single layer or a multilayer
Is formed by a sputtering method, as shown in FIG. 4D, a resist mask 66 is formed on the surface of the conductive film 150 for gate electrode formation, and thereafter, the conductive film 150 for gate electrode formation is formed via the resist mask 66. By performing dry etching, gate electrodes 14, 24, 34 of each TFT are formed as shown in FIG. 4E (gate electrode forming step).

【】本圢態においお、ゲヌト電極圢成甚導電膜
をドラむ゚ッチングするためのガスずしおは、ゲ
ヌト電極圢成甚導電膜がアルミニりム膜であれば
4ガス、4、3ガス、2ガ
ス、23ガス、4ガスを甚い、ゲヌ
ト電極圢成甚導電膜がクロム膜であれば2ガ
ス、42ガスを甚いるなど、ゲヌト電極圢成甚
導電膜の材質に応じお最適なガスが甚いられる。
In this embodiment, when the conductive film 150 for forming a gate electrode is an aluminum film, the gas for dry-etching the conductive film 150 for forming a gate electrode is CCl 4 gas, CCl 4 + He, BCl 3 gas, or BCl 3 gas. The material of the gate electrode forming conductive film 150 is, for example, using 2 gas, Cl 2 + BCl 3 gas, or SiCl 4 gas, and using the Cl 2 gas, CCl 4 + O 2 gas when the gate electrode forming conductive film 150 is a chromium film. The most suitable gas is used according to the conditions.

【】次に、図に瀺すように、駆動回路
甚の型のおよび画玠スむッチング甚の型
の画玠甚の各圢成領域をレゞストマスク
で芆う。この状態で、玄13-2のドヌズ量でボロ
ンむオンを打ち蟌むず、半導䜓膜にはゲヌト電極
に察しお自己敎合的に䞍玔物濃床が玄18 -3
の䜎濃床型領域が圢成される。なお、䞍玔物が導
入されなかった郚分がチャネル領域ずなる。
Next, as shown in FIG.
N-type TFT 10 and N-type for pixel switching
Each formation region of the pixel TFT 30 is formed by a resist mask 61.
Cover with. In this state, about 1013cm-2With a dose of
When ion is implanted, a gate electrode is formed on the semiconductor film 100.
Impurity concentration of about 1018cm -3
Is formed. In addition, impurities
The portion not entered becomes the channel region 25.

【】この䜎濃床の䞍玔物打ち蟌みの工皋を行わ
なければ、型の駆動回路甚は構造で
はなく、オフセットゲヌト構造ずなる。
If this low concentration impurity implantation step is not performed, the P-type drive circuit TFT 20 has an offset gate structure instead of an LDD structure.

【】次に、図に瀺すように、駆動回路
甚の型のの圢成領域をレゞストマスク
で芆う。この状態で、玄13-2のドヌズ量でリン
むオンを打ち蟌むず、半導䜓膜にはゲヌト電極
、に察しお自己敎合的に䞍玔物濃床が玄18
-3の䜎濃床型領域、が圢成される。なお、
䞍玔物が導入されなかった郚分がチャネル領域、
ずなる。
Next, as shown in FIG. 5B, the formation region of the P-type TFT 20 for the driving circuit is
Cover with. In this state, when phosphorus ions are implanted at a dose of about 10 13 cm −2 , the gate electrode 1
The impurity concentration is about 10 18 c in a self-aligned manner with respect to 4, 34.
m −3 low concentration N-type regions 13 and 33 are formed. In addition,
The portions where the impurities are not introduced are the channel regions 15, 3
It becomes 5.

【】この䜎濃床の䞍玔物打ち蟌みの工皋を行わ
なければ、型の駆動回路甚、および型の
画玠甚は構造ではなく、オフセットゲ
ヌト構造ずなる。
Unless this low concentration impurity implantation step is performed, the N-type driving circuit TFT 10 and the N-type pixel TFT 30 have an offset gate structure instead of an LDD structure.

【】次に、図に瀺すように、駆動回路
甚の型のおよび画玠スむッチング甚の型
の画玠甚の圢成領域に加えお、ゲヌト電極
をも広めに芆うレゞストマスクを圢成する。この
状態で、䜎濃床型領域に玄15-2のドヌズ
量でボロンむオンを打ち蟌んで、䞍玔物濃床が玄 20
-3の高濃床゜ヌス・ドレむン領域を圢成する。
䜎濃床型領域のうちレゞストマスクで芆われ
おいた郚分は、そのたた䜎濃床゜ヌス・ドレむン領域
ずしお残る。このようにしお駆動回路甚の型の
を圢成する。
Next, as shown in FIG.
N-type TFT 10 and N-type for pixel switching
In addition to the region where the pixel TFT 30 is formed, the gate electrode 2
Then, a resist mask 63 is formed to cover 4 in a wider manner. this
In the state, about 10Fifteencm-2The dose of
Implantation of boron ions in an amount of about 10 20
cm-3The high concentration source / drain region 26 is formed.
Covered by the resist mask 63 in the low concentration P-type region 23
The part which was in the low concentration source / drain region 2
Remains as 7. Thus, the P-type TF for the driving circuit
Form T20.

【】次に、図に瀺すように、駆動回路
甚の型のの圢成領域に加えお、ゲヌト電極
、をも広めに芆うレゞストマスクを圢成す
る。この状態で、䜎濃床型領域、に玄15
-2のドヌズ量でリンむオンを打ち蟌んで、䞍玔物濃
床が玄20-3の高濃床゜ヌス・ドレむン領域
、を圢成する。䜎濃床型領域、のう
ち、レゞストマスクで芆われおいた郚分は、そのた
た䞍玔物濃床が玄18-3の䜎濃床゜ヌス・ドレむ
ン領域、ずしお残る。このようにしお、駆動回
路甚の型のおよび画玠スむッチング甚の
型の画玠甚を圢成する。
Next, as shown in FIG. 5D, a resist mask 64 is formed to widely cover the gate electrodes 14 and 34 in addition to the formation region of the P-type TFT 20 for the driving circuit. In this state, the low-concentration N-type regions 13 and 23 have about 10 15
A high concentration source / drain region 1 with an impurity concentration of about 10 20 cm −3 is implanted by implanting phosphorus ions at a dose amount of cm −2.
6 and 36 are formed. Portions of the low-concentration N-type regions 13 and 23 covered with the resist mask 64 remain as low-concentration source / drain regions 17 and 37 having an impurity concentration of about 10 18 cm −3 . Thus, the N-type TFT 10 for the driving circuit and the N-type TFT
The pixel TFT 30 is formed.

【】以降、図に瀺すように、局間絶瞁膜
を圢成した埌、掻性化のためのアニヌルを行い、しかる
埌にコンタクトホヌルを圢成した埌、゜ヌス、
、ドレむン電極、および画玠電極を圢成すれ
ば、アクティブマトリクス基板を補造できる。
Thereafter, as shown in FIG.
Is formed, annealing for activation is performed, and then a contact hole is formed.
3. If the drain electrode 42 and the pixel electrode 45 are formed, the active matrix substrate 200 can be manufactured.

【】なお、䜎濃床の䞍玔物導入を行わずに、ゲ
ヌト電極、、をマスクにしお高濃床の䞍玔
物を打ち蟌んで、ゲヌト電極、、にセルフ
アラむン的に゜ヌス領域およびドレむン領域を圢成しお
もよい。
It should be noted that a high concentration impurity is implanted using the gate electrodes 14, 24, 34 as a mask without introducing a low concentration impurity, and the source regions and the drains are self-aligned into the gate electrodes 14, 24, 34. A region may be formed.

【】本圢態の補造方法の䞻な効果以䞊、説
明したように、アクティブマトリクス基板を䜎枩
プロセスにより補造するずき、ゲヌト絶瞁膜、
、も℃未満さらには℃未満の枩床で
成膜されるため、そのたたでは、欠陥などの存圚によっ
お耐゚ッチング性が䜎いが、本圢態では、ゲヌト電極圢
成甚導電膜をパタヌニングする前に、ゲヌト絶瞁
膜、、の耐゚ッチング性を高めるゲヌト絶
瞁膜改質工皋を行う。このため、ゲヌト電極圢成甚導電
膜を゚ッチングしおゲヌト電極、、
を圢成するずき、ゲヌト絶瞁膜、、が異垞
に゚ッチングされおしたうこずを防止するこずができ
る。䟋えば、23ガスを甚いたドラむ
゚ッチングでは、アルミニりムの゚ッチング速床が
〜であり、ゲヌト絶
瞁膜改質工皋を行わないシリコン酞化膜の゚ッチング速
床は、〜である。埓っ
お、ゲヌト絶瞁膜改質工皋を行わない埓来の方法では、
オヌバヌ゚ッチング時間が秒であったずするず、ゲ
ヌト絶瞁膜ずしお甚いたシリコン酞化膜が
〜も異垞に゚ッチングされおしたう
こずになる結果、むオン泚入したずきの泚入深さが倧き
くばら぀き、特性がばら぀いおしたう。これに察
しお、本圢態のように、ゲヌト絶瞁膜改質工皋を行う
ず、23ガスを甚いたドラむ゚ッチン
グにおいお、シリコン酞化膜の゚ッチング速床は、
〜にたで䜎䞋するの
で、たずえ秒のオヌバヌ゚ッチングを行っおも、ゲ
ヌト絶瞁膜、、ずしお甚いたシリコン酞化
膜が゚ッチングされる厚さは、〜
である。それ故、ゲヌト電極、
、を圢成し終えた時点で、ゲヌト絶瞁膜、
、の膜厚が䞀定であるので、図、
、、に瀺す工皋においお、むオン泚
入あるいはむオン打ち蟌みなどの方法によっおゲヌト絶
瞁膜、、を介しお半導䜓膜に䞍玔物
を導入するずき、半導䜓膜の深さ方向における䞍
玔物濃床分垃を容易に制埡できる。すなわち、䞍玔物を
導入するずきの加速電圧などは、ゲヌト絶瞁膜、
、の膜厚に応じお最適な条件に蚭定されるが、本
圢態によれば、ゲヌト絶瞁膜、、の膜厚が
倉動しないので、䞍玔物を導入するずきの最適加速電圧
などが倉動しない。よっお、半導䜓膜に最適条件
で䞍玔物を導入できるので、゜ヌス・ドレむンの䞍玔物
濃床を最適条件に蚭定するこずができる。
(Main Effects of the Manufacturing Method of the Present Embodiment) As described above, when the active matrix substrate 200 is manufactured by the low-temperature process, the gate insulating films 12 and 2
Since the films 2 and 32 are also formed at a temperature of less than 600 ° C. or even less than 500 ° C., the etching resistance is low due to the presence of defects and the like as they are, but in this embodiment, the gate electrode forming conductive film 150 is patterned. First, a gate insulating film modifying step for improving the etching resistance of the gate insulating films 12, 22, 32 is performed. Therefore, the conductive film 150 for forming a gate electrode is etched to form the gate electrodes 14, 24, and 34.
Is formed, it is possible to prevent the gate insulating films 12, 22, and 32 from being abnormally etched. For example, in RIE dry etching using Cl 2 + BCl 3 gas, the etching rate of aluminum is 10
The etching rate is 0 nm / min to 150 nm / min, and the etching rate of the silicon oxide film without performing the gate insulating film modification step is 5 nm / min to 15 nm / min. Therefore, in the conventional method without performing the gate insulating film reforming step,
Assuming that the over-etching time is 50 seconds, the silicon oxide film used as the gate insulating film is 4 nm / mi.
As a result, abnormal etching is performed at a rate of n to 12 nm / min. As a result, the implantation depth at the time of ion implantation greatly varies, and the TFT characteristics vary. On the other hand, when the gate insulating film modification step is performed as in the present embodiment, the etching rate of the silicon oxide film becomes 0.1 in RIE dry etching using Cl 2 + BCl 3 gas.
Since it is reduced to 5 nm / min to 1.5 nm / min, even if over-etching is performed for 50 seconds, the thickness of the silicon oxide film used as the gate insulating films 12, 22, 32 is 0.1 mm. 4 nm / min ~
It is 1.2 nm / min. Therefore, the gate electrode 14,
When the formation of the gate insulating films 12 and 24 is completed,
Since the film thicknesses of the films 22 and 32 are constant, FIG.
In steps (B), (C), and (D), when impurities are introduced into the semiconductor film 100 via the gate insulating films 12, 22, 32 by a method such as ion implantation or ion implantation, The impurity concentration distribution in the depth direction can be easily controlled. That is, the acceleration voltage or the like at the time of introducing the impurity is controlled by the gate insulating films 12 and 2.
The optimum conditions are set according to the film thicknesses of the gate insulating films 2 and 32. According to the present embodiment, the film thicknesses of the gate insulating films 12, 22, and 32 do not change. Does not fluctuate. Therefore, the impurity can be introduced into the semiconductor film 100 under the optimum condition, so that the impurity concentration of the source / drain can be set to the optimum condition.

【】たた、ゲヌト電極圢成甚導電膜をド
ラむ゚ッチングしおゲヌト電極、、を圢成
したずき、ゲヌト絶瞁膜、、のうち、ゲヌ
ト電極、、の端郚の真䞋に䜍眮する郚分た
で゚ッチングされおしたうこずがないので、図
、に瀺す工皋においお、ゲヌト電極、
、をマスクにしお半導䜓膜に䞍玔物を導
入したずきでも、䞍玔物の導入領域を確実に制埡でき
る。よっお、本圢態のように、ゲヌト電極、、
をマスクにしお半導䜓膜に䜎濃床の䞍玔物を
導入しお構造の、、を補造し
たずきでも、これらの、、の
長を確実に制埡するこずができる。それ故、オン電流特
性やオフリヌク電流特性の安定した、、
を補造するこずができる。
When the gate electrodes 14, 24, and 34 are formed by dry-etching the conductive film 150 for forming a gate electrode, the end portions of the gate electrodes 14, 24, and 34 of the gate insulating films 12, 22, and 32 are formed. 5 is not etched down to the portion located immediately below
In the steps shown in (A) and (B), the gate electrode 14,
Even when an impurity is introduced into the semiconductor film 100 using the masks 24 and 34 as a mask, the region into which the impurity is introduced can be reliably controlled. Therefore, as in the present embodiment, the gate electrodes 14, 24,
Even when the low-concentration impurities are introduced into the semiconductor film 100 using the mask 34 as a mask to manufacture the TFTs 10, 20, and 30 having the LDD structure, the LDDs of these TFTs 10, 20, and 30 are formed.
The length can be controlled reliably. Therefore, TFTs 10, 20, which have stable on-current characteristics and off-leak current characteristics,
30 can be manufactured.

【】さらに、ドラむ゚ッチングの堎合には、り
゚ット゚ッチングに比范しお゚ッチング遞択性が䜎いの
で、ゲヌト電極圢成甚導電膜を゚ッチングするず
き、ゲヌト絶瞁膜、、も゚ッチングされや
すい傟向にあるが、本圢態のように、ゲヌト絶瞁膜
、、の耐゚ッチング性を高めおおけば、ゲヌ
ト電極圢成甚導電膜をパタヌニングするのにドラ
む゚ッチングを採甚したずきでも、ゲヌト絶瞁膜、
、が異垞に゚ッチングされおしたうこずを防止
できる。
Further, in the case of dry etching, since the etching selectivity is lower than that of wet etching, when the conductive film 150 for forming a gate electrode is etched, the gate insulating films 12, 22, and 32 are also likely to be etched. However, as in this embodiment, the gate insulating film 1
If the etching resistance of 2, 22, 32 is increased, even when dry etching is used to pattern the gate electrode forming conductive film 150, the gate insulating film 12,
22 and 32 can be prevented from being abnormally etched.

【】液晶パネルの構成このような方法で圢
成されたアクティブマトリスク基板を甚いお液晶
衚瀺甚甚の液晶パネルを構成した䟋を、図および図
を参照しお説明する。
[Structure of Liquid Crystal Panel] FIGS. 6 and 7 show an example in which a liquid crystal panel for a liquid crystal display is formed by using the active matrix substrate 100 formed by such a method.
This will be described with reference to FIG.

【】図および図はそれぞれ、本圢態に係る
液晶衚瀺装眮に甚いた液晶パネルを察向基板の偎からみ
た平面図、および図の−′線で切断したずきの液
晶パネルの断面図である。
FIGS. 6 and 7 are a plan view of the liquid crystal panel used in the liquid crystal display device according to the present embodiment as viewed from the side of the counter substrate, and a view of the liquid crystal panel taken along line HH 'in FIG. It is sectional drawing.

【】図および図においお、液晶衚瀺装眮に
甚いる液晶パネルは、画玠電極がマトリクス状に
圢成されたアクティブマトリクス基板ず、察向電
極および遮光膜が圢成された察向基板
ず、これらの基板間に封入、挟持されおいる液晶
ずから抂略構成されおいる。アクティブマトリクス基
板ず察向基板ずは、察向基板の倖呚
瞁に沿っお圢成されたギャップ材含有のシヌル材
によっお所定の間隙を介しお貌り合わされおいる。た
た、アクティブマトリクス基板ず察向基板
ずの間には、シヌル材によっお液晶封入領域
が区画圢成され、この液晶封入領域内に液晶
が封入されおいる。この液晶封入領域内にお
いお、アクティブマトリクス基板ず察向基板
ず間にはスペヌサが介圚しおいる。シヌル材
ずしおは、゚ポキシ暹脂や各皮の玫倖線硬化暹脂な
どを甚いるこずができる。たた、シヌル材に配合
されるギャップ材ずしおは、玄Ό〜玄Όの無
機あるいは有機質のファむバ若しくは球などが甚いられ
る。
6 and 7, the liquid crystal panel 1 used in the liquid crystal display device has an active matrix substrate 200 on which pixel electrodes 45 are formed in a matrix and a counter substrate 40 on which a counter electrode 532 and a light shielding film 531 are formed.
0 and a liquid crystal 53 sealed and sandwiched between these substrates.
9 is roughly constituted. The active matrix substrate 200 and the opposing substrate 400 are formed by sealing material 552 including a gap material formed along the outer peripheral edge of the opposing substrate 400.
By a predetermined gap. Further, the active matrix substrate 200 and the counter substrate 400
Between the liquid crystal sealing area 54 and the sealing material 552.
0 are defined, and the liquid crystal 5
39 are enclosed. The active matrix substrate 200 and the opposing substrate 40
A spacer 537 is interposed between 0 and 0. Seal material 5
As 52, an epoxy resin or various ultraviolet curable resins can be used. In addition, as a gap material mixed in the sealing material 552, an inorganic or organic fiber or sphere of about 2 ÎŒm to about 10 ÎŒm is used.

【】察向基板はアクティブマトリクス基
板よりも小さく、アクティブマトリクス基板
の呚蟺郚分は、察向基板の倖呚瞁よりはみ出た
状態に貌り合わされる。埓っお、アクティブマトリクス
基板の駆動回路走査線駆動回路やデヌタ線
駆動回路や入出力端子は察向基板か
ら露出した状態にある。ここで、シヌル材は郚分
的に途切れおいるので、この途切れ郚分によっお、液晶
泚入口が構成されおいる。このため、察向基板
ずアクティブマトリクス基板ずを貌り合わせ
た埌、シヌル材の内偎領域を枛圧状態にすれば、
液晶泚入口から液晶を枛圧泚入でき、液晶
を封入した埌、液晶泚入口を封止剀
で塞げばよい。なお、察向基板には、シヌル材
の内偎においお画面衚瀺領域を芋切りするため
の遮光膜も圢成されおいる。たた、察向基板
のコヌナヌ郚のいずれにも、アクティブマトリクス基
板ず察向基板ずの間で電気的導通をずるため
の䞊䞋導通材が圢成されおいる。
The counter substrate 400 is smaller than the active matrix substrate 200,
The peripheral portion of 0 is bonded so as to protrude from the outer peripheral edge of the counter substrate 400. Accordingly, the driving circuits (the scanning line driving circuit 70 and the data line driving circuit 60) and the input / output terminals 545 of the active matrix substrate 200 are in a state of being exposed from the counter substrate 400. Here, since the sealant 552 is partially interrupted, the liquid crystal injection port 541 is formed by the interrupted portion. Therefore, the opposing substrate 4
00 and the active matrix substrate 200 are bonded to each other, and then the inside area of the sealing material 552 is depressurized,
The liquid crystal 539 can be injected under reduced pressure from the liquid crystal injection port 541. After the liquid crystal 539 is sealed, the liquid crystal injection port 541 is sealed with the sealing agent 542.
It should be closed with. The counter substrate 400 has a sealing material 5
A light-shielding film 555 for cutting off the screen display area 81 inside the area 52 is also formed. Also, the counter substrate 40
A vertical conductive material 556 for establishing electrical conduction between the active matrix substrate 30 and the counter substrate 400 is formed at any of the 0 corner portions.

【】ここで、走査線に䟛絊される走査信号の遅
延が問題にならないのならば、走査線駆動回路は片
偎だけでも良いこずは蚀うたでもない。たた、デヌタ線
駆動回路を画面衚瀺領域の蟺に沿っお䞡偎に配
列しおも良い。䟋えば奇数列のデヌタ線は画面衚瀺領域
の䞀方の蟺に沿っお配蚭されたデヌタ線駆動回路か
ら画像信号を䟛絊し、 偶数列のデヌタ線は画面衚瀺領域
の反察偎の蟺に沿っお配蚭されたデヌタ線駆動回路
から画像信号を䟛絊するようにしおも良い。このように
デヌタ線を櫛歯状に駆動するようにすれば、デヌタ線駆
動回路の圢成面積を拡匵するこずが出来るため、耇
雑な回路を構成するこずが可胜ずなる。たた、アクティ
ブマトリクス基板においお、デヌタ線駆動回路
ず察向する蟺の偎では、遮光膜の䞋などを利甚
しお、プリチャヌゞ回路や怜査回路が蚭けられるこずも
ある。なお、デヌタ線駆動回路および走査線駆動回
路をアクティブマトリクス基板の䞊に圢成す
る代わりに、たずえば、駆動甚が実装された
テヌプ オヌトメむテッド、ボンディング基板を
アクティブマトリクス基板の呚蟺郚に圢成された
端子矀に察しお異方性導電膜を介しお電気的および機械
的に接続するようにしおもよい。たた、察向基板
およびアクティブマトリクス基板の光入射偎の面
あるいは光出射偎には、䜿甚する液晶の皮類、す
なわち、ツむステッドネマティックモヌド、
スヌパヌモヌド、−ダブル−
モヌド等々の動䜜モヌドや、ノヌマリホワむトモ
ヌドノヌマリブラックモヌドの別に応じお、偏光フィ
ルム、䜍盞差フィルム、偏光板などが所定の向きに配眮
される。
Here, if the delay of the scanning signal supplied to the scanning line does not matter, it goes without saying that the scanning line driving circuit 70 may be provided on only one side. Further, the data line driving circuits 60 may be arranged on both sides along the side of the screen display area 81. For example, an odd-numbered data line supplies an image signal from a data line driving circuit arranged along one side of the screen display area 81, and an even-numbered data line runs along the opposite side of the screen display area 81. The image signal may be supplied from a data line driving circuit disposed in the same manner. If the data lines are driven in a comb-tooth shape as described above, the formation area of the data line driving circuit 60 can be expanded, so that a complicated circuit can be formed. In the active matrix substrate 200, the data line driving circuit 6
On the side of the side opposite to 0, a precharge circuit or an inspection circuit may be provided by utilizing a portion under the light shielding film 555 or the like. Note that instead of forming the data line driving circuit 60 and the scanning line driving circuit 70 on the active matrix substrate 200, for example, a TA on which a driving LSI is mounted is mounted.
A B (tape automated, bonding) substrate may be electrically and mechanically connected to a terminal group formed on the periphery of the active matrix substrate 200 via an anisotropic conductive film. Also, the counter substrate 400
The type of liquid crystal 539 to be used, that is, TN (twisted nematic) mode, S
TN (super TN) mode, D-STN (double-S
A polarizing film, a retardation film, a polarizing plate, and the like are arranged in a predetermined direction according to an operation mode such as a TN) mode and a normally white mode / normally black mode.

【】本圢態の液晶パネルを透過型で構成した
堎合には、たずえば、投射型液晶衚瀺装眮液晶プロゞ
ェクタにおいお䜿甚される。この堎合、枚の液晶パ
ネルが甚のラむトバルブずしお各々䜿甚され、
各液晶パネルの各々には、色分解甚のダむクロ
むックミラヌを介しお分解された各色の光が投射光ずし
お各々入射されるこずになる。埓っお、本圢態の液晶パ
ネルにはカラヌフィルタが圢成されおいない。䜆し、
察向基板においお各画玠電極に察向する領域
にのカラヌフィルタをその保護膜ずずもに圢成す
るこずにより、投射型液晶衚瀺以倖にも、カラヌ液晶テ
レビなどずいったカラヌ液晶衚瀺装眮を構成するこずが
できる。さらにたた、察向基板に䜕局もの屈折率
の異なる干枉局を積局するこずにより、光の干枉䜜甚を
利甚しお、色を぀くり出すダむクロむックフィル
タを圢成しおもよい。このダむクロむックフィルタ付き
の察向基板によれば、より明るいカラヌ衚瀺を行うこず
ができる。
When the liquid crystal panel 1 of the present embodiment is of a transmission type, it is used, for example, in a projection type liquid crystal display device (liquid crystal projector). In this case, three liquid crystal panels 1 are used as light valves for RGB, respectively.
The light of each color separated via the dichroic mirror for RGB color separation is incident on each of the liquid crystal panels 1 as projection light. Therefore, no color filter is formed on the liquid crystal panel 1 of the present embodiment. However,
A color liquid crystal display device such as a color liquid crystal television can be configured in addition to the projection type liquid crystal display by forming an RGB color filter together with its protective film in a region facing each pixel electrode 45 on the counter substrate 400. . Furthermore, a dichroic filter that creates RGB colors by utilizing the interference effect of light may be formed by stacking a number of interference layers having different refractive indexes on the counter substrate 400. According to the counter substrate with the dichroic filter, a brighter color display can be performed.

【】[0055]

【発明の効果】以䞊説明したように、本発明では、
℃未満さらには℃未満の枩床でゲヌト絶瞁膜を
圢成するが、ゲヌト電極圢成甚導電膜をパタヌニングす
る前に、ゲヌト絶瞁膜の耐゚ッチング性を高めるゲヌト
絶瞁膜改質工皋を行うため、ゲヌト電極圢成甚導電膜を
゚ッチングしおゲヌト電極を圢成するずき、ゲヌト絶瞁
膜が異垞に゚ッチングされおしたうこずを防止するこず
ができる。それ故、ゲヌト電極を圢成し終えた時点で、
ゲヌト絶瞁膜の膜厚が䞀定であるので、むオン泚入ある
いはむオン打ち蟌みなどの方法によっおゲヌト絶瞁膜を
介しお半導䜓膜に䞍玔物を導入したずき、半導䜓膜の深
さ方向における䞍玔物濃床分垃を容易に制埡できる。た
た、ゲヌト電極圢成甚導電膜をドラむ゚ッチングしおゲ
ヌト電極を圢成したずき、ゲヌト絶瞁膜のうち、ゲヌト
電極の端郚の真䞋に䜍眮する郚分たで゚ッチングされお
したうこずがないので、ゲヌト電極をマスクにしお半導
䜓膜に䞍玔物を導入したずきでも、䞍玔物の導入領域を
確実に制埡できる。よっお、ゲヌト電極をマスクにしお
半導䜓膜に䜎濃床の䞍玔物を導入しお構造の
を補造したずきでも、このの長を確実に
制埡するこずができる。
As described above, according to the present invention, 60
Although the gate insulating film is formed at a temperature of less than 0 ° C. and further less than 500 ° C., before patterning the conductive film for forming a gate electrode, a gate insulating film modifying step for improving the etching resistance of the gate insulating film is performed. When the gate electrode is formed by etching the conductive film for forming a gate electrode, abnormal etching of the gate insulating film can be prevented. Therefore, when the formation of the gate electrode is completed,
Since the thickness of the gate insulating film is constant, when impurities are introduced into the semiconductor film through the gate insulating film by a method such as ion implantation or ion implantation, the impurity concentration distribution in the depth direction of the semiconductor film can be easily controlled. it can. Further, when the gate electrode is formed by dry-etching the conductive film for forming a gate electrode, a portion of the gate insulating film located immediately below an end of the gate electrode is not etched. Even when an impurity is introduced into a semiconductor film as a mask, an impurity introduction region can be reliably controlled. Therefore, a low-concentration impurity is introduced into the semiconductor film using the gate electrode as a mask to form the TF having the LDD structure.
Even when T is manufactured, the LDD length of the TFT can be reliably controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図】は、液晶衚瀺装眮甚のアクティブマトリ
クス基板のブロック図、は、その駆動回路を構成
する回路の等䟡回路図である。
FIG. 1A is a block diagram of an active matrix substrate for a liquid crystal display device, and FIG. 1B is an equivalent circuit diagram of a CMOS circuit forming a driving circuit thereof.

【図】図に瀺すアクティブマトリクス基板䞊に圢成
した皮類のの断面図である。
FIG. 2 is a sectional view of three types of TFTs formed on the active matrix substrate shown in FIG.

【図】〜は、図に瀺すアクティブマト
リクス基板の補造方法を瀺す工皋断面図である。
FIGS. 3A to 3D are process cross-sectional views illustrating a method for manufacturing the active matrix substrate shown in FIG. 2;

【図】〜は、図に瀺すアクティブマト
リクス基板の補造方法においお、図に瀺す工皋に続い
お行う各工皋を瀺す工皋断面図である。
4 (A) to 4 (E) are cross-sectional views showing steps performed after the step shown in FIG. 3 in the method for manufacturing the active matrix substrate shown in FIG.

【図】〜は、図に瀺すアクティブマト
リクス基板の補造方法においお、図に瀺す工皋に続い
お行う各工皋を瀺す工皋断面図である。
5 (A) to 5 (D) are cross-sectional views showing the steps performed after the step shown in FIG. 4 in the method for manufacturing the active matrix substrate shown in FIG.

【図】アクティブマトリクス型の液晶衚瀺装眮甚の液
晶パネルの平面図である。
FIG. 6 is a plan view of a liquid crystal panel for an active matrix type liquid crystal display device.

【図】図の−′線における断面図である。FIG. 7 is a sectional view taken along line HH ′ of FIG. 6;

【図】〜は、埓来のアクティブマトリク
ス基板の補造方法においお、ゲヌト絶瞁膜を圢成した
埌、ゲヌト電極をパタヌニング圢成するたでの工皋を瀺
す工皋断面図である。
FIGS. 8A to 8D are cross-sectional views showing steps from forming a gate insulating film to patterning a gate electrode in a conventional method for manufacturing an active matrix substrate.

【図】、はそれぞれ、埓来のアクティブ
マトリクス基板の補造方法においお、ゲヌト電極を圢成
したずきに発生する䞍具合を瀺す説明図である。
FIGS. 9A and 9B are explanatory views showing problems that occur when a gate electrode is formed in a conventional method for manufacturing an active matrix substrate.

【笊号の説明】[Explanation of symbols]

 液晶パネル  駆動回路甚の型の  駆動回路甚の型の 、、 ゲヌト絶瞁膜 、、 ゲヌト電極 、、 チャネル領域 、、 高濃床゜ヌス・ドレむン領域 、、 䜎濃床゜ヌス・ドレむン領域  画玠スむッチング甚の  保持容量 、、 ゜ヌス電極  ドレむン電極  画玠電極  基板  䞋地保護膜  局間絶瞁膜  デヌタ偎駆動回路 、、、、、 レゞストマスク  走査偎駆動回路  画面衚瀺領域  デヌタ線  走査線  液晶容量液晶セル  半導䜓膜  ゲヌト電極圢成甚導電膜  アクティブマトリクス基板半導䜓装眮  察向基板  察向電極 Reference Signs List 1 liquid crystal panel 10 N-type TFT for drive circuit 20 P-type TFT for drive circuit 12, 22, 32 Gate insulating film 14, 24, 34 Gate electrode 15, 25, 35 Channel region 16, 26, 36 High concentration Source / drain region 17, 27, 37 Low-concentration source / drain region 30 TFT for pixel switching 40 Storage capacitor 41, 43, 44 Source electrode 42 Drain electrode 45 Pixel electrode 50 Substrate 51 Base protective film 52 Interlayer insulating film 60 Data side Drive circuit 61, 62, 63, 64, 65, 66 Resist mask 70 Scan side drive circuit 81 Screen display area 90 Data line 91 Scan line 94 Liquid crystal capacitor (liquid crystal cell) 100 Semiconductor film 150 Gate electrode conductive film 200 Active matrix Substrate (semiconductor device) 400 Counter substrate 531 Counter electrode

───────────────────────────────────────────────────── フロントペヌゞの続き タヌム(参考 2H092 GA59 HA28 JA25 JA40 JB51 KA04 KA10 KA12 KA18 KA19 MA07 MA08 MA19 MA22 MA27 MA30 MA37 MA41 NA22 NA24 PA06 PA09 PA11 PA13 QA07 QA10 RA05 5F058 BA01 BB04 BB07 BC02 BH03 BH04 BH16 BH20 BJ10 5F110 AA17 AA26 BB02 BB04 CC02 DD02 DD13 EE03 EE04 EE06 EE14 EE44 FF02 FF30 FF36 GG02 GG13 GG25 GG42 GG43 GG45 GG47 HJ01 HJ04 HJ13 HJ23 HM14 HM15 NN02 NN72 PP03 QQ04 QQ11  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 2H092 GA59 HA28 JA25 JA40 JB51 KA04 KA10 KA12 KA18 KA19 MA07 MA08 MA19 MA22 MA27 MA30 MA37 MA41 NA22 NA24 PA06 PA09 PA11 PA13 QA07 QA10 RA05 5F058 BA01 BB04 BB07 B02BHB BH03H 5F110 AA17 AA26 BB02 BB04 CC02 DD02 DD13 EE03 EE04 EE06 EE14 EE44 FF02 FF30 FF36 GG02 GG13 GG25 GG42 GG43 GG45 GG47 HJ01 HJ04 HJ13 HJ23 HM14 HM15 NN02 NN72 PP03 QQ04 Q

Claims (9)

【特蚱請求の範囲】[Claims] 【請求項】 基板䞊に圢成した半導䜓膜の衚面に
℃未満の枩床条件でゲヌト絶瞁膜を圢成するゲヌト絶
瞁膜圢成工皋ず、前蚘ゲヌト絶瞁膜の衚面にゲヌト電極
圢成甚導電膜を圢成した埌、該ゲヌト電極圢成甚導電膜
の衚面にパタヌニングマスクを圢成し、しかる埌に前蚘
パタヌングマスクを介しお前蚘ゲヌト電極圢成甚導電膜
を゚ッチングしおゲヌト電極を圢成するゲヌト電極圢成
工皋ずを有し、前蚘半導䜓膜によっお薄膜トランゞスタ
の胜動局を構成した半導䜓装眮の補造方法においお、 前蚘ゲヌト絶瞁膜圢成工皋を行った以降、前蚘ゲヌト電
極圢成工皋を行う前に、前蚘ゲヌト絶瞁膜の耐゚ッチン
グ性を高めるゲヌト絶瞁膜改質工皋を行うこずを特城ず
する半導䜓装眮の補造方法。
A semiconductor film formed on a substrate;
Forming a gate insulating film under a temperature condition of less than 0 ° C .; forming a gate electrode forming conductive film on the surface of the gate insulating film; and forming a patterning mask on the surface of the gate electrode forming conductive film. Forming a gate electrode by forming the gate electrode by etching the conductive film for forming a gate electrode through the patterning mask, and then forming an active layer of the thin film transistor by the semiconductor film. In the method of manufacturing a device, after performing the gate insulating film forming step, before performing the gate electrode forming step, performing a gate insulating film modifying step of increasing the etching resistance of the gate insulating film is performed. A method for manufacturing a semiconductor device.
【請求項】 請求項においお、前蚘ゲヌト電極圢成
工皋では、前蚘ゲヌト電極圢成甚導電膜に察するドラむ
゚ッチングにより前蚘ゲヌト電極を圢成するこずを特城
ずする半導䜓装眮の補造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein in the step of forming the gate electrode, the gate electrode is formed by dry etching the conductive film for forming a gate electrode.
【請求項】 請求項たたはにおいお、前蚘ゲヌト
絶瞁膜改質工皋では、前蚘ゲヌト絶瞁膜に察するアニヌ
ル凊理を行うこずを特城ずする半導䜓装眮の補造方法。
3. The method for manufacturing a semiconductor device according to claim 1, wherein in the step of modifying the gate insulating film, an annealing process is performed on the gate insulating film.
【請求項】 請求項においお、前蚘アニヌル凊理
は、窒玠ガス、アルゎンガス、ヘリりムガス、酞玠ガ
ス、あるいはこれらのガスの混合ガスの雰囲気䞭で前蚘
ゲヌト絶瞁膜を加熱する加熱凊理であるこずを特城ずす
る半導䜓装眮の補造方法。
4. The method according to claim 3, wherein the annealing is a heat treatment for heating the gate insulating film in an atmosphere of nitrogen gas, argon gas, helium gas, oxygen gas, or a mixed gas of these gases. A method for manufacturing a semiconductor device, comprising:
【請求項】 請求項においお、前蚘アニヌル凊理
は、ランプアニヌル凊理であるこずを特城ずする半導䜓
装眮の補造方法。
5. The method according to claim 3, wherein the annealing process is a lamp annealing process.
【請求項】 請求項においお、前蚘アニヌル凊理
は、レヌザアニヌル凊理であるこずを特城ずする半導䜓
装眮の補造方法。
6. The method according to claim 3, wherein the annealing is a laser annealing.
【請求項】 請求項たたはにおいお、前蚘ゲヌト
絶瞁膜改質工皋では、前蚘ゲヌト絶瞁膜にプラズマを照
射するプラズマ凊理であるこずを特城ずする半導䜓装眮
の補造方法。
7. The method for manufacturing a semiconductor device according to claim 1, wherein the step of modifying the gate insulating film is a plasma treatment of irradiating the gate insulating film with plasma.
【請求項】 請求項においお、前蚘プラズマ凊理で
は、前蚘ゲヌト絶瞁膜に酞玠プラズマ、氎玠プラズマ、
および窒玠プラズマのいずれかを照射するこずを特城ず
する半導䜓装眮の補造方法。
8. The plasma processing device according to claim 7, wherein in the plasma processing, oxygen plasma, hydrogen plasma,
And irradiating the semiconductor device with nitrogen plasma.
【請求項】 請求項ないしのいずれかにおいお、
前蚘ゲヌト電極圢成甚導電膜は、アルミニりム膜、アル
ミニりム−銅合金膜、クロム膜、チタン膜、およびタン
タル膜のいずれかの金属膜が単局あるいは倚局に圢成さ
れた導電膜であるこずを特城ずする半導䜓装眮の補造方
法。
9. The method according to claim 1, wherein
The conductive film for forming a gate electrode is a conductive film in which any one of a metal film of an aluminum film, an aluminum-copper alloy film, a chromium film, a titanium film, and a tantalum film is formed in a single layer or a multilayer. Semiconductor device manufacturing method.
JP2000242732A 2000-08-10 2000-08-10 Method for manufacturing semiconductor device Withdrawn JP2002057342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242732A JP2002057342A (en) 2000-08-10 2000-08-10 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242732A JP2002057342A (en) 2000-08-10 2000-08-10 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2002057342A true JP2002057342A (en) 2002-02-22

Family

ID=18733706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242732A Withdrawn JP2002057342A (en) 2000-08-10 2000-08-10 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2002057342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247414A (en) * 2003-02-12 2004-09-02 Sharp Corp Transistor, manufacturing method thereof, and liquid crystal display device using the transistor
US7893439B2 (en) 2002-05-17 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Silicon nitride film and semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893439B2 (en) 2002-05-17 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Silicon nitride film and semiconductor device
US8866144B2 (en) 2002-05-17 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device having silicon nitride film
US9847355B2 (en) 2002-05-17 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Silicon nitride film, and semiconductor device
JP2004247414A (en) * 2003-02-12 2004-09-02 Sharp Corp Transistor, manufacturing method thereof, and liquid crystal display device using the transistor

Similar Documents

Publication Publication Date Title
JP4741613B2 (en) Display device
KR20010029895A (en) Semiconductor device and method of fabricating the same
JP2003203919A (en) Thin film transistor device and method of manufacturing the same
JPH11112002A (en) Semiconductor device and manufacturing method thereof
JP4049422B2 (en) Manufacturing method of liquid crystal display device
JP4683696B2 (en) Method for manufacturing semiconductor device
KR100493382B1 (en) Method For Manufacturing of Liquid Crystal Display Device
US6699738B2 (en) Semiconductor doping method and liquid crystal display device fabricating method using the same
US7173675B2 (en) LCD display with contact hole and insulation layer above pixel electrode
JPH08116067A (en) Semiconductor device, display device and manufacture of display device
JP2002359252A (en) Flat panel display and manufacturing method thereof
JP2002057342A (en) Method for manufacturing semiconductor device
JP2000150890A (en) Method for manufacturing semiconductor device
JP2008218626A (en) TFT array substrate and manufacturing method thereof
JP3647384B2 (en) Thin film semiconductor device, manufacturing method thereof, and display panel
JP2002164543A (en) Semiconductor device, electro-optical device, and manufacturing method thereof
JP2000305107A (en) Semiconductor device and manufacturing method thereof
JPH10209452A (en) Thin film transistor and its manufacture
JP2000260710A (en) Semiconductor device manufacturing method and annealing apparatus
JP2009210681A (en) Display and manufacturing method therefor
JP2934717B2 (en) Matrix circuit driving device and method of manufacturing the same
JP3832213B2 (en) Manufacturing method of semiconductor device and manufacturing method of electro-optical device
JP2002076349A (en) Method for manufacturing semiconductor device
JPH1152426A (en) Liquid crystal display device and method of manufacturing the same
JP4792694B2 (en) Electro-optical device substrate manufacturing method, electro-optical device substrate, electro-optical device, and electronic apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106